106a65ce5SPeiming Liu// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s 253cc3a06SAart Bik 353cc3a06SAart Bik#DenseMatrix = #sparse_tensor.encoding<{ 42a07f0fdSYinying Li map = (d0, d1) -> (d0 : dense, d1 : dense) 553cc3a06SAart Bik}> 653cc3a06SAart Bik 753cc3a06SAart Bik#SparseMatrix = #sparse_tensor.encoding<{ 82a07f0fdSYinying Li map = (d0, d1) -> (d0 : compressed, d1 : compressed) 953cc3a06SAart Bik}> 1053cc3a06SAart Bik 1153cc3a06SAart Bik#trait = { 1253cc3a06SAart Bik indexing_maps = [ 1353cc3a06SAart Bik affine_map<(i,j) -> (i,j)>, // A 1453cc3a06SAart Bik affine_map<(i,j) -> (i,j)> // X (out) 1553cc3a06SAart Bik ], 1653cc3a06SAart Bik iterator_types = ["parallel", "parallel"], 1753cc3a06SAart Bik doc = "X(i,j) = A(i,j) * i * j" 1853cc3a06SAart Bik} 1953cc3a06SAart Bik 20a3610359SAart Bik// CHECK-LABEL: func.func @dense_index( 21c5a67e16SYinying Li// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xi64, #sparse{{[0-9]*}}> 2253cc3a06SAart Bik// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index 2353cc3a06SAart Bik// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index 24c5a67e16SYinying Li// CHECK-DAG: %[[VAL_3:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 25c5a67e16SYinying Li// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 26c5a67e16SYinying Li// CHECK-DAG: %[[VAL_5:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_4]]) : tensor<?x?xi64, #sparse{{[0-9]*}}> 27c5a67e16SYinying Li// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 28c5a67e16SYinying Li// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 29c5a67e16SYinying Li// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_2]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 30c5a67e16SYinying Li// CHECK-DAG: %[[VAL_24:.*]] = sparse_tensor.lvl %[[VAL_5]], %[[VAL_2]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 31c5a67e16SYinying Li// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_5]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 3253cc3a06SAart Bik// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_1]] to %[[VAL_7]] step %[[VAL_2]] { 33298412b5SPeiming Liu// CHECK: %[[VAL_12:.*]] = arith.muli %[[VAL_10]], %[[VAL_8]] : index 34298412b5SPeiming Liu// CHECK: %[[VAL_14:.*]] = arith.muli %[[VAL_10]], %[[VAL_24]] : index 3553cc3a06SAart Bik// CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_1]] to %[[VAL_8]] step %[[VAL_2]] { 36298412b5SPeiming Liu// CHECK: %[[VAL_13:.*]] = arith.addi %[[VAL_11]], %[[VAL_12]] : index 37298412b5SPeiming Liu// CHECK: %[[VAL_15:.*]] = arith.addi %[[VAL_11]], %[[VAL_14]] : index 3853cc3a06SAart Bik// CHECK: %[[VAL_16:.*]] = arith.index_cast %[[VAL_11]] : index to i64 3953cc3a06SAart Bik// CHECK: %[[VAL_17:.*]] = arith.index_cast %[[VAL_10]] : index to i64 4053cc3a06SAart Bik// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_13]]] : memref<?xi64> 4153cc3a06SAart Bik// CHECK: %[[VAL_19:.*]] = arith.muli %[[VAL_17]], %[[VAL_18]] : i64 4253cc3a06SAart Bik// CHECK: %[[VAL_20:.*]] = arith.muli %[[VAL_16]], %[[VAL_19]] : i64 4353cc3a06SAart Bik// CHECK: memref.store %[[VAL_20]], %[[VAL_9]]{{\[}}%[[VAL_15]]] : memref<?xi64> 4453cc3a06SAart Bik// CHECK: } 4553cc3a06SAart Bik// CHECK: } 46c5a67e16SYinying Li// CHECK: %[[VAL_21:.*]] = sparse_tensor.load %[[VAL_5]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 47c5a67e16SYinying Li// CHECK: return %[[VAL_21]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 4853cc3a06SAart Bik// CHECK: } 49fb35cd3bSRiver Riddlefunc.func @dense_index(%arga: tensor<?x?xi64, #DenseMatrix>) 5053cc3a06SAart Bik -> tensor<?x?xi64, #DenseMatrix> { 5153cc3a06SAart Bik %c0 = arith.constant 0 : index 5253cc3a06SAart Bik %c1 = arith.constant 0 : index 53c780352dSPeiming Liu %0 = sparse_tensor.lvl %arga, %c0 : tensor<?x?xi64, #DenseMatrix> 54c780352dSPeiming Liu %1 = sparse_tensor.lvl %arga, %c1 : tensor<?x?xi64, #DenseMatrix> 553e4a8c2cSAart Bik %init = tensor.empty(%0, %1) : tensor<?x?xi64, #DenseMatrix> 5653cc3a06SAart Bik %r = linalg.generic #trait 5753cc3a06SAart Bik ins(%arga: tensor<?x?xi64, #DenseMatrix>) 5853cc3a06SAart Bik outs(%init: tensor<?x?xi64, #DenseMatrix>) { 5953cc3a06SAart Bik ^bb(%a: i64, %x: i64): 6053cc3a06SAart Bik %i = linalg.index 0 : index 6153cc3a06SAart Bik %j = linalg.index 1 : index 6253cc3a06SAart Bik %ii = arith.index_cast %i : index to i64 6353cc3a06SAart Bik %jj = arith.index_cast %j : index to i64 6453cc3a06SAart Bik %m1 = arith.muli %ii, %a : i64 6553cc3a06SAart Bik %m2 = arith.muli %jj, %m1 : i64 6653cc3a06SAart Bik linalg.yield %m2 : i64 6753cc3a06SAart Bik } -> tensor<?x?xi64, #DenseMatrix> 6853cc3a06SAart Bik return %r : tensor<?x?xi64, #DenseMatrix> 6953cc3a06SAart Bik} 7053cc3a06SAart Bik 71a3610359SAart Bik 72a3610359SAart Bik// CHECK-LABEL: func.func @sparse_index( 73c5a67e16SYinying Li// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xi64, #sparse{{[0-9]*}}> 7453cc3a06SAart Bik// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index 7553cc3a06SAart Bik// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index 76c5a67e16SYinying Li// CHECK-DAG: %[[VAL_3:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 77c5a67e16SYinying Li// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 78c5a67e16SYinying Li// CHECK-DAG: %[[VAL_5:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_4]]) : tensor<?x?xi64, #sparse{{[0-9]*}}> 79c5a67e16SYinying Li// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 80c5a67e16SYinying Li// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 81c5a67e16SYinying Li// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 82c5a67e16SYinying Li// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 83c5a67e16SYinying Li// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 84a3610359SAart Bik// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_1]]] : memref<?xindex> 85a3610359SAart Bik// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_2]]] : memref<?xindex> 865661647eSAart Bik// CHECK: %[[T:.*]] = scf.for %[[VAL_13:.*]] = %[[VAL_11]] to %[[VAL_12]] step %[[VAL_2]] {{.*}} { 87a3610359SAart Bik// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex> 88a3610359SAart Bik// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<?xindex> 89a3610359SAart Bik// CHECK: %[[VAL_16:.*]] = arith.addi %[[VAL_13]], %[[VAL_2]] : index 90a3610359SAart Bik// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex> 915661647eSAart Bik// CHECK: %[[L:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_15]] to %[[VAL_17]] step %[[VAL_2]] {{.*}} { 9253cc3a06SAart Bik// CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xindex> 93a3610359SAart Bik// CHECK: %[[VAL_20:.*]] = arith.index_cast %[[VAL_19]] : index to i64 94a3610359SAart Bik// CHECK: %[[VAL_21:.*]] = arith.index_cast %[[VAL_14]] : index to i64 95a3610359SAart Bik// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_18]]] : memref<?xi64> 96a3610359SAart Bik// CHECK: %[[VAL_23:.*]] = arith.muli %[[VAL_21]], %[[VAL_22]] : i64 97a3610359SAart Bik// CHECK: %[[VAL_24:.*]] = arith.muli %[[VAL_20]], %[[VAL_23]] : i64 98*94e27c26SPeiming Liu// CHECK: %[[Y:.*]] = tensor.insert %[[VAL_24]] into %{{.*}}[%[[VAL_14]], %[[VAL_19]]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 995661647eSAart Bik// CHECK: scf.yield %[[Y]] 10053cc3a06SAart Bik// CHECK: } 1015661647eSAart Bik// CHECK: scf.yield %[[L]] 10253cc3a06SAart Bik// CHECK: } 103c5a67e16SYinying Li// CHECK: %[[VAL_25:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<?x?xi64, #sparse{{[0-9]*}}> 104c5a67e16SYinying Li// CHECK: return %[[VAL_25]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 10553cc3a06SAart Bik// CHECK: } 106fb35cd3bSRiver Riddlefunc.func @sparse_index(%arga: tensor<?x?xi64, #SparseMatrix>) 10753cc3a06SAart Bik -> tensor<?x?xi64, #SparseMatrix> { 10853cc3a06SAart Bik %c0 = arith.constant 0 : index 10953cc3a06SAart Bik %c1 = arith.constant 0 : index 110c780352dSPeiming Liu %0 = sparse_tensor.lvl %arga, %c0 : tensor<?x?xi64, #SparseMatrix> 111c780352dSPeiming Liu %1 = sparse_tensor.lvl %arga, %c1 : tensor<?x?xi64, #SparseMatrix> 1123e4a8c2cSAart Bik %init = tensor.empty(%0, %1) : tensor<?x?xi64, #SparseMatrix> 11353cc3a06SAart Bik %r = linalg.generic #trait 11453cc3a06SAart Bik ins(%arga: tensor<?x?xi64, #SparseMatrix>) 11553cc3a06SAart Bik outs(%init: tensor<?x?xi64, #SparseMatrix>) { 11653cc3a06SAart Bik ^bb(%a: i64, %x: i64): 11753cc3a06SAart Bik %i = linalg.index 0 : index 11853cc3a06SAart Bik %j = linalg.index 1 : index 11953cc3a06SAart Bik %ii = arith.index_cast %i : index to i64 12053cc3a06SAart Bik %jj = arith.index_cast %j : index to i64 12153cc3a06SAart Bik %m1 = arith.muli %ii, %a : i64 12253cc3a06SAart Bik %m2 = arith.muli %jj, %m1 : i64 12353cc3a06SAart Bik linalg.yield %m2 : i64 12453cc3a06SAart Bik } -> tensor<?x?xi64, #SparseMatrix> 12553cc3a06SAart Bik return %r : tensor<?x?xi64, #SparseMatrix> 12653cc3a06SAart Bik} 127