1// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s 2 3#DenseMatrix = #sparse_tensor.encoding<{ 4 map = (d0, d1) -> (d0 : dense, d1 : dense) 5}> 6 7#SparseMatrix = #sparse_tensor.encoding<{ 8 map = (d0, d1) -> (d0 : compressed, d1 : compressed) 9}> 10 11#trait = { 12 indexing_maps = [ 13 affine_map<(i,j) -> (i,j)>, // A 14 affine_map<(i,j) -> (i,j)> // X (out) 15 ], 16 iterator_types = ["parallel", "parallel"], 17 doc = "X(i,j) = A(i,j) * i * j" 18} 19 20// CHECK-LABEL: func.func @dense_index( 21// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xi64, #sparse{{[0-9]*}}> 22// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index 23// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index 24// CHECK-DAG: %[[VAL_3:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 25// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 26// CHECK-DAG: %[[VAL_5:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_4]]) : tensor<?x?xi64, #sparse{{[0-9]*}}> 27// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 28// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 29// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_2]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 30// CHECK-DAG: %[[VAL_24:.*]] = sparse_tensor.lvl %[[VAL_5]], %[[VAL_2]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 31// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_5]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 32// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_1]] to %[[VAL_7]] step %[[VAL_2]] { 33// CHECK: %[[VAL_12:.*]] = arith.muli %[[VAL_10]], %[[VAL_8]] : index 34// CHECK: %[[VAL_14:.*]] = arith.muli %[[VAL_10]], %[[VAL_24]] : index 35// CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_1]] to %[[VAL_8]] step %[[VAL_2]] { 36// CHECK: %[[VAL_13:.*]] = arith.addi %[[VAL_11]], %[[VAL_12]] : index 37// CHECK: %[[VAL_15:.*]] = arith.addi %[[VAL_11]], %[[VAL_14]] : index 38// CHECK: %[[VAL_16:.*]] = arith.index_cast %[[VAL_11]] : index to i64 39// CHECK: %[[VAL_17:.*]] = arith.index_cast %[[VAL_10]] : index to i64 40// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_13]]] : memref<?xi64> 41// CHECK: %[[VAL_19:.*]] = arith.muli %[[VAL_17]], %[[VAL_18]] : i64 42// CHECK: %[[VAL_20:.*]] = arith.muli %[[VAL_16]], %[[VAL_19]] : i64 43// CHECK: memref.store %[[VAL_20]], %[[VAL_9]]{{\[}}%[[VAL_15]]] : memref<?xi64> 44// CHECK: } 45// CHECK: } 46// CHECK: %[[VAL_21:.*]] = sparse_tensor.load %[[VAL_5]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 47// CHECK: return %[[VAL_21]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 48// CHECK: } 49func.func @dense_index(%arga: tensor<?x?xi64, #DenseMatrix>) 50 -> tensor<?x?xi64, #DenseMatrix> { 51 %c0 = arith.constant 0 : index 52 %c1 = arith.constant 0 : index 53 %0 = sparse_tensor.lvl %arga, %c0 : tensor<?x?xi64, #DenseMatrix> 54 %1 = sparse_tensor.lvl %arga, %c1 : tensor<?x?xi64, #DenseMatrix> 55 %init = tensor.empty(%0, %1) : tensor<?x?xi64, #DenseMatrix> 56 %r = linalg.generic #trait 57 ins(%arga: tensor<?x?xi64, #DenseMatrix>) 58 outs(%init: tensor<?x?xi64, #DenseMatrix>) { 59 ^bb(%a: i64, %x: i64): 60 %i = linalg.index 0 : index 61 %j = linalg.index 1 : index 62 %ii = arith.index_cast %i : index to i64 63 %jj = arith.index_cast %j : index to i64 64 %m1 = arith.muli %ii, %a : i64 65 %m2 = arith.muli %jj, %m1 : i64 66 linalg.yield %m2 : i64 67 } -> tensor<?x?xi64, #DenseMatrix> 68 return %r : tensor<?x?xi64, #DenseMatrix> 69} 70 71 72// CHECK-LABEL: func.func @sparse_index( 73// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xi64, #sparse{{[0-9]*}}> 74// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index 75// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index 76// CHECK-DAG: %[[VAL_3:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 77// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.lvl %[[VAL_0]], %[[VAL_1]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 78// CHECK-DAG: %[[VAL_5:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_4]]) : tensor<?x?xi64, #sparse{{[0-9]*}}> 79// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 80// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 81// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 82// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<?x?xi64, #sparse{{[0-9]*}}> 83// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 84// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_1]]] : memref<?xindex> 85// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_2]]] : memref<?xindex> 86// CHECK: %[[T:.*]] = scf.for %[[VAL_13:.*]] = %[[VAL_11]] to %[[VAL_12]] step %[[VAL_2]] {{.*}} { 87// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex> 88// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<?xindex> 89// CHECK: %[[VAL_16:.*]] = arith.addi %[[VAL_13]], %[[VAL_2]] : index 90// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex> 91// CHECK: %[[L:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_15]] to %[[VAL_17]] step %[[VAL_2]] {{.*}} { 92// CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xindex> 93// CHECK: %[[VAL_20:.*]] = arith.index_cast %[[VAL_19]] : index to i64 94// CHECK: %[[VAL_21:.*]] = arith.index_cast %[[VAL_14]] : index to i64 95// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_18]]] : memref<?xi64> 96// CHECK: %[[VAL_23:.*]] = arith.muli %[[VAL_21]], %[[VAL_22]] : i64 97// CHECK: %[[VAL_24:.*]] = arith.muli %[[VAL_20]], %[[VAL_23]] : i64 98// CHECK: %[[Y:.*]] = tensor.insert %[[VAL_24]] into %{{.*}}[%[[VAL_14]], %[[VAL_19]]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 99// CHECK: scf.yield %[[Y]] 100// CHECK: } 101// CHECK: scf.yield %[[L]] 102// CHECK: } 103// CHECK: %[[VAL_25:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<?x?xi64, #sparse{{[0-9]*}}> 104// CHECK: return %[[VAL_25]] : tensor<?x?xi64, #sparse{{[0-9]*}}> 105// CHECK: } 106func.func @sparse_index(%arga: tensor<?x?xi64, #SparseMatrix>) 107 -> tensor<?x?xi64, #SparseMatrix> { 108 %c0 = arith.constant 0 : index 109 %c1 = arith.constant 0 : index 110 %0 = sparse_tensor.lvl %arga, %c0 : tensor<?x?xi64, #SparseMatrix> 111 %1 = sparse_tensor.lvl %arga, %c1 : tensor<?x?xi64, #SparseMatrix> 112 %init = tensor.empty(%0, %1) : tensor<?x?xi64, #SparseMatrix> 113 %r = linalg.generic #trait 114 ins(%arga: tensor<?x?xi64, #SparseMatrix>) 115 outs(%init: tensor<?x?xi64, #SparseMatrix>) { 116 ^bb(%a: i64, %x: i64): 117 %i = linalg.index 0 : index 118 %j = linalg.index 1 : index 119 %ii = arith.index_cast %i : index to i64 120 %jj = arith.index_cast %j : index to i64 121 %m1 = arith.muli %ii, %a : i64 122 %m2 = arith.muli %jj, %m1 : i64 123 linalg.yield %m2 : i64 124 } -> tensor<?x?xi64, #SparseMatrix> 125 return %r : tensor<?x?xi64, #SparseMatrix> 126} 127