xref: /llvm-project/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir (revision ced2fc7819d5ddea616ec330f18e08ff284c1868)
1// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s
2
3#SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
4
5#trait1 = {
6  indexing_maps = [
7    affine_map<(i) -> (i)>,  // a
8    affine_map<(i) -> (i)>   // x (out)
9  ],
10  iterator_types = ["parallel"],
11  doc = "x(i) = OP a(i)"
12}
13
14#trait2 = {
15  indexing_maps = [
16    affine_map<(i) -> (i)>,  // a
17    affine_map<(i) -> (i)>,  // b
18    affine_map<(i) -> (i)>   // x (out)
19  ],
20  iterator_types = ["parallel"],
21  doc = "x(i) = a(i) OP b(i)"
22}
23
24#traitc = {
25  indexing_maps = [
26    affine_map<(i) -> (i)>,  // a
27    affine_map<(i) -> (i)>   // x (out)
28  ],
29  iterator_types = ["parallel"],
30  doc = "x(i) = a(i) OP c"
31}
32
33// CHECK-LABEL: func @abs(
34// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
35// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
36// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
37// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
38// CHECK-DAG:     %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
39// CHECK-DAG:     %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
40// CHECK-DAG:     %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xf64>
41// CHECK-DAG:     %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
42// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
43// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
44// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
45// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
46// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
47// CHECK:           %[[VAL_13:.*]] = math.absf %[[VAL_12]] : f64
48// CHECK:             memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
49// CHECK:         }
50// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
51// CHECK:         return %[[VAL_14]] : tensor<32xf64>
52// CHECK:       }
53func.func @abs(%arga: tensor<32xf64, #SV>,
54               %argx: tensor<32xf64>) -> tensor<32xf64> {
55  %0 = linalg.generic #trait1
56     ins(%arga: tensor<32xf64, #SV>)
57    outs(%argx: tensor<32xf64>) {
58      ^bb(%a: f64, %x: f64):
59        %0 = math.absf %a : f64
60        linalg.yield %0 : f64
61  } -> tensor<32xf64>
62  return %0 : tensor<32xf64>
63}
64
65// CHECK-LABEL: func @ceil(
66// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
67// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
68// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
69// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
70// CHECK-DAG:     %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
71// CHECK-DAG:     %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
72// CHECK-DAG:     %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xf64>
73// CHECK-DAG:     %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
74// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
75// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
76// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
77// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
78// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
79// CHECK:           %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64
80// CHECK:           memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
81// CHECK:         }
82// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
83// CHECK:         return %[[VAL_14]] : tensor<32xf64>
84// CHECK:       }
85func.func @ceil(%arga: tensor<32xf64, #SV>,
86                %argx: tensor<32xf64>) -> tensor<32xf64> {
87  %0 = linalg.generic #trait1
88     ins(%arga: tensor<32xf64, #SV>)
89    outs(%argx: tensor<32xf64>) {
90      ^bb(%a: f64, %x: f64):
91        %0 = math.ceil %a : f64
92        linalg.yield %0 : f64
93  } -> tensor<32xf64>
94  return %0 : tensor<32xf64>
95}
96
97// CHECK-LABEL: func @floor(
98// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
99// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
100// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
101// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
102// CHECK-DAG:         %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
103// CHECK-DAG:         %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
104// CHECK-DAG:         %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xf64>
105// CHECK-DAG:         %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
106// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
107// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
108// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
109// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
110// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
111// CHECK:           %[[VAL_13:.*]] = math.floor %[[VAL_12]] : f64
112// CHECK:           memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
113// CHECK:         }
114// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
115// CHECK:         return %[[VAL_14]] : tensor<32xf64>
116// CHECK:       }
117func.func @floor(%arga: tensor<32xf64, #SV>,
118                 %argx: tensor<32xf64>) -> tensor<32xf64> {
119  %0 = linalg.generic #trait1
120     ins(%arga: tensor<32xf64, #SV>)
121    outs(%argx: tensor<32xf64>) {
122      ^bb(%a: f64, %x: f64):
123        %0 = math.floor %a : f64
124        linalg.yield %0 : f64
125  } -> tensor<32xf64>
126  return %0 : tensor<32xf64>
127}
128
129// CHECK-LABEL: func @neg(
130// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
131// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
132// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
133// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
134// CHECK-DAG:         %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
135// CHECK-DAG:         %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
136// CHECK-DAG:         %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xf64>
137// CHECK-DAG:         %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
138// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
139// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
140// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
141// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
142// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
143// CHECK:           %[[VAL_13:.*]] = arith.negf %[[VAL_12]] : f64
144// CHECK:           memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
145// CHECK:         }
146// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
147// CHECK:         return %[[VAL_14]] : tensor<32xf64>
148// CHECK:       }
149func.func @neg(%arga: tensor<32xf64, #SV>,
150               %argx: tensor<32xf64>) -> tensor<32xf64> {
151  %0 = linalg.generic #trait1
152     ins(%arga: tensor<32xf64, #SV>)
153    outs(%argx: tensor<32xf64>) {
154      ^bb(%a: f64, %x: f64):
155        %0 = arith.negf %a : f64
156        linalg.yield %0 : f64
157  } -> tensor<32xf64>
158  return %0 : tensor<32xf64>
159}
160
161// CHECK-LABEL: func @add(
162// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
163// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>,
164// CHECK-SAME:    %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
165// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 32 : index
166// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 0 : index
167// CHECK-DAG:     %[[VAL_5:.*]] = arith.constant true
168// CHECK-DAG:     %[[VAL_6:.*]] = arith.constant 1 : index
169// CHECK-DAG:     %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}>
170// CHECK-DAG:     %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}>
171// CHECK-DAG:     %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}>
172// CHECK-DAG:     %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
173// CHECK-DAG:     %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : tensor<32xf64> to memref<32xf64>
174// CHECK:         %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
175// CHECK:         %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
176// CHECK:         %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
177// CHECK:           %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
178// CHECK:           scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
179// CHECK:         } do {
180// CHECK:         ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
181// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
182// CHECK:           %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
183// CHECK:           scf.if %[[VAL_21]] {
184// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
185// CHECK:             %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
186// CHECK:             %[[VAL_24:.*]] = arith.addf %[[VAL_22]], %[[VAL_23]] : f64
187// CHECK:             memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
188// CHECK:           } else {
189// CHECK:             scf.if %[[VAL_5]] {
190// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
191// CHECK:               memref.store %[[VAL_25]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
192// CHECK:             } else {
193// CHECK:             }
194// CHECK:           }
195// CHECK:           %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
196// CHECK:           %[[VAL_27:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
197// CHECK:           %[[VAL_28:.*]] = arith.select %[[VAL_26]], %[[VAL_27]], %[[VAL_18]] : index
198// CHECK:           %[[VAL_29:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
199// CHECK:           scf.yield %[[VAL_28]], %[[VAL_29]] : index, index
200// CHECK:         }
201// CHECK:         scf.for %[[VAL_30:.*]] = %[[VAL_31:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
202// CHECK:           %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xf64>
203// CHECK:           memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xf64>
204// CHECK:         }
205// CHECK:         %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
206// CHECK:         return %[[VAL_33]] : tensor<32xf64>
207// CHECK:       }
208func.func @add(%arga: tensor<32xf64, #SV>,
209               %argb: tensor<32xf64>,
210               %argx: tensor<32xf64>) -> tensor<32xf64> {
211  %0 = linalg.generic #trait2
212     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
213    outs(%argx: tensor<32xf64>) {
214      ^bb(%a: f64, %b: f64, %x: f64):
215        %0 = arith.addf %a, %b : f64
216        linalg.yield %0 : f64
217  } -> tensor<32xf64>
218  return %0 : tensor<32xf64>
219}
220
221// CHECK-LABEL: func @sub(
222// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
223// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>,
224// CHECK-SAME:    %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
225// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 32 : index
226// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 0 : index
227// CHECK-DAG:     %[[VAL_5:.*]] = arith.constant true
228// CHECK-DAG:     %[[VAL_6:.*]] = arith.constant 1 : index
229// CHECK-DAG:     %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
230// CHECK-DAG:     %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
231// CHECK-DAG:     %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xf64>
232// CHECK-DAG:     %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
233// CHECK-DAG:     %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : tensor<32xf64> to memref<32xf64>
234// CHECK:         %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
235// CHECK:         %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
236// CHECK:         %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
237// CHECK:         %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
238// CHECK:         scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
239// CHECK:         } do {
240// CHECK:         ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
241// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
242// CHECK:           %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
243// CHECK:           scf.if %[[VAL_21]] {
244// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
245// CHECK:             %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
246// CHECK:             %[[VAL_24:.*]] = arith.subf %[[VAL_22]], %[[VAL_23]] : f64
247// CHECK:             memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
248// CHECK:           } else {
249// CHECK:             scf.if %[[VAL_5]] {
250// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
251// CHECK:               %[[VAL_26:.*]] = arith.negf %[[VAL_25]] : f64
252// CHECK:               memref.store %[[VAL_26]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
253// CHECK:             } else {
254// CHECK:             }
255// CHECK:           }
256// CHECK:           %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
257// CHECK:           %[[VAL_28:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
258// CHECK:           %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_18]] : index
259// CHECK:           %[[VAL_30:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
260// CHECK:           scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
261// CHECK:         }
262// CHECK:         scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
263// CHECK:           %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf64>
264// CHECK:           %[[VAL_34:.*]] = arith.negf %[[VAL_33]] : f64
265// CHECK:           memref.store %[[VAL_34]], %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<32xf64>
266// CHECK:         }
267// CHECK:         %[[VAL_35:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
268// CHECK:         return %[[VAL_35]] : tensor<32xf64>
269// CHECK:       }
270func.func @sub(%arga: tensor<32xf64, #SV>,
271               %argb: tensor<32xf64>,
272               %argx: tensor<32xf64>) -> tensor<32xf64> {
273  %0 = linalg.generic #trait2
274     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
275    outs(%argx: tensor<32xf64>) {
276      ^bb(%a: f64, %b: f64, %x: f64):
277        %0 = arith.subf %a, %b : f64
278        linalg.yield %0 : f64
279  } -> tensor<32xf64>
280  return %0 : tensor<32xf64>
281}
282
283// CHECK-LABEL: func @mul(
284// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
285// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>,
286// CHECK-SAME:    %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
287// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 0 : index
288// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 1 : index
289// CHECK-DAG:     %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}>
290// CHECK-DAG:     %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}>
291// CHECK-DAG:     %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}>
292// CHECK-DAG:     %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
293// CHECK-DAG:     %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : tensor<32xf64> to memref<32xf64>
294// CHECK:         %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
295// CHECK:         %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
296// CHECK:         scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] {
297// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
298// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref<?xf64>
299// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<32xf64>
300// CHECK:           %[[VAL_16:.*]] = arith.mulf %[[VAL_14]], %[[VAL_15]] : f64
301// CHECK:           memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf64>
302// CHECK:         }
303// CHECK:         %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf64>
304// CHECK:         return %[[VAL_17]] : tensor<32xf64>
305// CHECK:       }
306func.func @mul(%arga: tensor<32xf64, #SV>,
307               %argb: tensor<32xf64>,
308               %argx: tensor<32xf64>) -> tensor<32xf64> {
309  %0 = linalg.generic #trait2
310     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
311    outs(%argx: tensor<32xf64>) {
312      ^bb(%a: f64, %b: f64, %x: f64):
313        %0 = arith.mulf %a, %b : f64
314        linalg.yield %0 : f64
315  } -> tensor<32xf64>
316  return %0 : tensor<32xf64>
317}
318
319// CHECK-LABEL: func @divbyc(
320// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>,
321// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
322// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64
323// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 0 : index
324// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 1 : index
325// CHECK-DAG:     %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}>
326// CHECK-DAG:     %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}>
327// CHECK-DAG:     %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}>
328// CHECK-DAG:     %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<32xf64> to memref<32xf64>
329// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
330// CHECK:         %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
331// CHECK:         scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] {
332// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xindex>
333// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<?xf64>
334// CHECK:           %[[VAL_14:.*]] = arith.divf %[[VAL_13]], %[[VAL_2]] : f64
335// CHECK:           memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf64>
336// CHECK:         }
337// CHECK:         %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf64>
338// CHECK:         return %[[VAL_15]] : tensor<32xf64>
339// CHECK:       }
340func.func @divbyc(%arga: tensor<32xf64, #SV>,
341                  %argx: tensor<32xf64>) -> tensor<32xf64> {
342  %c = arith.constant 2.0 : f64
343  %0 = linalg.generic #traitc
344     ins(%arga: tensor<32xf64, #SV>)
345    outs(%argx: tensor<32xf64>) {
346      ^bb(%a: f64, %x: f64):
347        %0 = arith.divf %a, %c : f64
348        linalg.yield %0 : f64
349  } -> tensor<32xf64>
350  return %0 : tensor<32xf64>
351}
352
353// CHECK-LABEL:   func.func @zero_preserving_math(
354// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xf64, #sparse{{[0-9]*}}>) -> tensor<32xf64, #sparse{{[0-9]*}}> {
355// CHECK-DAG:       %[[VAL_1:.*]] = arith.constant 0 : index
356// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 1 : index
357// CHECK-DAG:       %[[VAL_3:.*]] = tensor.empty() : tensor<32xf64, #sparse{{[0-9]*}}>
358// CHECK-DAG:       %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
359// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xindex>
360// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse{{[0-9]*}}> to memref<?xf64>
361// CHECK:           %[[VAL_7:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_1]]] : memref<?xindex>
362// CHECK:           %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
363// CHECK:           %[[T:.*]] = scf.for %[[VAL_9:.*]] = %[[VAL_7]] to %[[VAL_8]] step %[[VAL_2]] {{.*}} {
364// CHECK:             %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_9]]] : memref<?xindex>
365// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_9]]] : memref<?xf64>
366// CHECK:             %[[VAL_12:.*]] = math.absf %[[VAL_11]] : f64
367// CHECK:             %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64
368// CHECK:             %[[VAL_14:.*]] = math.floor %[[VAL_13]] : f64
369// CHECK:             %[[VAL_15:.*]] = math.sqrt %[[VAL_14]] : f64
370// CHECK:             %[[VAL_16:.*]] = math.expm1 %[[VAL_15]] : f64
371// CHECK:             %[[VAL_17:.*]] = math.log1p %[[VAL_16]] : f64
372// CHECK:             %[[VAL_18:.*]] = math.sin %[[VAL_17]] : f64
373// CHECK:             %[[VAL_19:.*]] = math.tanh %[[VAL_18]] : f64
374// CHECK:             %[[Y:.*]] = tensor.insert %[[VAL_19]] into %{{.*}}[%[[VAL_10]]] : tensor<32xf64, #sparse{{[0-9]*}}>
375// CHECK:             scf.yield %[[Y]]
376// CHECK:           }
377// CHECK:           %[[VAL_20:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xf64, #sparse{{[0-9]*}}>
378// CHECK:           return %[[VAL_20]] : tensor<32xf64, #sparse{{[0-9]*}}>
379// CHECK:         }
380func.func @zero_preserving_math(%arga: tensor<32xf64, #SV>) -> tensor<32xf64, #SV> {
381  %c32 = arith.constant 32 : index
382  %xinp = tensor.empty() : tensor<32xf64, #SV>
383  %0 = linalg.generic #trait1
384     ins(%arga: tensor<32xf64, #SV>)
385    outs(%xinp: tensor<32xf64, #SV>) {
386      ^bb(%a: f64, %x: f64):
387	%0 = math.absf %a : f64
388        %1 = math.ceil %0 : f64
389        %2 = math.floor %1 : f64
390        %3 = math.sqrt %2 : f64
391        %4 = math.expm1 %3 : f64
392        %5 = math.log1p %4 : f64
393        %6 = math.sin %5 : f64
394        %7 = math.tanh %6 : f64
395        linalg.yield %7 : f64
396  } -> tensor<32xf64, #SV>
397  return %0 : tensor<32xf64, #SV>
398}
399
400// CHECK-LABEL:   func.func @complex_divbyc(
401// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32xcomplex<f64>, #sparse{{.*}}> {
402// CHECK-DAG:       %[[VAL_1:.*]] = arith.constant 0 : index
403// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 1 : index
404// CHECK-DAG:       %[[VAL_3:.*]] = complex.constant [0.000000e+00, 1.000000e+00] : complex<f64>
405// CHECK-DAG:       %[[VAL_4:.*]] = tensor.empty() : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}>
406// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}> to memref<?xindex>
407// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}> to memref<?xindex>
408// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}> to memref<?xcomplex<f64>>
409// CHECK:           %[[VAL_8:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_1]]] : memref<?xindex>
410// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_2]]] : memref<?xindex>
411// CHECK:           %[[T:.*]] = scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_2]] {{.*}} {
412// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xindex>
413// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref<?xcomplex<f64>>
414// CHECK:             %[[VAL_13:.*]] = complex.div %[[VAL_12]], %[[VAL_3]] : complex<f64>
415// CHECK:             %[[Y:.*]] = tensor.insert %[[VAL_13]] into %{{.*}}[%[[VAL_11]]] : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}>
416// CHECK:             scf.yield %[[Y]]
417// CHECK:           }
418// CHECK:           %[[VAL_14:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}>
419// CHECK:           return %[[VAL_14]] : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}>
420// CHECK:         }
421func.func @complex_divbyc(%arg0: tensor<32xcomplex<f64>, #SV>) -> tensor<32xcomplex<f64>, #SV> {
422  %c = complex.constant [0.0, 1.0] : complex<f64>
423  %init = tensor.empty() : tensor<32xcomplex<f64>, #SV>
424  %0 = linalg.generic #traitc
425     ins(%arg0: tensor<32xcomplex<f64>, #SV>)
426    outs(%init: tensor<32xcomplex<f64>, #SV>) {
427      ^bb(%a: complex<f64>, %x: complex<f64>):
428        %0 = complex.div %a, %c : complex<f64>
429        linalg.yield %0 : complex<f64>
430  } -> tensor<32xcomplex<f64>, #SV>
431  return %0 : tensor<32xcomplex<f64>, #SV>
432}
433