xref: /llvm-project/mlir/test/Dialect/Async/async-parallel-for-canonicalize.mlir (revision 5e7dea225be10d3ba0d01e87fb36e80c6764bd83)
1// RUN: mlir-opt %s                                                            \
2// RUN:    -async-parallel-for=async-dispatch=true                             \
3// RUN:    -canonicalize -inline -symbol-dce                                   \
4// RUN: | FileCheck %s
5
6// RUN: mlir-opt %s                                                            \
7// RUN:    -async-parallel-for=async-dispatch=false                            \
8// RUN:    -canonicalize -inline -symbol-dce                                   \
9// RUN: | FileCheck %s
10
11// Check that if we statically know that the parallel operation has a single
12// block then all async operations will be canonicalized away and we will
13// end up with a single synchonous compute function call.
14
15// CHECK-LABEL: @loop_1d(
16// CHECK:       %[[MEMREF:.*]]: memref<?xf32>
17func.func @loop_1d(%arg0: memref<?xf32>) {
18  // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
19  // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
20  // CHECK-DAG: %[[C100:.*]] = arith.constant 100 : index
21  // CHECK-DAG: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
22  // CHECK:     scf.for %[[I:.*]] = %[[C0]] to %[[C100]] step %[[C1]]
23  // CHECK:       memref.store %[[ONE]], %[[MEMREF]][%[[I]]]
24  %lb = arith.constant 0 : index
25  %ub = arith.constant 100 : index
26  %st = arith.constant 1 : index
27  scf.parallel (%i) = (%lb) to (%ub) step (%st) {
28    %one = arith.constant 1.0 : f32
29    memref.store %one, %arg0[%i] : memref<?xf32>
30  }
31
32  return
33}
34