xref: /llvm-project/mlir/lib/Transforms/Utils/DialectConversion.cpp (revision 5f7568a32c5572e10c8818192a985d7278a261e2)
1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/Config/mlir-config.h"
11 #include "mlir/IR/Block.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/Dominance.h"
15 #include "mlir/IR/IRMapping.h"
16 #include "mlir/IR/Iterators.h"
17 #include "mlir/Interfaces/FunctionInterfaces.h"
18 #include "mlir/Rewrite/PatternApplicator.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/FormatVariadic.h"
24 #include "llvm/Support/SaveAndRestore.h"
25 #include "llvm/Support/ScopedPrinter.h"
26 #include <optional>
27 
28 using namespace mlir;
29 using namespace mlir::detail;
30 
31 #define DEBUG_TYPE "dialect-conversion"
32 
33 /// A utility function to log a successful result for the given reason.
34 template <typename... Args>
35 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
36   LLVM_DEBUG({
37     os.unindent();
38     os.startLine() << "} -> SUCCESS";
39     if (!fmt.empty())
40       os.getOStream() << " : "
41                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
42     os.getOStream() << "\n";
43   });
44 }
45 
46 /// A utility function to log a failure result for the given reason.
47 template <typename... Args>
48 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
49   LLVM_DEBUG({
50     os.unindent();
51     os.startLine() << "} -> FAILURE : "
52                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
53                    << "\n";
54   });
55 }
56 
57 /// Helper function that computes an insertion point where the given value is
58 /// defined and can be used without a dominance violation.
59 static OpBuilder::InsertPoint computeInsertPoint(Value value) {
60   Block *insertBlock = value.getParentBlock();
61   Block::iterator insertPt = insertBlock->begin();
62   if (OpResult inputRes = dyn_cast<OpResult>(value))
63     insertPt = ++inputRes.getOwner()->getIterator();
64   return OpBuilder::InsertPoint(insertBlock, insertPt);
65 }
66 
67 /// Helper function that computes an insertion point where the given values are
68 /// defined and can be used without a dominance violation.
69 static OpBuilder::InsertPoint computeInsertPoint(ArrayRef<Value> vals) {
70   assert(!vals.empty() && "expected at least one value");
71   DominanceInfo domInfo;
72   OpBuilder::InsertPoint pt = computeInsertPoint(vals.front());
73   for (Value v : vals.drop_front()) {
74     // Choose the "later" insertion point.
75     OpBuilder::InsertPoint nextPt = computeInsertPoint(v);
76     if (domInfo.dominates(pt.getBlock(), pt.getPoint(), nextPt.getBlock(),
77                           nextPt.getPoint())) {
78       // pt is before nextPt => choose nextPt.
79       pt = nextPt;
80     } else {
81 #ifndef NDEBUG
82       // nextPt should be before pt => choose pt.
83       // If pt, nextPt are no dominance relationship, then there is no valid
84       // insertion point at which all given values are defined.
85       bool dom = domInfo.dominates(nextPt.getBlock(), nextPt.getPoint(),
86                                    pt.getBlock(), pt.getPoint());
87       assert(dom && "unable to find valid insertion point");
88 #endif // NDEBUG
89     }
90   }
91   return pt;
92 }
93 
94 //===----------------------------------------------------------------------===//
95 // ConversionValueMapping
96 //===----------------------------------------------------------------------===//
97 
98 /// A vector of SSA values, optimized for the most common case of a single
99 /// value.
100 using ValueVector = SmallVector<Value, 1>;
101 
102 namespace {
103 
104 /// Helper class to make it possible to use `ValueVector` as a key in DenseMap.
105 struct ValueVectorMapInfo {
106   static ValueVector getEmptyKey() { return ValueVector{Value()}; }
107   static ValueVector getTombstoneKey() { return ValueVector{Value(), Value()}; }
108   static ::llvm::hash_code getHashValue(const ValueVector &val) {
109     return ::llvm::hash_combine_range(val.begin(), val.end());
110   }
111   static bool isEqual(const ValueVector &LHS, const ValueVector &RHS) {
112     return LHS == RHS;
113   }
114 };
115 
116 /// This class wraps a IRMapping to provide recursive lookup
117 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
118 struct ConversionValueMapping {
119   /// Return "true" if an SSA value is mapped to the given value. May return
120   /// false positives.
121   bool isMappedTo(Value value) const { return mappedTo.contains(value); }
122 
123   /// Lookup the most recently mapped values with the desired types in the
124   /// mapping.
125   ///
126   /// Special cases:
127   /// - If the desired type range is empty, simply return the most recently
128   ///   mapped values.
129   /// - If there is no mapping to the desired types, also return the most
130   ///   recently mapped values.
131   /// - If there is no mapping for the given values at all, return the given
132   ///   value.
133   ValueVector lookupOrDefault(Value from, TypeRange desiredTypes = {}) const;
134 
135   /// Lookup the given value within the map, or return an empty vector if the
136   /// value is not mapped. If it is mapped, this follows the same behavior
137   /// as `lookupOrDefault`.
138   ValueVector lookupOrNull(Value from, TypeRange desiredTypes = {}) const;
139 
140   template <typename T>
141   struct IsValueVector : std::is_same<std::decay_t<T>, ValueVector> {};
142 
143   /// Map a value vector to the one provided.
144   template <typename OldVal, typename NewVal>
145   std::enable_if_t<IsValueVector<OldVal>::value && IsValueVector<NewVal>::value>
146   map(OldVal &&oldVal, NewVal &&newVal) {
147     LLVM_DEBUG({
148       ValueVector next(newVal);
149       while (true) {
150         assert(next != oldVal && "inserting cyclic mapping");
151         auto it = mapping.find(next);
152         if (it == mapping.end())
153           break;
154         next = it->second;
155       }
156     });
157     for (Value v : newVal)
158       mappedTo.insert(v);
159 
160     mapping[std::forward<OldVal>(oldVal)] = std::forward<NewVal>(newVal);
161   }
162 
163   /// Map a value vector or single value to the one provided.
164   template <typename OldVal, typename NewVal>
165   std::enable_if_t<!IsValueVector<OldVal>::value ||
166                    !IsValueVector<NewVal>::value>
167   map(OldVal &&oldVal, NewVal &&newVal) {
168     if constexpr (IsValueVector<OldVal>{}) {
169       map(std::forward<OldVal>(oldVal), ValueVector{newVal});
170     } else if constexpr (IsValueVector<NewVal>{}) {
171       map(ValueVector{oldVal}, std::forward<NewVal>(newVal));
172     } else {
173       map(ValueVector{oldVal}, ValueVector{newVal});
174     }
175   }
176 
177   /// Drop the last mapping for the given values.
178   void erase(const ValueVector &value) { mapping.erase(value); }
179 
180 private:
181   /// Current value mappings.
182   DenseMap<ValueVector, ValueVector, ValueVectorMapInfo> mapping;
183 
184   /// All SSA values that are mapped to. May contain false positives.
185   DenseSet<Value> mappedTo;
186 };
187 } // namespace
188 
189 ValueVector
190 ConversionValueMapping::lookupOrDefault(Value from,
191                                         TypeRange desiredTypes) const {
192   // Try to find the deepest values that have the desired types. If there is no
193   // such mapping, simply return the deepest values.
194   ValueVector desiredValue;
195   ValueVector current{from};
196   do {
197     // Store the current value if the types match.
198     if (TypeRange(ValueRange(current)) == desiredTypes)
199       desiredValue = current;
200 
201     // If possible, Replace each value with (one or multiple) mapped values.
202     ValueVector next;
203     for (Value v : current) {
204       auto it = mapping.find({v});
205       if (it != mapping.end()) {
206         llvm::append_range(next, it->second);
207       } else {
208         next.push_back(v);
209       }
210     }
211     if (next != current) {
212       // If at least one value was replaced, continue the lookup from there.
213       current = std::move(next);
214       continue;
215     }
216 
217     // Otherwise: Check if there is a mapping for the entire vector. Such
218     // mappings are materializations. (N:M mapping are not supported for value
219     // replacements.)
220     //
221     // Note: From a correctness point of view, materializations do not have to
222     // be stored (and looked up) in the mapping. But for performance reasons,
223     // we choose to reuse existing IR (when possible) instead of creating it
224     // multiple times.
225     auto it = mapping.find(current);
226     if (it == mapping.end()) {
227       // No mapping found: The lookup stops here.
228       break;
229     }
230     current = it->second;
231   } while (true);
232 
233   // If the desired values were found use them, otherwise default to the leaf
234   // values.
235   // Note: If `desiredTypes` is empty, this function always returns `current`.
236   return !desiredValue.empty() ? std::move(desiredValue) : std::move(current);
237 }
238 
239 ValueVector ConversionValueMapping::lookupOrNull(Value from,
240                                                  TypeRange desiredTypes) const {
241   ValueVector result = lookupOrDefault(from, desiredTypes);
242   if (result == ValueVector{from} ||
243       (!desiredTypes.empty() && TypeRange(ValueRange(result)) != desiredTypes))
244     return {};
245   return result;
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Rewriter and Translation State
250 //===----------------------------------------------------------------------===//
251 namespace {
252 /// This class contains a snapshot of the current conversion rewriter state.
253 /// This is useful when saving and undoing a set of rewrites.
254 struct RewriterState {
255   RewriterState(unsigned numRewrites, unsigned numIgnoredOperations,
256                 unsigned numReplacedOps)
257       : numRewrites(numRewrites), numIgnoredOperations(numIgnoredOperations),
258         numReplacedOps(numReplacedOps) {}
259 
260   /// The current number of rewrites performed.
261   unsigned numRewrites;
262 
263   /// The current number of ignored operations.
264   unsigned numIgnoredOperations;
265 
266   /// The current number of replaced ops that are scheduled for erasure.
267   unsigned numReplacedOps;
268 };
269 
270 //===----------------------------------------------------------------------===//
271 // IR rewrites
272 //===----------------------------------------------------------------------===//
273 
274 /// An IR rewrite that can be committed (upon success) or rolled back (upon
275 /// failure).
276 ///
277 /// The dialect conversion keeps track of IR modifications (requested by the
278 /// user through the rewriter API) in `IRRewrite` objects. Some kind of rewrites
279 /// are directly applied to the IR as the rewriter API is used, some are applied
280 /// partially, and some are delayed until the `IRRewrite` objects are committed.
281 class IRRewrite {
282 public:
283   /// The kind of the rewrite. Rewrites can be undone if the conversion fails.
284   /// Enum values are ordered, so that they can be used in `classof`: first all
285   /// block rewrites, then all operation rewrites.
286   enum class Kind {
287     // Block rewrites
288     CreateBlock,
289     EraseBlock,
290     InlineBlock,
291     MoveBlock,
292     BlockTypeConversion,
293     ReplaceBlockArg,
294     // Operation rewrites
295     MoveOperation,
296     ModifyOperation,
297     ReplaceOperation,
298     CreateOperation,
299     UnresolvedMaterialization
300   };
301 
302   virtual ~IRRewrite() = default;
303 
304   /// Roll back the rewrite. Operations may be erased during rollback.
305   virtual void rollback() = 0;
306 
307   /// Commit the rewrite. At this point, it is certain that the dialect
308   /// conversion will succeed. All IR modifications, except for operation/block
309   /// erasure, must be performed through the given rewriter.
310   ///
311   /// Instead of erasing operations/blocks, they should merely be unlinked
312   /// commit phase and finally be erased during the cleanup phase. This is
313   /// because internal dialect conversion state (such as `mapping`) may still
314   /// be using them.
315   ///
316   /// Any IR modification that was already performed before the commit phase
317   /// (e.g., insertion of an op) must be communicated to the listener that may
318   /// be attached to the given rewriter.
319   virtual void commit(RewriterBase &rewriter) {}
320 
321   /// Cleanup operations/blocks. Cleanup is called after commit.
322   virtual void cleanup(RewriterBase &rewriter) {}
323 
324   Kind getKind() const { return kind; }
325 
326   static bool classof(const IRRewrite *rewrite) { return true; }
327 
328 protected:
329   IRRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl)
330       : kind(kind), rewriterImpl(rewriterImpl) {}
331 
332   const ConversionConfig &getConfig() const;
333 
334   const Kind kind;
335   ConversionPatternRewriterImpl &rewriterImpl;
336 };
337 
338 /// A block rewrite.
339 class BlockRewrite : public IRRewrite {
340 public:
341   /// Return the block that this rewrite operates on.
342   Block *getBlock() const { return block; }
343 
344   static bool classof(const IRRewrite *rewrite) {
345     return rewrite->getKind() >= Kind::CreateBlock &&
346            rewrite->getKind() <= Kind::ReplaceBlockArg;
347   }
348 
349 protected:
350   BlockRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
351                Block *block)
352       : IRRewrite(kind, rewriterImpl), block(block) {}
353 
354   // The block that this rewrite operates on.
355   Block *block;
356 };
357 
358 /// Creation of a block. Block creations are immediately reflected in the IR.
359 /// There is no extra work to commit the rewrite. During rollback, the newly
360 /// created block is erased.
361 class CreateBlockRewrite : public BlockRewrite {
362 public:
363   CreateBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
364       : BlockRewrite(Kind::CreateBlock, rewriterImpl, block) {}
365 
366   static bool classof(const IRRewrite *rewrite) {
367     return rewrite->getKind() == Kind::CreateBlock;
368   }
369 
370   void commit(RewriterBase &rewriter) override {
371     // The block was already created and inserted. Just inform the listener.
372     if (auto *listener = rewriter.getListener())
373       listener->notifyBlockInserted(block, /*previous=*/{}, /*previousIt=*/{});
374   }
375 
376   void rollback() override {
377     // Unlink all of the operations within this block, they will be deleted
378     // separately.
379     auto &blockOps = block->getOperations();
380     while (!blockOps.empty())
381       blockOps.remove(blockOps.begin());
382     block->dropAllUses();
383     if (block->getParent())
384       block->erase();
385     else
386       delete block;
387   }
388 };
389 
390 /// Erasure of a block. Block erasures are partially reflected in the IR. Erased
391 /// blocks are immediately unlinked, but only erased during cleanup. This makes
392 /// it easier to rollback a block erasure: the block is simply inserted into its
393 /// original location.
394 class EraseBlockRewrite : public BlockRewrite {
395 public:
396   EraseBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
397       : BlockRewrite(Kind::EraseBlock, rewriterImpl, block),
398         region(block->getParent()), insertBeforeBlock(block->getNextNode()) {}
399 
400   static bool classof(const IRRewrite *rewrite) {
401     return rewrite->getKind() == Kind::EraseBlock;
402   }
403 
404   ~EraseBlockRewrite() override {
405     assert(!block &&
406            "rewrite was neither rolled back nor committed/cleaned up");
407   }
408 
409   void rollback() override {
410     // The block (owned by this rewrite) was not actually erased yet. It was
411     // just unlinked. Put it back into its original position.
412     assert(block && "expected block");
413     auto &blockList = region->getBlocks();
414     Region::iterator before = insertBeforeBlock
415                                   ? Region::iterator(insertBeforeBlock)
416                                   : blockList.end();
417     blockList.insert(before, block);
418     block = nullptr;
419   }
420 
421   void commit(RewriterBase &rewriter) override {
422     // Erase the block.
423     assert(block && "expected block");
424     assert(block->empty() && "expected empty block");
425 
426     // Notify the listener that the block is about to be erased.
427     if (auto *listener =
428             dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
429       listener->notifyBlockErased(block);
430   }
431 
432   void cleanup(RewriterBase &rewriter) override {
433     // Erase the block.
434     block->dropAllDefinedValueUses();
435     delete block;
436     block = nullptr;
437   }
438 
439 private:
440   // The region in which this block was previously contained.
441   Region *region;
442 
443   // The original successor of this block before it was unlinked. "nullptr" if
444   // this block was the only block in the region.
445   Block *insertBeforeBlock;
446 };
447 
448 /// Inlining of a block. This rewrite is immediately reflected in the IR.
449 /// Note: This rewrite represents only the inlining of the operations. The
450 /// erasure of the inlined block is a separate rewrite.
451 class InlineBlockRewrite : public BlockRewrite {
452 public:
453   InlineBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
454                      Block *sourceBlock, Block::iterator before)
455       : BlockRewrite(Kind::InlineBlock, rewriterImpl, block),
456         sourceBlock(sourceBlock),
457         firstInlinedInst(sourceBlock->empty() ? nullptr
458                                               : &sourceBlock->front()),
459         lastInlinedInst(sourceBlock->empty() ? nullptr : &sourceBlock->back()) {
460     // If a listener is attached to the dialect conversion, ops must be moved
461     // one-by-one. When they are moved in bulk, notifications cannot be sent
462     // because the ops that used to be in the source block at the time of the
463     // inlining (before the "commit" phase) are unknown at the time when
464     // notifications are sent (which is during the "commit" phase).
465     assert(!getConfig().listener &&
466            "InlineBlockRewrite not supported if listener is attached");
467   }
468 
469   static bool classof(const IRRewrite *rewrite) {
470     return rewrite->getKind() == Kind::InlineBlock;
471   }
472 
473   void rollback() override {
474     // Put the operations from the destination block (owned by the rewrite)
475     // back into the source block.
476     if (firstInlinedInst) {
477       assert(lastInlinedInst && "expected operation");
478       sourceBlock->getOperations().splice(sourceBlock->begin(),
479                                           block->getOperations(),
480                                           Block::iterator(firstInlinedInst),
481                                           ++Block::iterator(lastInlinedInst));
482     }
483   }
484 
485 private:
486   // The block that originally contained the operations.
487   Block *sourceBlock;
488 
489   // The first inlined operation.
490   Operation *firstInlinedInst;
491 
492   // The last inlined operation.
493   Operation *lastInlinedInst;
494 };
495 
496 /// Moving of a block. This rewrite is immediately reflected in the IR.
497 class MoveBlockRewrite : public BlockRewrite {
498 public:
499   MoveBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
500                    Region *region, Block *insertBeforeBlock)
501       : BlockRewrite(Kind::MoveBlock, rewriterImpl, block), region(region),
502         insertBeforeBlock(insertBeforeBlock) {}
503 
504   static bool classof(const IRRewrite *rewrite) {
505     return rewrite->getKind() == Kind::MoveBlock;
506   }
507 
508   void commit(RewriterBase &rewriter) override {
509     // The block was already moved. Just inform the listener.
510     if (auto *listener = rewriter.getListener()) {
511       // Note: `previousIt` cannot be passed because this is a delayed
512       // notification and iterators into past IR state cannot be represented.
513       listener->notifyBlockInserted(block, /*previous=*/region,
514                                     /*previousIt=*/{});
515     }
516   }
517 
518   void rollback() override {
519     // Move the block back to its original position.
520     Region::iterator before =
521         insertBeforeBlock ? Region::iterator(insertBeforeBlock) : region->end();
522     region->getBlocks().splice(before, block->getParent()->getBlocks(), block);
523   }
524 
525 private:
526   // The region in which this block was previously contained.
527   Region *region;
528 
529   // The original successor of this block before it was moved. "nullptr" if
530   // this block was the only block in the region.
531   Block *insertBeforeBlock;
532 };
533 
534 /// Block type conversion. This rewrite is partially reflected in the IR.
535 class BlockTypeConversionRewrite : public BlockRewrite {
536 public:
537   BlockTypeConversionRewrite(ConversionPatternRewriterImpl &rewriterImpl,
538                              Block *origBlock, Block *newBlock)
539       : BlockRewrite(Kind::BlockTypeConversion, rewriterImpl, origBlock),
540         newBlock(newBlock) {}
541 
542   static bool classof(const IRRewrite *rewrite) {
543     return rewrite->getKind() == Kind::BlockTypeConversion;
544   }
545 
546   Block *getOrigBlock() const { return block; }
547 
548   Block *getNewBlock() const { return newBlock; }
549 
550   void commit(RewriterBase &rewriter) override;
551 
552   void rollback() override;
553 
554 private:
555   /// The new block that was created as part of this signature conversion.
556   Block *newBlock;
557 };
558 
559 /// Replacing a block argument. This rewrite is not immediately reflected in the
560 /// IR. An internal IR mapping is updated, but the actual replacement is delayed
561 /// until the rewrite is committed.
562 class ReplaceBlockArgRewrite : public BlockRewrite {
563 public:
564   ReplaceBlockArgRewrite(ConversionPatternRewriterImpl &rewriterImpl,
565                          Block *block, BlockArgument arg,
566                          const TypeConverter *converter)
567       : BlockRewrite(Kind::ReplaceBlockArg, rewriterImpl, block), arg(arg),
568         converter(converter) {}
569 
570   static bool classof(const IRRewrite *rewrite) {
571     return rewrite->getKind() == Kind::ReplaceBlockArg;
572   }
573 
574   void commit(RewriterBase &rewriter) override;
575 
576   void rollback() override;
577 
578 private:
579   BlockArgument arg;
580 
581   /// The current type converter when the block argument was replaced.
582   const TypeConverter *converter;
583 };
584 
585 /// An operation rewrite.
586 class OperationRewrite : public IRRewrite {
587 public:
588   /// Return the operation that this rewrite operates on.
589   Operation *getOperation() const { return op; }
590 
591   static bool classof(const IRRewrite *rewrite) {
592     return rewrite->getKind() >= Kind::MoveOperation &&
593            rewrite->getKind() <= Kind::UnresolvedMaterialization;
594   }
595 
596 protected:
597   OperationRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
598                    Operation *op)
599       : IRRewrite(kind, rewriterImpl), op(op) {}
600 
601   // The operation that this rewrite operates on.
602   Operation *op;
603 };
604 
605 /// Moving of an operation. This rewrite is immediately reflected in the IR.
606 class MoveOperationRewrite : public OperationRewrite {
607 public:
608   MoveOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
609                        Operation *op, Block *block, Operation *insertBeforeOp)
610       : OperationRewrite(Kind::MoveOperation, rewriterImpl, op), block(block),
611         insertBeforeOp(insertBeforeOp) {}
612 
613   static bool classof(const IRRewrite *rewrite) {
614     return rewrite->getKind() == Kind::MoveOperation;
615   }
616 
617   void commit(RewriterBase &rewriter) override {
618     // The operation was already moved. Just inform the listener.
619     if (auto *listener = rewriter.getListener()) {
620       // Note: `previousIt` cannot be passed because this is a delayed
621       // notification and iterators into past IR state cannot be represented.
622       listener->notifyOperationInserted(
623           op, /*previous=*/OpBuilder::InsertPoint(/*insertBlock=*/block,
624                                                   /*insertPt=*/{}));
625     }
626   }
627 
628   void rollback() override {
629     // Move the operation back to its original position.
630     Block::iterator before =
631         insertBeforeOp ? Block::iterator(insertBeforeOp) : block->end();
632     block->getOperations().splice(before, op->getBlock()->getOperations(), op);
633   }
634 
635 private:
636   // The block in which this operation was previously contained.
637   Block *block;
638 
639   // The original successor of this operation before it was moved. "nullptr"
640   // if this operation was the only operation in the region.
641   Operation *insertBeforeOp;
642 };
643 
644 /// In-place modification of an op. This rewrite is immediately reflected in
645 /// the IR. The previous state of the operation is stored in this object.
646 class ModifyOperationRewrite : public OperationRewrite {
647 public:
648   ModifyOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
649                          Operation *op)
650       : OperationRewrite(Kind::ModifyOperation, rewriterImpl, op),
651         name(op->getName()), loc(op->getLoc()), attrs(op->getAttrDictionary()),
652         operands(op->operand_begin(), op->operand_end()),
653         successors(op->successor_begin(), op->successor_end()) {
654     if (OpaqueProperties prop = op->getPropertiesStorage()) {
655       // Make a copy of the properties.
656       propertiesStorage = operator new(op->getPropertiesStorageSize());
657       OpaqueProperties propCopy(propertiesStorage);
658       name.initOpProperties(propCopy, /*init=*/prop);
659     }
660   }
661 
662   static bool classof(const IRRewrite *rewrite) {
663     return rewrite->getKind() == Kind::ModifyOperation;
664   }
665 
666   ~ModifyOperationRewrite() override {
667     assert(!propertiesStorage &&
668            "rewrite was neither committed nor rolled back");
669   }
670 
671   void commit(RewriterBase &rewriter) override {
672     // Notify the listener that the operation was modified in-place.
673     if (auto *listener =
674             dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
675       listener->notifyOperationModified(op);
676 
677     if (propertiesStorage) {
678       OpaqueProperties propCopy(propertiesStorage);
679       // Note: The operation may have been erased in the mean time, so
680       // OperationName must be stored in this object.
681       name.destroyOpProperties(propCopy);
682       operator delete(propertiesStorage);
683       propertiesStorage = nullptr;
684     }
685   }
686 
687   void rollback() override {
688     op->setLoc(loc);
689     op->setAttrs(attrs);
690     op->setOperands(operands);
691     for (const auto &it : llvm::enumerate(successors))
692       op->setSuccessor(it.value(), it.index());
693     if (propertiesStorage) {
694       OpaqueProperties propCopy(propertiesStorage);
695       op->copyProperties(propCopy);
696       name.destroyOpProperties(propCopy);
697       operator delete(propertiesStorage);
698       propertiesStorage = nullptr;
699     }
700   }
701 
702 private:
703   OperationName name;
704   LocationAttr loc;
705   DictionaryAttr attrs;
706   SmallVector<Value, 8> operands;
707   SmallVector<Block *, 2> successors;
708   void *propertiesStorage = nullptr;
709 };
710 
711 /// Replacing an operation. Erasing an operation is treated as a special case
712 /// with "null" replacements. This rewrite is not immediately reflected in the
713 /// IR. An internal IR mapping is updated, but values are not replaced and the
714 /// original op is not erased until the rewrite is committed.
715 class ReplaceOperationRewrite : public OperationRewrite {
716 public:
717   ReplaceOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
718                           Operation *op, const TypeConverter *converter)
719       : OperationRewrite(Kind::ReplaceOperation, rewriterImpl, op),
720         converter(converter) {}
721 
722   static bool classof(const IRRewrite *rewrite) {
723     return rewrite->getKind() == Kind::ReplaceOperation;
724   }
725 
726   void commit(RewriterBase &rewriter) override;
727 
728   void rollback() override;
729 
730   void cleanup(RewriterBase &rewriter) override;
731 
732 private:
733   /// An optional type converter that can be used to materialize conversions
734   /// between the new and old values if necessary.
735   const TypeConverter *converter;
736 };
737 
738 class CreateOperationRewrite : public OperationRewrite {
739 public:
740   CreateOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
741                          Operation *op)
742       : OperationRewrite(Kind::CreateOperation, rewriterImpl, op) {}
743 
744   static bool classof(const IRRewrite *rewrite) {
745     return rewrite->getKind() == Kind::CreateOperation;
746   }
747 
748   void commit(RewriterBase &rewriter) override {
749     // The operation was already created and inserted. Just inform the listener.
750     if (auto *listener = rewriter.getListener())
751       listener->notifyOperationInserted(op, /*previous=*/{});
752   }
753 
754   void rollback() override;
755 };
756 
757 /// The type of materialization.
758 enum MaterializationKind {
759   /// This materialization materializes a conversion from an illegal type to a
760   /// legal one.
761   Target,
762 
763   /// This materialization materializes a conversion from a legal type back to
764   /// an illegal one.
765   Source
766 };
767 
768 /// An unresolved materialization, i.e., a "builtin.unrealized_conversion_cast"
769 /// op. Unresolved materializations are erased at the end of the dialect
770 /// conversion.
771 class UnresolvedMaterializationRewrite : public OperationRewrite {
772 public:
773   UnresolvedMaterializationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
774                                    UnrealizedConversionCastOp op,
775                                    const TypeConverter *converter,
776                                    MaterializationKind kind, Type originalType,
777                                    ValueVector mappedValues);
778 
779   static bool classof(const IRRewrite *rewrite) {
780     return rewrite->getKind() == Kind::UnresolvedMaterialization;
781   }
782 
783   void rollback() override;
784 
785   UnrealizedConversionCastOp getOperation() const {
786     return cast<UnrealizedConversionCastOp>(op);
787   }
788 
789   /// Return the type converter of this materialization (which may be null).
790   const TypeConverter *getConverter() const {
791     return converterAndKind.getPointer();
792   }
793 
794   /// Return the kind of this materialization.
795   MaterializationKind getMaterializationKind() const {
796     return converterAndKind.getInt();
797   }
798 
799   /// Return the original type of the SSA value.
800   Type getOriginalType() const { return originalType; }
801 
802 private:
803   /// The corresponding type converter to use when resolving this
804   /// materialization, and the kind of this materialization.
805   llvm::PointerIntPair<const TypeConverter *, 2, MaterializationKind>
806       converterAndKind;
807 
808   /// The original type of the SSA value. Only used for target
809   /// materializations.
810   Type originalType;
811 
812   /// The values in the conversion value mapping that are being replaced by the
813   /// results of this unresolved materialization.
814   ValueVector mappedValues;
815 };
816 } // namespace
817 
818 #if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
819 /// Return "true" if there is an operation rewrite that matches the specified
820 /// rewrite type and operation among the given rewrites.
821 template <typename RewriteTy, typename R>
822 static bool hasRewrite(R &&rewrites, Operation *op) {
823   return any_of(std::forward<R>(rewrites), [&](auto &rewrite) {
824     auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
825     return rewriteTy && rewriteTy->getOperation() == op;
826   });
827 }
828 
829 /// Return "true" if there is a block rewrite that matches the specified
830 /// rewrite type and block among the given rewrites.
831 template <typename RewriteTy, typename R>
832 static bool hasRewrite(R &&rewrites, Block *block) {
833   return any_of(std::forward<R>(rewrites), [&](auto &rewrite) {
834     auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
835     return rewriteTy && rewriteTy->getBlock() == block;
836   });
837 }
838 #endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
839 
840 //===----------------------------------------------------------------------===//
841 // ConversionPatternRewriterImpl
842 //===----------------------------------------------------------------------===//
843 namespace mlir {
844 namespace detail {
845 struct ConversionPatternRewriterImpl : public RewriterBase::Listener {
846   explicit ConversionPatternRewriterImpl(MLIRContext *ctx,
847                                          const ConversionConfig &config)
848       : context(ctx), eraseRewriter(ctx), config(config) {}
849 
850   //===--------------------------------------------------------------------===//
851   // State Management
852   //===--------------------------------------------------------------------===//
853 
854   /// Return the current state of the rewriter.
855   RewriterState getCurrentState();
856 
857   /// Apply all requested operation rewrites. This method is invoked when the
858   /// conversion process succeeds.
859   void applyRewrites();
860 
861   /// Reset the state of the rewriter to a previously saved point.
862   void resetState(RewriterState state);
863 
864   /// Append a rewrite. Rewrites are committed upon success and rolled back upon
865   /// failure.
866   template <typename RewriteTy, typename... Args>
867   void appendRewrite(Args &&...args) {
868     rewrites.push_back(
869         std::make_unique<RewriteTy>(*this, std::forward<Args>(args)...));
870   }
871 
872   /// Undo the rewrites (motions, splits) one by one in reverse order until
873   /// "numRewritesToKeep" rewrites remains.
874   void undoRewrites(unsigned numRewritesToKeep = 0);
875 
876   /// Remap the given values to those with potentially different types. Returns
877   /// success if the values could be remapped, failure otherwise. `valueDiagTag`
878   /// is the tag used when describing a value within a diagnostic, e.g.
879   /// "operand".
880   LogicalResult remapValues(StringRef valueDiagTag,
881                             std::optional<Location> inputLoc,
882                             PatternRewriter &rewriter, ValueRange values,
883                             SmallVector<ValueVector> &remapped);
884 
885   /// Return "true" if the given operation is ignored, and does not need to be
886   /// converted.
887   bool isOpIgnored(Operation *op) const;
888 
889   /// Return "true" if the given operation was replaced or erased.
890   bool wasOpReplaced(Operation *op) const;
891 
892   //===--------------------------------------------------------------------===//
893   // Type Conversion
894   //===--------------------------------------------------------------------===//
895 
896   /// Convert the types of block arguments within the given region.
897   FailureOr<Block *>
898   convertRegionTypes(ConversionPatternRewriter &rewriter, Region *region,
899                      const TypeConverter &converter,
900                      TypeConverter::SignatureConversion *entryConversion);
901 
902   /// Apply the given signature conversion on the given block. The new block
903   /// containing the updated signature is returned. If no conversions were
904   /// necessary, e.g. if the block has no arguments, `block` is returned.
905   /// `converter` is used to generate any necessary cast operations that
906   /// translate between the origin argument types and those specified in the
907   /// signature conversion.
908   Block *applySignatureConversion(
909       ConversionPatternRewriter &rewriter, Block *block,
910       const TypeConverter *converter,
911       TypeConverter::SignatureConversion &signatureConversion);
912 
913   //===--------------------------------------------------------------------===//
914   // Materializations
915   //===--------------------------------------------------------------------===//
916 
917   /// Build an unresolved materialization operation given a range of output
918   /// types and a list of input operands. Returns the inputs if they their
919   /// types match the output types.
920   ///
921   /// If a cast op was built, it can optionally be returned with the `castOp`
922   /// output argument.
923   ///
924   /// If `valuesToMap` is set to a non-null Value, then that value is mapped to
925   /// the results of the unresolved materialization in the conversion value
926   /// mapping.
927   ValueRange buildUnresolvedMaterialization(
928       MaterializationKind kind, OpBuilder::InsertPoint ip, Location loc,
929       ValueVector valuesToMap, ValueRange inputs, TypeRange outputTypes,
930       Type originalType, const TypeConverter *converter,
931       UnrealizedConversionCastOp *castOp = nullptr);
932 
933   /// Find a replacement value for the given SSA value in the conversion value
934   /// mapping. The replacement value must have the same type as the given SSA
935   /// value. If there is no replacement value with the correct type, find the
936   /// latest replacement value (regardless of the type) and build a source
937   /// materialization.
938   Value findOrBuildReplacementValue(Value value,
939                                     const TypeConverter *converter);
940 
941   //===--------------------------------------------------------------------===//
942   // Rewriter Notification Hooks
943   //===--------------------------------------------------------------------===//
944 
945   //// Notifies that an op was inserted.
946   void notifyOperationInserted(Operation *op,
947                                OpBuilder::InsertPoint previous) override;
948 
949   /// Notifies that an op is about to be replaced with the given values.
950   void notifyOpReplaced(Operation *op, ArrayRef<ValueRange> newValues);
951 
952   /// Notifies that a block is about to be erased.
953   void notifyBlockIsBeingErased(Block *block);
954 
955   /// Notifies that a block was inserted.
956   void notifyBlockInserted(Block *block, Region *previous,
957                            Region::iterator previousIt) override;
958 
959   /// Notifies that a block is being inlined into another block.
960   void notifyBlockBeingInlined(Block *block, Block *srcBlock,
961                                Block::iterator before);
962 
963   /// Notifies that a pattern match failed for the given reason.
964   void
965   notifyMatchFailure(Location loc,
966                      function_ref<void(Diagnostic &)> reasonCallback) override;
967 
968   //===--------------------------------------------------------------------===//
969   // IR Erasure
970   //===--------------------------------------------------------------------===//
971 
972   /// A rewriter that keeps track of erased ops and blocks. It ensures that no
973   /// operation or block is erased multiple times. This rewriter assumes that
974   /// no new IR is created between calls to `eraseOp`/`eraseBlock`.
975   struct SingleEraseRewriter : public RewriterBase, RewriterBase::Listener {
976   public:
977     SingleEraseRewriter(MLIRContext *context)
978         : RewriterBase(context, /*listener=*/this) {}
979 
980     /// Erase the given op (unless it was already erased).
981     void eraseOp(Operation *op) override {
982       if (wasErased(op))
983         return;
984       op->dropAllUses();
985       RewriterBase::eraseOp(op);
986     }
987 
988     /// Erase the given block (unless it was already erased).
989     void eraseBlock(Block *block) override {
990       if (wasErased(block))
991         return;
992       assert(block->empty() && "expected empty block");
993       block->dropAllDefinedValueUses();
994       RewriterBase::eraseBlock(block);
995     }
996 
997     bool wasErased(void *ptr) const { return erased.contains(ptr); }
998 
999     void notifyOperationErased(Operation *op) override { erased.insert(op); }
1000 
1001     void notifyBlockErased(Block *block) override { erased.insert(block); }
1002 
1003   private:
1004     /// Pointers to all erased operations and blocks.
1005     DenseSet<void *> erased;
1006   };
1007 
1008   //===--------------------------------------------------------------------===//
1009   // State
1010   //===--------------------------------------------------------------------===//
1011 
1012   /// MLIR context.
1013   MLIRContext *context;
1014 
1015   /// A rewriter that keeps track of ops/block that were already erased and
1016   /// skips duplicate op/block erasures. This rewriter is used during the
1017   /// "cleanup" phase.
1018   SingleEraseRewriter eraseRewriter;
1019 
1020   // Mapping between replaced values that differ in type. This happens when
1021   // replacing a value with one of a different type.
1022   ConversionValueMapping mapping;
1023 
1024   /// Ordered list of block operations (creations, splits, motions).
1025   SmallVector<std::unique_ptr<IRRewrite>> rewrites;
1026 
1027   /// A set of operations that should no longer be considered for legalization.
1028   /// E.g., ops that are recursively legal. Ops that were replaced/erased are
1029   /// tracked separately.
1030   SetVector<Operation *> ignoredOps;
1031 
1032   /// A set of operations that were replaced/erased. Such ops are not erased
1033   /// immediately but only when the dialect conversion succeeds. In the mean
1034   /// time, they should no longer be considered for legalization and any attempt
1035   /// to modify/access them is invalid rewriter API usage.
1036   SetVector<Operation *> replacedOps;
1037 
1038   /// A mapping of all unresolved materializations (UnrealizedConversionCastOp)
1039   /// to the corresponding rewrite objects.
1040   DenseMap<UnrealizedConversionCastOp, UnresolvedMaterializationRewrite *>
1041       unresolvedMaterializations;
1042 
1043   /// The current type converter, or nullptr if no type converter is currently
1044   /// active.
1045   const TypeConverter *currentTypeConverter = nullptr;
1046 
1047   /// A mapping of regions to type converters that should be used when
1048   /// converting the arguments of blocks within that region.
1049   DenseMap<Region *, const TypeConverter *> regionToConverter;
1050 
1051   /// Dialect conversion configuration.
1052   const ConversionConfig &config;
1053 
1054 #ifndef NDEBUG
1055   /// A set of operations that have pending updates. This tracking isn't
1056   /// strictly necessary, and is thus only active during debug builds for extra
1057   /// verification.
1058   SmallPtrSet<Operation *, 1> pendingRootUpdates;
1059 
1060   /// A logger used to emit diagnostics during the conversion process.
1061   llvm::ScopedPrinter logger{llvm::dbgs()};
1062 #endif
1063 };
1064 } // namespace detail
1065 } // namespace mlir
1066 
1067 const ConversionConfig &IRRewrite::getConfig() const {
1068   return rewriterImpl.config;
1069 }
1070 
1071 void BlockTypeConversionRewrite::commit(RewriterBase &rewriter) {
1072   // Inform the listener about all IR modifications that have already taken
1073   // place: References to the original block have been replaced with the new
1074   // block.
1075   if (auto *listener =
1076           dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener()))
1077     for (Operation *op : getNewBlock()->getUsers())
1078       listener->notifyOperationModified(op);
1079 }
1080 
1081 void BlockTypeConversionRewrite::rollback() {
1082   getNewBlock()->replaceAllUsesWith(getOrigBlock());
1083 }
1084 
1085 void ReplaceBlockArgRewrite::commit(RewriterBase &rewriter) {
1086   Value repl = rewriterImpl.findOrBuildReplacementValue(arg, converter);
1087   if (!repl)
1088     return;
1089 
1090   if (isa<BlockArgument>(repl)) {
1091     rewriter.replaceAllUsesWith(arg, repl);
1092     return;
1093   }
1094 
1095   // If the replacement value is an operation, we check to make sure that we
1096   // don't replace uses that are within the parent operation of the
1097   // replacement value.
1098   Operation *replOp = cast<OpResult>(repl).getOwner();
1099   Block *replBlock = replOp->getBlock();
1100   rewriter.replaceUsesWithIf(arg, repl, [&](OpOperand &operand) {
1101     Operation *user = operand.getOwner();
1102     return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
1103   });
1104 }
1105 
1106 void ReplaceBlockArgRewrite::rollback() { rewriterImpl.mapping.erase({arg}); }
1107 
1108 void ReplaceOperationRewrite::commit(RewriterBase &rewriter) {
1109   auto *listener =
1110       dyn_cast_or_null<RewriterBase::Listener>(rewriter.getListener());
1111 
1112   // Compute replacement values.
1113   SmallVector<Value> replacements =
1114       llvm::map_to_vector(op->getResults(), [&](OpResult result) {
1115         return rewriterImpl.findOrBuildReplacementValue(result, converter);
1116       });
1117 
1118   // Notify the listener that the operation is about to be replaced.
1119   if (listener)
1120     listener->notifyOperationReplaced(op, replacements);
1121 
1122   // Replace all uses with the new values.
1123   for (auto [result, newValue] :
1124        llvm::zip_equal(op->getResults(), replacements))
1125     if (newValue)
1126       rewriter.replaceAllUsesWith(result, newValue);
1127 
1128   // The original op will be erased, so remove it from the set of unlegalized
1129   // ops.
1130   if (getConfig().unlegalizedOps)
1131     getConfig().unlegalizedOps->erase(op);
1132 
1133   // Notify the listener that the operation (and its nested operations) was
1134   // erased.
1135   if (listener) {
1136     op->walk<WalkOrder::PostOrder>(
1137         [&](Operation *op) { listener->notifyOperationErased(op); });
1138   }
1139 
1140   // Do not erase the operation yet. It may still be referenced in `mapping`.
1141   // Just unlink it for now and erase it during cleanup.
1142   op->getBlock()->getOperations().remove(op);
1143 }
1144 
1145 void ReplaceOperationRewrite::rollback() {
1146   for (auto result : op->getResults())
1147     rewriterImpl.mapping.erase({result});
1148 }
1149 
1150 void ReplaceOperationRewrite::cleanup(RewriterBase &rewriter) {
1151   rewriter.eraseOp(op);
1152 }
1153 
1154 void CreateOperationRewrite::rollback() {
1155   for (Region &region : op->getRegions()) {
1156     while (!region.getBlocks().empty())
1157       region.getBlocks().remove(region.getBlocks().begin());
1158   }
1159   op->dropAllUses();
1160   op->erase();
1161 }
1162 
1163 UnresolvedMaterializationRewrite::UnresolvedMaterializationRewrite(
1164     ConversionPatternRewriterImpl &rewriterImpl, UnrealizedConversionCastOp op,
1165     const TypeConverter *converter, MaterializationKind kind, Type originalType,
1166     ValueVector mappedValues)
1167     : OperationRewrite(Kind::UnresolvedMaterialization, rewriterImpl, op),
1168       converterAndKind(converter, kind), originalType(originalType),
1169       mappedValues(std::move(mappedValues)) {
1170   assert((!originalType || kind == MaterializationKind::Target) &&
1171          "original type is valid only for target materializations");
1172   rewriterImpl.unresolvedMaterializations[op] = this;
1173 }
1174 
1175 void UnresolvedMaterializationRewrite::rollback() {
1176   if (!mappedValues.empty())
1177     rewriterImpl.mapping.erase(mappedValues);
1178   rewriterImpl.unresolvedMaterializations.erase(getOperation());
1179   op->erase();
1180 }
1181 
1182 void ConversionPatternRewriterImpl::applyRewrites() {
1183   // Commit all rewrites.
1184   IRRewriter rewriter(context, config.listener);
1185   // Note: New rewrites may be added during the "commit" phase and the
1186   // `rewrites` vector may reallocate.
1187   for (size_t i = 0; i < rewrites.size(); ++i)
1188     rewrites[i]->commit(rewriter);
1189 
1190   // Clean up all rewrites.
1191   for (auto &rewrite : rewrites)
1192     rewrite->cleanup(eraseRewriter);
1193 }
1194 
1195 //===----------------------------------------------------------------------===//
1196 // State Management
1197 
1198 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
1199   return RewriterState(rewrites.size(), ignoredOps.size(), replacedOps.size());
1200 }
1201 
1202 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
1203   // Undo any rewrites.
1204   undoRewrites(state.numRewrites);
1205 
1206   // Pop all of the recorded ignored operations that are no longer valid.
1207   while (ignoredOps.size() != state.numIgnoredOperations)
1208     ignoredOps.pop_back();
1209 
1210   while (replacedOps.size() != state.numReplacedOps)
1211     replacedOps.pop_back();
1212 }
1213 
1214 void ConversionPatternRewriterImpl::undoRewrites(unsigned numRewritesToKeep) {
1215   for (auto &rewrite :
1216        llvm::reverse(llvm::drop_begin(rewrites, numRewritesToKeep)))
1217     rewrite->rollback();
1218   rewrites.resize(numRewritesToKeep);
1219 }
1220 
1221 LogicalResult ConversionPatternRewriterImpl::remapValues(
1222     StringRef valueDiagTag, std::optional<Location> inputLoc,
1223     PatternRewriter &rewriter, ValueRange values,
1224     SmallVector<ValueVector> &remapped) {
1225   remapped.reserve(llvm::size(values));
1226 
1227   for (const auto &it : llvm::enumerate(values)) {
1228     Value operand = it.value();
1229     Type origType = operand.getType();
1230     Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1231 
1232     if (!currentTypeConverter) {
1233       // The current pattern does not have a type converter. I.e., it does not
1234       // distinguish between legal and illegal types. For each operand, simply
1235       // pass through the most recently mapped values.
1236       remapped.push_back(mapping.lookupOrDefault(operand));
1237       continue;
1238     }
1239 
1240     // If there is no legal conversion, fail to match this pattern.
1241     SmallVector<Type, 1> legalTypes;
1242     if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
1243       notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
1244         diag << "unable to convert type for " << valueDiagTag << " #"
1245              << it.index() << ", type was " << origType;
1246       });
1247       return failure();
1248     }
1249     // If a type is converted to 0 types, there is nothing to do.
1250     if (legalTypes.empty()) {
1251       remapped.push_back({});
1252       continue;
1253     }
1254 
1255     ValueVector repl = mapping.lookupOrDefault(operand, legalTypes);
1256     if (!repl.empty() && TypeRange(ValueRange(repl)) == legalTypes) {
1257       // Mapped values have the correct type or there is an existing
1258       // materialization. Or the operand is not mapped at all and has the
1259       // correct type.
1260       remapped.push_back(std::move(repl));
1261       continue;
1262     }
1263 
1264     // Create a materialization for the most recently mapped values.
1265     repl = mapping.lookupOrDefault(operand);
1266     ValueRange castValues = buildUnresolvedMaterialization(
1267         MaterializationKind::Target, computeInsertPoint(repl), operandLoc,
1268         /*valuesToMap=*/repl, /*inputs=*/repl, /*outputTypes=*/legalTypes,
1269         /*originalType=*/origType, currentTypeConverter);
1270     remapped.push_back(castValues);
1271   }
1272   return success();
1273 }
1274 
1275 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1276   // Check to see if this operation is ignored or was replaced.
1277   return replacedOps.count(op) || ignoredOps.count(op);
1278 }
1279 
1280 bool ConversionPatternRewriterImpl::wasOpReplaced(Operation *op) const {
1281   // Check to see if this operation was replaced.
1282   return replacedOps.count(op);
1283 }
1284 
1285 //===----------------------------------------------------------------------===//
1286 // Type Conversion
1287 
1288 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1289     ConversionPatternRewriter &rewriter, Region *region,
1290     const TypeConverter &converter,
1291     TypeConverter::SignatureConversion *entryConversion) {
1292   regionToConverter[region] = &converter;
1293   if (region->empty())
1294     return nullptr;
1295 
1296   // Convert the arguments of each non-entry block within the region.
1297   for (Block &block :
1298        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1299     // Compute the signature for the block with the provided converter.
1300     std::optional<TypeConverter::SignatureConversion> conversion =
1301         converter.convertBlockSignature(&block);
1302     if (!conversion)
1303       return failure();
1304     // Convert the block with the computed signature.
1305     applySignatureConversion(rewriter, &block, &converter, *conversion);
1306   }
1307 
1308   // Convert the entry block. If an entry signature conversion was provided,
1309   // use that one. Otherwise, compute the signature with the type converter.
1310   if (entryConversion)
1311     return applySignatureConversion(rewriter, &region->front(), &converter,
1312                                     *entryConversion);
1313   std::optional<TypeConverter::SignatureConversion> conversion =
1314       converter.convertBlockSignature(&region->front());
1315   if (!conversion)
1316     return failure();
1317   return applySignatureConversion(rewriter, &region->front(), &converter,
1318                                   *conversion);
1319 }
1320 
1321 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1322     ConversionPatternRewriter &rewriter, Block *block,
1323     const TypeConverter *converter,
1324     TypeConverter::SignatureConversion &signatureConversion) {
1325 #if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
1326   // A block cannot be converted multiple times.
1327   if (hasRewrite<BlockTypeConversionRewrite>(rewrites, block))
1328     llvm::report_fatal_error("block was already converted");
1329 #endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
1330 
1331   OpBuilder::InsertionGuard g(rewriter);
1332 
1333   // If no arguments are being changed or added, there is nothing to do.
1334   unsigned origArgCount = block->getNumArguments();
1335   auto convertedTypes = signatureConversion.getConvertedTypes();
1336   if (llvm::equal(block->getArgumentTypes(), convertedTypes))
1337     return block;
1338 
1339   // Compute the locations of all block arguments in the new block.
1340   SmallVector<Location> newLocs(convertedTypes.size(),
1341                                 rewriter.getUnknownLoc());
1342   for (unsigned i = 0; i < origArgCount; ++i) {
1343     auto inputMap = signatureConversion.getInputMapping(i);
1344     if (!inputMap || inputMap->replacementValue)
1345       continue;
1346     Location origLoc = block->getArgument(i).getLoc();
1347     for (unsigned j = 0; j < inputMap->size; ++j)
1348       newLocs[inputMap->inputNo + j] = origLoc;
1349   }
1350 
1351   // Insert a new block with the converted block argument types and move all ops
1352   // from the old block to the new block.
1353   Block *newBlock =
1354       rewriter.createBlock(block->getParent(), std::next(block->getIterator()),
1355                            convertedTypes, newLocs);
1356 
1357   // If a listener is attached to the dialect conversion, ops cannot be moved
1358   // to the destination block in bulk ("fast path"). This is because at the time
1359   // the notifications are sent, it is unknown which ops were moved. Instead,
1360   // ops should be moved one-by-one ("slow path"), so that a separate
1361   // `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
1362   // a bit more efficient, so we try to do that when possible.
1363   bool fastPath = !config.listener;
1364   if (fastPath) {
1365     appendRewrite<InlineBlockRewrite>(newBlock, block, newBlock->end());
1366     newBlock->getOperations().splice(newBlock->end(), block->getOperations());
1367   } else {
1368     while (!block->empty())
1369       rewriter.moveOpBefore(&block->front(), newBlock, newBlock->end());
1370   }
1371 
1372   // Replace all uses of the old block with the new block.
1373   block->replaceAllUsesWith(newBlock);
1374 
1375   for (unsigned i = 0; i != origArgCount; ++i) {
1376     BlockArgument origArg = block->getArgument(i);
1377     Type origArgType = origArg.getType();
1378 
1379     std::optional<TypeConverter::SignatureConversion::InputMapping> inputMap =
1380         signatureConversion.getInputMapping(i);
1381     if (!inputMap) {
1382       // This block argument was dropped and no replacement value was provided.
1383       // Materialize a replacement value "out of thin air".
1384       buildUnresolvedMaterialization(
1385           MaterializationKind::Source,
1386           OpBuilder::InsertPoint(newBlock, newBlock->begin()), origArg.getLoc(),
1387           /*valuesToMap=*/{origArg}, /*inputs=*/ValueRange(),
1388           /*outputType=*/origArgType, /*originalType=*/Type(), converter);
1389       appendRewrite<ReplaceBlockArgRewrite>(block, origArg, converter);
1390       continue;
1391     }
1392 
1393     if (Value repl = inputMap->replacementValue) {
1394       // This block argument was dropped and a replacement value was provided.
1395       assert(inputMap->size == 0 &&
1396              "invalid to provide a replacement value when the argument isn't "
1397              "dropped");
1398       mapping.map(origArg, repl);
1399       appendRewrite<ReplaceBlockArgRewrite>(block, origArg, converter);
1400       continue;
1401     }
1402 
1403     // This is a 1->1+ mapping.
1404     auto replArgs =
1405         newBlock->getArguments().slice(inputMap->inputNo, inputMap->size);
1406     ValueVector replArgVals = llvm::to_vector_of<Value, 1>(replArgs);
1407     mapping.map(origArg, std::move(replArgVals));
1408     appendRewrite<ReplaceBlockArgRewrite>(block, origArg, converter);
1409   }
1410 
1411   appendRewrite<BlockTypeConversionRewrite>(/*origBlock=*/block, newBlock);
1412 
1413   // Erase the old block. (It is just unlinked for now and will be erased during
1414   // cleanup.)
1415   rewriter.eraseBlock(block);
1416 
1417   return newBlock;
1418 }
1419 
1420 //===----------------------------------------------------------------------===//
1421 // Materializations
1422 //===----------------------------------------------------------------------===//
1423 
1424 /// Build an unresolved materialization operation given an output type and set
1425 /// of input operands.
1426 ValueRange ConversionPatternRewriterImpl::buildUnresolvedMaterialization(
1427     MaterializationKind kind, OpBuilder::InsertPoint ip, Location loc,
1428     ValueVector valuesToMap, ValueRange inputs, TypeRange outputTypes,
1429     Type originalType, const TypeConverter *converter,
1430     UnrealizedConversionCastOp *castOp) {
1431   assert((!originalType || kind == MaterializationKind::Target) &&
1432          "original type is valid only for target materializations");
1433   assert(TypeRange(inputs) != outputTypes &&
1434          "materialization is not necessary");
1435 
1436   // Create an unresolved materialization. We use a new OpBuilder to avoid
1437   // tracking the materialization like we do for other operations.
1438   OpBuilder builder(outputTypes.front().getContext());
1439   builder.setInsertionPoint(ip.getBlock(), ip.getPoint());
1440   auto convertOp =
1441       builder.create<UnrealizedConversionCastOp>(loc, outputTypes, inputs);
1442   if (!valuesToMap.empty())
1443     mapping.map(valuesToMap, convertOp.getResults());
1444   if (castOp)
1445     *castOp = convertOp;
1446   appendRewrite<UnresolvedMaterializationRewrite>(
1447       convertOp, converter, kind, originalType, std::move(valuesToMap));
1448   return convertOp.getResults();
1449 }
1450 
1451 Value ConversionPatternRewriterImpl::findOrBuildReplacementValue(
1452     Value value, const TypeConverter *converter) {
1453   // Try to find a replacement value with the same type in the conversion value
1454   // mapping. This includes cached materializations. We try to reuse those
1455   // instead of generating duplicate IR.
1456   ValueVector repl = mapping.lookupOrNull(value, value.getType());
1457   if (!repl.empty())
1458     return repl.front();
1459 
1460   // Check if the value is dead. No replacement value is needed in that case.
1461   // This is an approximate check that may have false negatives but does not
1462   // require computing and traversing an inverse mapping. (We may end up
1463   // building source materializations that are never used and that fold away.)
1464   if (llvm::all_of(value.getUsers(),
1465                    [&](Operation *op) { return replacedOps.contains(op); }) &&
1466       !mapping.isMappedTo(value))
1467     return Value();
1468 
1469   // No replacement value was found. Get the latest replacement value
1470   // (regardless of the type) and build a source materialization to the
1471   // original type.
1472   repl = mapping.lookupOrNull(value);
1473   if (repl.empty()) {
1474     // No replacement value is registered in the mapping. This means that the
1475     // value is dropped and no longer needed. (If the value were still needed,
1476     // a source materialization producing a replacement value "out of thin air"
1477     // would have already been created during `replaceOp` or
1478     // `applySignatureConversion`.)
1479     return Value();
1480   }
1481 
1482   // Note: `computeInsertPoint` computes the "earliest" insertion point at
1483   // which all values in `repl` are defined. It is important to emit the
1484   // materialization at that location because the same materialization may be
1485   // reused in a different context. (That's because materializations are cached
1486   // in the conversion value mapping.) The insertion point of the
1487   // materialization must be valid for all future users that may be created
1488   // later in the conversion process.
1489   Value castValue =
1490       buildUnresolvedMaterialization(MaterializationKind::Source,
1491                                      computeInsertPoint(repl), value.getLoc(),
1492                                      /*valuesToMap=*/repl, /*inputs=*/repl,
1493                                      /*outputType=*/value.getType(),
1494                                      /*originalType=*/Type(), converter)
1495           .front();
1496   return castValue;
1497 }
1498 
1499 //===----------------------------------------------------------------------===//
1500 // Rewriter Notification Hooks
1501 
1502 void ConversionPatternRewriterImpl::notifyOperationInserted(
1503     Operation *op, OpBuilder::InsertPoint previous) {
1504   LLVM_DEBUG({
1505     logger.startLine() << "** Insert  : '" << op->getName() << "'(" << op
1506                        << ")\n";
1507   });
1508   assert(!wasOpReplaced(op->getParentOp()) &&
1509          "attempting to insert into a block within a replaced/erased op");
1510 
1511   if (!previous.isSet()) {
1512     // This is a newly created op.
1513     appendRewrite<CreateOperationRewrite>(op);
1514     return;
1515   }
1516   Operation *prevOp = previous.getPoint() == previous.getBlock()->end()
1517                           ? nullptr
1518                           : &*previous.getPoint();
1519   appendRewrite<MoveOperationRewrite>(op, previous.getBlock(), prevOp);
1520 }
1521 
1522 void ConversionPatternRewriterImpl::notifyOpReplaced(
1523     Operation *op, ArrayRef<ValueRange> newValues) {
1524   assert(newValues.size() == op->getNumResults());
1525   assert(!ignoredOps.contains(op) && "operation was already replaced");
1526 
1527   // Check if replaced op is an unresolved materialization, i.e., an
1528   // unrealized_conversion_cast op that was created by the conversion driver.
1529   bool isUnresolvedMaterialization = false;
1530   if (auto castOp = dyn_cast<UnrealizedConversionCastOp>(op))
1531     if (unresolvedMaterializations.contains(castOp))
1532       isUnresolvedMaterialization = true;
1533 
1534   // Create mappings for each of the new result values.
1535   for (auto [repl, result] : llvm::zip_equal(newValues, op->getResults())) {
1536     if (repl.empty()) {
1537       // This result was dropped and no replacement value was provided.
1538       if (isUnresolvedMaterialization) {
1539         // Do not create another materializations if we are erasing a
1540         // materialization.
1541         continue;
1542       }
1543 
1544       // Materialize a replacement value "out of thin air".
1545       buildUnresolvedMaterialization(
1546           MaterializationKind::Source, computeInsertPoint(result),
1547           result.getLoc(), /*valuesToMap=*/{result}, /*inputs=*/ValueRange(),
1548           /*outputType=*/result.getType(), /*originalType=*/Type(),
1549           currentTypeConverter);
1550       continue;
1551     } else {
1552       // Make sure that the user does not mess with unresolved materializations
1553       // that were inserted by the conversion driver. We keep track of these
1554       // ops in internal data structures. Erasing them must be allowed because
1555       // this can happen when the user is erasing an entire block (including
1556       // its body). But replacing them with another value should be forbidden
1557       // to avoid problems with the `mapping`.
1558       assert(!isUnresolvedMaterialization &&
1559              "attempting to replace an unresolved materialization");
1560     }
1561 
1562     // Remap result to replacement value.
1563     if (repl.empty())
1564       continue;
1565     mapping.map(result, repl);
1566   }
1567 
1568   appendRewrite<ReplaceOperationRewrite>(op, currentTypeConverter);
1569   // Mark this operation and all nested ops as replaced.
1570   op->walk([&](Operation *op) { replacedOps.insert(op); });
1571 }
1572 
1573 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1574   appendRewrite<EraseBlockRewrite>(block);
1575 }
1576 
1577 void ConversionPatternRewriterImpl::notifyBlockInserted(
1578     Block *block, Region *previous, Region::iterator previousIt) {
1579   assert(!wasOpReplaced(block->getParentOp()) &&
1580          "attempting to insert into a region within a replaced/erased op");
1581   LLVM_DEBUG(
1582       {
1583         Operation *parent = block->getParentOp();
1584         if (parent) {
1585           logger.startLine() << "** Insert Block into : '" << parent->getName()
1586                              << "'(" << parent << ")\n";
1587         } else {
1588           logger.startLine()
1589               << "** Insert Block into detached Region (nullptr parent op)'";
1590         }
1591       });
1592 
1593   if (!previous) {
1594     // This is a newly created block.
1595     appendRewrite<CreateBlockRewrite>(block);
1596     return;
1597   }
1598   Block *prevBlock = previousIt == previous->end() ? nullptr : &*previousIt;
1599   appendRewrite<MoveBlockRewrite>(block, previous, prevBlock);
1600 }
1601 
1602 void ConversionPatternRewriterImpl::notifyBlockBeingInlined(
1603     Block *block, Block *srcBlock, Block::iterator before) {
1604   appendRewrite<InlineBlockRewrite>(block, srcBlock, before);
1605 }
1606 
1607 void ConversionPatternRewriterImpl::notifyMatchFailure(
1608     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1609   LLVM_DEBUG({
1610     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1611     reasonCallback(diag);
1612     logger.startLine() << "** Failure : " << diag.str() << "\n";
1613     if (config.notifyCallback)
1614       config.notifyCallback(diag);
1615   });
1616 }
1617 
1618 //===----------------------------------------------------------------------===//
1619 // ConversionPatternRewriter
1620 //===----------------------------------------------------------------------===//
1621 
1622 ConversionPatternRewriter::ConversionPatternRewriter(
1623     MLIRContext *ctx, const ConversionConfig &config)
1624     : PatternRewriter(ctx),
1625       impl(new detail::ConversionPatternRewriterImpl(ctx, config)) {
1626   setListener(impl.get());
1627 }
1628 
1629 ConversionPatternRewriter::~ConversionPatternRewriter() = default;
1630 
1631 void ConversionPatternRewriter::replaceOp(Operation *op, Operation *newOp) {
1632   assert(op && newOp && "expected non-null op");
1633   replaceOp(op, newOp->getResults());
1634 }
1635 
1636 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1637   assert(op->getNumResults() == newValues.size() &&
1638          "incorrect # of replacement values");
1639   LLVM_DEBUG({
1640     impl->logger.startLine()
1641         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1642   });
1643   SmallVector<ValueRange> newVals;
1644   for (size_t i = 0; i < newValues.size(); ++i) {
1645     if (newValues[i]) {
1646       newVals.push_back(newValues.slice(i, 1));
1647     } else {
1648       newVals.push_back(ValueRange());
1649     }
1650   }
1651   impl->notifyOpReplaced(op, newVals);
1652 }
1653 
1654 void ConversionPatternRewriter::replaceOpWithMultiple(
1655     Operation *op, ArrayRef<ValueRange> newValues) {
1656   assert(op->getNumResults() == newValues.size() &&
1657          "incorrect # of replacement values");
1658   LLVM_DEBUG({
1659     impl->logger.startLine()
1660         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1661   });
1662   impl->notifyOpReplaced(op, newValues);
1663 }
1664 
1665 void ConversionPatternRewriter::eraseOp(Operation *op) {
1666   LLVM_DEBUG({
1667     impl->logger.startLine()
1668         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1669   });
1670   SmallVector<ValueRange> nullRepls(op->getNumResults(), {});
1671   impl->notifyOpReplaced(op, nullRepls);
1672 }
1673 
1674 void ConversionPatternRewriter::eraseBlock(Block *block) {
1675   assert(!impl->wasOpReplaced(block->getParentOp()) &&
1676          "attempting to erase a block within a replaced/erased op");
1677 
1678   // Mark all ops for erasure.
1679   for (Operation &op : *block)
1680     eraseOp(&op);
1681 
1682   // Unlink the block from its parent region. The block is kept in the rewrite
1683   // object and will be actually destroyed when rewrites are applied. This
1684   // allows us to keep the operations in the block live and undo the removal by
1685   // re-inserting the block.
1686   impl->notifyBlockIsBeingErased(block);
1687   block->getParent()->getBlocks().remove(block);
1688 }
1689 
1690 Block *ConversionPatternRewriter::applySignatureConversion(
1691     Block *block, TypeConverter::SignatureConversion &conversion,
1692     const TypeConverter *converter) {
1693   assert(!impl->wasOpReplaced(block->getParentOp()) &&
1694          "attempting to apply a signature conversion to a block within a "
1695          "replaced/erased op");
1696   return impl->applySignatureConversion(*this, block, converter, conversion);
1697 }
1698 
1699 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1700     Region *region, const TypeConverter &converter,
1701     TypeConverter::SignatureConversion *entryConversion) {
1702   assert(!impl->wasOpReplaced(region->getParentOp()) &&
1703          "attempting to apply a signature conversion to a block within a "
1704          "replaced/erased op");
1705   return impl->convertRegionTypes(*this, region, converter, entryConversion);
1706 }
1707 
1708 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1709                                                            Value to) {
1710   LLVM_DEBUG({
1711     Operation *parentOp = from.getOwner()->getParentOp();
1712     impl->logger.startLine() << "** Replace Argument : '" << from
1713                              << "'(in region of '" << parentOp->getName()
1714                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1715   });
1716   impl->appendRewrite<ReplaceBlockArgRewrite>(from.getOwner(), from,
1717                                               impl->currentTypeConverter);
1718   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1719 }
1720 
1721 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1722   SmallVector<ValueVector> remappedValues;
1723   if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, key,
1724                                remappedValues)))
1725     return nullptr;
1726   assert(remappedValues.front().size() == 1 && "1:N conversion not supported");
1727   return remappedValues.front().front();
1728 }
1729 
1730 LogicalResult
1731 ConversionPatternRewriter::getRemappedValues(ValueRange keys,
1732                                              SmallVectorImpl<Value> &results) {
1733   if (keys.empty())
1734     return success();
1735   SmallVector<ValueVector> remapped;
1736   if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, keys,
1737                                remapped)))
1738     return failure();
1739   for (const auto &values : remapped) {
1740     assert(values.size() == 1 && "1:N conversion not supported");
1741     results.push_back(values.front());
1742   }
1743   return success();
1744 }
1745 
1746 void ConversionPatternRewriter::inlineBlockBefore(Block *source, Block *dest,
1747                                                   Block::iterator before,
1748                                                   ValueRange argValues) {
1749 #ifndef NDEBUG
1750   assert(argValues.size() == source->getNumArguments() &&
1751          "incorrect # of argument replacement values");
1752   assert(!impl->wasOpReplaced(source->getParentOp()) &&
1753          "attempting to inline a block from a replaced/erased op");
1754   assert(!impl->wasOpReplaced(dest->getParentOp()) &&
1755          "attempting to inline a block into a replaced/erased op");
1756   auto opIgnored = [&](Operation *op) { return impl->isOpIgnored(op); };
1757   // The source block will be deleted, so it should not have any users (i.e.,
1758   // there should be no predecessors).
1759   assert(llvm::all_of(source->getUsers(), opIgnored) &&
1760          "expected 'source' to have no predecessors");
1761 #endif // NDEBUG
1762 
1763   // If a listener is attached to the dialect conversion, ops cannot be moved
1764   // to the destination block in bulk ("fast path"). This is because at the time
1765   // the notifications are sent, it is unknown which ops were moved. Instead,
1766   // ops should be moved one-by-one ("slow path"), so that a separate
1767   // `MoveOperationRewrite` is enqueued for each moved op. Moving ops in bulk is
1768   // a bit more efficient, so we try to do that when possible.
1769   bool fastPath = !impl->config.listener;
1770 
1771   if (fastPath)
1772     impl->notifyBlockBeingInlined(dest, source, before);
1773 
1774   // Replace all uses of block arguments.
1775   for (auto it : llvm::zip(source->getArguments(), argValues))
1776     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1777 
1778   if (fastPath) {
1779     // Move all ops at once.
1780     dest->getOperations().splice(before, source->getOperations());
1781   } else {
1782     // Move op by op.
1783     while (!source->empty())
1784       moveOpBefore(&source->front(), dest, before);
1785   }
1786 
1787   // Erase the source block.
1788   eraseBlock(source);
1789 }
1790 
1791 void ConversionPatternRewriter::startOpModification(Operation *op) {
1792   assert(!impl->wasOpReplaced(op) &&
1793          "attempting to modify a replaced/erased op");
1794 #ifndef NDEBUG
1795   impl->pendingRootUpdates.insert(op);
1796 #endif
1797   impl->appendRewrite<ModifyOperationRewrite>(op);
1798 }
1799 
1800 void ConversionPatternRewriter::finalizeOpModification(Operation *op) {
1801   assert(!impl->wasOpReplaced(op) &&
1802          "attempting to modify a replaced/erased op");
1803   PatternRewriter::finalizeOpModification(op);
1804   // There is nothing to do here, we only need to track the operation at the
1805   // start of the update.
1806 #ifndef NDEBUG
1807   assert(impl->pendingRootUpdates.erase(op) &&
1808          "operation did not have a pending in-place update");
1809 #endif
1810 }
1811 
1812 void ConversionPatternRewriter::cancelOpModification(Operation *op) {
1813 #ifndef NDEBUG
1814   assert(impl->pendingRootUpdates.erase(op) &&
1815          "operation did not have a pending in-place update");
1816 #endif
1817   // Erase the last update for this operation.
1818   auto it = llvm::find_if(
1819       llvm::reverse(impl->rewrites), [&](std::unique_ptr<IRRewrite> &rewrite) {
1820         auto *modifyRewrite = dyn_cast<ModifyOperationRewrite>(rewrite.get());
1821         return modifyRewrite && modifyRewrite->getOperation() == op;
1822       });
1823   assert(it != impl->rewrites.rend() && "no root update started on op");
1824   (*it)->rollback();
1825   int updateIdx = std::prev(impl->rewrites.rend()) - it;
1826   impl->rewrites.erase(impl->rewrites.begin() + updateIdx);
1827 }
1828 
1829 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1830   return *impl;
1831 }
1832 
1833 //===----------------------------------------------------------------------===//
1834 // ConversionPattern
1835 //===----------------------------------------------------------------------===//
1836 
1837 SmallVector<Value> ConversionPattern::getOneToOneAdaptorOperands(
1838     ArrayRef<ValueRange> operands) const {
1839   SmallVector<Value> oneToOneOperands;
1840   oneToOneOperands.reserve(operands.size());
1841   for (ValueRange operand : operands) {
1842     if (operand.size() != 1)
1843       llvm::report_fatal_error("pattern '" + getDebugName() +
1844                                "' does not support 1:N conversion");
1845     oneToOneOperands.push_back(operand.front());
1846   }
1847   return oneToOneOperands;
1848 }
1849 
1850 LogicalResult
1851 ConversionPattern::matchAndRewrite(Operation *op,
1852                                    PatternRewriter &rewriter) const {
1853   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1854   auto &rewriterImpl = dialectRewriter.getImpl();
1855 
1856   // Track the current conversion pattern type converter in the rewriter.
1857   llvm::SaveAndRestore currentConverterGuard(rewriterImpl.currentTypeConverter,
1858                                              getTypeConverter());
1859 
1860   // Remap the operands of the operation.
1861   SmallVector<ValueVector> remapped;
1862   if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
1863                                       op->getOperands(), remapped))) {
1864     return failure();
1865   }
1866   SmallVector<ValueRange> remappedAsRange =
1867       llvm::to_vector_of<ValueRange>(remapped);
1868   return matchAndRewrite(op, remappedAsRange, dialectRewriter);
1869 }
1870 
1871 //===----------------------------------------------------------------------===//
1872 // OperationLegalizer
1873 //===----------------------------------------------------------------------===//
1874 
1875 namespace {
1876 /// A set of rewrite patterns that can be used to legalize a given operation.
1877 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1878 
1879 /// This class defines a recursive operation legalizer.
1880 class OperationLegalizer {
1881 public:
1882   using LegalizationAction = ConversionTarget::LegalizationAction;
1883 
1884   OperationLegalizer(const ConversionTarget &targetInfo,
1885                      const FrozenRewritePatternSet &patterns,
1886                      const ConversionConfig &config);
1887 
1888   /// Returns true if the given operation is known to be illegal on the target.
1889   bool isIllegal(Operation *op) const;
1890 
1891   /// Attempt to legalize the given operation. Returns success if the operation
1892   /// was legalized, failure otherwise.
1893   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1894 
1895   /// Returns the conversion target in use by the legalizer.
1896   const ConversionTarget &getTarget() { return target; }
1897 
1898 private:
1899   /// Attempt to legalize the given operation by folding it.
1900   LogicalResult legalizeWithFold(Operation *op,
1901                                  ConversionPatternRewriter &rewriter);
1902 
1903   /// Attempt to legalize the given operation by applying a pattern. Returns
1904   /// success if the operation was legalized, failure otherwise.
1905   LogicalResult legalizeWithPattern(Operation *op,
1906                                     ConversionPatternRewriter &rewriter);
1907 
1908   /// Return true if the given pattern may be applied to the given operation,
1909   /// false otherwise.
1910   bool canApplyPattern(Operation *op, const Pattern &pattern,
1911                        ConversionPatternRewriter &rewriter);
1912 
1913   /// Legalize the resultant IR after successfully applying the given pattern.
1914   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1915                                       ConversionPatternRewriter &rewriter,
1916                                       RewriterState &curState);
1917 
1918   /// Legalizes the actions registered during the execution of a pattern.
1919   LogicalResult
1920   legalizePatternBlockRewrites(Operation *op,
1921                                ConversionPatternRewriter &rewriter,
1922                                ConversionPatternRewriterImpl &impl,
1923                                RewriterState &state, RewriterState &newState);
1924   LogicalResult legalizePatternCreatedOperations(
1925       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1926       RewriterState &state, RewriterState &newState);
1927   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1928                                            ConversionPatternRewriterImpl &impl,
1929                                            RewriterState &state,
1930                                            RewriterState &newState);
1931 
1932   //===--------------------------------------------------------------------===//
1933   // Cost Model
1934   //===--------------------------------------------------------------------===//
1935 
1936   /// Build an optimistic legalization graph given the provided patterns. This
1937   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1938   /// patterns for operations that are not directly legal, but may be
1939   /// transitively legal for the current target given the provided patterns.
1940   void buildLegalizationGraph(
1941       LegalizationPatterns &anyOpLegalizerPatterns,
1942       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1943 
1944   /// Compute the benefit of each node within the computed legalization graph.
1945   /// This orders the patterns within 'legalizerPatterns' based upon two
1946   /// criteria:
1947   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1948   ///     represent the more direct mapping to the target.
1949   ///  2) When comparing patterns with the same legalization depth, prefer the
1950   ///     pattern with the highest PatternBenefit. This allows for users to
1951   ///     prefer specific legalizations over others.
1952   void computeLegalizationGraphBenefit(
1953       LegalizationPatterns &anyOpLegalizerPatterns,
1954       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1955 
1956   /// Compute the legalization depth when legalizing an operation of the given
1957   /// type.
1958   unsigned computeOpLegalizationDepth(
1959       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1960       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1961 
1962   /// Apply the conversion cost model to the given set of patterns, and return
1963   /// the smallest legalization depth of any of the patterns. See
1964   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1965   unsigned applyCostModelToPatterns(
1966       LegalizationPatterns &patterns,
1967       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1968       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1969 
1970   /// The current set of patterns that have been applied.
1971   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1972 
1973   /// The legalization information provided by the target.
1974   const ConversionTarget &target;
1975 
1976   /// The pattern applicator to use for conversions.
1977   PatternApplicator applicator;
1978 
1979   /// Dialect conversion configuration.
1980   const ConversionConfig &config;
1981 };
1982 } // namespace
1983 
1984 OperationLegalizer::OperationLegalizer(const ConversionTarget &targetInfo,
1985                                        const FrozenRewritePatternSet &patterns,
1986                                        const ConversionConfig &config)
1987     : target(targetInfo), applicator(patterns), config(config) {
1988   // The set of patterns that can be applied to illegal operations to transform
1989   // them into legal ones.
1990   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1991   LegalizationPatterns anyOpLegalizerPatterns;
1992 
1993   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1994   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1995 }
1996 
1997 bool OperationLegalizer::isIllegal(Operation *op) const {
1998   return target.isIllegal(op);
1999 }
2000 
2001 LogicalResult
2002 OperationLegalizer::legalize(Operation *op,
2003                              ConversionPatternRewriter &rewriter) {
2004 #ifndef NDEBUG
2005   const char *logLineComment =
2006       "//===-------------------------------------------===//\n";
2007 
2008   auto &logger = rewriter.getImpl().logger;
2009 #endif
2010   LLVM_DEBUG({
2011     logger.getOStream() << "\n";
2012     logger.startLine() << logLineComment;
2013     logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
2014                        << op << ") {\n";
2015     logger.indent();
2016 
2017     // If the operation has no regions, just print it here.
2018     if (op->getNumRegions() == 0) {
2019       op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
2020       logger.getOStream() << "\n\n";
2021     }
2022   });
2023 
2024   // Check if this operation is legal on the target.
2025   if (auto legalityInfo = target.isLegal(op)) {
2026     LLVM_DEBUG({
2027       logSuccess(
2028           logger, "operation marked legal by the target{0}",
2029           legalityInfo->isRecursivelyLegal
2030               ? "; NOTE: operation is recursively legal; skipping internals"
2031               : "");
2032       logger.startLine() << logLineComment;
2033     });
2034 
2035     // If this operation is recursively legal, mark its children as ignored so
2036     // that we don't consider them for legalization.
2037     if (legalityInfo->isRecursivelyLegal) {
2038       op->walk([&](Operation *nested) {
2039         if (op != nested)
2040           rewriter.getImpl().ignoredOps.insert(nested);
2041       });
2042     }
2043 
2044     return success();
2045   }
2046 
2047   // Check to see if the operation is ignored and doesn't need to be converted.
2048   if (rewriter.getImpl().isOpIgnored(op)) {
2049     LLVM_DEBUG({
2050       logSuccess(logger, "operation marked 'ignored' during conversion");
2051       logger.startLine() << logLineComment;
2052     });
2053     return success();
2054   }
2055 
2056   // If the operation isn't legal, try to fold it in-place.
2057   // TODO: Should we always try to do this, even if the op is
2058   // already legal?
2059   if (succeeded(legalizeWithFold(op, rewriter))) {
2060     LLVM_DEBUG({
2061       logSuccess(logger, "operation was folded");
2062       logger.startLine() << logLineComment;
2063     });
2064     return success();
2065   }
2066 
2067   // Otherwise, we need to apply a legalization pattern to this operation.
2068   if (succeeded(legalizeWithPattern(op, rewriter))) {
2069     LLVM_DEBUG({
2070       logSuccess(logger, "");
2071       logger.startLine() << logLineComment;
2072     });
2073     return success();
2074   }
2075 
2076   LLVM_DEBUG({
2077     logFailure(logger, "no matched legalization pattern");
2078     logger.startLine() << logLineComment;
2079   });
2080   return failure();
2081 }
2082 
2083 LogicalResult
2084 OperationLegalizer::legalizeWithFold(Operation *op,
2085                                      ConversionPatternRewriter &rewriter) {
2086   auto &rewriterImpl = rewriter.getImpl();
2087   RewriterState curState = rewriterImpl.getCurrentState();
2088 
2089   LLVM_DEBUG({
2090     rewriterImpl.logger.startLine() << "* Fold {\n";
2091     rewriterImpl.logger.indent();
2092   });
2093 
2094   // Try to fold the operation.
2095   SmallVector<Value, 2> replacementValues;
2096   rewriter.setInsertionPoint(op);
2097   if (failed(rewriter.tryFold(op, replacementValues))) {
2098     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
2099     return failure();
2100   }
2101   // An empty list of replacement values indicates that the fold was in-place.
2102   // As the operation changed, a new legalization needs to be attempted.
2103   if (replacementValues.empty())
2104     return legalize(op, rewriter);
2105 
2106   // Insert a replacement for 'op' with the folded replacement values.
2107   rewriter.replaceOp(op, replacementValues);
2108 
2109   // Recursively legalize any new constant operations.
2110   for (unsigned i = curState.numRewrites, e = rewriterImpl.rewrites.size();
2111        i != e; ++i) {
2112     auto *createOp =
2113         dyn_cast<CreateOperationRewrite>(rewriterImpl.rewrites[i].get());
2114     if (!createOp)
2115       continue;
2116     if (failed(legalize(createOp->getOperation(), rewriter))) {
2117       LLVM_DEBUG(logFailure(rewriterImpl.logger,
2118                             "failed to legalize generated constant '{0}'",
2119                             createOp->getOperation()->getName()));
2120       rewriterImpl.resetState(curState);
2121       return failure();
2122     }
2123   }
2124 
2125   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
2126   return success();
2127 }
2128 
2129 LogicalResult
2130 OperationLegalizer::legalizeWithPattern(Operation *op,
2131                                         ConversionPatternRewriter &rewriter) {
2132   auto &rewriterImpl = rewriter.getImpl();
2133 
2134   // Functor that returns if the given pattern may be applied.
2135   auto canApply = [&](const Pattern &pattern) {
2136     bool canApply = canApplyPattern(op, pattern, rewriter);
2137     if (canApply && config.listener)
2138       config.listener->notifyPatternBegin(pattern, op);
2139     return canApply;
2140   };
2141 
2142   // Functor that cleans up the rewriter state after a pattern failed to match.
2143   RewriterState curState = rewriterImpl.getCurrentState();
2144   auto onFailure = [&](const Pattern &pattern) {
2145     assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
2146     LLVM_DEBUG({
2147       logFailure(rewriterImpl.logger, "pattern failed to match");
2148       if (rewriterImpl.config.notifyCallback) {
2149         Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
2150         diag << "Failed to apply pattern \"" << pattern.getDebugName()
2151              << "\" on op:\n"
2152              << *op;
2153         rewriterImpl.config.notifyCallback(diag);
2154       }
2155     });
2156     if (config.listener)
2157       config.listener->notifyPatternEnd(pattern, failure());
2158     rewriterImpl.resetState(curState);
2159     appliedPatterns.erase(&pattern);
2160   };
2161 
2162   // Functor that performs additional legalization when a pattern is
2163   // successfully applied.
2164   auto onSuccess = [&](const Pattern &pattern) {
2165     assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
2166     auto result = legalizePatternResult(op, pattern, rewriter, curState);
2167     appliedPatterns.erase(&pattern);
2168     if (failed(result))
2169       rewriterImpl.resetState(curState);
2170     if (config.listener)
2171       config.listener->notifyPatternEnd(pattern, result);
2172     return result;
2173   };
2174 
2175   // Try to match and rewrite a pattern on this operation.
2176   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
2177                                     onSuccess);
2178 }
2179 
2180 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
2181                                          ConversionPatternRewriter &rewriter) {
2182   LLVM_DEBUG({
2183     auto &os = rewriter.getImpl().logger;
2184     os.getOStream() << "\n";
2185     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
2186     llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
2187     os.getOStream() << ")' {\n";
2188     os.indent();
2189   });
2190 
2191   // Ensure that we don't cycle by not allowing the same pattern to be
2192   // applied twice in the same recursion stack if it is not known to be safe.
2193   if (!pattern.hasBoundedRewriteRecursion() &&
2194       !appliedPatterns.insert(&pattern).second) {
2195     LLVM_DEBUG(
2196         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
2197     return false;
2198   }
2199   return true;
2200 }
2201 
2202 LogicalResult
2203 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
2204                                           ConversionPatternRewriter &rewriter,
2205                                           RewriterState &curState) {
2206   auto &impl = rewriter.getImpl();
2207   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
2208 
2209 #if MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
2210   // Check that the root was either replaced or updated in place.
2211   auto newRewrites = llvm::drop_begin(impl.rewrites, curState.numRewrites);
2212   auto replacedRoot = [&] {
2213     return hasRewrite<ReplaceOperationRewrite>(newRewrites, op);
2214   };
2215   auto updatedRootInPlace = [&] {
2216     return hasRewrite<ModifyOperationRewrite>(newRewrites, op);
2217   };
2218   if (!replacedRoot() && !updatedRootInPlace())
2219     llvm::report_fatal_error("expected pattern to replace the root operation");
2220 #endif // MLIR_ENABLE_EXPENSIVE_PATTERN_API_CHECKS
2221 
2222   // Legalize each of the actions registered during application.
2223   RewriterState newState = impl.getCurrentState();
2224   if (failed(legalizePatternBlockRewrites(op, rewriter, impl, curState,
2225                                           newState)) ||
2226       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
2227       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
2228                                               newState))) {
2229     return failure();
2230   }
2231 
2232   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
2233   return success();
2234 }
2235 
2236 LogicalResult OperationLegalizer::legalizePatternBlockRewrites(
2237     Operation *op, ConversionPatternRewriter &rewriter,
2238     ConversionPatternRewriterImpl &impl, RewriterState &state,
2239     RewriterState &newState) {
2240   SmallPtrSet<Operation *, 16> operationsToIgnore;
2241 
2242   // If the pattern moved or created any blocks, make sure the types of block
2243   // arguments get legalized.
2244   for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
2245     BlockRewrite *rewrite = dyn_cast<BlockRewrite>(impl.rewrites[i].get());
2246     if (!rewrite)
2247       continue;
2248     Block *block = rewrite->getBlock();
2249     if (isa<BlockTypeConversionRewrite, EraseBlockRewrite,
2250             ReplaceBlockArgRewrite>(rewrite))
2251       continue;
2252     // Only check blocks outside of the current operation.
2253     Operation *parentOp = block->getParentOp();
2254     if (!parentOp || parentOp == op || block->getNumArguments() == 0)
2255       continue;
2256 
2257     // If the region of the block has a type converter, try to convert the block
2258     // directly.
2259     if (auto *converter = impl.regionToConverter.lookup(block->getParent())) {
2260       std::optional<TypeConverter::SignatureConversion> conversion =
2261           converter->convertBlockSignature(block);
2262       if (!conversion) {
2263         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
2264                                            "block"));
2265         return failure();
2266       }
2267       impl.applySignatureConversion(rewriter, block, converter, *conversion);
2268       continue;
2269     }
2270 
2271     // Otherwise, check that this operation isn't one generated by this pattern.
2272     // This is because we will attempt to legalize the parent operation, and
2273     // blocks in regions created by this pattern will already be legalized later
2274     // on. If we haven't built the set yet, build it now.
2275     if (operationsToIgnore.empty()) {
2276       for (unsigned i = state.numRewrites, e = impl.rewrites.size(); i != e;
2277            ++i) {
2278         auto *createOp =
2279             dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
2280         if (!createOp)
2281           continue;
2282         operationsToIgnore.insert(createOp->getOperation());
2283       }
2284     }
2285 
2286     // If this operation should be considered for re-legalization, try it.
2287     if (operationsToIgnore.insert(parentOp).second &&
2288         failed(legalize(parentOp, rewriter))) {
2289       LLVM_DEBUG(logFailure(impl.logger,
2290                             "operation '{0}'({1}) became illegal after rewrite",
2291                             parentOp->getName(), parentOp));
2292       return failure();
2293     }
2294   }
2295   return success();
2296 }
2297 
2298 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
2299     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2300     RewriterState &state, RewriterState &newState) {
2301   for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
2302     auto *createOp = dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
2303     if (!createOp)
2304       continue;
2305     Operation *op = createOp->getOperation();
2306     if (failed(legalize(op, rewriter))) {
2307       LLVM_DEBUG(logFailure(impl.logger,
2308                             "failed to legalize generated operation '{0}'({1})",
2309                             op->getName(), op));
2310       return failure();
2311     }
2312   }
2313   return success();
2314 }
2315 
2316 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
2317     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2318     RewriterState &state, RewriterState &newState) {
2319   for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
2320     auto *rewrite = dyn_cast<ModifyOperationRewrite>(impl.rewrites[i].get());
2321     if (!rewrite)
2322       continue;
2323     Operation *op = rewrite->getOperation();
2324     if (failed(legalize(op, rewriter))) {
2325       LLVM_DEBUG(logFailure(
2326           impl.logger, "failed to legalize operation updated in-place '{0}'",
2327           op->getName()));
2328       return failure();
2329     }
2330   }
2331   return success();
2332 }
2333 
2334 //===----------------------------------------------------------------------===//
2335 // Cost Model
2336 
2337 void OperationLegalizer::buildLegalizationGraph(
2338     LegalizationPatterns &anyOpLegalizerPatterns,
2339     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2340   // A mapping between an operation and a set of operations that can be used to
2341   // generate it.
2342   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
2343   // A mapping between an operation and any currently invalid patterns it has.
2344   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
2345   // A worklist of patterns to consider for legality.
2346   SetVector<const Pattern *> patternWorklist;
2347 
2348   // Build the mapping from operations to the parent ops that may generate them.
2349   applicator.walkAllPatterns([&](const Pattern &pattern) {
2350     std::optional<OperationName> root = pattern.getRootKind();
2351 
2352     // If the pattern has no specific root, we can't analyze the relationship
2353     // between the root op and generated operations. Given that, add all such
2354     // patterns to the legalization set.
2355     if (!root) {
2356       anyOpLegalizerPatterns.push_back(&pattern);
2357       return;
2358     }
2359 
2360     // Skip operations that are always known to be legal.
2361     if (target.getOpAction(*root) == LegalizationAction::Legal)
2362       return;
2363 
2364     // Add this pattern to the invalid set for the root op and record this root
2365     // as a parent for any generated operations.
2366     invalidPatterns[*root].insert(&pattern);
2367     for (auto op : pattern.getGeneratedOps())
2368       parentOps[op].insert(*root);
2369 
2370     // Add this pattern to the worklist.
2371     patternWorklist.insert(&pattern);
2372   });
2373 
2374   // If there are any patterns that don't have a specific root kind, we can't
2375   // make direct assumptions about what operations will never be legalized.
2376   // Note: Technically we could, but it would require an analysis that may
2377   // recurse into itself. It would be better to perform this kind of filtering
2378   // at a higher level than here anyways.
2379   if (!anyOpLegalizerPatterns.empty()) {
2380     for (const Pattern *pattern : patternWorklist)
2381       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2382     return;
2383   }
2384 
2385   while (!patternWorklist.empty()) {
2386     auto *pattern = patternWorklist.pop_back_val();
2387 
2388     // Check to see if any of the generated operations are invalid.
2389     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2390           std::optional<LegalizationAction> action = target.getOpAction(op);
2391           return !legalizerPatterns.count(op) &&
2392                  (!action || action == LegalizationAction::Illegal);
2393         }))
2394       continue;
2395 
2396     // Otherwise, if all of the generated operation are valid, this op is now
2397     // legal so add all of the child patterns to the worklist.
2398     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2399     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2400 
2401     // Add any invalid patterns of the parent operations to see if they have now
2402     // become legal.
2403     for (auto op : parentOps[*pattern->getRootKind()])
2404       patternWorklist.set_union(invalidPatterns[op]);
2405   }
2406 }
2407 
2408 void OperationLegalizer::computeLegalizationGraphBenefit(
2409     LegalizationPatterns &anyOpLegalizerPatterns,
2410     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2411   // The smallest pattern depth, when legalizing an operation.
2412   DenseMap<OperationName, unsigned> minOpPatternDepth;
2413 
2414   // For each operation that is transitively legal, compute a cost for it.
2415   for (auto &opIt : legalizerPatterns)
2416     if (!minOpPatternDepth.count(opIt.first))
2417       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2418                                  legalizerPatterns);
2419 
2420   // Apply the cost model to the patterns that can match any operation. Those
2421   // with a specific operation type are already resolved when computing the op
2422   // legalization depth.
2423   if (!anyOpLegalizerPatterns.empty())
2424     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2425                              legalizerPatterns);
2426 
2427   // Apply a cost model to the pattern applicator. We order patterns first by
2428   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2429   // decreasing benefit.
2430   applicator.applyCostModel([&](const Pattern &pattern) {
2431     ArrayRef<const Pattern *> orderedPatternList;
2432     if (std::optional<OperationName> rootName = pattern.getRootKind())
2433       orderedPatternList = legalizerPatterns[*rootName];
2434     else
2435       orderedPatternList = anyOpLegalizerPatterns;
2436 
2437     // If the pattern is not found, then it was removed and cannot be matched.
2438     auto *it = llvm::find(orderedPatternList, &pattern);
2439     if (it == orderedPatternList.end())
2440       return PatternBenefit::impossibleToMatch();
2441 
2442     // Patterns found earlier in the list have higher benefit.
2443     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2444   });
2445 }
2446 
2447 unsigned OperationLegalizer::computeOpLegalizationDepth(
2448     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2449     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2450   // Check for existing depth.
2451   auto depthIt = minOpPatternDepth.find(op);
2452   if (depthIt != minOpPatternDepth.end())
2453     return depthIt->second;
2454 
2455   // If a mapping for this operation does not exist, then this operation
2456   // is always legal. Return 0 as the depth for a directly legal operation.
2457   auto opPatternsIt = legalizerPatterns.find(op);
2458   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2459     return 0u;
2460 
2461   // Record this initial depth in case we encounter this op again when
2462   // recursively computing the depth.
2463   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2464 
2465   // Apply the cost model to the operation patterns, and update the minimum
2466   // depth.
2467   unsigned minDepth = applyCostModelToPatterns(
2468       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2469   minOpPatternDepth[op] = minDepth;
2470   return minDepth;
2471 }
2472 
2473 unsigned OperationLegalizer::applyCostModelToPatterns(
2474     LegalizationPatterns &patterns,
2475     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2476     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2477   unsigned minDepth = std::numeric_limits<unsigned>::max();
2478 
2479   // Compute the depth for each pattern within the set.
2480   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2481   patternsByDepth.reserve(patterns.size());
2482   for (const Pattern *pattern : patterns) {
2483     unsigned depth = 1;
2484     for (auto generatedOp : pattern->getGeneratedOps()) {
2485       unsigned generatedOpDepth = computeOpLegalizationDepth(
2486           generatedOp, minOpPatternDepth, legalizerPatterns);
2487       depth = std::max(depth, generatedOpDepth + 1);
2488     }
2489     patternsByDepth.emplace_back(pattern, depth);
2490 
2491     // Update the minimum depth of the pattern list.
2492     minDepth = std::min(minDepth, depth);
2493   }
2494 
2495   // If the operation only has one legalization pattern, there is no need to
2496   // sort them.
2497   if (patternsByDepth.size() == 1)
2498     return minDepth;
2499 
2500   // Sort the patterns by those likely to be the most beneficial.
2501   std::stable_sort(patternsByDepth.begin(), patternsByDepth.end(),
2502                    [](const std::pair<const Pattern *, unsigned> &lhs,
2503                       const std::pair<const Pattern *, unsigned> &rhs) {
2504                      // First sort by the smaller pattern legalization
2505                      // depth.
2506                      if (lhs.second != rhs.second)
2507                        return lhs.second < rhs.second;
2508 
2509                      // Then sort by the larger pattern benefit.
2510                      auto lhsBenefit = lhs.first->getBenefit();
2511                      auto rhsBenefit = rhs.first->getBenefit();
2512                      return lhsBenefit > rhsBenefit;
2513                    });
2514 
2515   // Update the legalization pattern to use the new sorted list.
2516   patterns.clear();
2517   for (auto &patternIt : patternsByDepth)
2518     patterns.push_back(patternIt.first);
2519   return minDepth;
2520 }
2521 
2522 //===----------------------------------------------------------------------===//
2523 // OperationConverter
2524 //===----------------------------------------------------------------------===//
2525 namespace {
2526 enum OpConversionMode {
2527   /// In this mode, the conversion will ignore failed conversions to allow
2528   /// illegal operations to co-exist in the IR.
2529   Partial,
2530 
2531   /// In this mode, all operations must be legal for the given target for the
2532   /// conversion to succeed.
2533   Full,
2534 
2535   /// In this mode, operations are analyzed for legality. No actual rewrites are
2536   /// applied to the operations on success.
2537   Analysis,
2538 };
2539 } // namespace
2540 
2541 namespace mlir {
2542 // This class converts operations to a given conversion target via a set of
2543 // rewrite patterns. The conversion behaves differently depending on the
2544 // conversion mode.
2545 struct OperationConverter {
2546   explicit OperationConverter(const ConversionTarget &target,
2547                               const FrozenRewritePatternSet &patterns,
2548                               const ConversionConfig &config,
2549                               OpConversionMode mode)
2550       : config(config), opLegalizer(target, patterns, this->config),
2551         mode(mode) {}
2552 
2553   /// Converts the given operations to the conversion target.
2554   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2555 
2556 private:
2557   /// Converts an operation with the given rewriter.
2558   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2559 
2560   /// Dialect conversion configuration.
2561   ConversionConfig config;
2562 
2563   /// The legalizer to use when converting operations.
2564   OperationLegalizer opLegalizer;
2565 
2566   /// The conversion mode to use when legalizing operations.
2567   OpConversionMode mode;
2568 };
2569 } // namespace mlir
2570 
2571 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2572                                           Operation *op) {
2573   // Legalize the given operation.
2574   if (failed(opLegalizer.legalize(op, rewriter))) {
2575     // Handle the case of a failed conversion for each of the different modes.
2576     // Full conversions expect all operations to be converted.
2577     if (mode == OpConversionMode::Full)
2578       return op->emitError()
2579              << "failed to legalize operation '" << op->getName() << "'";
2580     // Partial conversions allow conversions to fail iff the operation was not
2581     // explicitly marked as illegal. If the user provided a `unlegalizedOps`
2582     // set, non-legalizable ops are added to that set.
2583     if (mode == OpConversionMode::Partial) {
2584       if (opLegalizer.isIllegal(op))
2585         return op->emitError()
2586                << "failed to legalize operation '" << op->getName()
2587                << "' that was explicitly marked illegal";
2588       if (config.unlegalizedOps)
2589         config.unlegalizedOps->insert(op);
2590     }
2591   } else if (mode == OpConversionMode::Analysis) {
2592     // Analysis conversions don't fail if any operations fail to legalize,
2593     // they are only interested in the operations that were successfully
2594     // legalized.
2595     if (config.legalizableOps)
2596       config.legalizableOps->insert(op);
2597   }
2598   return success();
2599 }
2600 
2601 static LogicalResult
2602 legalizeUnresolvedMaterialization(RewriterBase &rewriter,
2603                                   UnresolvedMaterializationRewrite *rewrite) {
2604   UnrealizedConversionCastOp op = rewrite->getOperation();
2605   assert(!op.use_empty() &&
2606          "expected that dead materializations have already been DCE'd");
2607   Operation::operand_range inputOperands = op.getOperands();
2608 
2609   // Try to materialize the conversion.
2610   if (const TypeConverter *converter = rewrite->getConverter()) {
2611     rewriter.setInsertionPoint(op);
2612     SmallVector<Value> newMaterialization;
2613     switch (rewrite->getMaterializationKind()) {
2614     case MaterializationKind::Target:
2615       newMaterialization = converter->materializeTargetConversion(
2616           rewriter, op->getLoc(), op.getResultTypes(), inputOperands,
2617           rewrite->getOriginalType());
2618       break;
2619     case MaterializationKind::Source:
2620       assert(op->getNumResults() == 1 && "expected single result");
2621       Value sourceMat = converter->materializeSourceConversion(
2622           rewriter, op->getLoc(), op.getResultTypes().front(), inputOperands);
2623       if (sourceMat)
2624         newMaterialization.push_back(sourceMat);
2625       break;
2626     }
2627     if (!newMaterialization.empty()) {
2628 #ifndef NDEBUG
2629       ValueRange newMaterializationRange(newMaterialization);
2630       assert(TypeRange(newMaterializationRange) == op.getResultTypes() &&
2631              "materialization callback produced value of incorrect type");
2632 #endif // NDEBUG
2633       rewriter.replaceOp(op, newMaterialization);
2634       return success();
2635     }
2636   }
2637 
2638   InFlightDiagnostic diag = op->emitError()
2639                             << "failed to legalize unresolved materialization "
2640                                "from ("
2641                             << inputOperands.getTypes() << ") to ("
2642                             << op.getResultTypes()
2643                             << ") that remained live after conversion";
2644   diag.attachNote(op->getUsers().begin()->getLoc())
2645       << "see existing live user here: " << *op->getUsers().begin();
2646   return failure();
2647 }
2648 
2649 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2650   if (ops.empty())
2651     return success();
2652   const ConversionTarget &target = opLegalizer.getTarget();
2653 
2654   // Compute the set of operations and blocks to convert.
2655   SmallVector<Operation *> toConvert;
2656   for (auto *op : ops) {
2657     op->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>(
2658         [&](Operation *op) {
2659           toConvert.push_back(op);
2660           // Don't check this operation's children for conversion if the
2661           // operation is recursively legal.
2662           auto legalityInfo = target.isLegal(op);
2663           if (legalityInfo && legalityInfo->isRecursivelyLegal)
2664             return WalkResult::skip();
2665           return WalkResult::advance();
2666         });
2667   }
2668 
2669   // Convert each operation and discard rewrites on failure.
2670   ConversionPatternRewriter rewriter(ops.front()->getContext(), config);
2671   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2672 
2673   for (auto *op : toConvert)
2674     if (failed(convert(rewriter, op)))
2675       return rewriterImpl.undoRewrites(), failure();
2676 
2677   // After a successful conversion, apply rewrites.
2678   rewriterImpl.applyRewrites();
2679 
2680   // Gather all unresolved materializations.
2681   SmallVector<UnrealizedConversionCastOp> allCastOps;
2682   const DenseMap<UnrealizedConversionCastOp, UnresolvedMaterializationRewrite *>
2683       &materializations = rewriterImpl.unresolvedMaterializations;
2684   for (auto it : materializations) {
2685     if (rewriterImpl.eraseRewriter.wasErased(it.first))
2686       continue;
2687     allCastOps.push_back(it.first);
2688   }
2689 
2690   // Reconcile all UnrealizedConversionCastOps that were inserted by the
2691   // dialect conversion frameworks. (Not the one that were inserted by
2692   // patterns.)
2693   SmallVector<UnrealizedConversionCastOp> remainingCastOps;
2694   reconcileUnrealizedCasts(allCastOps, &remainingCastOps);
2695 
2696   // Try to legalize all unresolved materializations.
2697   if (config.buildMaterializations) {
2698     IRRewriter rewriter(rewriterImpl.context, config.listener);
2699     for (UnrealizedConversionCastOp castOp : remainingCastOps) {
2700       auto it = materializations.find(castOp);
2701       assert(it != materializations.end() && "inconsistent state");
2702       if (failed(legalizeUnresolvedMaterialization(rewriter, it->second)))
2703         return failure();
2704     }
2705   }
2706 
2707   return success();
2708 }
2709 
2710 //===----------------------------------------------------------------------===//
2711 // Reconcile Unrealized Casts
2712 //===----------------------------------------------------------------------===//
2713 
2714 void mlir::reconcileUnrealizedCasts(
2715     ArrayRef<UnrealizedConversionCastOp> castOps,
2716     SmallVectorImpl<UnrealizedConversionCastOp> *remainingCastOps) {
2717   SetVector<UnrealizedConversionCastOp> worklist(castOps.begin(),
2718                                                  castOps.end());
2719   // This set is maintained only if `remainingCastOps` is provided.
2720   DenseSet<Operation *> erasedOps;
2721 
2722   // Helper function that adds all operands to the worklist that are an
2723   // unrealized_conversion_cast op result.
2724   auto enqueueOperands = [&](UnrealizedConversionCastOp castOp) {
2725     for (Value v : castOp.getInputs())
2726       if (auto inputCastOp = v.getDefiningOp<UnrealizedConversionCastOp>())
2727         worklist.insert(inputCastOp);
2728   };
2729 
2730   // Helper function that return the unrealized_conversion_cast op that
2731   // defines all inputs of the given op (in the same order). Return "nullptr"
2732   // if there is no such op.
2733   auto getInputCast =
2734       [](UnrealizedConversionCastOp castOp) -> UnrealizedConversionCastOp {
2735     if (castOp.getInputs().empty())
2736       return {};
2737     auto inputCastOp =
2738         castOp.getInputs().front().getDefiningOp<UnrealizedConversionCastOp>();
2739     if (!inputCastOp)
2740       return {};
2741     if (inputCastOp.getOutputs() != castOp.getInputs())
2742       return {};
2743     return inputCastOp;
2744   };
2745 
2746   // Process ops in the worklist bottom-to-top.
2747   while (!worklist.empty()) {
2748     UnrealizedConversionCastOp castOp = worklist.pop_back_val();
2749     if (castOp->use_empty()) {
2750       // DCE: If the op has no users, erase it. Add the operands to the
2751       // worklist to find additional DCE opportunities.
2752       enqueueOperands(castOp);
2753       if (remainingCastOps)
2754         erasedOps.insert(castOp.getOperation());
2755       castOp->erase();
2756       continue;
2757     }
2758 
2759     // Traverse the chain of input cast ops to see if an op with the same
2760     // input types can be found.
2761     UnrealizedConversionCastOp nextCast = castOp;
2762     while (nextCast) {
2763       if (nextCast.getInputs().getTypes() == castOp.getResultTypes()) {
2764         // Found a cast where the input types match the output types of the
2765         // matched op. We can directly use those inputs and the matched op can
2766         // be removed.
2767         enqueueOperands(castOp);
2768         castOp.replaceAllUsesWith(nextCast.getInputs());
2769         if (remainingCastOps)
2770           erasedOps.insert(castOp.getOperation());
2771         castOp->erase();
2772         break;
2773       }
2774       nextCast = getInputCast(nextCast);
2775     }
2776   }
2777 
2778   if (remainingCastOps)
2779     for (UnrealizedConversionCastOp op : castOps)
2780       if (!erasedOps.contains(op.getOperation()))
2781         remainingCastOps->push_back(op);
2782 }
2783 
2784 //===----------------------------------------------------------------------===//
2785 // Type Conversion
2786 //===----------------------------------------------------------------------===//
2787 
2788 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2789                                                    ArrayRef<Type> types) {
2790   assert(!types.empty() && "expected valid types");
2791   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2792   addInputs(types);
2793 }
2794 
2795 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2796   assert(!types.empty() &&
2797          "1->0 type remappings don't need to be added explicitly");
2798   argTypes.append(types.begin(), types.end());
2799 }
2800 
2801 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2802                                                     unsigned newInputNo,
2803                                                     unsigned newInputCount) {
2804   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2805   assert(newInputCount != 0 && "expected valid input count");
2806   remappedInputs[origInputNo] =
2807       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2808 }
2809 
2810 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2811                                                     Value replacementValue) {
2812   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2813   remappedInputs[origInputNo] =
2814       InputMapping{origInputNo, /*size=*/0, replacementValue};
2815 }
2816 
2817 LogicalResult TypeConverter::convertType(Type t,
2818                                          SmallVectorImpl<Type> &results) const {
2819   assert(t && "expected non-null type");
2820 
2821   {
2822     std::shared_lock<decltype(cacheMutex)> cacheReadLock(cacheMutex,
2823                                                          std::defer_lock);
2824     if (t.getContext()->isMultithreadingEnabled())
2825       cacheReadLock.lock();
2826     auto existingIt = cachedDirectConversions.find(t);
2827     if (existingIt != cachedDirectConversions.end()) {
2828       if (existingIt->second)
2829         results.push_back(existingIt->second);
2830       return success(existingIt->second != nullptr);
2831     }
2832     auto multiIt = cachedMultiConversions.find(t);
2833     if (multiIt != cachedMultiConversions.end()) {
2834       results.append(multiIt->second.begin(), multiIt->second.end());
2835       return success();
2836     }
2837   }
2838   // Walk the added converters in reverse order to apply the most recently
2839   // registered first.
2840   size_t currentCount = results.size();
2841 
2842   std::unique_lock<decltype(cacheMutex)> cacheWriteLock(cacheMutex,
2843                                                         std::defer_lock);
2844 
2845   for (const ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2846     if (std::optional<LogicalResult> result = converter(t, results)) {
2847       if (t.getContext()->isMultithreadingEnabled())
2848         cacheWriteLock.lock();
2849       if (!succeeded(*result)) {
2850         cachedDirectConversions.try_emplace(t, nullptr);
2851         return failure();
2852       }
2853       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2854       if (newTypes.size() == 1)
2855         cachedDirectConversions.try_emplace(t, newTypes.front());
2856       else
2857         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2858       return success();
2859     }
2860   }
2861   return failure();
2862 }
2863 
2864 Type TypeConverter::convertType(Type t) const {
2865   // Use the multi-type result version to convert the type.
2866   SmallVector<Type, 1> results;
2867   if (failed(convertType(t, results)))
2868     return nullptr;
2869 
2870   // Check to ensure that only one type was produced.
2871   return results.size() == 1 ? results.front() : nullptr;
2872 }
2873 
2874 LogicalResult
2875 TypeConverter::convertTypes(TypeRange types,
2876                             SmallVectorImpl<Type> &results) const {
2877   for (Type type : types)
2878     if (failed(convertType(type, results)))
2879       return failure();
2880   return success();
2881 }
2882 
2883 bool TypeConverter::isLegal(Type type) const {
2884   return convertType(type) == type;
2885 }
2886 bool TypeConverter::isLegal(Operation *op) const {
2887   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2888 }
2889 
2890 bool TypeConverter::isLegal(Region *region) const {
2891   return llvm::all_of(*region, [this](Block &block) {
2892     return isLegal(block.getArgumentTypes());
2893   });
2894 }
2895 
2896 bool TypeConverter::isSignatureLegal(FunctionType ty) const {
2897   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2898 }
2899 
2900 LogicalResult
2901 TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
2902                                    SignatureConversion &result) const {
2903   // Try to convert the given input type.
2904   SmallVector<Type, 1> convertedTypes;
2905   if (failed(convertType(type, convertedTypes)))
2906     return failure();
2907 
2908   // If this argument is being dropped, there is nothing left to do.
2909   if (convertedTypes.empty())
2910     return success();
2911 
2912   // Otherwise, add the new inputs.
2913   result.addInputs(inputNo, convertedTypes);
2914   return success();
2915 }
2916 LogicalResult
2917 TypeConverter::convertSignatureArgs(TypeRange types,
2918                                     SignatureConversion &result,
2919                                     unsigned origInputOffset) const {
2920   for (unsigned i = 0, e = types.size(); i != e; ++i)
2921     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
2922       return failure();
2923   return success();
2924 }
2925 
2926 Value TypeConverter::materializeArgumentConversion(OpBuilder &builder,
2927                                                    Location loc,
2928                                                    Type resultType,
2929                                                    ValueRange inputs) const {
2930   for (const MaterializationCallbackFn &fn :
2931        llvm::reverse(argumentMaterializations))
2932     if (Value result = fn(builder, resultType, inputs, loc))
2933       return result;
2934   return nullptr;
2935 }
2936 
2937 Value TypeConverter::materializeSourceConversion(OpBuilder &builder,
2938                                                  Location loc, Type resultType,
2939                                                  ValueRange inputs) const {
2940   for (const MaterializationCallbackFn &fn :
2941        llvm::reverse(sourceMaterializations))
2942     if (Value result = fn(builder, resultType, inputs, loc))
2943       return result;
2944   return nullptr;
2945 }
2946 
2947 Value TypeConverter::materializeTargetConversion(OpBuilder &builder,
2948                                                  Location loc, Type resultType,
2949                                                  ValueRange inputs,
2950                                                  Type originalType) const {
2951   SmallVector<Value> result = materializeTargetConversion(
2952       builder, loc, TypeRange(resultType), inputs, originalType);
2953   if (result.empty())
2954     return nullptr;
2955   assert(result.size() == 1 && "expected single result");
2956   return result.front();
2957 }
2958 
2959 SmallVector<Value> TypeConverter::materializeTargetConversion(
2960     OpBuilder &builder, Location loc, TypeRange resultTypes, ValueRange inputs,
2961     Type originalType) const {
2962   for (const TargetMaterializationCallbackFn &fn :
2963        llvm::reverse(targetMaterializations)) {
2964     SmallVector<Value> result =
2965         fn(builder, resultTypes, inputs, loc, originalType);
2966     if (result.empty())
2967       continue;
2968     assert(TypeRange(ValueRange(result)) == resultTypes &&
2969            "callback produced incorrect number of values or values with "
2970            "incorrect types");
2971     return result;
2972   }
2973   return {};
2974 }
2975 
2976 std::optional<TypeConverter::SignatureConversion>
2977 TypeConverter::convertBlockSignature(Block *block) const {
2978   SignatureConversion conversion(block->getNumArguments());
2979   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
2980     return std::nullopt;
2981   return conversion;
2982 }
2983 
2984 //===----------------------------------------------------------------------===//
2985 // Type attribute conversion
2986 //===----------------------------------------------------------------------===//
2987 TypeConverter::AttributeConversionResult
2988 TypeConverter::AttributeConversionResult::result(Attribute attr) {
2989   return AttributeConversionResult(attr, resultTag);
2990 }
2991 
2992 TypeConverter::AttributeConversionResult
2993 TypeConverter::AttributeConversionResult::na() {
2994   return AttributeConversionResult(nullptr, naTag);
2995 }
2996 
2997 TypeConverter::AttributeConversionResult
2998 TypeConverter::AttributeConversionResult::abort() {
2999   return AttributeConversionResult(nullptr, abortTag);
3000 }
3001 
3002 bool TypeConverter::AttributeConversionResult::hasResult() const {
3003   return impl.getInt() == resultTag;
3004 }
3005 
3006 bool TypeConverter::AttributeConversionResult::isNa() const {
3007   return impl.getInt() == naTag;
3008 }
3009 
3010 bool TypeConverter::AttributeConversionResult::isAbort() const {
3011   return impl.getInt() == abortTag;
3012 }
3013 
3014 Attribute TypeConverter::AttributeConversionResult::getResult() const {
3015   assert(hasResult() && "Cannot get result from N/A or abort");
3016   return impl.getPointer();
3017 }
3018 
3019 std::optional<Attribute>
3020 TypeConverter::convertTypeAttribute(Type type, Attribute attr) const {
3021   for (const TypeAttributeConversionCallbackFn &fn :
3022        llvm::reverse(typeAttributeConversions)) {
3023     AttributeConversionResult res = fn(type, attr);
3024     if (res.hasResult())
3025       return res.getResult();
3026     if (res.isAbort())
3027       return std::nullopt;
3028   }
3029   return std::nullopt;
3030 }
3031 
3032 //===----------------------------------------------------------------------===//
3033 // FunctionOpInterfaceSignatureConversion
3034 //===----------------------------------------------------------------------===//
3035 
3036 static LogicalResult convertFuncOpTypes(FunctionOpInterface funcOp,
3037                                         const TypeConverter &typeConverter,
3038                                         ConversionPatternRewriter &rewriter) {
3039   FunctionType type = dyn_cast<FunctionType>(funcOp.getFunctionType());
3040   if (!type)
3041     return failure();
3042 
3043   // Convert the original function types.
3044   TypeConverter::SignatureConversion result(type.getNumInputs());
3045   SmallVector<Type, 1> newResults;
3046   if (failed(typeConverter.convertSignatureArgs(type.getInputs(), result)) ||
3047       failed(typeConverter.convertTypes(type.getResults(), newResults)) ||
3048       failed(rewriter.convertRegionTypes(&funcOp.getFunctionBody(),
3049                                          typeConverter, &result)))
3050     return failure();
3051 
3052   // Update the function signature in-place.
3053   auto newType = FunctionType::get(rewriter.getContext(),
3054                                    result.getConvertedTypes(), newResults);
3055 
3056   rewriter.modifyOpInPlace(funcOp, [&] { funcOp.setType(newType); });
3057 
3058   return success();
3059 }
3060 
3061 /// Create a default conversion pattern that rewrites the type signature of a
3062 /// FunctionOpInterface op. This only supports ops which use FunctionType to
3063 /// represent their type.
3064 namespace {
3065 struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
3066   FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
3067                                          MLIRContext *ctx,
3068                                          const TypeConverter &converter)
3069       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
3070 
3071   LogicalResult
3072   matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
3073                   ConversionPatternRewriter &rewriter) const override {
3074     FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
3075     return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
3076   }
3077 };
3078 
3079 struct AnyFunctionOpInterfaceSignatureConversion
3080     : public OpInterfaceConversionPattern<FunctionOpInterface> {
3081   using OpInterfaceConversionPattern::OpInterfaceConversionPattern;
3082 
3083   LogicalResult
3084   matchAndRewrite(FunctionOpInterface funcOp, ArrayRef<Value> /*operands*/,
3085                   ConversionPatternRewriter &rewriter) const override {
3086     return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
3087   }
3088 };
3089 } // namespace
3090 
3091 FailureOr<Operation *>
3092 mlir::convertOpResultTypes(Operation *op, ValueRange operands,
3093                            const TypeConverter &converter,
3094                            ConversionPatternRewriter &rewriter) {
3095   assert(op && "Invalid op");
3096   Location loc = op->getLoc();
3097   if (converter.isLegal(op))
3098     return rewriter.notifyMatchFailure(loc, "op already legal");
3099 
3100   OperationState newOp(loc, op->getName());
3101   newOp.addOperands(operands);
3102 
3103   SmallVector<Type> newResultTypes;
3104   if (failed(converter.convertTypes(op->getResultTypes(), newResultTypes)))
3105     return rewriter.notifyMatchFailure(loc, "couldn't convert return types");
3106 
3107   newOp.addTypes(newResultTypes);
3108   newOp.addAttributes(op->getAttrs());
3109   return rewriter.create(newOp);
3110 }
3111 
3112 void mlir::populateFunctionOpInterfaceTypeConversionPattern(
3113     StringRef functionLikeOpName, RewritePatternSet &patterns,
3114     const TypeConverter &converter) {
3115   patterns.add<FunctionOpInterfaceSignatureConversion>(
3116       functionLikeOpName, patterns.getContext(), converter);
3117 }
3118 
3119 void mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(
3120     RewritePatternSet &patterns, const TypeConverter &converter) {
3121   patterns.add<AnyFunctionOpInterfaceSignatureConversion>(
3122       converter, patterns.getContext());
3123 }
3124 
3125 //===----------------------------------------------------------------------===//
3126 // ConversionTarget
3127 //===----------------------------------------------------------------------===//
3128 
3129 void ConversionTarget::setOpAction(OperationName op,
3130                                    LegalizationAction action) {
3131   legalOperations[op].action = action;
3132 }
3133 
3134 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
3135                                         LegalizationAction action) {
3136   for (StringRef dialect : dialectNames)
3137     legalDialects[dialect] = action;
3138 }
3139 
3140 auto ConversionTarget::getOpAction(OperationName op) const
3141     -> std::optional<LegalizationAction> {
3142   std::optional<LegalizationInfo> info = getOpInfo(op);
3143   return info ? info->action : std::optional<LegalizationAction>();
3144 }
3145 
3146 auto ConversionTarget::isLegal(Operation *op) const
3147     -> std::optional<LegalOpDetails> {
3148   std::optional<LegalizationInfo> info = getOpInfo(op->getName());
3149   if (!info)
3150     return std::nullopt;
3151 
3152   // Returns true if this operation instance is known to be legal.
3153   auto isOpLegal = [&] {
3154     // Handle dynamic legality either with the provided legality function.
3155     if (info->action == LegalizationAction::Dynamic) {
3156       std::optional<bool> result = info->legalityFn(op);
3157       if (result)
3158         return *result;
3159     }
3160 
3161     // Otherwise, the operation is only legal if it was marked 'Legal'.
3162     return info->action == LegalizationAction::Legal;
3163   };
3164   if (!isOpLegal())
3165     return std::nullopt;
3166 
3167   // This operation is legal, compute any additional legality information.
3168   LegalOpDetails legalityDetails;
3169   if (info->isRecursivelyLegal) {
3170     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
3171     if (legalityFnIt != opRecursiveLegalityFns.end()) {
3172       legalityDetails.isRecursivelyLegal =
3173           legalityFnIt->second(op).value_or(true);
3174     } else {
3175       legalityDetails.isRecursivelyLegal = true;
3176     }
3177   }
3178   return legalityDetails;
3179 }
3180 
3181 bool ConversionTarget::isIllegal(Operation *op) const {
3182   std::optional<LegalizationInfo> info = getOpInfo(op->getName());
3183   if (!info)
3184     return false;
3185 
3186   if (info->action == LegalizationAction::Dynamic) {
3187     std::optional<bool> result = info->legalityFn(op);
3188     if (!result)
3189       return false;
3190 
3191     return !(*result);
3192   }
3193 
3194   return info->action == LegalizationAction::Illegal;
3195 }
3196 
3197 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
3198     ConversionTarget::DynamicLegalityCallbackFn oldCallback,
3199     ConversionTarget::DynamicLegalityCallbackFn newCallback) {
3200   if (!oldCallback)
3201     return newCallback;
3202 
3203   auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
3204                    Operation *op) -> std::optional<bool> {
3205     if (std::optional<bool> result = newCl(op))
3206       return *result;
3207 
3208     return oldCl(op);
3209   };
3210   return chain;
3211 }
3212 
3213 void ConversionTarget::setLegalityCallback(
3214     OperationName name, const DynamicLegalityCallbackFn &callback) {
3215   assert(callback && "expected valid legality callback");
3216   auto *infoIt = legalOperations.find(name);
3217   assert(infoIt != legalOperations.end() &&
3218          infoIt->second.action == LegalizationAction::Dynamic &&
3219          "expected operation to already be marked as dynamically legal");
3220   infoIt->second.legalityFn =
3221       composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
3222 }
3223 
3224 void ConversionTarget::markOpRecursivelyLegal(
3225     OperationName name, const DynamicLegalityCallbackFn &callback) {
3226   auto *infoIt = legalOperations.find(name);
3227   assert(infoIt != legalOperations.end() &&
3228          infoIt->second.action != LegalizationAction::Illegal &&
3229          "expected operation to already be marked as legal");
3230   infoIt->second.isRecursivelyLegal = true;
3231   if (callback)
3232     opRecursiveLegalityFns[name] = composeLegalityCallbacks(
3233         std::move(opRecursiveLegalityFns[name]), callback);
3234   else
3235     opRecursiveLegalityFns.erase(name);
3236 }
3237 
3238 void ConversionTarget::setLegalityCallback(
3239     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
3240   assert(callback && "expected valid legality callback");
3241   for (StringRef dialect : dialects)
3242     dialectLegalityFns[dialect] = composeLegalityCallbacks(
3243         std::move(dialectLegalityFns[dialect]), callback);
3244 }
3245 
3246 void ConversionTarget::setLegalityCallback(
3247     const DynamicLegalityCallbackFn &callback) {
3248   assert(callback && "expected valid legality callback");
3249   unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
3250 }
3251 
3252 auto ConversionTarget::getOpInfo(OperationName op) const
3253     -> std::optional<LegalizationInfo> {
3254   // Check for info for this specific operation.
3255   const auto *it = legalOperations.find(op);
3256   if (it != legalOperations.end())
3257     return it->second;
3258   // Check for info for the parent dialect.
3259   auto dialectIt = legalDialects.find(op.getDialectNamespace());
3260   if (dialectIt != legalDialects.end()) {
3261     DynamicLegalityCallbackFn callback;
3262     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
3263     if (dialectFn != dialectLegalityFns.end())
3264       callback = dialectFn->second;
3265     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
3266                             callback};
3267   }
3268   // Otherwise, check if we mark unknown operations as dynamic.
3269   if (unknownLegalityFn)
3270     return LegalizationInfo{LegalizationAction::Dynamic,
3271                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
3272   return std::nullopt;
3273 }
3274 
3275 #if MLIR_ENABLE_PDL_IN_PATTERNMATCH
3276 //===----------------------------------------------------------------------===//
3277 // PDL Configuration
3278 //===----------------------------------------------------------------------===//
3279 
3280 void PDLConversionConfig::notifyRewriteBegin(PatternRewriter &rewriter) {
3281   auto &rewriterImpl =
3282       static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
3283   rewriterImpl.currentTypeConverter = getTypeConverter();
3284 }
3285 
3286 void PDLConversionConfig::notifyRewriteEnd(PatternRewriter &rewriter) {
3287   auto &rewriterImpl =
3288       static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
3289   rewriterImpl.currentTypeConverter = nullptr;
3290 }
3291 
3292 /// Remap the given value using the rewriter and the type converter in the
3293 /// provided config.
3294 static FailureOr<SmallVector<Value>>
3295 pdllConvertValues(ConversionPatternRewriter &rewriter, ValueRange values) {
3296   SmallVector<Value> mappedValues;
3297   if (failed(rewriter.getRemappedValues(values, mappedValues)))
3298     return failure();
3299   return std::move(mappedValues);
3300 }
3301 
3302 void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) {
3303   patterns.getPDLPatterns().registerRewriteFunction(
3304       "convertValue",
3305       [](PatternRewriter &rewriter, Value value) -> FailureOr<Value> {
3306         auto results = pdllConvertValues(
3307             static_cast<ConversionPatternRewriter &>(rewriter), value);
3308         if (failed(results))
3309           return failure();
3310         return results->front();
3311       });
3312   patterns.getPDLPatterns().registerRewriteFunction(
3313       "convertValues", [](PatternRewriter &rewriter, ValueRange values) {
3314         return pdllConvertValues(
3315             static_cast<ConversionPatternRewriter &>(rewriter), values);
3316       });
3317   patterns.getPDLPatterns().registerRewriteFunction(
3318       "convertType",
3319       [](PatternRewriter &rewriter, Type type) -> FailureOr<Type> {
3320         auto &rewriterImpl =
3321             static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
3322         if (const TypeConverter *converter =
3323                 rewriterImpl.currentTypeConverter) {
3324           if (Type newType = converter->convertType(type))
3325             return newType;
3326           return failure();
3327         }
3328         return type;
3329       });
3330   patterns.getPDLPatterns().registerRewriteFunction(
3331       "convertTypes",
3332       [](PatternRewriter &rewriter,
3333          TypeRange types) -> FailureOr<SmallVector<Type>> {
3334         auto &rewriterImpl =
3335             static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
3336         const TypeConverter *converter = rewriterImpl.currentTypeConverter;
3337         if (!converter)
3338           return SmallVector<Type>(types);
3339 
3340         SmallVector<Type> remappedTypes;
3341         if (failed(converter->convertTypes(types, remappedTypes)))
3342           return failure();
3343         return std::move(remappedTypes);
3344       });
3345 }
3346 #endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
3347 
3348 //===----------------------------------------------------------------------===//
3349 // Op Conversion Entry Points
3350 //===----------------------------------------------------------------------===//
3351 
3352 //===----------------------------------------------------------------------===//
3353 // Partial Conversion
3354 
3355 LogicalResult mlir::applyPartialConversion(
3356     ArrayRef<Operation *> ops, const ConversionTarget &target,
3357     const FrozenRewritePatternSet &patterns, ConversionConfig config) {
3358   OperationConverter opConverter(target, patterns, config,
3359                                  OpConversionMode::Partial);
3360   return opConverter.convertOperations(ops);
3361 }
3362 LogicalResult
3363 mlir::applyPartialConversion(Operation *op, const ConversionTarget &target,
3364                              const FrozenRewritePatternSet &patterns,
3365                              ConversionConfig config) {
3366   return applyPartialConversion(llvm::ArrayRef(op), target, patterns, config);
3367 }
3368 
3369 //===----------------------------------------------------------------------===//
3370 // Full Conversion
3371 
3372 LogicalResult mlir::applyFullConversion(ArrayRef<Operation *> ops,
3373                                         const ConversionTarget &target,
3374                                         const FrozenRewritePatternSet &patterns,
3375                                         ConversionConfig config) {
3376   OperationConverter opConverter(target, patterns, config,
3377                                  OpConversionMode::Full);
3378   return opConverter.convertOperations(ops);
3379 }
3380 LogicalResult mlir::applyFullConversion(Operation *op,
3381                                         const ConversionTarget &target,
3382                                         const FrozenRewritePatternSet &patterns,
3383                                         ConversionConfig config) {
3384   return applyFullConversion(llvm::ArrayRef(op), target, patterns, config);
3385 }
3386 
3387 //===----------------------------------------------------------------------===//
3388 // Analysis Conversion
3389 
3390 /// Find a common IsolatedFromAbove ancestor of the given ops. If at least one
3391 /// op is a top-level module op (which is expected to be isolated from above),
3392 /// return that op.
3393 static Operation *findCommonAncestor(ArrayRef<Operation *> ops) {
3394   // Check if there is a top-level operation within `ops`. If so, return that
3395   // op.
3396   for (Operation *op : ops) {
3397     if (!op->getParentOp()) {
3398 #ifndef NDEBUG
3399       assert(op->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
3400              "expected top-level op to be isolated from above");
3401       for (Operation *other : ops)
3402         assert(op->isAncestor(other) &&
3403                "expected ops to have a common ancestor");
3404 #endif // NDEBUG
3405       return op;
3406     }
3407   }
3408 
3409   // No top-level op. Find a common ancestor.
3410   Operation *commonAncestor =
3411       ops.front()->getParentWithTrait<OpTrait::IsIsolatedFromAbove>();
3412   for (Operation *op : ops.drop_front()) {
3413     while (!commonAncestor->isProperAncestor(op)) {
3414       commonAncestor =
3415           commonAncestor->getParentWithTrait<OpTrait::IsIsolatedFromAbove>();
3416       assert(commonAncestor &&
3417              "expected to find a common isolated from above ancestor");
3418     }
3419   }
3420 
3421   return commonAncestor;
3422 }
3423 
3424 LogicalResult mlir::applyAnalysisConversion(
3425     ArrayRef<Operation *> ops, ConversionTarget &target,
3426     const FrozenRewritePatternSet &patterns, ConversionConfig config) {
3427 #ifndef NDEBUG
3428   if (config.legalizableOps)
3429     assert(config.legalizableOps->empty() && "expected empty set");
3430 #endif // NDEBUG
3431 
3432   // Clone closted common ancestor that is isolated from above.
3433   Operation *commonAncestor = findCommonAncestor(ops);
3434   IRMapping mapping;
3435   Operation *clonedAncestor = commonAncestor->clone(mapping);
3436   // Compute inverse IR mapping.
3437   DenseMap<Operation *, Operation *> inverseOperationMap;
3438   for (auto &it : mapping.getOperationMap())
3439     inverseOperationMap[it.second] = it.first;
3440 
3441   // Convert the cloned operations. The original IR will remain unchanged.
3442   SmallVector<Operation *> opsToConvert = llvm::map_to_vector(
3443       ops, [&](Operation *op) { return mapping.lookup(op); });
3444   OperationConverter opConverter(target, patterns, config,
3445                                  OpConversionMode::Analysis);
3446   LogicalResult status = opConverter.convertOperations(opsToConvert);
3447 
3448   // Remap `legalizableOps`, so that they point to the original ops and not the
3449   // cloned ops.
3450   if (config.legalizableOps) {
3451     DenseSet<Operation *> originalLegalizableOps;
3452     for (Operation *op : *config.legalizableOps)
3453       originalLegalizableOps.insert(inverseOperationMap[op]);
3454     *config.legalizableOps = std::move(originalLegalizableOps);
3455   }
3456 
3457   // Erase the cloned IR.
3458   clonedAncestor->erase();
3459   return status;
3460 }
3461 
3462 LogicalResult
3463 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
3464                               const FrozenRewritePatternSet &patterns,
3465                               ConversionConfig config) {
3466   return applyAnalysisConversion(llvm::ArrayRef(op), target, patterns, config);
3467 }
3468