xref: /llvm-project/mlir/lib/Dialect/Vector/Transforms/VectorDropLeadUnitDim.cpp (revision aa2952165cd1808dab2bb49b97becc097f4c9cac)
1 //===- VectorDropLeadUnitDim.cpp - Conversion within the Vector dialect ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <numeric>
10 
11 #include "mlir/Dialect/Arith/IR/Arith.h"
12 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
13 #include "mlir/Dialect/Vector/IR/VectorOps.h"
14 #include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
15 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
16 #include "mlir/Dialect/Vector/Utils/VectorUtils.h"
17 #include "mlir/IR/Builders.h"
18 #include "mlir/IR/TypeUtilities.h"
19 
20 #define DEBUG_TYPE "vector-drop-unit-dim"
21 
22 using namespace mlir;
23 using namespace mlir::vector;
24 
25 // Trims leading one dimensions from `oldType` and returns the result type.
26 // Returns `vector<1xT>` if `oldType` only has one element.
27 static VectorType trimLeadingOneDims(VectorType oldType) {
28   ArrayRef<int64_t> oldShape = oldType.getShape();
29   ArrayRef<int64_t> newShape = oldShape;
30 
31   ArrayRef<bool> oldScalableDims = oldType.getScalableDims();
32   ArrayRef<bool> newScalableDims = oldScalableDims;
33 
34   while (!newShape.empty() && newShape.front() == 1 &&
35          !newScalableDims.front()) {
36     newShape = newShape.drop_front(1);
37     newScalableDims = newScalableDims.drop_front(1);
38   }
39 
40   // Make sure we have at least 1 dimension per vector type requirements.
41   if (newShape.empty()) {
42     newShape = oldShape.take_back();
43     newScalableDims = oldType.getScalableDims().take_back();
44   }
45   return VectorType::get(newShape, oldType.getElementType(), newScalableDims);
46 }
47 
48 /// Return a smallVector of size `rank` containing all zeros.
49 static SmallVector<int64_t> splatZero(int64_t rank) {
50   return SmallVector<int64_t>(rank, 0);
51 }
52 namespace {
53 
54 // Casts away leading one dimensions in vector.extract_strided_slice's vector
55 // input by inserting vector.broadcast.
56 struct CastAwayExtractStridedSliceLeadingOneDim
57     : public OpRewritePattern<vector::ExtractStridedSliceOp> {
58   using OpRewritePattern::OpRewritePattern;
59 
60   LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
61                                 PatternRewriter &rewriter) const override {
62     // vector.extract_strided_slice requires the input and output vector to have
63     // the same rank. Here we drop leading one dimensions from the input vector
64     // type to make sure we don't cause mismatch.
65     VectorType oldSrcType = extractOp.getSourceVectorType();
66     VectorType newSrcType = trimLeadingOneDims(oldSrcType);
67 
68     if (newSrcType.getRank() == oldSrcType.getRank())
69       return failure();
70 
71     int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank();
72 
73     VectorType oldDstType = extractOp.getType();
74     VectorType newDstType =
75         VectorType::get(oldDstType.getShape().drop_front(dropCount),
76                         oldDstType.getElementType(),
77                         oldDstType.getScalableDims().drop_front(dropCount));
78 
79     Location loc = extractOp.getLoc();
80 
81     Value newSrcVector = rewriter.create<vector::ExtractOp>(
82         loc, extractOp.getVector(), splatZero(dropCount));
83 
84     // The offsets/sizes/strides attribute can have a less number of elements
85     // than the input vector's rank: it is meant for the leading dimensions.
86     auto newOffsets = rewriter.getArrayAttr(
87         extractOp.getOffsets().getValue().drop_front(dropCount));
88     auto newSizes = rewriter.getArrayAttr(
89         extractOp.getSizes().getValue().drop_front(dropCount));
90     auto newStrides = rewriter.getArrayAttr(
91         extractOp.getStrides().getValue().drop_front(dropCount));
92 
93     auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
94         loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides);
95 
96     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType,
97                                                      newExtractOp);
98 
99     return success();
100   }
101 };
102 
103 // Casts away leading one dimensions in vector.insert_strided_slice's vector
104 // inputs by inserting vector.broadcast.
105 struct CastAwayInsertStridedSliceLeadingOneDim
106     : public OpRewritePattern<vector::InsertStridedSliceOp> {
107   using OpRewritePattern::OpRewritePattern;
108 
109   LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp,
110                                 PatternRewriter &rewriter) const override {
111     VectorType oldSrcType = insertOp.getSourceVectorType();
112     VectorType newSrcType = trimLeadingOneDims(oldSrcType);
113     VectorType oldDstType = insertOp.getDestVectorType();
114     VectorType newDstType = trimLeadingOneDims(oldDstType);
115 
116     int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank();
117     int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
118     if (srcDropCount == 0 && dstDropCount == 0)
119       return failure();
120 
121     // Trim leading one dimensions from both operands.
122     Location loc = insertOp.getLoc();
123 
124     Value newSrcVector = rewriter.create<vector::ExtractOp>(
125         loc, insertOp.getSource(), splatZero(srcDropCount));
126     Value newDstVector = rewriter.create<vector::ExtractOp>(
127         loc, insertOp.getDest(), splatZero(dstDropCount));
128 
129     auto newOffsets = rewriter.getArrayAttr(
130         insertOp.getOffsets().getValue().take_back(newDstType.getRank()));
131     auto newStrides = rewriter.getArrayAttr(
132         insertOp.getStrides().getValue().take_back(newSrcType.getRank()));
133 
134     auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>(
135         loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides);
136 
137     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
138                                                      newInsertOp);
139 
140     return success();
141   }
142 };
143 
144 // Casts away leading one dimensions in vector.insert's vector inputs by
145 // inserting vector.broadcast.
146 struct CastAwayInsertLeadingOneDim : public OpRewritePattern<vector::InsertOp> {
147   using OpRewritePattern::OpRewritePattern;
148 
149   LogicalResult matchAndRewrite(vector::InsertOp insertOp,
150                                 PatternRewriter &rewriter) const override {
151     Type oldSrcType = insertOp.getSourceType();
152     Type newSrcType = oldSrcType;
153     int64_t oldSrcRank = 0, newSrcRank = 0;
154     if (auto type = dyn_cast<VectorType>(oldSrcType)) {
155       newSrcType = trimLeadingOneDims(type);
156       oldSrcRank = type.getRank();
157       newSrcRank = cast<VectorType>(newSrcType).getRank();
158     }
159 
160     VectorType oldDstType = insertOp.getDestVectorType();
161     VectorType newDstType = trimLeadingOneDims(oldDstType);
162 
163     int64_t srcDropCount = oldSrcRank - newSrcRank;
164     int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
165     if (srcDropCount == 0 && dstDropCount == 0)
166       return failure();
167 
168     // Trim leading one dimensions from both operands.
169     Location loc = insertOp.getLoc();
170 
171     Value newSrcVector = insertOp.getSource();
172     if (oldSrcRank != 0) {
173       newSrcVector = rewriter.create<vector::ExtractOp>(
174           loc, insertOp.getSource(), splatZero(srcDropCount));
175     }
176     Value newDstVector = rewriter.create<vector::ExtractOp>(
177         loc, insertOp.getDest(), splatZero(dstDropCount));
178 
179     // New position rank needs to be computed in two steps: (1) if destination
180     // type has leading unit dims, we also trim the position array accordingly,
181     // then (2) if source type also has leading unit dims, we need to append
182     // zeroes to the position array accordingly.
183     unsigned oldPosRank = insertOp.getNumIndices();
184     unsigned newPosRank = std::max<int64_t>(0, oldPosRank - dstDropCount);
185     SmallVector<OpFoldResult> oldPosition = insertOp.getMixedPosition();
186     SmallVector<OpFoldResult> newPosition =
187         llvm::to_vector(ArrayRef(oldPosition).take_back(newPosRank));
188     newPosition.resize(newDstType.getRank() - newSrcRank,
189                        rewriter.getI64IntegerAttr(0));
190 
191     auto newInsertOp = rewriter.create<vector::InsertOp>(
192         loc, newSrcVector, newDstVector, newPosition);
193 
194     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
195                                                      newInsertOp);
196 
197     return success();
198   }
199 };
200 
201 static Value dropUnitDimsFromMask(OpBuilder &b, Location loc, Value mask,
202                                   VectorType newType, AffineMap newMap,
203                                   VectorType oldMaskType) {
204   // Infer the type of the new mask from the new map.
205   VectorType newMaskType = inferTransferOpMaskType(newType, newMap);
206 
207   // If the new mask is broadcastable to the old result type, we can safely
208   // use a `vector.extract` to get the new mask. Otherwise the best we can
209   // do is shape cast.
210   if (vector::isBroadcastableTo(newMaskType, oldMaskType) ==
211       BroadcastableToResult::Success) {
212     int64_t dropDim = oldMaskType.getRank() - newMaskType.getRank();
213     return b.create<vector::ExtractOp>(loc, mask, splatZero(dropDim));
214   }
215   return b.create<vector::ShapeCastOp>(loc, newMaskType, mask);
216 }
217 
218 // Turns vector.transfer_read on vector with leading 1 dimensions into
219 // vector.shape_cast followed by vector.transfer_read on vector without leading
220 // 1 dimensions.
221 struct CastAwayTransferReadLeadingOneDim
222     : public OpRewritePattern<vector::TransferReadOp> {
223   using OpRewritePattern::OpRewritePattern;
224 
225   LogicalResult matchAndRewrite(vector::TransferReadOp read,
226                                 PatternRewriter &rewriter) const override {
227     // TODO(#78787): Not supported masked op yet.
228     if (cast<MaskableOpInterface>(read.getOperation()).isMasked())
229       return failure();
230     // TODO: support 0-d corner case.
231     if (read.getTransferRank() == 0)
232       return failure();
233 
234     auto shapedType = cast<ShapedType>(read.getSource().getType());
235     if (shapedType.getElementType() != read.getVectorType().getElementType())
236       return failure();
237 
238     VectorType oldType = read.getVectorType();
239     VectorType newType = trimLeadingOneDims(oldType);
240 
241     if (newType == oldType)
242       return failure();
243 
244     AffineMap oldMap = read.getPermutationMap();
245     ArrayRef<AffineExpr> newResults =
246         oldMap.getResults().take_back(newType.getRank());
247     AffineMap newMap =
248         AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
249                        rewriter.getContext());
250 
251     ArrayAttr inBoundsAttr;
252     if (read.getInBounds())
253       inBoundsAttr = rewriter.getArrayAttr(
254           read.getInBoundsAttr().getValue().take_back(newType.getRank()));
255 
256     Value mask = Value();
257     if (read.getMask()) {
258       VectorType maskType = read.getMaskType();
259       mask = dropUnitDimsFromMask(rewriter, read.getLoc(), read.getMask(),
260                                   newType, newMap, maskType);
261     }
262 
263     auto newRead = rewriter.create<vector::TransferReadOp>(
264         read.getLoc(), newType, read.getSource(), read.getIndices(),
265         AffineMapAttr::get(newMap), read.getPadding(), mask, inBoundsAttr);
266     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead);
267 
268     return success();
269   }
270 };
271 
272 // Turns vector.transfer_write on vector with leading 1 dimensions into
273 // vector.shape_cast followed by vector.transfer_write on vector without leading
274 // 1 dimensions.
275 struct CastAwayTransferWriteLeadingOneDim
276     : public OpRewritePattern<vector::TransferWriteOp> {
277   using OpRewritePattern::OpRewritePattern;
278 
279   LogicalResult matchAndRewrite(vector::TransferWriteOp write,
280                                 PatternRewriter &rewriter) const override {
281     // TODO(#78787): Not supported masked op yet.
282     if (cast<MaskableOpInterface>(write.getOperation()).isMasked())
283       return failure();
284     // TODO: support 0-d corner case.
285     if (write.getTransferRank() == 0)
286       return failure();
287 
288     auto shapedType = dyn_cast<ShapedType>(write.getSource().getType());
289     if (shapedType.getElementType() != write.getVectorType().getElementType())
290       return failure();
291 
292     VectorType oldType = write.getVectorType();
293     VectorType newType = trimLeadingOneDims(oldType);
294     if (newType == oldType)
295       return failure();
296     int64_t dropDim = oldType.getRank() - newType.getRank();
297 
298     AffineMap oldMap = write.getPermutationMap();
299     ArrayRef<AffineExpr> newResults =
300         oldMap.getResults().take_back(newType.getRank());
301     AffineMap newMap =
302         AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
303                        rewriter.getContext());
304 
305     ArrayAttr inBoundsAttr;
306     if (write.getInBounds())
307       inBoundsAttr = rewriter.getArrayAttr(
308           write.getInBoundsAttr().getValue().take_back(newType.getRank()));
309 
310     auto newVector = rewriter.create<vector::ExtractOp>(
311         write.getLoc(), write.getVector(), splatZero(dropDim));
312 
313     if (write.getMask()) {
314       VectorType maskType = write.getMaskType();
315       Value newMask = dropUnitDimsFromMask(
316           rewriter, write.getLoc(), write.getMask(), newType, newMap, maskType);
317       rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
318           write, newVector, write.getSource(), write.getIndices(),
319           AffineMapAttr::get(newMap), newMask, inBoundsAttr);
320       return success();
321     }
322 
323     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
324         write, newVector, write.getSource(), write.getIndices(),
325         AffineMapAttr::get(newMap), inBoundsAttr);
326     return success();
327   }
328 };
329 
330 } // namespace
331 
332 FailureOr<Value>
333 mlir::vector::castAwayContractionLeadingOneDim(vector::ContractionOp contractOp,
334                                                MaskingOpInterface maskingOp,
335                                                RewriterBase &rewriter) {
336   VectorType oldAccType = dyn_cast<VectorType>(contractOp.getAccType());
337   if (oldAccType == nullptr)
338     return failure();
339   if (oldAccType.getRank() < 2)
340     return failure();
341   if (oldAccType.getShape()[0] != 1)
342     return failure();
343   // currently we support only dropping one dim but the pattern can be applied
344   // greedily to drop more.
345   int64_t dropDim = 1;
346 
347   auto oldIndexingMaps = contractOp.getIndexingMapsArray();
348   SmallVector<AffineMap> newIndexingMaps;
349 
350   auto oldIteratorTypes = contractOp.getIteratorTypes();
351   SmallVector<Attribute> newIteratorTypes;
352 
353   int64_t dimToDrop = oldIndexingMaps[2].getDimPosition(0);
354 
355   if (!isParallelIterator(oldIteratorTypes[dimToDrop]))
356     // only parallel type iterators can be dropped.
357     return failure();
358 
359   for (const auto &it : llvm::enumerate(oldIteratorTypes)) {
360     int64_t currDim = it.index();
361     if (currDim == dimToDrop)
362       continue;
363     newIteratorTypes.push_back(it.value());
364   }
365 
366   SmallVector<Value> operands = {contractOp.getLhs(), contractOp.getRhs(),
367                                  contractOp.getAcc()};
368   SmallVector<Value> newOperands;
369   auto loc = contractOp.getLoc();
370 
371   for (const auto &it : llvm::enumerate(oldIndexingMaps)) {
372     // Check if the dim to be dropped exists as a leading dim in the operand
373     // if it does then we use vector.extract to drop it.
374     bool validExtract = false;
375     SmallVector<AffineExpr> results;
376     auto map = it.value();
377     int64_t orginalZeroDim = it.value().getDimPosition(0);
378     if (orginalZeroDim != dimToDrop) {
379       // There are two reasons to be in this path, 1. We need to
380       // transpose the operand to make the dim to be dropped
381       // leading. 2. The dim to be dropped does not exist and in
382       // that case we dont want to add a unit transpose but we must
383       // check all the indices to make sure this is the case.
384       bool transposeNeeded = false;
385       SmallVector<int64_t> perm;
386       SmallVector<AffineExpr> transposeResults;
387 
388       for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
389         int64_t currDim = map.getDimPosition(i);
390         if (currDim == dimToDrop) {
391           transposeNeeded = true;
392           perm.insert(perm.begin(), i);
393           auto targetExpr = rewriter.getAffineDimExpr(currDim);
394           transposeResults.insert(transposeResults.begin(), targetExpr);
395         } else {
396           perm.push_back(i);
397           auto targetExpr = rewriter.getAffineDimExpr(currDim);
398           transposeResults.push_back(targetExpr);
399         }
400       }
401 
402       // Checks if only the outer, unit dimensions (of size 1) are permuted.
403       // Such transposes do not materially effect the underlying vector and can
404       // be omitted. EG: perm [1, 0, 2] applied to vector<1x1x8xi32>
405       bool transposeNonOuterUnitDims = false;
406       auto operandShape = cast<ShapedType>(operands[it.index()].getType());
407       for (auto [index, dim] :
408            llvm::enumerate(ArrayRef<int64_t>(perm).drop_back(1))) {
409         if (dim != static_cast<int64_t>(index) &&
410             operandShape.getDimSize(index) != 1) {
411           transposeNonOuterUnitDims = true;
412           break;
413         }
414       }
415 
416       // Do the transpose now if needed so that we can drop the
417       // correct dim using extract later.
418       if (transposeNeeded) {
419         map = AffineMap::get(map.getNumDims(), 0, transposeResults,
420                              contractOp.getContext());
421         if (transposeNonOuterUnitDims) {
422           operands[it.index()] = rewriter.createOrFold<vector::TransposeOp>(
423               loc, operands[it.index()], perm);
424         }
425       }
426     }
427     // We have taken care to have the dim to be dropped be
428     // the leading dim. If its still not leading that means it
429     // does not exist in this operand and hence we do not need
430     // an extract.
431     if (map.getDimPosition(0) == dimToDrop)
432       validExtract = true;
433 
434     for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
435       int64_t currDim = map.getDimPosition(i);
436       if (currDim == dimToDrop)
437         // This is the dim we are dropping.
438         continue;
439       auto targetExpr = rewriter.getAffineDimExpr(
440           currDim < dimToDrop ? currDim : currDim - 1);
441       results.push_back(targetExpr);
442     }
443     newIndexingMaps.push_back(AffineMap::get(map.getNumDims() - 1, 0, results,
444                                              contractOp.getContext()));
445     // Extract if its a valid extraction, otherwise use the operand
446     // without extraction.
447     newOperands.push_back(
448         validExtract ? rewriter.create<vector::ExtractOp>(
449                            loc, operands[it.index()], splatZero(dropDim))
450                      : operands[it.index()]);
451   }
452 
453   // Depending on whether this vector.contract is masked, the replacing Op
454   // should either be a new vector.contract Op or vector.mask Op.
455   Operation *newOp = rewriter.create<vector::ContractionOp>(
456       loc, newOperands[0], newOperands[1], newOperands[2],
457       rewriter.getAffineMapArrayAttr(newIndexingMaps),
458       rewriter.getArrayAttr(newIteratorTypes), contractOp.getKind());
459 
460   if (maskingOp) {
461     auto newMask = rewriter.create<vector::ExtractOp>(loc, maskingOp.getMask(),
462                                                       splatZero(dropDim));
463 
464     newOp = mlir::vector::maskOperation(rewriter, newOp, newMask);
465   }
466 
467   return rewriter
468       .create<vector::BroadcastOp>(loc, contractOp->getResultTypes()[0],
469                                    newOp->getResults()[0])
470       .getResult();
471 }
472 
473 namespace {
474 
475 /// Turns vector.contract on vector with leading 1 dimensions into
476 /// vector.extract followed by vector.contract on vector without leading
477 /// 1 dimensions. Also performs transpose of lhs and rhs operands if required
478 /// prior to extract.
479 struct CastAwayContractionLeadingOneDim
480     : public MaskableOpRewritePattern<vector::ContractionOp> {
481   using MaskableOpRewritePattern::MaskableOpRewritePattern;
482 
483   FailureOr<Value>
484   matchAndRewriteMaskableOp(vector::ContractionOp contractOp,
485                             MaskingOpInterface maskingOp,
486                             PatternRewriter &rewriter) const override {
487     return castAwayContractionLeadingOneDim(contractOp, maskingOp, rewriter);
488   }
489 };
490 
491 /// Looks at elementwise operations on vectors with at least one leading
492 /// dimension equal 1, e.g. vector<1x[4]x1xf32> (but not vector<2x[4]x1xf32>),
493 /// and cast aways the leading one dimensions (_plural_) and then broadcasts
494 /// the results.
495 ///
496 /// Example before:
497 ///     %1 = arith.mulf %arg0, %arg1 : vector<1x4x1xf32>
498 /// Example after:
499 ///    %2 = arith.mulf %0, %1 : vector<4x1xf32>
500 ///    %3 = vector.broadcast %2 : vector<4x1xf32> to vector<1x4x1xf32>
501 ///
502 /// Does support scalable vectors.
503 class CastAwayElementwiseLeadingOneDim : public RewritePattern {
504 public:
505   CastAwayElementwiseLeadingOneDim(MLIRContext *context,
506                                    PatternBenefit benefit = 1)
507       : RewritePattern(MatchAnyOpTypeTag(), benefit, context) {}
508 
509   LogicalResult matchAndRewrite(Operation *op,
510                                 PatternRewriter &rewriter) const override {
511     if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
512       return failure();
513     auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0]);
514     if (!vecType)
515       return failure();
516     VectorType newVecType = trimLeadingOneDims(vecType);
517     if (newVecType == vecType)
518       return failure();
519     int64_t dropDim = vecType.getRank() - newVecType.getRank();
520     SmallVector<Value, 4> newOperands;
521     for (Value operand : op->getOperands()) {
522       if (auto opVecType = dyn_cast<VectorType>(operand.getType())) {
523         newOperands.push_back(rewriter.create<vector::ExtractOp>(
524             op->getLoc(), operand, splatZero(dropDim)));
525       } else {
526         newOperands.push_back(operand);
527       }
528     }
529     Operation *newOp =
530         rewriter.create(op->getLoc(), op->getName().getIdentifier(),
531                         newOperands, newVecType, op->getAttrs());
532     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType,
533                                                      newOp->getResult(0));
534     return success();
535   }
536 };
537 
538 // Drops leading 1 dimensions from vector.constant_mask and inserts a
539 // vector.broadcast back to the original shape.
540 struct CastAwayConstantMaskLeadingOneDim
541     : public OpRewritePattern<vector::ConstantMaskOp> {
542   using OpRewritePattern::OpRewritePattern;
543 
544   LogicalResult matchAndRewrite(vector::ConstantMaskOp mask,
545                                 PatternRewriter &rewriter) const override {
546     VectorType oldType = mask.getType();
547     VectorType newType = trimLeadingOneDims(oldType);
548 
549     if (newType == oldType)
550       return failure();
551 
552     int64_t dropDim = oldType.getRank() - newType.getRank();
553     ArrayRef<int64_t> dimSizes = mask.getMaskDimSizes();
554 
555     // If any of the dropped unit dims has a size of `0`, the entire mask is a
556     // zero mask, else the unit dim has no effect on the mask.
557     int64_t flatLeadingSize =
558         std::accumulate(dimSizes.begin(), dimSizes.begin() + dropDim + 1,
559                         static_cast<int64_t>(1), std::multiplies<int64_t>());
560     SmallVector<int64_t> newDimSizes = {flatLeadingSize};
561     newDimSizes.append(dimSizes.begin() + dropDim + 1, dimSizes.end());
562 
563     auto newMask = rewriter.create<vector::ConstantMaskOp>(
564         mask.getLoc(), newType, newDimSizes);
565     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(mask, oldType, newMask);
566     return success();
567   }
568 };
569 
570 } // namespace
571 
572 void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns(
573     RewritePatternSet &patterns, PatternBenefit benefit) {
574   patterns
575       .add<CastAwayExtractStridedSliceLeadingOneDim,
576            CastAwayInsertStridedSliceLeadingOneDim, CastAwayInsertLeadingOneDim,
577            CastAwayConstantMaskLeadingOneDim, CastAwayTransferReadLeadingOneDim,
578            CastAwayTransferWriteLeadingOneDim, CastAwayElementwiseLeadingOneDim,
579            CastAwayContractionLeadingOneDim>(patterns.getContext(), benefit);
580   populateShapeCastFoldingPatterns(patterns, benefit);
581 }
582