1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "mlir/Dialect/Affine/Utils.h" 13 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arith/IR/Arith.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/Linalg/IR/Linalg.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/Tensor/IR/Tensor.h" 22 #include "mlir/Dialect/Tensor/Utils/Utils.h" 23 #include "mlir/Dialect/Utils/IndexingUtils.h" 24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 25 #include "mlir/Dialect/Vector/IR/VectorOps.h" 26 #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h" 27 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 28 #include "mlir/IR/AffineExpr.h" 29 #include "mlir/IR/Builders.h" 30 #include "mlir/IR/BuiltinTypeInterfaces.h" 31 #include "mlir/IR/BuiltinTypes.h" 32 #include "mlir/IR/OpDefinition.h" 33 #include "mlir/IR/PatternMatch.h" 34 #include "mlir/Support/LLVM.h" 35 #include "mlir/Transforms/RegionUtils.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/Sequence.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/TypeSwitch.h" 40 #include "llvm/ADT/iterator_range.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <optional> 45 #include <type_traits> 46 47 using namespace mlir; 48 using namespace mlir::linalg; 49 50 #define DEBUG_TYPE "linalg-vectorization" 51 52 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 53 #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n") 54 55 /// Try to vectorize `convOp` as a convolution. 56 static FailureOr<Operation *> 57 vectorizeConvolution(RewriterBase &rewriter, LinalgOp convOp, 58 ArrayRef<int64_t> inputVecSizes = {}, 59 ArrayRef<bool> inputVecScalableFlags = {}, 60 bool flatten1DDepthwiseConv = false); 61 62 /// Return the unique instance of OpType in `block` if it is indeed unique. 63 /// Return null if none or more than 1 instances exist. 64 template <typename OpType> 65 static OpType getSingleOpOfType(Block &block) { 66 OpType res; 67 block.walk([&](OpType op) { 68 if (res) { 69 res = nullptr; 70 return WalkResult::interrupt(); 71 } 72 res = op; 73 return WalkResult::advance(); 74 }); 75 return res; 76 } 77 78 /// Helper function to extract the input slices after filter is unrolled along 79 /// kw. 80 static SmallVector<Value> 81 extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input, 82 int64_t nSize, int64_t wSize, int64_t cSize, 83 int64_t kwSize, int strideW, int dilationW, 84 int64_t wSizeStep, bool isSingleChanneled) { 85 SmallVector<Value> result; 86 if (isSingleChanneled) { 87 // Extract input slice of size {wSizeStep} @ [w + kw] for non-channeled 88 // convolution. 89 SmallVector<int64_t> sizes = {wSizeStep}; 90 SmallVector<int64_t> strides = {1}; 91 for (int64_t kw = 0; kw < kwSize; ++kw) { 92 for (int64_t w = 0; w < wSize; w += wSizeStep) { 93 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 94 loc, input, /*offsets=*/ArrayRef<int64_t>{w + kw}, sizes, strides)); 95 } 96 } 97 } else { 98 // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0] 99 // for channeled convolution. 100 SmallVector<int64_t> sizes = {nSize, wSizeStep, cSize}; 101 SmallVector<int64_t> strides = {1, 1, 1}; 102 for (int64_t kw = 0; kw < kwSize; ++kw) { 103 for (int64_t w = 0; w < wSize; w += wSizeStep) { 104 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 105 loc, input, 106 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 107 sizes, strides)); 108 } 109 } 110 } 111 return result; 112 } 113 114 /// Helper function to extract the filter slices after filter is unrolled along 115 /// kw. 116 static SmallVector<Value> extractConvFilterSlices(RewriterBase &rewriter, 117 Location loc, Value filter, 118 int64_t kwSize) { 119 SmallVector<Value> result; 120 // Extract rhs slice of size [{c, f} for channeled convolutions and {1} for 121 // non-chanelled convolution] @ [kw]. 122 for (int64_t kw = 0; kw < kwSize; ++kw) { 123 result.push_back(rewriter.create<vector::ExtractOp>( 124 loc, filter, /*offsets=*/ArrayRef<int64_t>{kw})); 125 } 126 return result; 127 } 128 129 /// Helper function to extract the result slices after filter is unrolled along 130 /// kw. 131 static SmallVector<Value> 132 extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res, 133 int64_t nSize, int64_t wSize, int64_t fSize, 134 int64_t wSizeStep, bool isSingleChanneled) { 135 SmallVector<Value> result; 136 if (isSingleChanneled) { 137 // Extract res slice: {wSizeStep} @ [w] for non-channeled convolution. 138 SmallVector<int64_t> sizes = {wSizeStep}; 139 SmallVector<int64_t> strides = {1}; 140 for (int64_t w = 0; w < wSize; w += wSizeStep) { 141 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 142 loc, res, /*offsets=*/ArrayRef<int64_t>{w}, sizes, strides)); 143 } 144 } else { 145 // Extract res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled 146 // convolution. 147 SmallVector<int64_t> sizes = {nSize, wSizeStep, fSize}; 148 SmallVector<int64_t> strides = {1, 1, 1}; 149 for (int64_t w = 0; w < wSize; w += wSizeStep) { 150 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 151 loc, res, /*offsets=*/ArrayRef<int64_t>{0, w, 0}, sizes, strides)); 152 } 153 } 154 return result; 155 } 156 157 /// Helper function to insert the computed result slices. 158 static Value insertConvResultSlices(RewriterBase &rewriter, Location loc, 159 Value res, int64_t wSize, int64_t wSizeStep, 160 SmallVectorImpl<Value> &resVals, 161 bool isSingleChanneled) { 162 163 if (isSingleChanneled) { 164 // Write back res slice: {wSizeStep} @ [w] for non-channeled convolution. 165 // This does not depend on kw. 166 SmallVector<int64_t> strides = {1}; 167 for (int64_t w = 0; w < wSize; w += wSizeStep) { 168 res = rewriter.create<vector::InsertStridedSliceOp>( 169 loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{w}, strides); 170 } 171 } else { 172 // Write back res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled 173 // convolution. This does not depend on kw. 174 SmallVector<int64_t> strides = {1, 1, 1}; 175 for (int64_t w = 0; w < wSize; w += wSizeStep) { 176 res = rewriter.create<vector::InsertStridedSliceOp>( 177 loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 178 strides); 179 } 180 } 181 return res; 182 } 183 184 /// Contains the vectorization state and related methods used across the 185 /// vectorization process of a given operation. 186 struct VectorizationState { 187 VectorizationState(RewriterBase &rewriter) : rewriterGuard(rewriter) {} 188 189 /// Initializes the vectorization state, including the computation of the 190 /// canonical vector shape for vectorization. 191 LogicalResult initState(RewriterBase &rewriter, LinalgOp linalgOp, 192 ArrayRef<int64_t> inputVectorSizes, 193 ArrayRef<bool> inputScalableVecDims); 194 195 /// Returns the canonical vector shape used to vectorize the iteration space. 196 ArrayRef<int64_t> getCanonicalVecShape() const { return canonicalVecShape; } 197 198 /// Returns the vector dimensions that are scalable in the canonical vector 199 /// shape. 200 ArrayRef<bool> getScalableVecDims() const { return scalableVecDims; } 201 202 /// Returns a vector type of the provided `elementType` with the canonical 203 /// vector shape and the corresponding fixed/scalable dimensions bit. If 204 /// `dimPermutation` is provided, the canonical vector dimensions are permuted 205 /// accordingly. 206 VectorType getCanonicalVecType( 207 Type elementType, 208 std::optional<AffineMap> dimPermutation = std::nullopt) const { 209 SmallVector<int64_t> vectorShape; 210 SmallVector<bool> scalableDims; 211 if (dimPermutation.has_value()) { 212 vectorShape = 213 applyPermutationMap<int64_t>(*dimPermutation, canonicalVecShape); 214 scalableDims = 215 applyPermutationMap<bool>(*dimPermutation, scalableVecDims); 216 } else { 217 vectorShape.append(canonicalVecShape.begin(), canonicalVecShape.end()); 218 scalableDims.append(scalableVecDims.begin(), scalableVecDims.end()); 219 } 220 221 return VectorType::get(vectorShape, elementType, scalableDims); 222 } 223 224 /// Masks an operation with the canonical vector mask if the operation needs 225 /// masking. Returns the masked operation or the original operation if masking 226 /// is not needed. If provided, the canonical mask for this operation is 227 /// permuted using `maybeIndexingMap`. 228 Operation * 229 maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, 230 std::optional<AffineMap> maybeIndexingMap = std::nullopt); 231 232 private: 233 /// Initializes the iteration space static sizes using the Linalg op 234 /// information. This may become more complicated in the future. 235 void initIterSpaceStaticSizes(LinalgOp linalgOp) { 236 iterSpaceStaticSizes.append(linalgOp.getStaticLoopRanges()); 237 } 238 239 /// Generates 'arith.constant' and 'tensor/memref.dim' operations for 240 /// all the static and dynamic dimensions of the iteration space to be 241 /// vectorized and store them in `iterSpaceValueSizes`. 242 LogicalResult precomputeIterSpaceValueSizes(RewriterBase &rewriter, 243 LinalgOp linalgOp); 244 245 /// Create or retrieve an existing mask value to mask `opToMask` in the 246 /// canonical vector iteration space. If `maybeMaskingMap` the mask is 247 /// permuted using that permutation map. If a new mask is created, it will be 248 /// cached for future users. 249 Value getOrCreateMaskFor(RewriterBase &rewriter, Operation *opToMask, 250 LinalgOp linalgOp, 251 std::optional<AffineMap> maybeMaskingMap); 252 253 /// Check whether this permutation map can be used for masking. At the 254 /// moment we only make sure that there are no broadcast dimensions, but this 255 /// might change if indexing maps evolve. 256 bool isValidMaskingMap(AffineMap maskingMap) { 257 return maskingMap.getBroadcastDims().size() == 0; 258 } 259 260 /// Turn the input indexing map into a valid masking map. 261 /// 262 /// The input indexing map may contain "zero" results, e.g.: 263 /// (d0, d1, d2, d3) -> (d2, d1, d0, 0) 264 /// Applying such maps to canonical vector shapes like this one: 265 /// (1, 16, 16, 4) 266 /// would yield an invalid vector shape like this: 267 /// (16, 16, 1, 0) 268 /// Instead, drop the broadcasting dims that make no sense for masking perm. 269 /// maps: 270 /// (d0, d1, d2, d3) -> (d2, d1, d0) 271 /// This way, the corresponding vector/mask type will be: 272 /// vector<16x16x1xty> 273 /// rather than this invalid Vector type: 274 /// vector<16x16x1x0xty> 275 AffineMap getMaskingMapFromIndexingMap(AffineMap &indexingMap) { 276 return indexingMap.dropZeroResults(); 277 } 278 279 // Holds the compile-time static sizes of the iteration space to vectorize. 280 // Dynamic dimensions are represented using ShapedType::kDynamic. 281 SmallVector<int64_t> iterSpaceStaticSizes; 282 283 /// Holds the value sizes of the iteration space to vectorize. Static 284 /// dimensions are represented by 'arith.constant' and dynamic 285 /// dimensions by 'tensor/memref.dim'. 286 SmallVector<Value> iterSpaceValueSizes; 287 288 /// Holds the canonical vector shape used to vectorize the iteration space. 289 SmallVector<int64_t> canonicalVecShape; 290 291 /// Holds the vector dimensions that are scalable in the canonical vector 292 /// shape. 293 SmallVector<bool> scalableVecDims; 294 295 /// Holds the active masks for permutations of the canonical vector iteration 296 /// space. 297 DenseMap<AffineMap, Value> activeMaskCache; 298 299 /// Global vectorization guard for the incoming rewriter. It's initialized 300 /// when the vectorization state is initialized. 301 OpBuilder::InsertionGuard rewriterGuard; 302 }; 303 304 LogicalResult 305 VectorizationState::precomputeIterSpaceValueSizes(RewriterBase &rewriter, 306 LinalgOp linalgOp) { 307 // TODO: Support 0-d vectors. 308 for (int vecDim = 0, end = canonicalVecShape.size(); vecDim < end; ++vecDim) { 309 if (!ShapedType::isDynamic(iterSpaceStaticSizes[vecDim])) { 310 // Create constant index op for static dimensions. 311 iterSpaceValueSizes.push_back(rewriter.create<arith::ConstantIndexOp>( 312 linalgOp.getLoc(), iterSpaceStaticSizes[vecDim])); 313 continue; 314 } 315 316 // Find an operand defined on this dimension of the iteration space to 317 // extract the runtime dimension size. 318 Value operand; 319 unsigned operandDimPos; 320 if (failed(linalgOp.mapIterationSpaceDimToOperandDim(vecDim, operand, 321 operandDimPos))) 322 return failure(); 323 324 Value dynamicDim = linalgOp.hasPureTensorSemantics() 325 ? (Value)rewriter.create<tensor::DimOp>( 326 linalgOp.getLoc(), operand, operandDimPos) 327 : (Value)rewriter.create<memref::DimOp>( 328 linalgOp.getLoc(), operand, operandDimPos); 329 iterSpaceValueSizes.push_back(dynamicDim); 330 } 331 332 return success(); 333 } 334 335 /// Initializes the vectorization state, including the computation of the 336 /// canonical vector shape for vectorization. 337 // TODO: Move this to the constructor when we can remove the failure cases. 338 LogicalResult 339 VectorizationState::initState(RewriterBase &rewriter, LinalgOp linalgOp, 340 ArrayRef<int64_t> inputVectorSizes, 341 ArrayRef<bool> inputScalableVecDims) { 342 // Initialize the insertion point. 343 rewriter.setInsertionPoint(linalgOp); 344 345 if (!inputVectorSizes.empty()) { 346 // Get the canonical vector shape from the input vector sizes provided. This 347 // path should be taken to vectorize code with dynamic shapes and when using 348 // vector sizes greater than the iteration space sizes. 349 canonicalVecShape.append(inputVectorSizes.begin(), inputVectorSizes.end()); 350 scalableVecDims.append(inputScalableVecDims.begin(), 351 inputScalableVecDims.end()); 352 } else { 353 // Compute the canonical vector shape from the operation shape. If there are 354 // dynamic shapes, the operation won't be vectorized. We assume all the 355 // vector dimensions are fixed. 356 canonicalVecShape = linalgOp.getStaticLoopRanges(); 357 scalableVecDims.append(linalgOp.getNumLoops(), false); 358 } 359 360 LDBG("Canonical vector shape: "); 361 LLVM_DEBUG(llvm::interleaveComma(canonicalVecShape, llvm::dbgs())); 362 LLVM_DEBUG(llvm::dbgs() << "\n"); 363 LDBG("Scalable vector dims: "); 364 LLVM_DEBUG(llvm::interleaveComma(scalableVecDims, llvm::dbgs())); 365 LLVM_DEBUG(llvm::dbgs() << "\n"); 366 367 if (ShapedType::isDynamicShape(canonicalVecShape)) 368 return failure(); 369 370 // Initialize iteration space static sizes. 371 initIterSpaceStaticSizes(linalgOp); 372 373 // Generate 'arith.constant' and 'tensor/memref.dim' operations for 374 // all the static and dynamic dimensions of the iteration space, needed to 375 // compute a mask during vectorization. 376 if (failed(precomputeIterSpaceValueSizes(rewriter, linalgOp))) 377 return failure(); 378 379 return success(); 380 } 381 382 /// Create or retrieve an existing mask value to mask `opToMask` in the 383 /// canonical vector iteration space. If `maybeMaskingMap` the mask is permuted 384 /// using that permutation map. If a new mask is created, it will be cached for 385 /// future users. 386 Value VectorizationState::getOrCreateMaskFor( 387 RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, 388 std::optional<AffineMap> maybeMaskingMap) { 389 390 assert((!maybeMaskingMap || isValidMaskingMap(*maybeMaskingMap)) && 391 "Ill-formed masking map."); 392 393 // No mask is needed if the operation is not maskable. 394 auto maskableOp = dyn_cast<vector::MaskableOpInterface>(opToMask); 395 if (!maskableOp) 396 return Value(); 397 398 assert(!maskableOp.isMasked() && 399 "Masking an operation that is already masked"); 400 401 // If no masking map was provided, use an identity map with the loop dims. 402 assert((!maybeMaskingMap || *maybeMaskingMap) && 403 "Unexpected null mask permutation map"); 404 AffineMap maskingMap = 405 maybeMaskingMap ? *maybeMaskingMap 406 : AffineMap::getMultiDimIdentityMap( 407 linalgOp.getNumLoops(), rewriter.getContext()); 408 409 LDBG("Masking map: " << maskingMap << "\n"); 410 411 // Return the active mask for the masking map of this operation if it was 412 // already created. 413 auto activeMaskIt = activeMaskCache.find(maskingMap); 414 if (activeMaskIt != activeMaskCache.end()) { 415 Value mask = activeMaskIt->second; 416 LDBG("Reusing mask: " << mask << "\n"); 417 return mask; 418 } 419 420 // Compute permuted projection of the iteration space to be masked and the 421 // corresponding mask shape. If the resulting iteration space dimensions are 422 // static and identical to the mask shape, masking is not needed for this 423 // operation. 424 // TODO: Improve this check. Only projected permutation indexing maps are 425 // supported. 426 SmallVector<int64_t> permutedStaticSizes = 427 applyPermutationMap<int64_t>(maskingMap, iterSpaceStaticSizes); 428 auto maskType = getCanonicalVecType(rewriter.getI1Type(), maskingMap); 429 auto maskShape = maskType.getShape(); 430 431 LDBG("Mask shape: "); 432 LLVM_DEBUG(llvm::interleaveComma(maskShape, llvm::dbgs())); 433 LLVM_DEBUG(llvm::dbgs() << "\n"); 434 435 if (permutedStaticSizes == maskShape) { 436 LDBG("Masking is not needed for masking map: " << maskingMap << "\n"); 437 activeMaskCache[maskingMap] = Value(); 438 return Value(); 439 } 440 441 // Permute the iteration space value sizes to compute the mask upper bounds. 442 SmallVector<Value> upperBounds = 443 applyPermutationMap(maskingMap, ArrayRef<Value>(iterSpaceValueSizes)); 444 assert(!maskShape.empty() && !upperBounds.empty() && 445 "Masked 0-d vectors are not supported yet"); 446 447 // Create the mask based on the dimension values. 448 Value mask = rewriter.create<vector::CreateMaskOp>(linalgOp.getLoc(), 449 maskType, upperBounds); 450 LDBG("Creating new mask: " << mask << "\n"); 451 activeMaskCache[maskingMap] = mask; 452 return mask; 453 } 454 455 Operation * 456 VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask, 457 LinalgOp linalgOp, 458 std::optional<AffineMap> maybeIndexingMap) { 459 LDBG("Trying to mask: " << *opToMask << "\n"); 460 461 std::optional<AffineMap> maybeMaskingMap = std::nullopt; 462 if (maybeIndexingMap) 463 maybeMaskingMap = getMaskingMapFromIndexingMap(*maybeIndexingMap); 464 465 // Create or retrieve mask for this operation. 466 Value mask = 467 getOrCreateMaskFor(rewriter, opToMask, linalgOp, maybeMaskingMap); 468 469 if (!mask) { 470 LDBG("No mask required\n"); 471 return opToMask; 472 } 473 474 // Wrap the operation with a new `vector.mask` and update D-U chain. 475 assert(opToMask && "Expected a valid operation to mask"); 476 auto maskOp = cast<vector::MaskOp>( 477 mlir::vector::maskOperation(rewriter, opToMask, mask)); 478 Operation *maskOpTerminator = &maskOp.getMaskRegion().front().back(); 479 480 for (auto [resIdx, resVal] : llvm::enumerate(opToMask->getResults())) 481 rewriter.replaceAllUsesExcept(resVal, maskOp.getResult(resIdx), 482 maskOpTerminator); 483 484 LDBG("Masked operation: " << *maskOp << "\n"); 485 return maskOp; 486 } 487 488 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 489 /// projectedPermutation, compress the unused dimensions to serve as a 490 /// permutation_map for a vector transfer operation. 491 /// For example, given a linalg op such as: 492 /// 493 /// ``` 494 /// %0 = linalg.generic { 495 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 496 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 497 /// } 498 /// ins(%0 : tensor<2x3x4xf32>) 499 /// outs(%1 : tensor<5x6xf32>) 500 /// ``` 501 /// 502 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 503 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 504 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 505 static AffineMap reindexIndexingMap(AffineMap map) { 506 assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && 507 "expected projected permutation"); 508 auto res = compressUnusedDims(map); 509 assert(res.getNumDims() == 510 (res.getNumResults() - res.getNumOfZeroResults()) && 511 "expected reindexed map with same number of dims and results"); 512 return res; 513 } 514 515 /// Helper enum to represent conv1d input traversal order. 516 enum class Conv1DOpOrder { 517 W, // Corresponds to non-channeled 1D convolution operation. 518 Ncw, // Corresponds to operation that traverses the input in (n, c, w) order. 519 Nwc // Corresponds to operation that traverses the input in (n, w, c) order. 520 }; 521 522 /// Helper data structure to represent the result of vectorization. 523 /// In certain specific cases, like terminators, we do not want to propagate/ 524 enum VectorizationStatus { 525 /// Op failed to vectorize. 526 Failure = 0, 527 /// Op vectorized and custom function took care of replacement logic 528 NoReplace, 529 /// Op vectorized into a new Op whose results will replace original Op's 530 /// results. 531 NewOp 532 // TODO: support values if Op vectorized to Many-Ops whose results we need to 533 // aggregate for replacement. 534 }; 535 struct VectorizationResult { 536 /// Return status from vectorizing the current op. 537 enum VectorizationStatus status = VectorizationStatus::Failure; 538 /// New vectorized operation to replace the current op. 539 /// Replacement behavior is specified by `status`. 540 Operation *newOp; 541 }; 542 543 std::optional<vector::CombiningKind> 544 mlir::linalg::getCombinerOpKind(Operation *combinerOp) { 545 using ::mlir::vector::CombiningKind; 546 547 if (!combinerOp) 548 return std::nullopt; 549 return llvm::TypeSwitch<Operation *, std::optional<CombiningKind>>(combinerOp) 550 .Case<arith::AddIOp, arith::AddFOp>( 551 [&](auto op) { return CombiningKind::ADD; }) 552 .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; }) 553 .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; }) 554 .Case<arith::MaxUIOp>([&](auto op) { return CombiningKind::MAXUI; }) 555 .Case<arith::MaximumFOp>([&](auto op) { return CombiningKind::MAXIMUMF; }) 556 .Case<arith::MaxNumFOp>([&](auto op) { return CombiningKind::MAXNUMF; }) 557 .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; }) 558 .Case<arith::MinUIOp>([&](auto op) { return CombiningKind::MINUI; }) 559 .Case<arith::MinimumFOp>([&](auto op) { return CombiningKind::MINIMUMF; }) 560 .Case<arith::MinNumFOp>([&](auto op) { return CombiningKind::MINNUMF; }) 561 .Case<arith::MulIOp, arith::MulFOp>( 562 [&](auto op) { return CombiningKind::MUL; }) 563 .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; }) 564 .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; }) 565 .Default([&](auto op) { return std::nullopt; }); 566 } 567 568 /// Check whether `outputOperand` is a reduction with a single combiner 569 /// operation. Return the combiner operation of the reduction. Return 570 /// nullptr otherwise. Multiple reduction operations would impose an 571 /// ordering between reduction dimensions and is currently unsupported in 572 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 573 /// max(min(X)) 574 // TODO: use in LinalgOp verification, there is a circular dependency atm. 575 static Operation *matchLinalgReduction(OpOperand *outputOperand) { 576 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 577 unsigned outputPos = 578 outputOperand->getOperandNumber() - linalgOp.getNumDpsInputs(); 579 // Only single combiner operations are supported for now. 580 SmallVector<Operation *, 4> combinerOps; 581 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 582 combinerOps.size() != 1) 583 return nullptr; 584 585 // Return the combiner operation. 586 return combinerOps[0]; 587 } 588 589 /// Broadcast `value` to a vector of `shape` if possible. Return value 590 /// otherwise. 591 static Value broadcastIfNeeded(OpBuilder &b, Value value, Type dstType) { 592 auto dstVecType = dyn_cast<VectorType>(dstType); 593 // If no shape to broadcast to, just return `value`. 594 if (dstVecType.getRank() == 0) 595 return value; 596 if (vector::isBroadcastableTo(value.getType(), dstVecType) != 597 vector::BroadcastableToResult::Success) 598 return value; 599 Location loc = b.getInsertionPoint()->getLoc(); 600 return b.createOrFold<vector::BroadcastOp>(loc, dstVecType, value); 601 } 602 603 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This 604 /// assumes that `reductionOp` has two operands and one of them is the reduction 605 /// initial value.buildMultiDimReduce 606 // Note: this is a true builder that notifies the OpBuilder listener. 607 // TODO: Consider moving as a static helper on the ReduceOp. 608 static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, 609 Value valueToReduce, Value acc, 610 ArrayRef<bool> dimsToMask) { 611 auto maybeKind = getCombinerOpKind(reduceOp); 612 assert(maybeKind && "Failed precondition: could not get reduction kind"); 613 return b.create<vector::MultiDimReductionOp>( 614 reduceOp->getLoc(), valueToReduce, acc, dimsToMask, *maybeKind); 615 } 616 617 static SmallVector<bool> getDimsToReduce(LinalgOp linalgOp) { 618 return llvm::to_vector( 619 llvm::map_range(linalgOp.getIteratorTypesArray(), isReductionIterator)); 620 } 621 622 /// Check if `op` is a linalg.reduce or a linalg.generic that has at least one 623 /// reduction iterator. 624 static bool hasReductionIterator(LinalgOp &op) { 625 return isa<linalg::ReduceOp>(op) || 626 (isa<linalg::GenericOp>(op) && 627 llvm::any_of(op.getIteratorTypesArray(), isReductionIterator)); 628 } 629 630 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 631 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 632 /// currently being vectorized. If `dest` has null rank, build an memref.store. 633 /// Return the produced value or null if no value is produced. 634 // Note: this is a true builder that notifies the OpBuilder listener. 635 // TODO: Consider moving as a static helper on the ReduceOp. 636 static Value buildVectorWrite(RewriterBase &rewriter, Value value, 637 OpOperand *outputOperand, 638 VectorizationState &state) { 639 Location loc = value.getLoc(); 640 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 641 AffineMap opOperandMap = linalgOp.getMatchingIndexingMap(outputOperand); 642 643 // Compute the vector type of the value to store. This type should be an 644 // identity or projection of the canonical vector type without any permutation 645 // applied, given that any permutation in a transfer write happens as part of 646 // the write itself. 647 AffineMap vectorTypeMap = AffineMap::getFilteredIdentityMap( 648 opOperandMap.getContext(), opOperandMap.getNumInputs(), 649 [&](AffineDimExpr dimExpr) -> bool { 650 return llvm::is_contained(opOperandMap.getResults(), dimExpr); 651 }); 652 auto vectorType = state.getCanonicalVecType( 653 getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap); 654 655 Operation *write; 656 if (vectorType.getRank() > 0) { 657 AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap)); 658 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 659 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 660 value = broadcastIfNeeded(rewriter, value, vectorType); 661 assert(value.getType() == vectorType && "Incorrect type"); 662 write = rewriter.create<vector::TransferWriteOp>( 663 loc, value, outputOperand->get(), indices, writeMap); 664 } else { 665 // 0-d case is still special: do not invert the reindexing writeMap. 666 if (!isa<VectorType>(value.getType())) 667 value = rewriter.create<vector::BroadcastOp>(loc, vectorType, value); 668 assert(value.getType() == vectorType && "Incorrect type"); 669 write = rewriter.create<vector::TransferWriteOp>( 670 loc, value, outputOperand->get(), ValueRange{}); 671 } 672 673 write = state.maskOperation(rewriter, write, linalgOp, opOperandMap); 674 675 // If masked, set in-bounds to true. Masking guarantees that the access will 676 // be in-bounds. 677 if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(write)) { 678 auto maskedWriteOp = cast<vector::TransferWriteOp>(maskOp.getMaskableOp()); 679 SmallVector<bool> inBounds(maskedWriteOp.getVectorType().getRank(), true); 680 maskedWriteOp.setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); 681 } 682 683 LDBG("vectorized op: " << *write << "\n"); 684 if (!write->getResults().empty()) 685 return write->getResult(0); 686 return Value(); 687 } 688 689 // Custom vectorization precondition function type. This is intented to be used 690 // with CustomVectorizationHook. Returns success if the corresponding custom 691 // hook can vectorize the op. 692 using CustomVectorizationPrecondition = 693 std::function<LogicalResult(Operation *, bool)>; 694 695 // Custom vectorization function type. Produce a vector form of Operation* 696 // assuming all its vectorized operands are already in the IRMapping. 697 // Return nullptr if the Operation cannot be vectorized. 698 using CustomVectorizationHook = 699 std::function<VectorizationResult(Operation *, const IRMapping &)>; 700 701 /// Helper function to vectorize the terminator of a `linalgOp`. New result 702 /// vector values are appended to `newResults`. Return 703 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 704 /// should not try to map produced operations and instead return the results 705 /// using the `newResults` vector making them available to the vectorization 706 /// algorithm for RAUW. This function is meant to be used as a 707 /// CustomVectorizationHook. 708 static VectorizationResult 709 vectorizeLinalgYield(RewriterBase &rewriter, Operation *op, 710 const IRMapping &bvm, VectorizationState &state, 711 LinalgOp linalgOp, SmallVectorImpl<Value> &newResults) { 712 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 713 if (!yieldOp) 714 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 715 for (const auto &output : llvm::enumerate(yieldOp.getValues())) { 716 // TODO: Scan for an opportunity for reuse. 717 // TODO: use a map. 718 Value vectorValue = bvm.lookup(output.value()); 719 Value newResult = 720 buildVectorWrite(rewriter, vectorValue, 721 linalgOp.getDpsInitOperand(output.index()), state); 722 if (newResult) 723 newResults.push_back(newResult); 724 } 725 726 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 727 } 728 729 /// Helper function to vectorize the index operations of a `linalgOp`. Return 730 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 731 /// should map the produced operations. This function is meant to be used as a 732 /// CustomVectorizationHook. 733 static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter, 734 VectorizationState &state, 735 Operation *op, 736 LinalgOp linalgOp) { 737 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 738 if (!indexOp) 739 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 740 auto loc = indexOp.getLoc(); 741 // Compute the static loop sizes of the index op. 742 ArrayRef<int64_t> targetShape = state.getCanonicalVecShape(); 743 auto dim = indexOp.getDim(); 744 // Compute a one-dimensional index vector for the index op dimension. 745 auto indexVectorType = 746 VectorType::get({targetShape[dim]}, rewriter.getIndexType(), 747 state.getScalableVecDims()[dim]); 748 auto indexSteps = rewriter.create<vector::StepOp>(loc, indexVectorType); 749 // Return the one-dimensional index vector if it lives in the trailing 750 // dimension of the iteration space since the vectorization algorithm in this 751 // case can handle the broadcast. 752 if (dim == targetShape.size() - 1) 753 return VectorizationResult{VectorizationStatus::NewOp, indexSteps}; 754 // Otherwise permute the targetShape to move the index dimension last, 755 // broadcast the one-dimensional index vector to the permuted shape, and 756 // finally transpose the broadcasted index vector to undo the permutation. 757 auto permPattern = 758 llvm::to_vector(llvm::seq<unsigned>(0, targetShape.size())); 759 std::swap(permPattern[dim], permPattern.back()); 760 auto permMap = 761 AffineMap::getPermutationMap(permPattern, linalgOp.getContext()); 762 763 auto broadCastOp = rewriter.create<vector::BroadcastOp>( 764 loc, state.getCanonicalVecType(rewriter.getIndexType(), permMap), 765 indexSteps); 766 SmallVector<int64_t> transposition = 767 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 768 std::swap(transposition.back(), transposition[dim]); 769 auto transposeOp = 770 rewriter.create<vector::TransposeOp>(loc, broadCastOp, transposition); 771 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 772 } 773 774 /// Helper function to check if the tensor.extract can be vectorized by the 775 /// custom hook vectorizeTensorExtract. 776 static LogicalResult 777 tensorExtractVectorizationPrecondition(Operation *op, bool vectorizeNDExtract) { 778 tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op); 779 if (!extractOp) 780 return failure(); 781 782 if (extractOp.getIndices().size() != 1 && !vectorizeNDExtract) 783 return failure(); 784 785 // Check the index type, but only for non 0-d tensors (for which we do need 786 // access indices). 787 if (not extractOp.getIndices().empty()) { 788 if (!VectorType::isValidElementType(extractOp.getIndices()[0].getType())) 789 return failure(); 790 } 791 792 if (llvm::any_of(extractOp->getResultTypes(), [](Type type) { 793 return !VectorType::isValidElementType(type); 794 })) { 795 return failure(); 796 } 797 798 return success(); 799 } 800 801 /// Calculates the offsets (`$index_vec`) for `vector.gather` operations 802 /// generated from `tensor.extract`. The offset is calculated as follows 803 /// (example using scalar values): 804 /// 805 /// offset = extractOp.indices[0] 806 /// for (i = 1; i < numIndices; i++) 807 /// offset = extractOp.dimSize[i] * offset + extractOp.indices[i]; 808 /// 809 /// For tensor<45 x 80 x 15 x f32> and index [1, 2, 3], this leads to: 810 /// offset = ( ( 1 ) * 80 + 2 ) * 15 + 3 811 static Value calculateGatherOffset(RewriterBase &rewriter, 812 VectorizationState &state, 813 tensor::ExtractOp extractOp, 814 const IRMapping &bvm) { 815 // The vector of indices for GatherOp should be shaped as the output vector. 816 auto indexVecType = state.getCanonicalVecType(rewriter.getIndexType()); 817 auto loc = extractOp.getLoc(); 818 819 Value offset = broadcastIfNeeded( 820 rewriter, bvm.lookup(extractOp.getIndices()[0]), indexVecType); 821 822 const size_t numIndices = extractOp.getIndices().size(); 823 for (size_t i = 1; i < numIndices; i++) { 824 Value dimIdx = rewriter.create<arith::ConstantIndexOp>(loc, i); 825 826 auto dimSize = broadcastIfNeeded( 827 rewriter, 828 rewriter.create<tensor::DimOp>(loc, extractOp.getTensor(), dimIdx), 829 indexVecType); 830 831 offset = rewriter.create<arith::MulIOp>(loc, offset, dimSize); 832 833 auto extractOpIndex = broadcastIfNeeded( 834 rewriter, bvm.lookup(extractOp.getIndices()[i]), indexVecType); 835 836 offset = rewriter.create<arith::AddIOp>(loc, extractOpIndex, offset); 837 } 838 839 return offset; 840 } 841 842 enum VectorMemoryAccessKind { ScalarBroadcast, Contiguous, Gather }; 843 844 /// Find the index of the trailing non-unit dim in linalgOp. This hook is used 845 /// when checking whether `tensor.extract` Op (within a `linalg.generic` Op) 846 /// represents a contiguous load operation. 847 /// 848 /// Note that when calling this hook, it is assumed that the output vector is 849 /// effectively 1D. Other cases (i.e. reading n-D vectors) should've been 850 /// labelled as a gather load before entering this method. 851 /// 852 /// Following on from the above, it is assumed that: 853 /// * for statically shaped loops, when no masks are used, only one dim is != 854 /// 1 (that's what the shape of the output vector is based on). 855 /// * for dynamically shaped loops, there might be more non-unit dims 856 /// as the output vector type is user-specified. 857 /// 858 /// TODO: Statically shaped loops + vector masking 859 static uint64_t getTrailingNonUnitLoopDimIdx(LinalgOp linalgOp) { 860 SmallVector<int64_t> loopRanges = linalgOp.getStaticLoopRanges(); 861 assert( 862 (linalgOp.hasDynamicShape() || 863 llvm::count_if(loopRanges, [](int64_t dim) { return dim != 1; }) == 1) && 864 "For statically shaped Linalg Ops, only one " 865 "non-unit loop dim is expected"); 866 assert(loopRanges.size() != 0 && "Empty loops, nothing to analyse."); 867 868 size_t idx = loopRanges.size() - 1; 869 for (; idx != 0; idx--) 870 if (loopRanges[idx] != 1) 871 break; 872 873 return idx; 874 } 875 876 /// Checks whether `val` can be used for calculating a loop invariant index. 877 static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val, 878 VectorType resType) { 879 880 assert(((llvm::count_if(resType.getShape(), 881 [](int64_t dimSize) { return dimSize > 1; }) == 1)) && 882 "n-D vectors are not yet supported"); 883 884 // Blocks outside _this_ linalg.generic are effectively loop invariant. 885 // However, analysing block arguments for _this_ linalg.generic Op is a bit 886 // tricky. Just bail out in the latter case. 887 // TODO: We could try analysing the corresponding affine map here. 888 auto *block = linalgOp.getBlock(); 889 if (isa<BlockArgument>(val)) 890 return llvm::all_of(block->getArguments(), 891 [&val](Value v) { return (v != val); }); 892 893 Operation *defOp = val.getDefiningOp(); 894 assert(defOp && "This is neither a block argument nor an operation result"); 895 896 // IndexOp is loop invariant as long as its result remains constant across 897 // iterations. Note that for dynamic shapes, the corresponding dim will also 898 // be conservatively treated as != 1. 899 if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) { 900 return linalgOp.getStaticLoopRanges()[indexOp.getDim()] == 1; 901 } 902 903 auto *ancestor = block->findAncestorOpInBlock(*defOp); 904 905 // Values define outside `linalgOp` are loop invariant. 906 if (!ancestor) 907 return true; 908 909 // Values defined inside `linalgOp`, which are constant, are loop invariant. 910 if (isa<arith::ConstantOp>(ancestor)) 911 return true; 912 913 bool result = true; 914 for (auto op : ancestor->getOperands()) 915 result &= isLoopInvariantIdx(linalgOp, op, resType); 916 917 return result; 918 } 919 920 /// Check whether `val` could be used for calculating the trailing index for a 921 /// contiguous load operation. 922 /// 923 /// There are currently 3 types of values that are allowed here: 924 /// 1. loop-invariant values, 925 /// 2. values that increment by 1 with every loop iteration, 926 /// 3. results of basic arithmetic operations (linear and continuous) 927 /// involving 1., 2. and 3. 928 /// This method returns True if indeed only such values are used in calculating 929 /// `val.` 930 /// 931 /// Additionally, the trailing index for a contiguous load operation should 932 /// increment by 1 with every loop iteration, i.e. be based on: 933 /// * `linalg.index <dim>` , 934 /// where <dim> is the trailing non-unit dim of the iteration space (this way, 935 /// `linalg.index <dim>` increments by 1 with every loop iteration). 936 /// `foundIndexOp` is updated to `true` when such Op is found. 937 static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val, 938 bool &foundIndexOp, VectorType resType) { 939 940 assert(((llvm::count_if(resType.getShape(), 941 [](int64_t dimSize) { return dimSize > 1; }) == 1)) && 942 "n-D vectors are not yet supported"); 943 944 // Blocks outside _this_ linalg.generic are effectively loop invariant. 945 // However, analysing block arguments for _this_ linalg.generic Op is a bit 946 // tricky. Just bail out in the latter case. 947 // TODO: We could try analysing the corresponding affine map here. 948 auto *block = linalgOp.getBlock(); 949 if (isa<BlockArgument>(val)) 950 return llvm::all_of(block->getArguments(), 951 [&val](Value v) { return (v != val); }); 952 953 Operation *defOp = val.getDefiningOp(); 954 assert(defOp && "This is neither a block argument nor an operation result"); 955 956 if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) { 957 auto loopDimThatIncrementsByOne = getTrailingNonUnitLoopDimIdx(linalgOp); 958 959 foundIndexOp = (indexOp.getDim() == loopDimThatIncrementsByOne); 960 return true; 961 } 962 963 auto *ancestor = block->findAncestorOpInBlock(*defOp); 964 965 if (!ancestor) 966 return false; 967 968 // Conservatively reject Ops that could lead to indices with stride other 969 // than 1. 970 if (!isa<arith::AddIOp, arith::ConstantOp, linalg::IndexOp>(ancestor)) 971 return false; 972 973 bool result = false; 974 for (auto op : ancestor->getOperands()) 975 result |= isContiguousLoadIdx(linalgOp, op, foundIndexOp, resType); 976 977 return result; 978 } 979 980 /// Infer the memory access pattern for the input ExtractOp 981 /// 982 /// Based on the ExtratOp result shape and the access indices, decides whether 983 /// this Op corresponds to a contiguous load (including a broadcast of a scalar) 984 /// or a gather load. When analysing the ExtractOp indices (to identify 985 /// contiguous laods), this method looks for "loop" invariant indices (e.g. 986 /// block arguments) and indices that change linearly (e.g. via `linalg.index` 987 /// Op). 988 /// 989 /// Note that it is always safe to use gather load operations for contiguous 990 /// loads (albeit slow), but not vice-versa. When in doubt, bail out and assume 991 /// that `extractOp` is a gather load. 992 static VectorMemoryAccessKind 993 getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, 994 LinalgOp &linalgOp, VectorType resType) { 995 996 auto inputShape = cast<ShapedType>(extractOp.getTensor().getType()); 997 998 // 0. Is this a 0-D vector? If yes then this is a scalar broadcast. 999 if (inputShape.getShape().empty()) 1000 return VectorMemoryAccessKind::ScalarBroadcast; 1001 1002 // True for vectors that are effectively 1D, e.g. `vector<1x4x1xi32>`, false 1003 // otherwise. 1004 bool isOutput1DVector = 1005 (llvm::count_if(resType.getShape(), 1006 [](int64_t dimSize) { return dimSize > 1; }) == 1); 1007 // 1. Assume that it's a gather load when reading non-1D vector. 1008 if (!isOutput1DVector) 1009 return VectorMemoryAccessKind::Gather; 1010 1011 bool leadingIdxsLoopInvariant = true; 1012 1013 // 2. Analyze the leading indices of `extractOp`. 1014 // Look at the way each index is calculated and decide whether it is suitable 1015 // for a contiguous load, i.e. whether it's loop invariant. If not, it's a 1016 // gather load. 1017 auto indices = extractOp.getIndices(); 1018 auto leadIndices = indices.drop_back(1); 1019 1020 for (auto [i, indexVal] : llvm::enumerate(leadIndices)) { 1021 if (inputShape.getShape()[i] == 1) 1022 continue; 1023 1024 leadingIdxsLoopInvariant &= isLoopInvariantIdx(linalgOp, indexVal, resType); 1025 } 1026 1027 if (!leadingIdxsLoopInvariant) { 1028 LDBG("Found gather load: " << extractOp); 1029 return VectorMemoryAccessKind::Gather; 1030 } 1031 1032 // 3. Analyze the trailing index for `extractOp`. 1033 // At this point we know that the leading indices are loop invariant. This 1034 // means that is potentially a scalar or a contiguous load. We can decide 1035 // based on the trailing idx. 1036 auto extractOpTrailingIdx = indices.back(); 1037 1038 // 3a. Scalar broadcast load 1039 // If the trailing index is loop invariant then this is a scalar load. 1040 if (leadingIdxsLoopInvariant && 1041 isLoopInvariantIdx(linalgOp, extractOpTrailingIdx, resType)) { 1042 LDBG("Found scalar broadcast load: " << extractOp); 1043 1044 return VectorMemoryAccessKind::ScalarBroadcast; 1045 } 1046 1047 // 3b. Contiguous loads 1048 // The trailing `extractOp` index should increment with every loop iteration. 1049 // This effectively means that it must be based on the trailing loop index. 1050 // This is what the following bool captures. 1051 bool foundIndexOp = false; 1052 bool isContiguousLoad = isContiguousLoadIdx(linalgOp, extractOpTrailingIdx, 1053 foundIndexOp, resType); 1054 // TODO: Support generating contiguous loads for column vectors - that will 1055 // require adding a permutation map to tranfer_read Ops. 1056 bool isRowVector = resType.getShape().back() != 1; 1057 isContiguousLoad &= (foundIndexOp && isRowVector); 1058 1059 if (isContiguousLoad) { 1060 LDBG("Found contigous load: " << extractOp); 1061 return VectorMemoryAccessKind::Contiguous; 1062 } 1063 1064 // 4. Fallback case - gather load. 1065 LDBG("Found gather load: " << extractOp); 1066 return VectorMemoryAccessKind::Gather; 1067 } 1068 1069 /// Helper function to vectorize the tensor.extract operations. Returns 1070 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 1071 /// should map the produced operations. This function is meant to be used as a 1072 /// CustomVectorizationHook. 1073 static VectorizationResult 1074 vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state, 1075 Operation *op, LinalgOp linalgOp, const IRMapping &bvm) { 1076 tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op); 1077 if (!extractOp) 1078 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 1079 auto loc = extractOp.getLoc(); 1080 1081 // Compute the static loop sizes of the extract op. 1082 auto resultType = state.getCanonicalVecType(extractOp.getResult().getType()); 1083 auto maskConstantOp = rewriter.create<arith::ConstantOp>( 1084 loc, 1085 DenseIntElementsAttr::get(state.getCanonicalVecType(rewriter.getI1Type()), 1086 /*value=*/true)); 1087 auto passThruConstantOp = 1088 rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(resultType)); 1089 1090 // Base indices are currently set to 0. We will need to re-visit if more 1091 // generic scenarios are to be supported. 1092 SmallVector<Value> baseIndices( 1093 extractOp.getIndices().size(), 1094 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 1095 1096 VectorMemoryAccessKind memAccessKind = 1097 getTensorExtractMemoryAccessPattern(extractOp, linalgOp, resultType); 1098 1099 // 1. Handle gather access 1100 if (memAccessKind == VectorMemoryAccessKind::Gather) { 1101 Value offset = calculateGatherOffset(rewriter, state, extractOp, bvm); 1102 1103 // Generate the gather load 1104 Operation *gatherOp = rewriter.create<vector::GatherOp>( 1105 loc, resultType, extractOp.getTensor(), baseIndices, offset, 1106 maskConstantOp, passThruConstantOp); 1107 gatherOp = state.maskOperation(rewriter, gatherOp, linalgOp); 1108 1109 LDBG("Vectorised as gather load: " << extractOp << "\n"); 1110 return VectorizationResult{VectorizationStatus::NewOp, gatherOp}; 1111 } 1112 1113 // 2. Handle: 1114 // a. scalar loads + broadcast, 1115 // b. contiguous loads. 1116 // Both cases use vector.transfer_read. 1117 1118 // Collect indices for `vector.transfer_read`. At this point, the indices will 1119 // either be scalars or would have been broadcast to vectors matching the 1120 // result type. For indices that are vectors, there are two options: 1121 // * for non-trailing indices, all elements are identical (contiguous 1122 // loads are identified by looking for non-trailing indices that are 1123 // invariant with respect to the corresponding linalg.generic), or 1124 // * for trailing indices, the index vector will contain values with stride 1125 // one, but for `vector.transfer_read` only the first (i.e. 0th) index is 1126 // needed. 1127 // This means that 1128 // * for scalar indices - just re-use it, 1129 // * for vector indices (e.g. `vector<1x1x4xindex>`) - extract the bottom 1130 // (0th) element and use that. 1131 SmallVector<Value> transferReadIdxs; 1132 for (size_t i = 0; i < extractOp.getIndices().size(); i++) { 1133 Value idx = bvm.lookup(extractOp.getIndices()[i]); 1134 if (idx.getType().isIndex()) { 1135 transferReadIdxs.push_back(idx); 1136 continue; 1137 } 1138 1139 auto indexAs1dVector = rewriter.create<vector::ShapeCastOp>( 1140 loc, 1141 VectorType::get(resultType.getShape().back(), rewriter.getIndexType(), 1142 resultType.getScalableDims().back()), 1143 idx); 1144 transferReadIdxs.push_back( 1145 rewriter.create<vector::ExtractOp>(loc, indexAs1dVector, 0)); 1146 } 1147 1148 // `tensor.extract_element` is always in-bounds, hence the following holds. 1149 auto dstRank = resultType.getRank(); 1150 auto srcRank = extractOp.getTensor().getType().getRank(); 1151 SmallVector<bool> inBounds(dstRank, true); 1152 1153 // 2a. Handle scalar broadcast access. 1154 if (memAccessKind == VectorMemoryAccessKind::ScalarBroadcast) { 1155 MLIRContext *ctx = rewriter.getContext(); 1156 SmallVector<AffineExpr> exprs(dstRank, getAffineConstantExpr(0, ctx)); 1157 auto permutationMap = AffineMap::get(srcRank, 0, exprs, ctx); 1158 1159 auto transferReadOp = rewriter.create<vector::TransferReadOp>( 1160 loc, resultType, extractOp.getTensor(), transferReadIdxs, 1161 permutationMap, inBounds); 1162 1163 // Mask this broadcasting xfer_read here rather than relying on the generic 1164 // path (the generic path assumes identity masking map, which wouldn't be 1165 // valid here). 1166 SmallVector<int64_t> readMaskShape = {1}; 1167 auto readMaskType = VectorType::get(readMaskShape, rewriter.getI1Type()); 1168 auto allTrue = rewriter.create<vector::ConstantMaskOp>( 1169 loc, readMaskType, vector::ConstantMaskKind::AllTrue); 1170 auto *maskedReadOp = 1171 mlir::vector::maskOperation(rewriter, transferReadOp, allTrue); 1172 1173 LDBG("Vectorised as scalar broadcast load: " << extractOp << "\n"); 1174 return VectorizationResult{VectorizationStatus::NewOp, maskedReadOp}; 1175 } 1176 1177 // 2b. Handle contiguous access. 1178 auto permutationMap = AffineMap::getMinorIdentityMap( 1179 srcRank, std::min(dstRank, srcRank), rewriter.getContext()); 1180 1181 int32_t rankDiff = dstRank - srcRank; 1182 // When dstRank > srcRank, broadcast the source tensor to the unitary leading 1183 // dims so that the ranks match. This is done by extending the map with 0s. 1184 // For example, for dstRank = 3, srcRank = 2, the following map created 1185 // above: 1186 // (d0, d1) --> (d0, d1) 1187 // is extended as: 1188 // (d0, d1) --> (0, d0, d1) 1189 while (rankDiff > 0) { 1190 permutationMap = permutationMap.insertResult( 1191 mlir::getAffineConstantExpr(0, rewriter.getContext()), 0); 1192 rankDiff--; 1193 } 1194 1195 auto transferReadOp = rewriter.create<vector::TransferReadOp>( 1196 loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap, 1197 inBounds); 1198 1199 LDBG("Vectorised as contiguous load: " << extractOp); 1200 return VectorizationResult{VectorizationStatus::NewOp, transferReadOp}; 1201 } 1202 1203 /// Emit reduction operations if the shapes of the value to reduce is different 1204 /// that the result shape. 1205 // Note: this is a true builder that notifies the OpBuilder listener. 1206 // TODO: Consider moving as a static helper on the ReduceOp. 1207 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, 1208 Value reduceValue, Value initialValue, 1209 const IRMapping &bvm) { 1210 Value reduceVec = bvm.lookup(reduceValue); 1211 Value outputVec = bvm.lookup(initialValue); 1212 auto reduceType = dyn_cast<VectorType>(reduceVec.getType()); 1213 auto outputType = dyn_cast<VectorType>(outputVec.getType()); 1214 // Reduce only if needed as the value may already have been reduce for 1215 // contraction vectorization. 1216 if (!reduceType || 1217 (outputType && reduceType.getShape() == outputType.getShape())) 1218 return nullptr; 1219 SmallVector<bool> dimsToMask = getDimsToReduce(linalgOp); 1220 return buildMultiDimReduce(b, op, reduceVec, outputVec, dimsToMask); 1221 } 1222 1223 /// Generic vectorization for a single operation `op`, given already vectorized 1224 /// operands carried by `bvm`. Vectorization occurs as follows: 1225 /// 1. Try to apply any of the `customVectorizationHooks` and return its 1226 /// result on success. 1227 /// 2. Clone any constant in the current scope without vectorization: each 1228 /// consumer of the constant will later determine the shape to which the 1229 /// constant needs to be broadcast to. 1230 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 1231 /// of the `customVectorizationHooks` to cover such cases. 1232 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 1233 /// operand of maximal rank. Other operands have smaller rank and are 1234 /// broadcast accordingly. It is assumed this broadcast is always legal, 1235 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 1236 /// 1237 /// This function assumes all operands of `op` have been vectorized and are in 1238 /// the `bvm` mapping. As a consequence, this function is meant to be called on 1239 /// a topologically-sorted list of ops. 1240 /// This function does not update `bvm` but returns a VectorizationStatus that 1241 /// instructs the caller what `bvm` update needs to occur. 1242 static VectorizationResult 1243 vectorizeOneOp(RewriterBase &rewriter, VectorizationState &state, 1244 LinalgOp linalgOp, Operation *op, const IRMapping &bvm, 1245 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 1246 LDBG("vectorize op " << *op << "\n"); 1247 1248 // 1. Try to apply any CustomVectorizationHook. 1249 if (!customVectorizationHooks.empty()) { 1250 for (auto &customFunc : customVectorizationHooks) { 1251 VectorizationResult result = customFunc(op, bvm); 1252 if (result.status == VectorizationStatus::Failure) 1253 continue; 1254 return result; 1255 } 1256 } 1257 1258 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 1259 // Clone so that the constant is not confined to the linalgOp block . 1260 if (isa<arith::ConstantOp, func::ConstantOp>(op)) 1261 return VectorizationResult{VectorizationStatus::NewOp, rewriter.clone(*op)}; 1262 1263 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 1264 if (!OpTrait::hasElementwiseMappableTraits(op)) 1265 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 1266 1267 // 4 . Check if the operation is a reduction. 1268 SmallVector<std::pair<Value, Value>> reductionOperands; 1269 for (Value operand : op->getOperands()) { 1270 auto blockArg = dyn_cast<BlockArgument>(operand); 1271 if (!blockArg || blockArg.getOwner() != linalgOp.getBlock() || 1272 blockArg.getArgNumber() < linalgOp.getNumDpsInputs()) 1273 continue; 1274 SmallVector<Operation *> reductionOps; 1275 Value reduceValue = matchReduction( 1276 linalgOp.getRegionOutputArgs(), 1277 blockArg.getArgNumber() - linalgOp.getNumDpsInputs(), reductionOps); 1278 if (!reduceValue) 1279 continue; 1280 reductionOperands.push_back(std::make_pair(reduceValue, operand)); 1281 } 1282 if (!reductionOperands.empty()) { 1283 assert(reductionOperands.size() == 1); 1284 Operation *reduceOp = 1285 reduceIfNeeded(rewriter, linalgOp, op, reductionOperands[0].first, 1286 reductionOperands[0].second, bvm); 1287 if (reduceOp) 1288 return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; 1289 } 1290 1291 // 5. Generic vectorization path for ElementwiseMappable ops. 1292 // a. Get the first max ranked shape. 1293 VectorType firstMaxRankedType; 1294 for (Value operand : op->getOperands()) { 1295 auto vecOperand = bvm.lookup(operand); 1296 assert(vecOperand && "Vector operand couldn't be found"); 1297 1298 auto vecType = dyn_cast<VectorType>(vecOperand.getType()); 1299 if (vecType && (!firstMaxRankedType || 1300 firstMaxRankedType.getRank() < vecType.getRank())) 1301 firstMaxRankedType = vecType; 1302 } 1303 // b. Broadcast each op if needed. 1304 SmallVector<Value> vecOperands; 1305 for (Value scalarOperand : op->getOperands()) { 1306 Value vecOperand = bvm.lookup(scalarOperand); 1307 assert(vecOperand && "Vector operand couldn't be found"); 1308 1309 if (firstMaxRankedType) { 1310 auto vecType = VectorType::get(firstMaxRankedType.getShape(), 1311 getElementTypeOrSelf(vecOperand.getType()), 1312 firstMaxRankedType.getScalableDims()); 1313 vecOperands.push_back(broadcastIfNeeded(rewriter, vecOperand, vecType)); 1314 } else { 1315 vecOperands.push_back(vecOperand); 1316 } 1317 } 1318 // c. for elementwise, the result is the vector with the firstMaxRankedShape 1319 SmallVector<Type> resultTypes; 1320 for (Type resultType : op->getResultTypes()) { 1321 resultTypes.push_back( 1322 firstMaxRankedType 1323 ? VectorType::get(firstMaxRankedType.getShape(), resultType, 1324 firstMaxRankedType.getScalableDims()) 1325 : resultType); 1326 } 1327 // d. Build and return the new op. 1328 return VectorizationResult{ 1329 VectorizationStatus::NewOp, 1330 rewriter.create(op->getLoc(), op->getName().getIdentifier(), vecOperands, 1331 resultTypes, op->getAttrs())}; 1332 } 1333 1334 /// Generic vectorization function that rewrites the body of a `linalgOp` into 1335 /// vector form. Generic vectorization proceeds as follows: 1336 /// 1. Verify the `linalgOp` has one non-empty region. 1337 /// 2. Values defined above the region are mapped to themselves and will be 1338 /// broadcasted on a per-need basis by their consumers. 1339 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 1340 /// load). 1341 /// TODO: Reuse opportunities for RAR dependencies. 1342 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 1343 /// 4rewriter. Register CustomVectorizationHook for IndexOp to access the 1344 /// iteration indices. 1345 /// 5. Iteratively call vectorizeOneOp on the region operations. 1346 /// 1347 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 1348 /// performed to the maximal common vector size implied by the `linalgOp` 1349 /// iteration space. This eager broadcasting is introduced in the 1350 /// permutation_map of the vector.transfer_read operations. The eager 1351 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 1352 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 1353 /// the absence of good canonicalizations, the amount of work increases. 1354 /// This is not deemed a problem as we expect canonicalizations and foldings to 1355 /// aggressively clean up the useless work. 1356 static LogicalResult 1357 vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state, 1358 LinalgOp linalgOp, 1359 SmallVectorImpl<Value> &newResults) { 1360 LDBG("Vectorizing operation as linalg generic\n"); 1361 Block *block = linalgOp.getBlock(); 1362 1363 // 2. Values defined above the region can only be broadcast for now. Make them 1364 // map to themselves. 1365 IRMapping bvm; 1366 SetVector<Value> valuesSet; 1367 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 1368 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 1369 1370 if (linalgOp.getNumDpsInits() == 0) 1371 return failure(); 1372 1373 // 3. Turn all BBArgs into vector.transfer_read / load. 1374 Location loc = linalgOp.getLoc(); 1375 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 1376 for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) { 1377 BlockArgument bbarg = linalgOp.getMatchingBlockArgument(opOperand); 1378 if (linalgOp.isScalar(opOperand)) { 1379 bvm.map(bbarg, opOperand->get()); 1380 continue; 1381 } 1382 1383 // 3.a. Convert the indexing map for this input/output to a transfer read 1384 // permutation map and masking map. 1385 AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand); 1386 1387 AffineMap readMap; 1388 VectorType readType; 1389 Type elemType = getElementTypeOrSelf(opOperand->get()); 1390 if (linalgOp.isDpsInput(opOperand)) { 1391 // 3.a.i. For input reads we use the canonical vector shape. 1392 readMap = inverseAndBroadcastProjectedPermutation(indexingMap); 1393 readType = state.getCanonicalVecType(elemType); 1394 } else { 1395 // 3.a.ii. For output reads (iteration-carried dependence, e.g., 1396 // reductions), the vector shape is computed by mapping the canonical 1397 // vector shape to the output domain and back to the canonical domain. 1398 readMap = inversePermutation(reindexIndexingMap(indexingMap)); 1399 readType = 1400 state.getCanonicalVecType(elemType, readMap.compose(indexingMap)); 1401 } 1402 1403 SmallVector<Value> indices(linalgOp.getShape(opOperand).size(), zero); 1404 1405 Operation *read = rewriter.create<vector::TransferReadOp>( 1406 loc, readType, opOperand->get(), indices, readMap); 1407 read = state.maskOperation(rewriter, read, linalgOp, indexingMap); 1408 Value readValue = read->getResult(0); 1409 1410 // 3.b. If masked, set in-bounds to true. Masking guarantees that the access 1411 // will be in-bounds. 1412 if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(read)) { 1413 SmallVector<bool> inBounds(readType.getRank(), true); 1414 cast<vector::TransferReadOp>(maskOp.getMaskableOp()) 1415 .setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); 1416 } 1417 1418 // 3.c. Not all ops support 0-d vectors, extract the scalar for now. 1419 // TODO: remove this. 1420 if (readType.getRank() == 0) 1421 readValue = rewriter.create<vector::ExtractOp>(loc, readValue, 1422 ArrayRef<int64_t>()); 1423 1424 LDBG("New vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue 1425 << "\n"); 1426 bvm.map(bbarg, readValue); 1427 bvm.map(opOperand->get(), readValue); 1428 } 1429 1430 SmallVector<CustomVectorizationHook> hooks; 1431 // 4a. Register CustomVectorizationHook for yieldOp. 1432 CustomVectorizationHook vectorizeYield = 1433 [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { 1434 return vectorizeLinalgYield(rewriter, op, bvm, state, linalgOp, newResults); 1435 }; 1436 hooks.push_back(vectorizeYield); 1437 1438 // 4b. Register CustomVectorizationHook for indexOp. 1439 CustomVectorizationHook vectorizeIndex = 1440 [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { 1441 return vectorizeLinalgIndex(rewriter, state, op, linalgOp); 1442 }; 1443 hooks.push_back(vectorizeIndex); 1444 1445 // 4c. Register CustomVectorizationHook for extractOp. 1446 CustomVectorizationHook vectorizeExtract = 1447 [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { 1448 return vectorizeTensorExtract(rewriter, state, op, linalgOp, bvm); 1449 }; 1450 hooks.push_back(vectorizeExtract); 1451 1452 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 1453 for (Operation &op : block->getOperations()) { 1454 VectorizationResult result = 1455 vectorizeOneOp(rewriter, state, linalgOp, &op, bvm, hooks); 1456 if (result.status == VectorizationStatus::Failure) { 1457 LDBG("failed to vectorize: " << op << "\n"); 1458 return failure(); 1459 } 1460 if (result.status == VectorizationStatus::NewOp) { 1461 Operation *maybeMaskedOp = 1462 state.maskOperation(rewriter, result.newOp, linalgOp); 1463 LDBG("New vector op: " << *maybeMaskedOp << "\n"); 1464 bvm.map(op.getResults(), maybeMaskedOp->getResults()); 1465 } 1466 } 1467 1468 return success(); 1469 } 1470 1471 /// Given a tensor::PackOp, return the `dest` shape before any packing 1472 /// permutations. 1473 static SmallVector<int64_t> getTiledPackShape(tensor::PackOp packOp, 1474 ArrayRef<int64_t> destShape) { 1475 return applyPermutation(destShape, tensor::getPackInverseDestPerm(packOp)); 1476 } 1477 1478 /// Given an input, the mixed destSizes, and the vector sizes for vectorization, 1479 /// create an empty destination tensor and create a TransferWriteOp from the 1480 /// input to the empty tensor. If the destination shape is not the same as the 1481 /// inputVectorSizes for the first rank(inputVectorSizes) dims, then create a 1482 /// mask for the write. If `useInBoundsInsteadOfMasking` is set, then update the 1483 /// inBounds attribute of the transfer write op instead of masking. 1484 static Operation *createWriteOrMaskedWrite(OpBuilder &builder, Location loc, 1485 Value input, 1486 SmallVector<OpFoldResult> destSizes, 1487 ArrayRef<int64_t> inputVectorSizes, 1488 bool useInBoundsInsteadOfMasking) { 1489 1490 auto inputType = cast<VectorType>(input.getType()); 1491 Value dest = builder.create<tensor::EmptyOp>(loc, destSizes, 1492 inputType.getElementType()); 1493 int64_t rank = cast<ShapedType>(dest.getType()).getRank(); 1494 auto zero = builder.create<arith::ConstantIndexOp>(loc, 0); 1495 auto destShape = cast<ShapedType>(dest.getType()).getShape(); 1496 SmallVector<bool> inBoundsVal(rank, true); 1497 if (useInBoundsInsteadOfMasking) { 1498 // Update the inBounds attribute. 1499 for (unsigned i = 0; i < rank; i++) 1500 inBoundsVal[i] = (destShape[i] == inputVectorSizes[i]) && 1501 !ShapedType::isDynamic(destShape[i]); 1502 } 1503 Operation *write = builder.create<vector::TransferWriteOp>( 1504 loc, 1505 /*vector=*/input, 1506 /*source=*/dest, 1507 /*indices=*/SmallVector<Value>(rank, zero), 1508 /*inBounds=*/inBoundsVal); 1509 assert(llvm::none_of( 1510 destShape.drop_front(inputVectorSizes.size()), 1511 [](int64_t size) { return size == ShapedType::kDynamic; }) && 1512 "Only dims aligned with inputVectorSizes may be dynamic"); 1513 if (useInBoundsInsteadOfMasking) 1514 return write; 1515 bool needMaskForWrite = !llvm::equal( 1516 inputVectorSizes, destShape.take_front(inputVectorSizes.size())); 1517 if (needMaskForWrite) { 1518 SmallVector<int64_t> writeMaskShape; 1519 writeMaskShape.append(inputVectorSizes.begin(), inputVectorSizes.end()); 1520 writeMaskShape.append(destShape.begin() + inputVectorSizes.size(), 1521 destShape.end()); 1522 auto writeMaskType = VectorType::get(writeMaskShape, builder.getI1Type()); 1523 Value maskForWrite = 1524 builder.create<vector::CreateMaskOp>(loc, writeMaskType, destSizes); 1525 write = mlir::vector::maskOperation(builder, write, maskForWrite); 1526 } 1527 return write; 1528 } 1529 1530 /// Vectorize tensor::PackOp with (1) static innerTiles (2) constant 1531 /// padding value and (3) input vector sizes into: 1532 /// masked_transfer_read->shape_cast->transpose->transfer_write_in_bounds 1533 /// As in the following example: 1534 /// %pack = tensor.pack %src inner_dims_pos = [2, 1] inner_tiles = [16, 2] 1535 /// into %dst : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32> 1536 /// 1537 /// This pack would be vectorized to: 1538 /// 1539 /// %load = vector.mask %mask { 1540 /// vector.transfer_read %arg0[%c0, %c0, %c0], %cst 1541 /// {in_bounds = [true, true, true]} : 1542 /// tensor<32x7x16xf32>, vector<32x8x16xf32> 1543 /// } : vector<32x8x16xi1> -> vector<32x8x16xf32> 1544 /// %shape_cast = vector.shape_cast %load : vector<32x8x16xf32> 1545 /// to vector<32x4x2x1x16xf32> 1546 /// %transpose = vector.transpose %shape_cast, [0, 1, 3, 4, 2] 1547 /// : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32> 1548 /// %write = vector.transfer_write %transpose, 1549 /// %empty[%c0_0, %c0_0, %c0_0, %c0_0, %c0_0] 1550 /// {in_bounds = [true, true, true, true, true]} 1551 /// : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32> 1552 /// 1553 /// If the (3) input vector sizes are not provided, the vector sizes are 1554 /// determined by the result tensor shape. Also, we update the inBounds 1555 /// attribute instead of masking. 1556 static LogicalResult 1557 vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp, 1558 ArrayRef<int64_t> inputVectorSizes, 1559 SmallVectorImpl<Value> &newResults) { 1560 OpBuilder::InsertionGuard g(rewriter); 1561 rewriter.setInsertionPoint(packOp); 1562 1563 Location loc = packOp.getLoc(); 1564 auto padValue = packOp.getPaddingValue(); 1565 if (!padValue) { 1566 padValue = rewriter.create<arith::ConstantOp>( 1567 loc, rewriter.getZeroAttr(packOp.getSourceType().getElementType())); 1568 } 1569 ReifiedRankedShapedTypeDims reifiedReturnShapes; 1570 LogicalResult status = 1571 cast<ReifyRankedShapedTypeOpInterface>(packOp.getOperation()) 1572 .reifyResultShapes(rewriter, reifiedReturnShapes); 1573 (void)status; // prevent unused variable warning on non-assert builds. 1574 assert(succeeded(status) && "failed to reify result shapes"); 1575 1576 // If the input vector sizes are not provided, then the vector sizes are 1577 // determined by the result tensor shape. In case the vector sizes aren't 1578 // provided, we update the inBounds attribute instead of masking. 1579 bool useInBoundsInsteadOfMasking = false; 1580 if (inputVectorSizes.empty()) { 1581 ArrayRef<int64_t> resultTensorShape = packOp.getDestType().getShape(); 1582 inputVectorSizes = resultTensorShape.take_front(packOp.getSourceRank()); 1583 useInBoundsInsteadOfMasking = true; 1584 } 1585 1586 // Create masked TransferReadOp. 1587 SmallVector<int64_t> inputShape(inputVectorSizes); 1588 auto innerTiles = packOp.getStaticInnerTiles(); 1589 auto innerDimsPos = packOp.getInnerDimsPos(); 1590 auto outerDimsPerm = packOp.getOuterDimsPerm(); 1591 if (!outerDimsPerm.empty()) 1592 applyPermutationToVector(inputShape, 1593 invertPermutationVector(outerDimsPerm)); 1594 for (auto [idx, size] : enumerate(innerTiles)) 1595 inputShape[innerDimsPos[idx]] *= size; 1596 auto maskedRead = vector::createReadOrMaskedRead( 1597 rewriter, loc, packOp.getSource(), inputShape, padValue, 1598 useInBoundsInsteadOfMasking); 1599 1600 // Create ShapeCastOp. 1601 SmallVector<int64_t> destShape(inputVectorSizes); 1602 destShape.append(innerTiles.begin(), innerTiles.end()); 1603 auto tiledPackType = VectorType::get(getTiledPackShape(packOp, destShape), 1604 packOp.getDestType().getElementType()); 1605 auto shapeCastOp = 1606 rewriter.create<vector::ShapeCastOp>(loc, tiledPackType, maskedRead); 1607 1608 // Create TransposeOp. 1609 auto destPermutation = 1610 invertPermutationVector(tensor::getPackInverseDestPerm(packOp)); 1611 auto transposeOp = rewriter.create<vector::TransposeOp>( 1612 loc, shapeCastOp.getResult(), destPermutation); 1613 1614 // Create TransferWriteOp. 1615 Operation *write = createWriteOrMaskedWrite( 1616 rewriter, loc, transposeOp.getResult(), reifiedReturnShapes[0], 1617 inputVectorSizes, /*useInBoundsInsteadOfMasking=*/false); 1618 newResults.push_back(write->getResult(0)); 1619 return success(); 1620 } 1621 1622 /// Vectorize a `tensor::UnPackOp` to these 4 Ops: 1623 /// Vector::TransferReadOp - Reads a vector from the source tensor 1624 /// vector::TransposeOp - Transpose the Source tensor 1625 /// ShapeCastOp - Reshape the data based on the target. 1626 /// vector::TransferWriteOp. - Write the result vector back to the destination 1627 /// tensor. 1628 /// If the vector sizes are not provided: 1629 /// * the vector sizes are determined by the input operand and attributes, 1630 /// * update the inBounds attribute instead of masking. 1631 static LogicalResult 1632 vectorizeAsTensorUnpackOp(RewriterBase &rewriter, tensor::UnPackOp unpackOp, 1633 ArrayRef<int64_t> inputVectorSizes, 1634 SmallVectorImpl<Value> &newResults) { 1635 1636 OpBuilder::InsertionGuard g(rewriter); 1637 rewriter.setInsertionPoint(unpackOp); 1638 1639 RankedTensorType unpackTensorType = unpackOp.getSourceType(); 1640 1641 ArrayRef<int64_t> innerDimPos = unpackOp.getInnerDimsPos(); 1642 ArrayRef<int64_t> innerTiles = unpackOp.getStaticInnerTiles(); 1643 ArrayRef<int64_t> sourceShape = unpackTensorType.getShape(); 1644 bool useInBoundsInsteadOfMasking = false; 1645 ArrayRef<int64_t> outerDimsPerm = unpackOp.getOuterDimsPerm(); 1646 1647 auto destSize = unpackOp.getDestRank(); 1648 1649 if (!inputVectorSizes.empty()) 1650 assert(inputVectorSizes.size() == destSize && 1651 "Incorrect number of input vector sizes"); 1652 1653 // vectorSizes is the shape of the vector that will be used to do final 1654 // write on the destination tensor. It is set like this: Let's say the 1655 // source tensor is rank 'M' and the dest tensor rank 'N', where N <= M. 1656 // Thus: 1657 // 1. vectorSizes = sourceShape.take_front(N) 1658 // 2. if outer_dims_perms is present: do that permutation on vectorSizes. 1659 // 3. multiply all the locations in vectorSize pointed by innerDimPos by the 1660 // innerTiles attribute value. 1661 SmallVector<int64_t> vectorSizes(inputVectorSizes); 1662 if (vectorSizes.empty()) { 1663 llvm::append_range(vectorSizes, sourceShape.take_front(destSize)); 1664 if (!outerDimsPerm.empty()) 1665 applyPermutationToVector(vectorSizes, outerDimsPerm); 1666 for (auto [i, pos] : llvm::enumerate(innerDimPos)) 1667 vectorSizes[pos] *= innerTiles[i]; 1668 1669 useInBoundsInsteadOfMasking = true; 1670 } 1671 1672 // readVectorSizes is the size of tensor used to read and apply mask. It is 1673 // set like this: Let's say the vectorSize (VS) array is size 'N' and 1674 // the sourceShape(SS) is 'M' where M >= N and InnerTileSizes (IT) of 1675 // size M-N 1676 // Thus: 1677 // - initially: readVectorSizes = vectorInputSizes 1678 // - Divide all the readMaskShape locations pointed by innerDimPos 1679 // by the innerTileSize attribute value. 1680 // - if outer_dims_perms is present: do that permutation on readVectorSizes. 1681 // - Append the remaining shape from SS 1682 // E.g. let's say let's say unpackTensorType.getShape() = <8x8x32x16> 1683 // inner Dim Pos = [0, 1] and Inner Tiles = [32, 16], vector_sizes are [512, 1684 // 128] and outer_dims_perm is [1, 0] then read shape is: 1685 // ReadVectorSizes(initial): [512, 128] 1686 // Final Value(after innerDim Adjustment): [512/32, 128/16] 1687 // = [16, 8] 1688 // After applying outer_dims_perm: [8, 16] 1689 // After appending the rest of the sourceShape: [8, 16, 32, 16] 1690 1691 SmallVector<int64_t> readVectorSizes(vectorSizes.begin(), vectorSizes.end()); 1692 1693 for (auto [index, size] : enumerate(innerTiles)) { 1694 readVectorSizes[innerDimPos[index]] = 1695 llvm::divideCeil(readVectorSizes[innerDimPos[index]], size); 1696 } 1697 if (!outerDimsPerm.empty()) { 1698 applyPermutationToVector(readVectorSizes, outerDimsPerm); 1699 } 1700 readVectorSizes.append(sourceShape.begin() + vectorSizes.size(), 1701 sourceShape.end()); 1702 1703 ReifiedRankedShapedTypeDims reifiedRetShapes; 1704 LogicalResult status = 1705 cast<ReifyRankedShapedTypeOpInterface>(unpackOp.getOperation()) 1706 .reifyResultShapes(rewriter, reifiedRetShapes); 1707 if (status.failed()) { 1708 LDBG("Unable to reify result shapes of " << unpackOp); 1709 return failure(); 1710 } 1711 Location loc = unpackOp->getLoc(); 1712 1713 auto padValue = rewriter.create<arith::ConstantOp>( 1714 loc, rewriter.getZeroAttr(unpackOp.getSourceType().getElementType())); 1715 1716 // Read result, mask if necessary. If transferReadOp shape is not equal 1717 // to shape of source, then a mask is necessary. 1718 Value readResult = vector::createReadOrMaskedRead( 1719 rewriter, loc, unpackOp.getSource(), readVectorSizes, padValue, 1720 /*useInBoundsInsteadOfMasking=*/false); 1721 1722 PackingMetadata packMetadata; 1723 SmallVector<int64_t> lastDimToInsertPosPerm = 1724 tensor::getUnPackInverseSrcPerm(unpackOp, packMetadata); 1725 ShapedType maskedOpShapedType = cast<ShapedType>(readResult.getType()); 1726 SmallVector<int64_t> stripMineShape(maskedOpShapedType.getShape()); 1727 mlir::Type stripMineElemType = maskedOpShapedType.getElementType(); 1728 applyPermutationToVector(stripMineShape, lastDimToInsertPosPerm); 1729 RankedTensorType stripMineTensorType = 1730 RankedTensorType::get(stripMineShape, stripMineElemType); 1731 // Transpose the appropriate rows to match output. 1732 vector::TransposeOp transposeOp = rewriter.create<vector::TransposeOp>( 1733 loc, readResult, lastDimToInsertPosPerm); 1734 1735 // Collapse the vector to the size required by result. 1736 RankedTensorType collapsedType = tensor::CollapseShapeOp::inferCollapsedType( 1737 stripMineTensorType, packMetadata.reassociations); 1738 mlir::VectorType vecCollapsedType = 1739 VectorType::get(collapsedType.getShape(), collapsedType.getElementType()); 1740 vector::ShapeCastOp shapeCastOp = rewriter.create<vector::ShapeCastOp>( 1741 loc, vecCollapsedType, transposeOp->getResult(0)); 1742 1743 // writeVectorSizes had to match the shapecast shape for dynamic sizes, 1744 // otherwise the validator complains that the mask size is invalid. 1745 SmallVector<int64_t> writeVectorSizes( 1746 unpackOp.getDestType().hasStaticShape() 1747 ? vectorSizes 1748 : shapeCastOp.getResultVectorType().getShape()); 1749 Operation *write = createWriteOrMaskedWrite( 1750 rewriter, loc, shapeCastOp.getResult(), reifiedRetShapes[0], 1751 writeVectorSizes, useInBoundsInsteadOfMasking); 1752 newResults.push_back(write->getResult(0)); 1753 return success(); 1754 } 1755 1756 /// Vectorize a `padOp` with (1) static result type, (2) constant padding value 1757 /// and (3) all-zero lowPad to 1758 /// `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`. 1759 static LogicalResult 1760 vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp, 1761 ArrayRef<int64_t> inputVectorSizes, 1762 SmallVectorImpl<Value> &newResults) { 1763 auto padValue = padOp.getConstantPaddingValue(); 1764 Location loc = padOp.getLoc(); 1765 1766 // transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value)) 1767 OpBuilder::InsertionGuard g(rewriter); 1768 rewriter.setInsertionPoint(padOp); 1769 1770 ReifiedRankedShapedTypeDims reifiedReturnShapes; 1771 LogicalResult status = 1772 cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation()) 1773 .reifyResultShapes(rewriter, reifiedReturnShapes); 1774 (void)status; // prevent unused variable warning on non-assert builds 1775 assert(succeeded(status) && "failed to reify result shapes"); 1776 auto maskedRead = vector::createReadOrMaskedRead( 1777 rewriter, loc, padOp.getSource(), inputVectorSizes, padValue, 1778 /*useInBoundsInsteadOfMasking=*/false); 1779 Operation *write = createWriteOrMaskedWrite( 1780 rewriter, loc, maskedRead, reifiedReturnShapes[0], inputVectorSizes, 1781 /*useInBoundsInsteadOfMasking=*/false); 1782 newResults.push_back(write->getResult(0)); 1783 return success(); 1784 } 1785 1786 // TODO: probably need some extra checks for reduction followed by consumer 1787 // ops that may not commute (e.g. linear reduction + non-linear instructions). 1788 static LogicalResult reductionPreconditions(LinalgOp op) { 1789 if (llvm::none_of(op.getIteratorTypesArray(), isReductionIterator)) { 1790 LDBG("reduction precondition failed: no reduction iterator\n"); 1791 return failure(); 1792 } 1793 for (OpOperand &opOperand : op.getDpsInitsMutable()) { 1794 AffineMap indexingMap = op.getMatchingIndexingMap(&opOperand); 1795 if (indexingMap.isPermutation()) 1796 continue; 1797 1798 Operation *reduceOp = matchLinalgReduction(&opOperand); 1799 if (!reduceOp || !getCombinerOpKind(reduceOp)) { 1800 LDBG("reduction precondition failed: reduction detection failed\n"); 1801 return failure(); 1802 } 1803 } 1804 return success(); 1805 } 1806 1807 static LogicalResult 1808 vectorizeDynamicConvOpPrecondition(linalg::LinalgOp conv, 1809 bool flatten1DDepthwiseConv) { 1810 if (flatten1DDepthwiseConv) { 1811 LDBG("Vectorization of flattened convs with dynamic shapes is not " 1812 "supported\n"); 1813 return failure(); 1814 } 1815 1816 if (!isa<linalg::DepthwiseConv1DNwcWcOp>(conv)) { 1817 LDBG("Not a 1D depth-wise WC conv, dynamic shapes are not supported\n"); 1818 return failure(); 1819 } 1820 1821 // Support dynamic shapes in 1D depthwise convolution, but only in the 1822 // _channel_ dimension. 1823 Value lhs = conv.getDpsInputOperand(0)->get(); 1824 ArrayRef<int64_t> lhsShape = cast<ShapedType>(lhs.getType()).getShape(); 1825 auto shapeWithoutCh = lhsShape.drop_back(1); 1826 if (ShapedType::isDynamicShape(shapeWithoutCh)) { 1827 LDBG("Dynamically-shaped op vectorization precondition failed: only " 1828 "channel dim can be dynamic\n"); 1829 return failure(); 1830 } 1831 1832 return success(); 1833 } 1834 1835 static LogicalResult 1836 vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op, 1837 bool flatten1DDepthwiseConv) { 1838 if (isa<ConvolutionOpInterface>(op.getOperation())) 1839 return vectorizeDynamicConvOpPrecondition(op, flatten1DDepthwiseConv); 1840 1841 if (hasReductionIterator(op)) 1842 return reductionPreconditions(op); 1843 1844 // TODO: Masking only supports dynamic element-wise ops, linalg.generic ops, 1845 // linalg.copy ops and ops that implement ContractionOpInterface for now. 1846 if (!isElementwise(op) && 1847 !isa<linalg::GenericOp, linalg::CopyOp, linalg::ContractionOpInterface>( 1848 op.getOperation())) 1849 return failure(); 1850 1851 LDBG("Dynamically-shaped op meets vectorization pre-conditions\n"); 1852 return success(); 1853 } 1854 1855 /// Need to check if the inner-tiles are static/constant. 1856 static LogicalResult 1857 vectorizeUnPackOpPrecondition(tensor::UnPackOp unpackOp, 1858 ArrayRef<int64_t> inputVectorSizes) { 1859 1860 if (llvm::any_of(unpackOp.getInnerTiles(), [](OpFoldResult res) { 1861 return !getConstantIntValue(res).has_value(); 1862 })) { 1863 LDBG("Inner-tiles must be constant: " << unpackOp << "\n"); 1864 return failure(); 1865 } 1866 ArrayRef<int64_t> resultShape = unpackOp.getDestType().getShape(); 1867 bool satisfyEmptyCond = inputVectorSizes.empty() && 1868 unpackOp.getDestType().hasStaticShape() && 1869 unpackOp.getSourceType().hasStaticShape(); 1870 if (!satisfyEmptyCond && 1871 failed(vector::isValidMaskedInputVector(resultShape, inputVectorSizes))) 1872 return failure(); 1873 1874 return success(); 1875 } 1876 1877 static LogicalResult vectorizeLinalgOpPrecondition( 1878 LinalgOp linalgOp, ArrayRef<int64_t> inputVectorSizes, 1879 bool vectorizeNDExtract, bool flatten1DDepthwiseConv) { 1880 // tensor with dimension of 0 cannot be vectorized. 1881 if (llvm::is_contained(linalgOp.getStaticShape(), 0)) 1882 return failure(); 1883 // Check API contract for input vector sizes. 1884 if (!inputVectorSizes.empty() && 1885 failed(vector::isValidMaskedInputVector(linalgOp.getStaticLoopRanges(), 1886 inputVectorSizes))) 1887 return failure(); 1888 1889 if (linalgOp.hasDynamicShape() && failed(vectorizeDynamicLinalgOpPrecondition( 1890 linalgOp, flatten1DDepthwiseConv))) { 1891 LDBG("Dynamically-shaped op failed vectorization pre-conditions\n"); 1892 return failure(); 1893 } 1894 1895 SmallVector<CustomVectorizationPrecondition> customPreconditions; 1896 1897 // Register CustomVectorizationPrecondition for extractOp. 1898 customPreconditions.push_back(tensorExtractVectorizationPrecondition); 1899 1900 // All types in the body should be a supported element type for VectorType. 1901 for (Operation &innerOp : linalgOp->getRegion(0).front()) { 1902 // Check if any custom hook can vectorize the inner op. 1903 if (llvm::any_of( 1904 customPreconditions, 1905 [&](const CustomVectorizationPrecondition &customPrecondition) { 1906 return succeeded( 1907 customPrecondition(&innerOp, vectorizeNDExtract)); 1908 })) { 1909 continue; 1910 } 1911 if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { 1912 return !VectorType::isValidElementType(type); 1913 })) { 1914 return failure(); 1915 } 1916 if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { 1917 return !VectorType::isValidElementType(type); 1918 })) { 1919 return failure(); 1920 } 1921 } 1922 if (isElementwise(linalgOp)) 1923 return success(); 1924 1925 // TODO: isaConvolutionOpInterface that can also infer from generic 1926 // features. But we will still need stride/dilation attributes that will be 1927 // annoying to reverse-engineer... 1928 if (isa<ConvolutionOpInterface>(linalgOp.getOperation())) 1929 return success(); 1930 // TODO: the common vector shape is equal to the static loop sizes only when 1931 // all indexing maps are projected permutations. For convs and stencils the 1932 // logic will need to evolve. 1933 if (!allIndexingsAreProjectedPermutation(linalgOp)) { 1934 LDBG("precondition failed: not projected permutations\n"); 1935 return failure(); 1936 } 1937 if (failed(reductionPreconditions(linalgOp))) { 1938 LDBG("precondition failed: reduction preconditions\n"); 1939 return failure(); 1940 } 1941 return success(); 1942 } 1943 1944 static LogicalResult 1945 vectorizePackOpPrecondition(tensor::PackOp packOp, 1946 ArrayRef<int64_t> inputVectorSizes) { 1947 auto padValue = packOp.getPaddingValue(); 1948 Attribute cstAttr; 1949 if (padValue && !matchPattern(padValue, m_Constant(&cstAttr))) { 1950 LDBG("pad value is not constant: " << packOp << "\n"); 1951 return failure(); 1952 } 1953 ArrayRef<int64_t> resultTensorShape = packOp.getDestType().getShape(); 1954 bool satisfyEmptyCond = true; 1955 if (inputVectorSizes.empty()) { 1956 if (!packOp.getDestType().hasStaticShape() || 1957 !packOp.getSourceType().hasStaticShape()) 1958 satisfyEmptyCond = false; 1959 } 1960 1961 if (!satisfyEmptyCond && 1962 failed(vector::isValidMaskedInputVector( 1963 resultTensorShape.take_front(packOp.getSourceRank()), 1964 inputVectorSizes))) 1965 return failure(); 1966 1967 if (llvm::any_of(packOp.getInnerTiles(), [](OpFoldResult v) { 1968 return !getConstantIntValue(v).has_value(); 1969 })) { 1970 LDBG("inner_tiles must be constant: " << packOp << "\n"); 1971 return failure(); 1972 } 1973 1974 return success(); 1975 } 1976 1977 static LogicalResult 1978 vectorizePadOpPrecondition(tensor::PadOp padOp, 1979 ArrayRef<int64_t> inputVectorSizes) { 1980 auto padValue = padOp.getConstantPaddingValue(); 1981 if (!padValue) { 1982 LDBG("pad value is not constant: " << padOp << "\n"); 1983 return failure(); 1984 } 1985 1986 ArrayRef<int64_t> resultTensorShape = padOp.getResultType().getShape(); 1987 if (failed(vector::isValidMaskedInputVector(resultTensorShape, 1988 inputVectorSizes))) 1989 return failure(); 1990 1991 if (llvm::any_of(padOp.getLow(), [](Value v) { 1992 std::optional<int64_t> res = getConstantIntValue(v); 1993 return !res.has_value() || res.value() != 0; 1994 })) { 1995 LDBG("low pad must all be zero: " << padOp << "\n"); 1996 return failure(); 1997 } 1998 1999 return success(); 2000 } 2001 2002 /// Preconditions for scalable vectors. This is quite restrictive - it models 2003 /// the fact that in practice we would only make selected dimensions scalable. 2004 static LogicalResult 2005 vectorizeScalableVectorPrecondition(Operation *op, 2006 ArrayRef<int64_t> inputVectorSizes, 2007 ArrayRef<bool> inputScalableVecDims) { 2008 assert(inputVectorSizes.size() == inputScalableVecDims.size() && 2009 "Number of input vector sizes and scalable dims doesn't match"); 2010 2011 size_t numOfScalableDims = 2012 llvm::count_if(inputScalableVecDims, [](bool flag) { return flag; }); 2013 2014 if (numOfScalableDims == 0) 2015 return success(); 2016 2017 auto linalgOp = dyn_cast<LinalgOp>(op); 2018 2019 // Cond 1: There's been no need for scalable vectorisation of 2020 // non-linalg Ops so far 2021 if (!linalgOp) 2022 return failure(); 2023 2024 // Cond 2: There's been no need for more than 2 scalable dims so far 2025 if (numOfScalableDims > 2) 2026 return failure(); 2027 2028 // Cond 3: Look at the configuration in `inputScalableVecDims` and verify that 2029 // it matches one of the supported cases: 2030 // 1. Exactly 1 dim is scalable and that's the _last_ non-unit parallel dim 2031 // (*). 2032 // 2. Exactly 2 dims are scalable and those are the _last two adjacent_ 2033 // parallel dims. 2034 // 3. Exactly 1 reduction dim is scalable and that's the last (innermost) 2035 // dim. 2036 // The 2nd restriction above means that only Matmul-like Ops are supported 2037 // when 2 dims are scalable, e.g. : 2038 // * iterators = [parallel, parallel, reduction] 2039 // * scalable flags = [true, true, false] 2040 // 2041 // (*) Non-unit dims get folded away in practice. 2042 // TODO: Relax these conditions as good motivating examples are identified. 2043 2044 // Find the first scalable flag. 2045 bool seenNonUnitParallel = false; 2046 auto iterators = linalgOp.getIteratorTypesArray(); 2047 SmallVector<bool> scalableFlags(inputScalableVecDims); 2048 int64_t idx = scalableFlags.size() - 1; 2049 while (!scalableFlags[idx]) { 2050 bool isNonUnitDim = (inputVectorSizes[idx] != 1); 2051 seenNonUnitParallel |= 2052 (iterators[idx] == utils::IteratorType::parallel && isNonUnitDim); 2053 2054 iterators.pop_back(); 2055 scalableFlags.pop_back(); 2056 --idx; 2057 } 2058 2059 // Analyze the iterator corresponding to the first scalable dim. 2060 switch (iterators.back()) { 2061 case utils::IteratorType::reduction: { 2062 // Check 3. above is met. 2063 if (iterators.size() != inputVectorSizes.size()) { 2064 LDBG("Non-trailing reduction dim requested for scalable " 2065 "vectorization\n"); 2066 return failure(); 2067 } 2068 if (isa<linalg::MatmulOp>(op) || isa<linalg::MatmulTransposeAOp>(op)) { 2069 LDBG("Scalable vectorization of the reduction dim in Matmul-like ops " 2070 "is not supported\n"); 2071 return failure(); 2072 } 2073 break; 2074 } 2075 case utils::IteratorType::parallel: { 2076 // Check 1. and 2. above are met. 2077 if (seenNonUnitParallel) { 2078 LDBG("Inner parallel dim not requested for scalable " 2079 "vectorization\n"); 2080 return failure(); 2081 } 2082 break; 2083 } 2084 } 2085 2086 // If present, check the 2nd scalable dim. ATM, only Matmul-like Ops are 2087 // supported for which expect the folowing config: 2088 // * iterators = [parallel, parallel, reduction] 2089 // * scalable flags = [true, true, false] 2090 if (numOfScalableDims == 2) { 2091 // Disallow below case which breaks 3. above: 2092 // * iterators = [..., parallel, reduction] 2093 // * scalable flags = [..., true, true] 2094 if (iterators.back() == utils::IteratorType::reduction) { 2095 LDBG("Higher dim than the trailing reduction dim requested for scalable " 2096 "vectorization\n"); 2097 return failure(); 2098 } 2099 scalableFlags.pop_back(); 2100 iterators.pop_back(); 2101 2102 if (!scalableFlags.back() || 2103 (iterators.back() != utils::IteratorType::parallel)) 2104 return failure(); 2105 } 2106 2107 // Check to not let go the matmul with extended semantic, through this 2108 // transform. 2109 if (linalgOp.hasUserDefinedMaps()) 2110 return failure(); 2111 2112 // Cond 4: Only the following ops are supported in the 2113 // presence of scalable vectors 2114 return success(isElementwise(linalgOp) || isa<linalg::MatmulOp>(op) || 2115 isa<linalg::MatmulTransposeAOp>(op) || 2116 isa<linalg::DepthwiseConv1DNwcWcOp>(op) || 2117 isa<linalg::MatvecOp>(op) || hasReductionIterator(linalgOp)); 2118 } 2119 2120 LogicalResult mlir::linalg::vectorizeOpPrecondition( 2121 Operation *op, ArrayRef<int64_t> inputVectorSizes, 2122 ArrayRef<bool> inputScalableVecDims, bool vectorizeNDExtract, 2123 bool flatten1DDepthwiseConv) { 2124 2125 if (!hasVectorizationImpl(op)) 2126 return failure(); 2127 2128 if (failed(vectorizeScalableVectorPrecondition(op, inputVectorSizes, 2129 inputScalableVecDims))) 2130 return failure(); 2131 2132 return TypeSwitch<Operation *, LogicalResult>(op) 2133 .Case<linalg::LinalgOp>([&](auto linalgOp) { 2134 return vectorizeLinalgOpPrecondition(linalgOp, inputVectorSizes, 2135 vectorizeNDExtract, 2136 flatten1DDepthwiseConv); 2137 }) 2138 .Case<tensor::PadOp>([&](auto padOp) { 2139 return vectorizePadOpPrecondition(padOp, inputVectorSizes); 2140 }) 2141 .Case<tensor::PackOp>([&](auto packOp) { 2142 return vectorizePackOpPrecondition(packOp, inputVectorSizes); 2143 }) 2144 .Case<tensor::UnPackOp>([&](auto unpackOp) { 2145 return vectorizeUnPackOpPrecondition(unpackOp, inputVectorSizes); 2146 }) 2147 .Default([](auto) { return failure(); }); 2148 } 2149 2150 /// Converts affine.apply Ops to arithmetic operations. 2151 static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) { 2152 OpBuilder::InsertionGuard g(rewriter); 2153 auto toReplace = linalgOp.getBlock()->getOps<affine::AffineApplyOp>(); 2154 2155 for (auto op : make_early_inc_range(toReplace)) { 2156 rewriter.setInsertionPoint(op); 2157 auto expanded = affine::expandAffineExpr( 2158 rewriter, op->getLoc(), op.getAffineMap().getResult(0), 2159 op.getOperands().take_front(op.getAffineMap().getNumDims()), 2160 op.getOperands().take_back(op.getAffineMap().getNumSymbols())); 2161 rewriter.replaceOp(op, expanded); 2162 } 2163 } 2164 2165 bool mlir::linalg::hasVectorizationImpl(Operation *op) { 2166 return isa<linalg::LinalgOp, tensor::PadOp, tensor::PackOp, tensor::UnPackOp>( 2167 op); 2168 } 2169 2170 /// Emit a suitable vector form for an operation. If provided, 2171 /// `inputVectorSizes` are used to vectorize this operation. 2172 /// `inputVectorSizes` must match the rank of the iteration space of the 2173 /// operation and the input vector sizes must be greater than or equal to 2174 /// their counterpart iteration space sizes, if static. `inputVectorShapes` 2175 /// also allows the vectorization of operations with dynamic shapes. 2176 LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op, 2177 ArrayRef<int64_t> inputVectorSizes, 2178 ArrayRef<bool> inputScalableVecDims, 2179 bool vectorizeNDExtract, 2180 bool flatten1DDepthwiseConv) { 2181 LDBG("Attempting to vectorize:\n" << *op << "\n"); 2182 LDBG("Input vector sizes: "); 2183 LLVM_DEBUG(llvm::interleaveComma(inputVectorSizes, llvm::dbgs())); 2184 LLVM_DEBUG(llvm::dbgs() << "\n"); 2185 LDBG("Input scalable vector dims: "); 2186 LLVM_DEBUG(llvm::interleaveComma(inputScalableVecDims, llvm::dbgs())); 2187 LLVM_DEBUG(llvm::dbgs() << "\n"); 2188 2189 if (failed(vectorizeOpPrecondition(op, inputVectorSizes, inputScalableVecDims, 2190 vectorizeNDExtract, 2191 flatten1DDepthwiseConv))) { 2192 LDBG("Vectorization pre-conditions failed\n"); 2193 return failure(); 2194 } 2195 2196 // Initialize vectorization state. 2197 VectorizationState state(rewriter); 2198 if (auto linalgOp = dyn_cast<linalg::LinalgOp>(op)) { 2199 if (failed(state.initState(rewriter, linalgOp, inputVectorSizes, 2200 inputScalableVecDims))) { 2201 LDBG("Vectorization state couldn't be initialized\n"); 2202 return failure(); 2203 } 2204 } 2205 2206 SmallVector<Value> results; 2207 auto vectorizeResult = 2208 TypeSwitch<Operation *, LogicalResult>(op) 2209 .Case<linalg::LinalgOp>([&](auto linalgOp) { 2210 // TODO: isaConvolutionOpInterface that can also infer from 2211 // generic features. Will require stride/dilation attributes 2212 // inference. 2213 if (isa<ConvolutionOpInterface>(linalgOp.getOperation())) { 2214 FailureOr<Operation *> convOr = vectorizeConvolution( 2215 rewriter, linalgOp, inputVectorSizes, inputScalableVecDims, 2216 flatten1DDepthwiseConv); 2217 if (succeeded(convOr)) { 2218 llvm::append_range(results, (*convOr)->getResults()); 2219 return success(); 2220 } 2221 2222 LDBG("Unsupported convolution can't be vectorized.\n"); 2223 return failure(); 2224 } 2225 2226 LDBG("Vectorize generic by broadcasting to the canonical vector " 2227 "shape\n"); 2228 2229 // Pre-process before proceeding. 2230 convertAffineApply(rewriter, linalgOp); 2231 2232 // TODO: 'vectorize' takes in a 'RewriterBase' which is up-casted 2233 // to 'OpBuilder' when it is passed over to some methods like 2234 // 'vectorizeAsLinalgGeneric'. This is highly problematic: if we 2235 // erase an op within these methods, the actual rewriter won't be 2236 // notified and we will end up with read-after-free issues! 2237 return vectorizeAsLinalgGeneric(rewriter, state, linalgOp, results); 2238 }) 2239 .Case<tensor::PadOp>([&](auto padOp) { 2240 return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes, 2241 results); 2242 }) 2243 .Case<tensor::PackOp>([&](auto packOp) { 2244 return vectorizeAsTensorPackOp(rewriter, packOp, inputVectorSizes, 2245 results); 2246 }) 2247 .Case<tensor::UnPackOp>([&](auto unpackOp) { 2248 return vectorizeAsTensorUnpackOp(rewriter, unpackOp, 2249 inputVectorSizes, results); 2250 }) 2251 .Default([](auto) { return failure(); }); 2252 2253 if (failed(vectorizeResult)) { 2254 LDBG("Vectorization failed\n"); 2255 return failure(); 2256 } 2257 2258 if (!results.empty()) 2259 rewriter.replaceOp(op, results); 2260 else 2261 rewriter.eraseOp(op); 2262 2263 return success(); 2264 } 2265 2266 LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, 2267 memref::CopyOp copyOp) { 2268 auto srcType = cast<MemRefType>(copyOp.getSource().getType()); 2269 auto dstType = cast<MemRefType>(copyOp.getTarget().getType()); 2270 if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) 2271 return failure(); 2272 2273 auto srcElementType = getElementTypeOrSelf(srcType); 2274 auto dstElementType = getElementTypeOrSelf(dstType); 2275 if (!VectorType::isValidElementType(srcElementType) || 2276 !VectorType::isValidElementType(dstElementType)) 2277 return failure(); 2278 2279 auto readType = VectorType::get(srcType.getShape(), srcElementType); 2280 auto writeType = VectorType::get(dstType.getShape(), dstElementType); 2281 2282 Location loc = copyOp->getLoc(); 2283 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 2284 SmallVector<Value> indices(srcType.getRank(), zero); 2285 2286 Value readValue = rewriter.create<vector::TransferReadOp>( 2287 loc, readType, copyOp.getSource(), indices, 2288 rewriter.getMultiDimIdentityMap(srcType.getRank())); 2289 if (cast<VectorType>(readValue.getType()).getRank() == 0) { 2290 readValue = 2291 rewriter.create<vector::ExtractOp>(loc, readValue, ArrayRef<int64_t>()); 2292 readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue); 2293 } 2294 Operation *writeValue = rewriter.create<vector::TransferWriteOp>( 2295 loc, readValue, copyOp.getTarget(), indices, 2296 rewriter.getMultiDimIdentityMap(srcType.getRank())); 2297 rewriter.replaceOp(copyOp, writeValue->getResults()); 2298 return success(); 2299 } 2300 2301 //----------------------------------------------------------------------------// 2302 // Misc. vectorization patterns. 2303 //----------------------------------------------------------------------------// 2304 /// Base pattern for rewriting tensor::PadOps whose result is consumed by a 2305 /// given operation type OpTy. 2306 template <typename OpTy> 2307 struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> { 2308 using OpRewritePattern<tensor::PadOp>::OpRewritePattern; 2309 2310 LogicalResult matchAndRewrite(tensor::PadOp padOp, 2311 PatternRewriter &rewriter) const final { 2312 bool changed = false; 2313 // Insert users in vector, because some users may be replaced/removed. 2314 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 2315 if (auto op = dyn_cast<OpTy>(user)) 2316 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 2317 return success(changed); 2318 } 2319 2320 protected: 2321 virtual LogicalResult rewriteUser(PatternRewriter &rewriter, 2322 tensor::PadOp padOp, OpTy op) const = 0; 2323 }; 2324 2325 /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: 2326 /// ``` 2327 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 2328 /// %r = vector.transfer_read %0[%c0, %c0], %cst 2329 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 2330 /// ``` 2331 /// is rewritten to: 2332 /// ``` 2333 /// %r = vector.transfer_read %src[%c0, %c0], %padding 2334 /// {in_bounds = [true, true]} 2335 /// : tensor<?x?xf32>, vector<17x5xf32> 2336 /// ``` 2337 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 2338 /// sure that the original padding value %cst was never used. 2339 /// 2340 /// This rewrite is possible if: 2341 /// - `xferOp` has no out-of-bounds dims or mask. 2342 /// - Low padding is static 0. 2343 /// - Single, scalar padding value. 2344 struct PadOpVectorizationWithTransferReadPattern 2345 : public VectorizePadOpUserPattern<vector::TransferReadOp> { 2346 using VectorizePadOpUserPattern< 2347 vector::TransferReadOp>::VectorizePadOpUserPattern; 2348 2349 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 2350 vector::TransferReadOp xferOp) const override { 2351 // Low padding must be static 0. 2352 if (!padOp.hasZeroLowPad()) 2353 return failure(); 2354 // Pad value must be a constant. 2355 auto padValue = padOp.getConstantPaddingValue(); 2356 if (!padValue) 2357 return failure(); 2358 // Padding value of existing `xferOp` is unused. 2359 if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) 2360 return failure(); 2361 2362 rewriter.modifyOpInPlace(xferOp, [&]() { 2363 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 2364 xferOp->setAttr(xferOp.getInBoundsAttrName(), 2365 rewriter.getBoolArrayAttr(inBounds)); 2366 xferOp.getSourceMutable().assign(padOp.getSource()); 2367 xferOp.getPaddingMutable().assign(padValue); 2368 }); 2369 2370 return success(); 2371 } 2372 }; 2373 2374 /// Rewrite use of tensor::PadOp result in TransferWriteOp. 2375 /// This pattern rewrites TransferWriteOps that write to a padded tensor 2376 /// value, where the same amount of padding is immediately removed again after 2377 /// the write. In such cases, the TransferWriteOp can write to the non-padded 2378 /// tensor value and apply out-of-bounds masking. E.g.: 2379 /// ``` 2380 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 2381 /// : tensor<...> to tensor<?x?xf32> 2382 /// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 2383 /// %2 = vector.transfer_write %vec, %1[...] 2384 /// : vector<17x5xf32>, tensor<17x5xf32> 2385 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 2386 /// : tensor<17x5xf32> to tensor<?x?xf32> 2387 /// ``` 2388 /// is rewritten to: 2389 /// ``` 2390 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 2391 /// : tensor<...> to tensor<?x?xf32> 2392 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, 2393 /// tensor<?x?xf32> 2394 /// ``` 2395 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 2396 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an 2397 /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ 2398 /// from %r's old dimensions. 2399 /// 2400 /// This rewrite is possible if: 2401 /// - Low padding is static 0. 2402 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 2403 /// ExtractSliceOp trims the same amount of padding that was added 2404 /// beforehand. 2405 /// - Single, scalar padding value. 2406 struct PadOpVectorizationWithTransferWritePattern 2407 : public VectorizePadOpUserPattern<vector::TransferWriteOp> { 2408 using VectorizePadOpUserPattern< 2409 vector::TransferWriteOp>::VectorizePadOpUserPattern; 2410 2411 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 2412 vector::TransferWriteOp xferOp) const override { 2413 // TODO: support 0-d corner case. 2414 if (xferOp.getTransferRank() == 0) 2415 return failure(); 2416 2417 // Low padding must be static 0. 2418 if (!padOp.hasZeroLowPad()) 2419 return failure(); 2420 // Pad value must be a constant. 2421 auto padValue = padOp.getConstantPaddingValue(); 2422 if (!padValue) 2423 return failure(); 2424 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 2425 if (!xferOp->hasOneUse()) 2426 return failure(); 2427 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 2428 if (!trimPadding) 2429 return failure(); 2430 // Only static zero offsets supported when trimming padding. 2431 if (!trimPadding.hasZeroOffset()) 2432 return failure(); 2433 // trimPadding must remove the amount of padding that was added earlier. 2434 if (!hasSameTensorSize(padOp.getSource(), trimPadding)) 2435 return failure(); 2436 2437 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 2438 rewriter.setInsertionPoint(xferOp); 2439 2440 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 2441 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 2442 xferOp, padOp.getSource().getType(), xferOp.getVector(), 2443 padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), 2444 xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); 2445 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 2446 2447 return success(); 2448 } 2449 2450 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 2451 /// i.e., same dimensions. 2452 /// 2453 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 2454 /// dimensions, this function tries to infer the (static) tensor size by 2455 /// looking at the defining op and utilizing op-specific knowledge. 2456 /// 2457 /// This is a conservative analysis. In case equal tensor sizes cannot be 2458 /// proven statically, this analysis returns `false` even though the tensor 2459 /// sizes may turn out to be equal at runtime. 2460 bool hasSameTensorSize(Value beforePadding, 2461 tensor::ExtractSliceOp afterTrimming) const { 2462 // If the input to tensor::PadOp is a CastOp, try with both CastOp 2463 // result and CastOp operand. 2464 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 2465 if (hasSameTensorSize(castOp.getSource(), afterTrimming)) 2466 return true; 2467 2468 auto t1 = dyn_cast<RankedTensorType>(beforePadding.getType()); 2469 auto t2 = dyn_cast<RankedTensorType>(afterTrimming.getType()); 2470 // Only RankedTensorType supported. 2471 if (!t1 || !t2) 2472 return false; 2473 // Rank of both values must be the same. 2474 if (t1.getRank() != t2.getRank()) 2475 return false; 2476 2477 // All static dimensions must be the same. Mixed cases (e.g., dimension 2478 // static in `t1` but dynamic in `t2`) are not supported. 2479 for (unsigned i = 0; i < t1.getRank(); ++i) { 2480 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 2481 return false; 2482 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 2483 return false; 2484 } 2485 2486 // Nothing more to check if all dimensions are static. 2487 if (t1.getNumDynamicDims() == 0) 2488 return true; 2489 2490 // All dynamic sizes must be the same. The only supported case at the 2491 // moment is when `beforePadding` is an ExtractSliceOp (or a cast 2492 // thereof). 2493 2494 // Apart from CastOp, only ExtractSliceOp is supported. 2495 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 2496 if (!beforeSlice) 2497 return false; 2498 2499 assert(static_cast<size_t>(t1.getRank()) == 2500 beforeSlice.getMixedSizes().size()); 2501 assert(static_cast<size_t>(t2.getRank()) == 2502 afterTrimming.getMixedSizes().size()); 2503 2504 for (unsigned i = 0; i < t1.getRank(); ++i) { 2505 // Skip static dimensions. 2506 if (!t1.isDynamicDim(i)) 2507 continue; 2508 auto size1 = beforeSlice.getMixedSizes()[i]; 2509 auto size2 = afterTrimming.getMixedSizes()[i]; 2510 2511 // Case 1: Same value or same constant int. 2512 if (isEqualConstantIntOrValue(size1, size2)) 2513 continue; 2514 2515 // Other cases: Take a deeper look at defining ops of values. 2516 auto v1 = llvm::dyn_cast_if_present<Value>(size1); 2517 auto v2 = llvm::dyn_cast_if_present<Value>(size2); 2518 if (!v1 || !v2) 2519 return false; 2520 2521 // Case 2: Both values are identical AffineMinOps. (Should not happen if 2522 // CSE is run.) 2523 auto minOp1 = v1.getDefiningOp<affine::AffineMinOp>(); 2524 auto minOp2 = v2.getDefiningOp<affine::AffineMinOp>(); 2525 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && 2526 minOp1.getOperands() == minOp2.getOperands()) 2527 continue; 2528 2529 // Add additional cases as needed. 2530 } 2531 2532 // All tests passed. 2533 return true; 2534 } 2535 }; 2536 2537 /// Returns the effective Pad value for the input op, provided it's a scalar. 2538 /// 2539 /// Many Ops exhibit pad-like behaviour, but this isn't always explicit. If 2540 /// this Op performs padding, retrieve the padding value provided that it's 2541 /// a scalar and static/fixed for all the padded values. Returns an empty value 2542 /// otherwise. 2543 static Value getStaticPadVal(Operation *op) { 2544 if (!op) 2545 return {}; 2546 2547 // 1. vector.broadcast (f32 -> vector <...xf32>) - return the value that's 2548 // being broadcast, provided that it's a scalar. 2549 if (auto bcast = llvm::dyn_cast<vector::BroadcastOp>(op)) { 2550 auto source = bcast.getSource(); 2551 if (llvm::dyn_cast<VectorType>(source.getType())) 2552 return {}; 2553 2554 return source; 2555 } 2556 2557 // 2. linalg.fill - use the scalar input value that used to fill the output 2558 // tensor. 2559 if (auto fill = llvm::dyn_cast<linalg::FillOp>(op)) { 2560 return fill.getInputs()[0]; 2561 } 2562 2563 // 3. tensor.generateOp - can't guarantee the value is fixed without 2564 // analysing, bail out. 2565 if (auto generate = llvm::dyn_cast<tensor::GenerateOp>(op)) { 2566 return {}; 2567 } 2568 2569 // 4. vector.transfer_write - inspect the input vector that's written from. If 2570 // if contains a single value that has been broadcast (e.g. via 2571 // vector.broadcast), extract it, fail otherwise. 2572 if (auto xferWrite = llvm::dyn_cast<vector::TransferWriteOp>(op)) 2573 return getStaticPadVal(xferWrite.getVector().getDefiningOp()); 2574 2575 // 5. tensor.insert_slice - inspect the destination tensor. If it's larger 2576 // than the input tensor, then, provided it's constant, we'll extract the 2577 // value that was used to generate it (via e.g. linalg.fill), fail otherwise. 2578 // TODO: Clarify the semantics when the input tensor is larger than the 2579 // destination. 2580 if (auto slice = llvm::dyn_cast<tensor::InsertSliceOp>(op)) 2581 return getStaticPadVal(slice.getDest().getDefiningOp()); 2582 2583 return {}; 2584 } 2585 2586 /// Rewrite tensor.insert.slice as a vector.transfer_read + 2587 /// vector.transfer_write pair. The vector size is inferred from the static 2588 /// dims in the input and output tensors. If a dim is dynamic in both the input 2589 /// and output tensors, bails out. 2590 /// 2591 /// Before: 2592 /// !t_in_type = tensor<1x2x3xf32> 2593 /// !t_out_type = tensor<9x8x7x1x2x3xf32> 2594 /// !v_type = vector<1x2x3xf32> 2595 /// %inserted_slice = tensor.insert_slice %src into %dest ... : !t_in_type 2596 /// into !t_out_type 2597 /// After: 2598 /// %read = vector.transfer_read %src[...], %pad ... : !t_in_type, !v_type 2599 /// %write = vector.transfer_write %read, %dest ... : !v_type, !t_out_type 2600 /// 2601 /// TODO: Support masking 2602 struct InsertSliceVectorizePattern 2603 : public OpRewritePattern<tensor::InsertSliceOp> { 2604 using OpRewritePattern<tensor::InsertSliceOp>::OpRewritePattern; 2605 2606 LogicalResult matchAndRewrite(tensor::InsertSliceOp sliceOp, 2607 PatternRewriter &rewriter) const final { 2608 auto sourceType = sliceOp.getSource().getType(); 2609 if (!VectorType::isValidElementType(sourceType.getElementType())) 2610 return failure(); 2611 2612 auto resultType = sliceOp.getResultType(); 2613 2614 // 1. Get the pad value. 2615 // TransferReadOp requires a scalar padding value. Note that: 2616 // * for in-bounds access, the value is actually irrelevant. 2617 // There are 2 cases in which xfer.read accesses are known to be in-bounds: 2618 // 1. The source shape is static (output vector sizes would be based on 2619 // the source shape and hence all memory accesses would be in-bounds), 2620 // 2. Masking is used (output vector sizes would be user-provided, in which 2621 // case it is assumed that all memory accesses are in-bounds). This 2622 // remains a TODO. 2623 // 2624 // When the value is not known and not needed, use 0. Otherwise, bail out. 2625 Value padValue = getStaticPadVal(sliceOp); 2626 bool isOutOfBoundsRead = !sourceType.hasStaticShape(); 2627 2628 if (!padValue && isOutOfBoundsRead) { 2629 LDBG("Failed to get a pad value for out-of-bounds read access\n"); 2630 return failure(); 2631 } 2632 2633 if (!padValue) { 2634 auto elemType = sourceType.getElementType(); 2635 padValue = rewriter.create<arith::ConstantOp>( 2636 sliceOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); 2637 } 2638 2639 // 2. Get the vector shape and in-bounds attributes 2640 SmallVector<int64_t> vecShape; 2641 SmallVector<bool> readInBounds; 2642 SmallVector<bool> writeInBounds; 2643 size_t rankDiff = resultType.getRank() - sourceType.getRank(); 2644 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 2645 if (!sourceType.isDynamicDim(i)) { 2646 vecShape.push_back(sourceType.getDimSize(i)); 2647 // Source shape is statically known: Neither read nor write are 2648 // out-of-bounds. 2649 readInBounds.push_back(true); 2650 writeInBounds.push_back(true); 2651 } else if (!resultType.isDynamicDim(i)) { 2652 // Source shape is not statically known, but result shape is. 2653 // Vectorize with size of result shape. This may be larger than the 2654 // source size. 2655 // FIXME: Using rankDiff implies that the source tensor is inserted at 2656 // the end of the destination tensor. However, that's not required. 2657 vecShape.push_back(resultType.getDimSize(rankDiff + i)); 2658 // Read may be out-of-bounds because the result size could be larger 2659 // than the source size. 2660 readInBounds.push_back(false); 2661 // Write will in-bounds provided that the corresponding write idx is 0. 2662 // To keep this logic simple, conservatively mark as out-of-bounds. 2663 writeInBounds.push_back(false); 2664 } else { 2665 // Neither source nor result dim of padOp is static. Cannot vectorize 2666 // the copy. 2667 // TODO: Add support for masking 2668 return failure(); 2669 } 2670 } 2671 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 2672 2673 // 3. Generate TransferReadOp. 2674 SmallVector<Value> readIndices( 2675 vecType.getRank(), 2676 rewriter.create<arith::ConstantIndexOp>(sliceOp.getLoc(), 0)); 2677 auto read = rewriter.create<vector::TransferReadOp>( 2678 sliceOp.getLoc(), vecType, sliceOp.getSource(), readIndices, padValue, 2679 ArrayRef<bool>{readInBounds}); 2680 2681 // 4. Generate TransferWriteOp. 2682 auto writeIndices = getValueOrCreateConstantIndexOp( 2683 rewriter, sliceOp.getLoc(), sliceOp.getMixedOffsets()); 2684 2685 // 5. Finalize 2686 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 2687 sliceOp, read, sliceOp.getDest(), writeIndices, 2688 ArrayRef<bool>{writeInBounds}); 2689 2690 return success(); 2691 } 2692 }; 2693 2694 /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: 2695 /// ``` 2696 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 2697 /// %r = tensor.insert_slice %0 2698 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 2699 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 2700 /// ``` 2701 /// is rewritten to: 2702 /// ``` 2703 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 2704 /// : tensor<?x?xf32>, vector<17x5xf32> 2705 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 2706 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 2707 /// ``` 2708 /// 2709 /// This rewrite is possible if: 2710 /// - Low padding is static 0. 2711 /// - `padOp` result shape is static. 2712 /// - The entire padded tensor is inserted. 2713 /// (Implies that sizes of `insertOp` are all static.) 2714 /// - Only unit strides in `insertOp`. 2715 /// - Single, scalar padding value. 2716 /// - `padOp` result not used as destination. 2717 struct PadOpVectorizationWithInsertSlicePattern 2718 : public VectorizePadOpUserPattern<tensor::InsertSliceOp> { 2719 using VectorizePadOpUserPattern< 2720 tensor::InsertSliceOp>::VectorizePadOpUserPattern; 2721 2722 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 2723 tensor::InsertSliceOp insertOp) const override { 2724 // Low padding must be static 0. 2725 if (!padOp.hasZeroLowPad()) 2726 return failure(); 2727 // Only unit stride supported. 2728 if (!insertOp.hasUnitStride()) 2729 return failure(); 2730 // Pad value must be a constant. 2731 auto padValue = padOp.getConstantPaddingValue(); 2732 if (!padValue) 2733 return failure(); 2734 // Dynamic shapes not supported. 2735 if (!cast<ShapedType>(padOp.getResult().getType()).hasStaticShape()) 2736 return failure(); 2737 // Pad result not used as destination. 2738 if (insertOp.getDest() == padOp.getResult()) 2739 return failure(); 2740 2741 auto vecType = VectorType::get(padOp.getType().getShape(), 2742 padOp.getType().getElementType()); 2743 unsigned vecRank = vecType.getRank(); 2744 unsigned tensorRank = insertOp.getType().getRank(); 2745 2746 // Check if sizes match: Insert the entire tensor into most minor dims. 2747 // (No permutations allowed.) 2748 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 2749 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 2750 if (!llvm::all_of( 2751 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 2752 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 2753 })) 2754 return failure(); 2755 2756 // Insert the TransferReadOp and TransferWriteOp at the position of the 2757 // InsertSliceOp. 2758 rewriter.setInsertionPoint(insertOp); 2759 2760 // Generate TransferReadOp: Read entire source tensor and add high 2761 // padding. 2762 SmallVector<Value> readIndices( 2763 vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 2764 auto read = rewriter.create<vector::TransferReadOp>( 2765 padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); 2766 2767 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 2768 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 2769 // source must fit into the destination at the specified offsets. 2770 auto writeIndices = getValueOrCreateConstantIndexOp( 2771 rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 2772 SmallVector<bool> inBounds(vecRank, true); 2773 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 2774 insertOp, read, insertOp.getDest(), writeIndices, 2775 ArrayRef<bool>{inBounds}); 2776 2777 return success(); 2778 } 2779 }; 2780 2781 void mlir::linalg::populateInsertSliceVectorizationPatterns( 2782 RewritePatternSet &patterns) { 2783 patterns.add<InsertSliceVectorizePattern>(patterns.getContext()); 2784 } 2785 2786 void mlir::linalg::populatePadOpVectorizationPatterns( 2787 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 2788 patterns.add<PadOpVectorizationWithTransferReadPattern, 2789 PadOpVectorizationWithTransferWritePattern, 2790 PadOpVectorizationWithInsertSlicePattern>( 2791 patterns.getContext(), baseBenefit.getBenefit() + 1); 2792 } 2793 2794 //----------------------------------------------------------------------------// 2795 // Forwarding patterns 2796 //----------------------------------------------------------------------------// 2797 2798 /// Check whether there is any interleaved use of any `values` between 2799 /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value 2800 /// is in a different block. 2801 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 2802 ValueRange values) { 2803 if (firstOp->getBlock() != secondOp->getBlock() || 2804 !firstOp->isBeforeInBlock(secondOp)) { 2805 LDBG("interleavedUses precondition failed, firstOp: " 2806 << *firstOp << ", second op: " << *secondOp << "\n"); 2807 return true; 2808 } 2809 for (auto v : values) { 2810 for (auto &u : v.getUses()) { 2811 Operation *owner = u.getOwner(); 2812 if (owner == firstOp || owner == secondOp) 2813 continue; 2814 // TODO: this is too conservative, use dominance info in the future. 2815 if (owner->getBlock() == firstOp->getBlock() && 2816 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 2817 continue; 2818 LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp 2819 << ", second op: " << *secondOp << "\n"); 2820 return true; 2821 } 2822 } 2823 return false; 2824 } 2825 2826 /// Return the unique subview use of `v` if it is indeed unique, null 2827 /// otherwise. 2828 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 2829 memref::SubViewOp subViewOp; 2830 for (auto &u : v.getUses()) { 2831 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 2832 if (subViewOp) 2833 return memref::SubViewOp(); 2834 subViewOp = newSubViewOp; 2835 } 2836 } 2837 return subViewOp; 2838 } 2839 2840 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 2841 /// when available. 2842 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 2843 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 2844 2845 // TODO: support mask. 2846 if (xferOp.getMask()) 2847 return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); 2848 2849 // Transfer into `view`. 2850 Value viewOrAlloc = xferOp.getSource(); 2851 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 2852 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 2853 return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); 2854 2855 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 2856 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 2857 if (!subViewOp) 2858 return rewriter.notifyMatchFailure(xferOp, "no subview found"); 2859 Value subView = subViewOp.getResult(); 2860 2861 // Find the copy into `subView` without interleaved uses. 2862 memref::CopyOp copyOp; 2863 for (auto &u : subView.getUses()) { 2864 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 2865 assert(isa<MemRefType>(newCopyOp.getTarget().getType())); 2866 if (newCopyOp.getTarget() != subView) 2867 continue; 2868 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 2869 continue; 2870 copyOp = newCopyOp; 2871 break; 2872 } 2873 } 2874 if (!copyOp) 2875 return rewriter.notifyMatchFailure(xferOp, "no copy found"); 2876 2877 // Find the fill into `viewOrAlloc` without interleaved uses before the 2878 // copy. 2879 FillOp maybeFillOp; 2880 for (auto &u : viewOrAlloc.getUses()) { 2881 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 2882 assert(isa<MemRefType>(newFillOp.output().getType())); 2883 if (newFillOp.output() != viewOrAlloc) 2884 continue; 2885 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 2886 continue; 2887 maybeFillOp = newFillOp; 2888 break; 2889 } 2890 } 2891 // Ensure padding matches. 2892 if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) 2893 return rewriter.notifyMatchFailure(xferOp, 2894 "padding value does not match fill"); 2895 2896 // `in` is the subview that memref.copy reads. Replace it. 2897 Value in = copyOp.getSource(); 2898 2899 // memref.copy + linalg.fill can be used to create a padded local buffer. 2900 // The `masked` attribute is only valid on this padded buffer. 2901 // When forwarding to vector.transfer_read, the attribute must be reset 2902 // conservatively. 2903 auto vectorType = xferOp.getVectorType(); 2904 Value res = rewriter.create<vector::TransferReadOp>( 2905 xferOp.getLoc(), vectorType, in, xferOp.getIndices(), 2906 xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), 2907 rewriter.getBoolArrayAttr( 2908 SmallVector<bool>(vectorType.getRank(), false))); 2909 2910 if (maybeFillOp) 2911 rewriter.eraseOp(maybeFillOp); 2912 rewriter.eraseOp(copyOp); 2913 rewriter.replaceOp(xferOp, res); 2914 2915 return success(); 2916 } 2917 2918 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 2919 /// when available. 2920 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 2921 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 2922 // TODO: support mask. 2923 if (xferOp.getMask()) 2924 return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); 2925 2926 // Transfer into `viewOrAlloc`. 2927 Value viewOrAlloc = xferOp.getSource(); 2928 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 2929 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 2930 return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); 2931 2932 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 2933 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 2934 if (!subViewOp) 2935 return rewriter.notifyMatchFailure(xferOp, "no subview found"); 2936 Value subView = subViewOp.getResult(); 2937 2938 // Find the copy from `subView` without interleaved uses. 2939 memref::CopyOp copyOp; 2940 for (auto &u : subViewOp.getResult().getUses()) { 2941 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 2942 if (newCopyOp.getSource() != subView) 2943 continue; 2944 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 2945 continue; 2946 copyOp = newCopyOp; 2947 break; 2948 } 2949 } 2950 if (!copyOp) 2951 return rewriter.notifyMatchFailure(xferOp, "no copy found"); 2952 2953 // `out` is the subview copied into that we replace. 2954 assert(isa<MemRefType>(copyOp.getTarget().getType())); 2955 Value out = copyOp.getTarget(); 2956 2957 // Forward vector.transfer into copy. 2958 // memref.copy + linalg.fill can be used to create a padded local buffer. 2959 // The `masked` attribute is only valid on this padded buffer. 2960 // When forwarding to vector.transfer_write, the attribute must be reset 2961 // conservatively. 2962 auto vector = xferOp.getVector(); 2963 rewriter.create<vector::TransferWriteOp>( 2964 xferOp.getLoc(), vector, out, xferOp.getIndices(), 2965 xferOp.getPermutationMapAttr(), xferOp.getMask(), 2966 rewriter.getBoolArrayAttr( 2967 SmallVector<bool>(vector.getType().getRank(), false))); 2968 2969 rewriter.eraseOp(copyOp); 2970 rewriter.eraseOp(xferOp); 2971 2972 return success(); 2973 } 2974 2975 //===----------------------------------------------------------------------===// 2976 // Convolution vectorization patterns 2977 //===----------------------------------------------------------------------===// 2978 2979 template <int N> 2980 static void bindShapeDims(ShapedType shapedType) {} 2981 2982 template <int N, typename IntTy, typename... IntTy2> 2983 static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { 2984 val = shapedType.getShape()[N]; 2985 bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...); 2986 } 2987 2988 /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). 2989 template <typename... IntTy> 2990 static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { 2991 bindShapeDims<0>(shapedType, vals...); 2992 } 2993 2994 namespace { 2995 bool isCastOfBlockArgument(Operation *op) { 2996 return isa<CastOpInterface>(op) && op->getNumOperands() == 1 && 2997 isa<BlockArgument>(op->getOperand(0)); 2998 } 2999 3000 bool isSupportedPoolKind(vector::CombiningKind kind) { 3001 switch (kind) { 3002 case vector::CombiningKind::ADD: 3003 case vector::CombiningKind::MAXNUMF: 3004 case vector::CombiningKind::MAXIMUMF: 3005 case vector::CombiningKind::MAXSI: 3006 case vector::CombiningKind::MAXUI: 3007 case vector::CombiningKind::MINNUMF: 3008 case vector::CombiningKind::MINIMUMF: 3009 case vector::CombiningKind::MINSI: 3010 case vector::CombiningKind::MINUI: 3011 return true; 3012 default: 3013 return false; 3014 } 3015 } 3016 3017 /// Generate a vector implementation for either: 3018 /// ``` 3019 /// Op def: ( w, kw ) 3020 /// Iters: ({Par(), Red()}) 3021 /// Layout: {{w + kw}, {kw}, {w}} 3022 /// ``` 3023 /// kw is unrolled. 3024 /// 3025 /// or 3026 /// 3027 /// ``` 3028 /// Op def: ( n, w, c, kw, f ) 3029 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 3030 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 3031 /// ``` 3032 /// kw is unrolled, w is unrolled iff dilationW > 1. 3033 /// 3034 /// or 3035 /// 3036 /// ``` 3037 /// Op def: ( n, c, w, f, kw ) 3038 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 3039 /// Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} 3040 /// ``` 3041 /// kw is unrolled, w is unrolled iff dilationW > 1. 3042 /// 3043 /// or 3044 /// 3045 /// ``` 3046 /// Op def: ( n, w, c, kw ) 3047 /// Iters: ({Par(), Par(), Par(), Red()}) 3048 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 3049 /// ``` 3050 /// kw is unrolled, w is unrolled iff dilationW > 1. 3051 struct Conv1DGenerator 3052 : public StructuredGenerator<LinalgOp, utils::IteratorType> { 3053 Conv1DGenerator(RewriterBase &rewriter, LinalgOp linalgOp, int strideW, 3054 int dilationW) 3055 : StructuredGenerator<LinalgOp, utils::IteratorType>(rewriter, linalgOp), 3056 strideW(strideW), dilationW(dilationW) { 3057 // Determine whether `linalgOp` can be generated with this generator 3058 if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1) 3059 return; 3060 lhsShaped = linalgOp.getDpsInputOperand(0)->get(); 3061 rhsShaped = linalgOp.getDpsInputOperand(1)->get(); 3062 resShaped = linalgOp.getDpsInitOperand(0)->get(); 3063 lhsShapedType = dyn_cast<ShapedType>(lhsShaped.getType()); 3064 rhsShapedType = dyn_cast<ShapedType>(rhsShaped.getType()); 3065 resShapedType = dyn_cast<ShapedType>(resShaped.getType()); 3066 if (!lhsShapedType || !rhsShapedType || !resShapedType) 3067 return; 3068 // (LHS has dimension NCW/NWC and RES has dimension NFW/NCW/NWF/NWC) OR 3069 // (non-channeled convolution -> LHS and RHS both have single dimensions). 3070 if ((lhsShapedType.getRank() != 3 || resShapedType.getRank() != 3) && 3071 (lhsShapedType.getRank() != 1 || resShapedType.getRank() != 1)) 3072 return; 3073 3074 Operation *reduceOp = matchLinalgReduction(linalgOp.getDpsInitOperand(0)); 3075 if (!reduceOp) 3076 return; 3077 redOp = reduceOp->getName().getIdentifier(); 3078 3079 if (!setOperKind(reduceOp)) 3080 return; 3081 auto maybeKind = getCombinerOpKind(reduceOp); 3082 // Typically convolution will have a `Add` CombiningKind but for i1 type it 3083 // can get strength reduced to `OR` which is also supported. This strength 3084 // reduction logic is in `buildBinaryFn` helper in the Linalg dialect. 3085 if (!maybeKind || ((*maybeKind != vector::CombiningKind::ADD && 3086 *maybeKind != vector::CombiningKind::OR) && 3087 (oper != Pool || !isSupportedPoolKind(*maybeKind)))) { 3088 return; 3089 } 3090 reductionKind = maybeKind.value(); 3091 3092 auto rhsRank = rhsShapedType.getRank(); 3093 switch (oper) { 3094 case Conv: 3095 if (rhsRank != 1 && rhsRank != 2 && rhsRank != 3) 3096 return; 3097 break; 3098 case Pool: 3099 if (rhsRank != 1) 3100 return; 3101 break; 3102 } 3103 // The op is now known to be valid. 3104 valid = true; 3105 } 3106 3107 /// Generate a vector implementation for: 3108 /// ``` 3109 /// Op def: ( w, kw ) 3110 /// Iters: ({Par(), Red()}) 3111 /// Layout: {{w + kw}, {kw}, {w}} 3112 /// ``` 3113 /// kw is always unrolled. 3114 /// 3115 /// or 3116 /// 3117 /// ``` 3118 /// Op def: ( n, w, c, kw, f ) 3119 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 3120 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 3121 /// ``` 3122 /// kw is always unrolled. 3123 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 3124 /// > 1. 3125 FailureOr<Operation *> conv(Conv1DOpOrder conv1DOpOrder) { 3126 if (!valid) 3127 return rewriter.notifyMatchFailure(op, "unvectorizable 1-D conv/pool"); 3128 3129 int64_t nSize, wSize, cSize, kwSize, fSize; 3130 SmallVector<int64_t, 3> lhsShape, rhsShape, resShape; 3131 bool isSingleChanneled = (conv1DOpOrder == Conv1DOpOrder::W); 3132 switch (conv1DOpOrder) { 3133 case Conv1DOpOrder::W: 3134 // Initialize unused dimensions 3135 nSize = fSize = cSize = 0; 3136 // out{W} 3137 bindShapeDims(resShapedType, wSize); 3138 // kernel{kw} 3139 bindShapeDims(rhsShapedType, kwSize); 3140 lhsShape = {// iw = ow + kw - 1 3141 // (i.e. 16 convolved with 3 -> 14) 3142 (wSize + kwSize - 1)}; 3143 rhsShape = {kwSize}; 3144 resShape = {wSize}; 3145 break; 3146 case Conv1DOpOrder::Nwc: 3147 // out{n, w, f} 3148 bindShapeDims(resShapedType, nSize, wSize, fSize); 3149 switch (oper) { 3150 case Conv: 3151 // kernel{kw, c, f} 3152 bindShapeDims(rhsShapedType, kwSize, cSize); 3153 break; 3154 case Pool: 3155 // kernel{kw} 3156 bindShapeDims(rhsShapedType, kwSize); 3157 cSize = fSize; 3158 break; 3159 } 3160 lhsShape = {nSize, 3161 // iw = ow * sw + kw * dw - 1 3162 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 3163 // Perform the proper inclusive -> exclusive -> inclusive. 3164 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 3165 1, 3166 cSize}; 3167 switch (oper) { 3168 case Conv: 3169 rhsShape = {kwSize, cSize, fSize}; 3170 break; 3171 case Pool: 3172 rhsShape = {kwSize}; 3173 break; 3174 } 3175 resShape = {nSize, wSize, fSize}; 3176 break; 3177 case Conv1DOpOrder::Ncw: 3178 // out{n, f, w} 3179 bindShapeDims(resShapedType, nSize, fSize, wSize); 3180 switch (oper) { 3181 case Conv: 3182 // kernel{f, c, kw} 3183 bindShapeDims(rhsShapedType, fSize, cSize, kwSize); 3184 break; 3185 case Pool: 3186 // kernel{kw} 3187 bindShapeDims(rhsShapedType, kwSize); 3188 cSize = fSize; 3189 break; 3190 } 3191 lhsShape = {nSize, cSize, 3192 // iw = ow * sw + kw * dw - 1 3193 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 3194 // Perform the proper inclusive -> exclusive -> inclusive. 3195 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 3196 1}; 3197 switch (oper) { 3198 case Conv: 3199 rhsShape = {fSize, cSize, kwSize}; 3200 break; 3201 case Pool: 3202 rhsShape = {kwSize}; 3203 break; 3204 } 3205 resShape = {nSize, fSize, wSize}; 3206 break; 3207 } 3208 3209 vector::TransferWriteOp write; 3210 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 3211 3212 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 3213 // When strideW == 1, we can batch the contiguous loads and avoid 3214 // unrolling 3215 int64_t wSizeStep = strideW == 1 ? wSize : 1; 3216 3217 Type lhsEltType = lhsShapedType.getElementType(); 3218 Type rhsEltType = rhsShapedType.getElementType(); 3219 Type resEltType = resShapedType.getElementType(); 3220 auto lhsType = VectorType::get(lhsShape, lhsEltType); 3221 auto rhsType = VectorType::get(rhsShape, rhsEltType); 3222 auto resType = VectorType::get(resShape, resEltType); 3223 // Zero padding with the corresponding dimensions for lhs, rhs and res. 3224 SmallVector<Value> lhsPadding(lhsShape.size(), zero); 3225 SmallVector<Value> rhsPadding(rhsShape.size(), zero); 3226 SmallVector<Value> resPadding(resShape.size(), zero); 3227 3228 // Read the whole lhs, rhs and res in one shot (with zero padding). 3229 Value lhs = rewriter.create<vector::TransferReadOp>(loc, lhsType, lhsShaped, 3230 lhsPadding); 3231 // This is needed only for Conv. 3232 Value rhs = nullptr; 3233 if (oper == Conv) 3234 rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped, 3235 rhsPadding); 3236 Value res = rewriter.create<vector::TransferReadOp>(loc, resType, resShaped, 3237 resPadding); 3238 3239 // The base vectorization case for channeled convolution is input: 3240 // {n,w,c}, weight: {kw,c,f}, output: {n,w,f}. To reuse the base pattern 3241 // vectorization case, we do pre transpose on input, weight, and output. 3242 switch (conv1DOpOrder) { 3243 case Conv1DOpOrder::W: 3244 case Conv1DOpOrder::Nwc: 3245 // Base case, so no transposes necessary. 3246 break; 3247 case Conv1DOpOrder::Ncw: { 3248 // To match base vectorization case, we pre-transpose current case. 3249 // ncw -> nwc 3250 static constexpr std::array<int64_t, 3> permLhs = {0, 2, 1}; 3251 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, permLhs); 3252 // fcw -> wcf 3253 static constexpr std::array<int64_t, 3> permRhs = {2, 1, 0}; 3254 3255 // This is needed only for Conv. 3256 if (oper == Conv) 3257 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, permRhs); 3258 // nfw -> nwf 3259 static constexpr std::array<int64_t, 3> permRes = {0, 2, 1}; 3260 res = rewriter.create<vector::TransposeOp>(loc, res, permRes); 3261 break; 3262 } 3263 } 3264 3265 //===------------------------------------------------------------------===// 3266 // Begin vector-only rewrite part 3267 //===------------------------------------------------------------------===// 3268 // Unroll along kw and read slices of lhs and rhs. 3269 SmallVector<Value> lhsVals, rhsVals, resVals; 3270 lhsVals = extractConvInputSlices(rewriter, loc, lhs, nSize, wSize, cSize, 3271 kwSize, strideW, dilationW, wSizeStep, 3272 isSingleChanneled); 3273 // Do not do for pooling. 3274 if (oper == Conv) 3275 rhsVals = extractConvFilterSlices(rewriter, loc, rhs, kwSize); 3276 resVals = extractConvResultSlices(rewriter, loc, res, nSize, wSize, fSize, 3277 wSizeStep, isSingleChanneled); 3278 3279 auto linearIndex = [&](int64_t kw, int64_t w) { 3280 return kw * (wSize / wSizeStep) + w; 3281 }; 3282 3283 // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} 3284 // or perform outerproduct for non-channeled convolution or perform simple 3285 // arith operation for pooling 3286 for (int64_t kw = 0; kw < kwSize; ++kw) { 3287 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3288 switch (oper) { 3289 case Conv: 3290 if (isSingleChanneled) { 3291 resVals[w] = conv1dSliceAsOuterProduct(rewriter, loc, 3292 lhsVals[linearIndex(kw, w)], 3293 rhsVals[kw], resVals[w]); 3294 } else { 3295 resVals[w] = conv1dSliceAsContraction(rewriter, loc, 3296 lhsVals[linearIndex(kw, w)], 3297 rhsVals[kw], resVals[w]); 3298 } 3299 break; 3300 case Pool: 3301 resVals[w] = pool1dSlice(rewriter, loc, lhsVals[linearIndex(kw, w)], 3302 resVals[w]); 3303 break; 3304 } 3305 } 3306 } 3307 3308 res = insertConvResultSlices(rewriter, loc, res, wSize, wSizeStep, resVals, 3309 isSingleChanneled); 3310 //===------------------------------------------------------------------===// 3311 // End vector-only rewrite part 3312 //===------------------------------------------------------------------===// 3313 3314 // The base vectorization case for channeled convolution is output: 3315 // {n,w,f} To reuse the result from base pattern vectorization case, we 3316 // post transpose the base case result. 3317 switch (conv1DOpOrder) { 3318 case Conv1DOpOrder::W: 3319 case Conv1DOpOrder::Nwc: 3320 // Base case, so no transposes necessary. 3321 break; 3322 case Conv1DOpOrder::Ncw: { 3323 // nwf -> nfw 3324 static constexpr std::array<int64_t, 3> perm = {0, 2, 1}; 3325 res = rewriter.create<vector::TransposeOp>(loc, res, perm); 3326 break; 3327 } 3328 } 3329 3330 return rewriter 3331 .create<vector::TransferWriteOp>(loc, res, resShaped, resPadding) 3332 .getOperation(); 3333 } 3334 3335 // Take a value and widen to have the same element type as `ty`. 3336 Value promote(RewriterBase &rewriter, Location loc, Value val, Type ty) { 3337 const Type srcElementType = getElementTypeOrSelf(val.getType()); 3338 const Type dstElementType = getElementTypeOrSelf(ty); 3339 assert(isa<IntegerType>(dstElementType) || isa<FloatType>(dstElementType)); 3340 if (srcElementType == dstElementType) 3341 return val; 3342 3343 const int64_t srcWidth = srcElementType.getIntOrFloatBitWidth(); 3344 const int64_t dstWidth = dstElementType.getIntOrFloatBitWidth(); 3345 const Type dstType = 3346 cast<ShapedType>(val.getType()).cloneWith(std::nullopt, dstElementType); 3347 3348 if (isa<IntegerType>(srcElementType) && isa<FloatType>(dstElementType)) { 3349 return rewriter.create<arith::SIToFPOp>(loc, dstType, val); 3350 } 3351 3352 if (isa<FloatType>(srcElementType) && isa<FloatType>(dstElementType) && 3353 srcWidth < dstWidth) 3354 return rewriter.create<arith::ExtFOp>(loc, dstType, val); 3355 3356 if (isa<IntegerType>(srcElementType) && isa<IntegerType>(dstElementType) && 3357 srcWidth < dstWidth) 3358 return rewriter.create<arith::ExtSIOp>(loc, dstType, val); 3359 3360 assert(false && "unhandled promotion case"); 3361 return nullptr; 3362 } 3363 3364 // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} 3365 Value conv1dSliceAsContraction(RewriterBase &rewriter, Location loc, 3366 Value lhs, Value rhs, Value res) { 3367 vector::IteratorType par = vector::IteratorType::parallel; 3368 vector::IteratorType red = vector::IteratorType::reduction; 3369 AffineExpr n, w, f, c; 3370 bindDims(ctx, n, w, f, c); 3371 lhs = promote(rewriter, loc, lhs, res.getType()); 3372 rhs = promote(rewriter, loc, rhs, res.getType()); 3373 auto contrationOp = rewriter.create<vector::ContractionOp>( 3374 loc, lhs, rhs, res, 3375 /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, 3376 /*iteratorTypes=*/ArrayRef<vector::IteratorType>{par, par, par, red}); 3377 contrationOp.setKind(reductionKind); 3378 return contrationOp; 3379 } 3380 3381 // Create an outerproduct: lhs{w} * rhs{1} -> res{w} for single channel 3382 // convolution. 3383 Value conv1dSliceAsOuterProduct(RewriterBase &rewriter, Location loc, 3384 Value lhs, Value rhs, Value res) { 3385 return rewriter.create<vector::OuterProductOp>( 3386 loc, res.getType(), lhs, rhs, res, vector::CombiningKind::ADD); 3387 } 3388 3389 // Create a reduction: lhs{n, w, c} -> res{n, w, c} 3390 Value pool1dSlice(RewriterBase &rewriter, Location loc, Value lhs, 3391 Value res) { 3392 if (isPoolExt) 3393 lhs = rewriter.create(loc, poolExtOp, lhs, res.getType())->getResult(0); 3394 return rewriter 3395 .create(loc, redOp, ArrayRef<Value>{lhs, res}, res.getType()) 3396 ->getResult(0); 3397 } 3398 3399 /// Generate a vector implementation for: 3400 /// ``` 3401 /// Op def: ( n, w, c, kw) 3402 /// Iters: ({Par(), Par(), Par(), Red()}) 3403 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 3404 /// ``` 3405 /// kw is always unrolled. 3406 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 3407 /// > 1. 3408 FailureOr<Operation *> depthwiseConv(uint64_t channelDimVecSize, 3409 bool channelDimScalableFlag, 3410 bool flatten) { 3411 if (!valid) 3412 return rewriter.notifyMatchFailure(op, "unvectorizable depthwise conv"); 3413 3414 bool scalableChDim = false; 3415 bool useMasking = false; 3416 int64_t nSize, wSize, cSize, kwSize; 3417 // kernel{kw, c} 3418 bindShapeDims(rhsShapedType, kwSize, cSize); 3419 if (ShapedType::isDynamic(cSize)) { 3420 assert(channelDimVecSize != 0 && "Channel dim vec size must be > 0"); 3421 cSize = channelDimVecSize; 3422 // Scalable vectors are only used when both conditions are met: 3423 // 1. channel dim is dynamic 3424 // 2. channelDimScalableFlag is set 3425 scalableChDim = channelDimScalableFlag; 3426 useMasking = true; 3427 } 3428 3429 assert(!(useMasking && flatten) && 3430 "Unsupported flattened conv with dynamic shapes"); 3431 3432 // out{n, w, c} 3433 bindShapeDims(resShapedType, nSize, wSize); 3434 3435 vector::TransferWriteOp write; 3436 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 3437 3438 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 3439 // When strideW == 1, we can batch the contiguous loads and avoid 3440 // unrolling 3441 int64_t wSizeStep = strideW == 1 ? wSize : 1; 3442 3443 Type lhsEltType = lhsShapedType.getElementType(); 3444 Type rhsEltType = rhsShapedType.getElementType(); 3445 Type resEltType = resShapedType.getElementType(); 3446 VectorType lhsType = VectorType::get( 3447 {nSize, 3448 // iw = ow * sw + kw * dw - 1 3449 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 3450 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, 3451 cSize}, 3452 lhsEltType, /*scalableDims=*/{false, false, scalableChDim}); 3453 VectorType rhsType = 3454 VectorType::get({kwSize, cSize}, rhsEltType, 3455 /*scalableDims=*/{false, scalableChDim}); 3456 VectorType resType = 3457 VectorType::get({nSize, wSize, cSize}, resEltType, 3458 /*scalableDims=*/{false, false, scalableChDim}); 3459 3460 // Masks the input xfer Op along the channel dim, iff the corresponding 3461 // scalable flag is set. 3462 auto maybeMaskXferOp = [&](ArrayRef<int64_t> maskShape, 3463 ArrayRef<bool> scalableDims, 3464 Operation *opToMask) { 3465 if (!useMasking) 3466 return opToMask; 3467 auto maskType = 3468 VectorType::get(maskShape, rewriter.getI1Type(), scalableDims); 3469 3470 SmallVector<bool> inBounds(maskShape.size(), true); 3471 auto xferOp = cast<VectorTransferOpInterface>(opToMask); 3472 xferOp->setAttr(xferOp.getInBoundsAttrName(), 3473 rewriter.getBoolArrayAttr(inBounds)); 3474 3475 SmallVector<OpFoldResult> mixedDims = vector::getMixedSizesXfer( 3476 cast<LinalgOp>(op).hasPureTensorSemantics(), opToMask, rewriter); 3477 3478 Value maskOp = 3479 rewriter.create<vector::CreateMaskOp>(loc, maskType, mixedDims); 3480 3481 return mlir::vector::maskOperation(rewriter, opToMask, maskOp); 3482 }; 3483 3484 // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, 3485 // 0]. 3486 Value lhs = rewriter.create<vector::TransferReadOp>( 3487 loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); 3488 auto maybeMaskedLhs = maybeMaskXferOp( 3489 lhsType.getShape(), lhsType.getScalableDims(), lhs.getDefiningOp()); 3490 3491 // Read rhs slice of size {kw, c} @ [0, 0]. 3492 Value rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped, 3493 ValueRange{zero, zero}); 3494 auto maybeMaskedRhs = maybeMaskXferOp( 3495 rhsType.getShape(), rhsType.getScalableDims(), rhs.getDefiningOp()); 3496 3497 // Read res slice of size {n, w, c} @ [0, 0, 0]. 3498 Value res = rewriter.create<vector::TransferReadOp>( 3499 loc, resType, resShaped, ValueRange{zero, zero, zero}); 3500 auto maybeMaskedRes = maybeMaskXferOp( 3501 resType.getShape(), resType.getScalableDims(), res.getDefiningOp()); 3502 3503 //===------------------------------------------------------------------===// 3504 // Begin vector-only rewrite part 3505 //===------------------------------------------------------------------===// 3506 // Unroll along kw and read slices of lhs and rhs. 3507 SmallVector<Value> lhsVals, rhsVals, resVals; 3508 SmallVector<int64_t> inOutSliceSizes = {nSize, wSizeStep, cSize}; 3509 SmallVector<int64_t> inOutStrides = {1, 1, 1}; 3510 3511 // Extract lhs slice of size {n, wSizeStep, c} 3512 // @ [0, sw * w + dw * kw, 0]. 3513 for (int64_t kw = 0; kw < kwSize; ++kw) { 3514 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3515 lhsVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 3516 loc, maybeMaskedLhs->getResult(0), 3517 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 3518 inOutSliceSizes, inOutStrides)); 3519 } 3520 } 3521 // Extract rhs slice of size {c} @ [kw]. 3522 for (int64_t kw = 0; kw < kwSize; ++kw) { 3523 rhsVals.push_back(rewriter.create<vector::ExtractOp>( 3524 loc, maybeMaskedRhs->getResult(0), 3525 /*offsets=*/ArrayRef<int64_t>{kw})); 3526 } 3527 // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. 3528 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3529 resVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 3530 loc, maybeMaskedRes->getResult(0), 3531 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, inOutSliceSizes, 3532 inOutStrides)); 3533 } 3534 3535 auto linearIndex = [&](int64_t kw, int64_t w) { 3536 return kw * (wSize / wSizeStep) + w; 3537 }; 3538 3539 // Note - the scalable flags are ignored as flattening combined with 3540 // scalable vectorization is not supported. 3541 SmallVector<int64_t> inOutFlattenSliceSizes = {nSize, wSizeStep * cSize}; 3542 auto lhsTypeAfterFlattening = 3543 VectorType::get(inOutFlattenSliceSizes, lhsEltType); 3544 auto resTypeAfterFlattening = 3545 VectorType::get(inOutFlattenSliceSizes, resEltType); 3546 3547 // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} 3548 for (int64_t kw = 0; kw < kwSize; ++kw) { 3549 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3550 Value lhsVal = lhsVals[linearIndex(kw, w)]; 3551 Value resVal = resVals[w]; 3552 if (flatten) { 3553 // Flatten the input and output vectors (collapse the channel 3554 // dimension) 3555 lhsVal = rewriter.create<vector::ShapeCastOp>( 3556 loc, lhsTypeAfterFlattening, lhsVals[linearIndex(kw, w)]); 3557 resVal = rewriter.create<vector::ShapeCastOp>( 3558 loc, resTypeAfterFlattening, resVals[w]); 3559 } 3560 resVals[w] = depthwiseConv1dSliceAsMulAcc(rewriter, loc, lhsVal, 3561 rhsVals[kw], resVal, flatten); 3562 if (flatten) { 3563 // Un-flatten the output vector (restore the channel dimension) 3564 resVals[w] = rewriter.create<vector::ShapeCastOp>( 3565 loc, VectorType::get(inOutSliceSizes, resEltType), resVals[w]); 3566 } 3567 } 3568 } 3569 3570 // Its possible we failed to create the Fma. 3571 if (!llvm::all_of(resVals, [](Value v) { return v; })) { 3572 // Manually revert (in reverse order) to avoid leaving a bad IR state. 3573 for (auto &collection : 3574 {resVals, rhsVals, lhsVals, {res, rhs, lhs, zero}}) 3575 for (Value v : collection) 3576 rewriter.eraseOp(v.getDefiningOp()); 3577 return rewriter.notifyMatchFailure(op, "failed to create FMA"); 3578 } 3579 3580 // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. 3581 // This does not depend on kw. 3582 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3583 maybeMaskedRes = rewriter.create<vector::InsertStridedSliceOp>( 3584 loc, resVals[w], maybeMaskedRes->getResult(0), 3585 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 3586 /*strides=*/ArrayRef<int64_t>{1, 1, 1}); 3587 } 3588 //===------------------------------------------------------------------===// 3589 // End vector-only rewrite part 3590 //===------------------------------------------------------------------===// 3591 3592 // Write back res slice of size {n, w, c} @ [0, 0, 0]. 3593 Operation *resOut = rewriter.create<vector::TransferWriteOp>( 3594 loc, maybeMaskedRes->getResult(0), resShaped, 3595 ValueRange{zero, zero, zero}); 3596 return maybeMaskXferOp(resType.getShape(), resType.getScalableDims(), 3597 resOut); 3598 } 3599 3600 /// Lower: 3601 /// * lhs{n, w, c} * rhs{c} -> res{n, w, c} (flatten = false) 3602 /// * lhs{n, w * c} * rhs{c} -> res{n, w * c} (flatten = true) 3603 /// to MulAcc. 3604 Value depthwiseConv1dSliceAsMulAcc(RewriterBase &rewriter, Location loc, 3605 Value lhs, Value rhs, Value res, 3606 bool flatten) { 3607 auto rhsTy = cast<ShapedType>(rhs.getType()); 3608 auto resTy = cast<ShapedType>(res.getType()); 3609 3610 // TODO(suderman): Change this to use a vector.ima intrinsic. 3611 lhs = promote(rewriter, loc, lhs, resTy); 3612 3613 if (flatten) { 3614 // NOTE: This following logic won't work for scalable vectors. For this 3615 // reason, "flattening" is not supported when shapes are dynamic (this 3616 // should be captured by one of the pre-conditions). 3617 3618 // There are two options for handling the filter: 3619 // * shape_cast(broadcast(filter)) 3620 // * broadcast(shuffle(filter)) 3621 // Opt for the option without shape_cast to simplify the codegen. 3622 auto rhsSize = cast<VectorType>(rhs.getType()).getShape()[0]; 3623 auto resSize = cast<VectorType>(res.getType()).getShape()[1]; 3624 3625 SmallVector<int64_t, 16> indices; 3626 for (int i = 0; i < resSize / rhsSize; ++i) { 3627 for (int j = 0; j < rhsSize; ++j) 3628 indices.push_back(j); 3629 } 3630 3631 rhs = rewriter.create<vector::ShuffleOp>(loc, rhs, rhs, indices); 3632 } 3633 // Broadcast the filter to match the output vector 3634 rhs = rewriter.create<vector::BroadcastOp>( 3635 loc, resTy.clone(rhsTy.getElementType()), rhs); 3636 3637 rhs = promote(rewriter, loc, rhs, resTy); 3638 3639 if (!lhs || !rhs) 3640 return nullptr; 3641 3642 if (isa<FloatType>(resTy.getElementType())) 3643 return rewriter.create<vector::FMAOp>(loc, lhs, rhs, res); 3644 3645 auto mul = rewriter.create<arith::MulIOp>(loc, lhs, rhs); 3646 return rewriter.create<arith::AddIOp>(loc, mul, res); 3647 } 3648 3649 /// Entry point for non-channeled convolution: 3650 /// {{w + kw}, {kw}, {w}} 3651 FailureOr<Operation *> generateNonChanneledConv() { 3652 AffineExpr w, kw; 3653 bindDims(ctx, w, kw); 3654 if (!iters({Par(), Red()})) 3655 return rewriter.notifyMatchFailure(op, 3656 "failed to match conv::W 1-par 1-red"); 3657 3658 // No transposition needed. 3659 if (layout({/*lhsIndex*/ {w + kw}, 3660 /*rhsIndex*/ {kw}, 3661 /*resIndex*/ {w}})) 3662 return conv(Conv1DOpOrder::W); 3663 3664 return rewriter.notifyMatchFailure(op, "not a conv::W layout"); 3665 } 3666 3667 /// Entry point that transposes into the common form: 3668 /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 3669 FailureOr<Operation *> generateNwcConv() { 3670 AffineExpr n, w, f, kw, c; 3671 bindDims(ctx, n, w, f, kw, c); 3672 if (!iters({Par(), Par(), Par(), Red(), Red()})) 3673 return rewriter.notifyMatchFailure( 3674 op, "failed to match conv::Nwc 3-par 2-red"); 3675 3676 // No transposition needed. 3677 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 3678 /*rhsIndex*/ {kw, c, f}, 3679 /*resIndex*/ {n, w, f}})) 3680 return conv(Conv1DOpOrder::Nwc); 3681 3682 return rewriter.notifyMatchFailure(op, "not a conv::Nwc layout"); 3683 } 3684 3685 /// Entry point that transposes into the common form: 3686 /// {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} 3687 FailureOr<Operation *> generateNcwConv() { 3688 AffineExpr n, w, f, kw, c; 3689 bindDims(ctx, n, f, w, c, kw); 3690 if (!iters({Par(), Par(), Par(), Red(), Red()})) 3691 return rewriter.notifyMatchFailure( 3692 op, "failed to match conv::Ncw 3-par 2-red"); 3693 3694 if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, 3695 /*rhsIndex*/ {f, c, kw}, 3696 /*resIndex*/ {n, f, w}})) 3697 return conv(Conv1DOpOrder::Ncw); 3698 3699 return rewriter.notifyMatchFailure(op, "not a conv::Ncw layout"); 3700 } 3701 3702 /// Entry point that transposes into the common form: 3703 /// {{n, strideW * w + dilationW * kw, c}, {kw}, {n, w, c}} for pooling 3704 FailureOr<Operation *> generateNwcPooling() { 3705 AffineExpr n, w, c, kw; 3706 bindDims(ctx, n, w, c, kw); 3707 if (!iters({Par(), Par(), Par(), Red()})) 3708 return rewriter.notifyMatchFailure(op, 3709 "failed to match pooling 3-par 1-red"); 3710 3711 // No transposition needed. 3712 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 3713 /*rhsIndex*/ {kw}, 3714 /*resIndex*/ {n, w, c}})) 3715 return conv(Conv1DOpOrder::Nwc); 3716 3717 return rewriter.notifyMatchFailure(op, "not a pooling::Nwc layout"); 3718 } 3719 3720 /// Entry point that transposes into the common form: 3721 /// {{n, c, strideW * w + dilationW * kw}, {kw}, {n, c, w}} for pooling 3722 FailureOr<Operation *> generateNcwPooling() { 3723 AffineExpr n, w, c, kw; 3724 bindDims(ctx, n, c, w, kw); 3725 if (!iters({Par(), Par(), Par(), Red()})) 3726 return rewriter.notifyMatchFailure(op, 3727 "failed to match pooling 3-par 1-red"); 3728 3729 if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, 3730 /*rhsIndex*/ {kw}, 3731 /*resIndex*/ {n, c, w}})) 3732 return conv(Conv1DOpOrder::Ncw); 3733 3734 return rewriter.notifyMatchFailure(op, "not a pooling::Ncw layout"); 3735 } 3736 3737 /// Entry point that transposes into the common form: 3738 /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 3739 FailureOr<Operation *> generateDilatedConv(uint64_t vecChDimSize = 0, 3740 bool vecChDimScalableFlag = false, 3741 bool flatten = false) { 3742 AffineExpr n, w, c, kw; 3743 bindDims(ctx, n, w, c, kw); 3744 if (!iters({Par(), Par(), Par(), Red()})) 3745 return rewriter.notifyMatchFailure( 3746 op, "failed to match depthwise::Nwc conv 3-par 1-red"); 3747 3748 // No transposition needed. 3749 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 3750 /*rhsIndex*/ {kw, c}, 3751 /*resIndex*/ {n, w, c}})) 3752 return depthwiseConv(vecChDimSize, vecChDimScalableFlag, flatten); 3753 3754 return rewriter.notifyMatchFailure(op, "not a depthwise::Nwc layout"); 3755 } 3756 3757 private: 3758 enum OperKind { Conv, Pool }; 3759 bool valid = false; 3760 OperKind oper = Conv; 3761 StringAttr redOp; 3762 StringAttr poolExtOp; 3763 bool isPoolExt = false; 3764 int strideW, dilationW; 3765 Value lhsShaped, rhsShaped, resShaped; 3766 ShapedType lhsShapedType, rhsShapedType, resShapedType; 3767 vector::CombiningKind reductionKind; 3768 3769 // Sets oper, poolExtOp and isPoolExt for valid conv/pooling ops. 3770 // Returns true iff it is a valid conv/pooling op. 3771 // If (region has 2 ops (reduction + yield) or 3 ops (extension + reduction 3772 // + yield) and rhs is not used) then it is the body of a pooling 3773 // If conv, check for single `mul` predecessor. The `mul` operands must be 3774 // block arguments or extension of block arguments. 3775 // Otherwise, check for one or zero `ext` predecessor. The `ext` operands 3776 // must be block arguments or extension of block arguments. 3777 bool setOperKind(Operation *reduceOp) { 3778 int numBlockArguments = 3779 llvm::count_if(reduceOp->getOperands(), llvm::IsaPred<BlockArgument>); 3780 switch (numBlockArguments) { 3781 case 1: { 3782 // Will be convolution if feeder is a MulOp. 3783 // A strength reduced version of MulOp for i1 type is AndOp which is also 3784 // supported. Otherwise, it can be pooling. This strength reduction logic 3785 // is in `buildBinaryFn` helper in the Linalg dialect. 3786 auto feedValIt = llvm::find_if_not(reduceOp->getOperands(), 3787 llvm::IsaPred<BlockArgument>); 3788 Operation *feedOp = (*feedValIt).getDefiningOp(); 3789 if (isCastOfBlockArgument(feedOp)) { 3790 oper = Pool; 3791 isPoolExt = true; 3792 poolExtOp = feedOp->getName().getIdentifier(); 3793 } else if (!((isa<arith::MulIOp, arith::MulFOp>(feedOp) || 3794 (isa<arith::AndIOp>(feedOp) && 3795 feedOp->getResultTypes()[0].isInteger(1))) && 3796 llvm::all_of(feedOp->getOperands(), [](Value v) { 3797 if (isa<BlockArgument>(v)) 3798 return true; 3799 if (Operation *op = v.getDefiningOp()) 3800 return isCastOfBlockArgument(op); 3801 return false; 3802 }))) { 3803 return false; 3804 } 3805 return true; 3806 } 3807 case 2: 3808 // Must be pooling 3809 oper = Pool; 3810 isPoolExt = false; 3811 return true; 3812 default: 3813 return false; 3814 } 3815 } 3816 }; 3817 } // namespace 3818 3819 /// Helper function to vectorize a LinalgOp with convolution semantics. 3820 // TODO: extend the generic vectorization to support windows and drop this. 3821 static FailureOr<Operation *> vectorizeConvolution( 3822 RewriterBase &rewriter, LinalgOp op, ArrayRef<int64_t> inputVecSizes, 3823 ArrayRef<bool> inputScalableVecDims, bool flatten1DDepthwiseConv) { 3824 // The ConvolutionOpInterface gives us guarantees of existence for 3825 // strides/dilations. However, we do not need to rely on those, we can 3826 // simply use them if present, otherwise use the default and let the generic 3827 // conv. matcher in the ConvGenerator succeed or fail. 3828 auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides"); 3829 auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations"); 3830 auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1; 3831 auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1; 3832 Conv1DGenerator e(rewriter, op, stride, dilation); 3833 auto res = e.generateNonChanneledConv(); 3834 if (succeeded(res)) 3835 return res; 3836 res = e.generateNwcConv(); 3837 if (succeeded(res)) 3838 return res; 3839 res = e.generateNcwConv(); 3840 if (succeeded(res)) 3841 return res; 3842 res = e.generateNwcPooling(); 3843 if (succeeded(res)) 3844 return res; 3845 res = e.generateNcwPooling(); 3846 if (succeeded(res)) 3847 return res; 3848 3849 // Only depthwise 1D NWC convs are left - these can be vectorized using masks 3850 // and scalable vectors. Note that ATM the only dim that can be dynamic (i.e. 3851 // masked/scalable) is the channel dim (i.e. the trailing dim). 3852 uint64_t vecChDimSize = ShapedType::kDynamic; 3853 bool vecChDimScalableFlag = false; 3854 if (!inputVecSizes.empty()) { 3855 // Only use the input vector size corresponding to the channel dim. Other 3856 // vector dims will be inferred from the Ops. 3857 assert((isa<linalg::DepthwiseConv1DNwcWcOp>(*op) || 3858 isa<linalg::DepthwiseConv1DNcwCwOp>(*op)) && 3859 "Not a 1D depthwise conv!"); 3860 size_t chDimIdx = 3861 TypeSwitch<Operation *, size_t>(op) 3862 .Case<linalg::DepthwiseConv1DNwcWcOp>([](auto conv) { return 2; }) 3863 .Case<linalg::DepthwiseConv1DNcwCwOp>([](auto conv) { return 1; }); 3864 3865 vecChDimSize = inputVecSizes[chDimIdx]; 3866 vecChDimScalableFlag = inputScalableVecDims[chDimIdx]; 3867 } 3868 return e.generateDilatedConv(vecChDimSize, vecChDimScalableFlag, 3869 flatten1DDepthwiseConv); 3870 } 3871 3872 struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> { 3873 using OpInterfaceRewritePattern::OpInterfaceRewritePattern; 3874 3875 LogicalResult matchAndRewrite(LinalgOp op, 3876 PatternRewriter &rewriter) const override { 3877 FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op); 3878 if (failed(resultOrFail)) 3879 return failure(); 3880 Operation *newOp = *resultOrFail; 3881 if (newOp->getNumResults() == 0) { 3882 rewriter.eraseOp(op.getOperation()); 3883 return success(); 3884 } 3885 assert(newOp->getNumResults() == 1 && "expected single result"); 3886 rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); 3887 return success(); 3888 } 3889 }; 3890 3891 void mlir::linalg::populateConvolutionVectorizationPatterns( 3892 RewritePatternSet &patterns, PatternBenefit benefit) { 3893 patterns.add<VectorizeConvolution>(patterns.getContext(), benefit); 3894 } 3895