xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/ElementwiseToLinalg.cpp (revision 971b852546a7d96bc8887ced913724b884cf40df)
1 //===- ElementwiseToLinalg.cpp - conversion of elementwise to linalg ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Linalg/Passes.h"
10 
11 #include "mlir/Dialect/Arith/Utils/Utils.h"
12 #include "mlir/Dialect/Linalg/IR/Linalg.h"
13 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Transforms/DialectConversion.h"
16 
17 namespace mlir {
18 #define GEN_PASS_DEF_CONVERTELEMENTWISETOLINALGPASS
19 #include "mlir/Dialect/Linalg/Passes.h.inc"
20 } // namespace mlir
21 
22 using namespace mlir;
23 
isElementwiseMappableOpOnRankedTensors(Operation * op)24 static bool isElementwiseMappableOpOnRankedTensors(Operation *op) {
25   if (!OpTrait::hasElementwiseMappableTraits(op))
26     return false;
27 
28   // TODO: The conversion pattern can be made to work for `any_of` here, but
29   // it's more complex as it requires tracking which operands are scalars.
30   return llvm::all_of(op->getOperandTypes(), llvm::IsaPred<RankedTensorType>);
31 }
32 
33 /// Given `op` assumed `isElementwiseMappableOpOnRankedTensors`, iterate over
34 /// the result types and return a list of values such that, for each result type
35 /// `t` and value `v` at the same index `idx`:
36 ///   1. `v.getType() == t`
37 ///   2. If an operand of `op` has type `t`, let `operand_first` be the first
38 ///      such operand. Then`v == operand_first`.
39 ///   3. Otherwise, v is a newly created `tensor::EmptyOp` with:
40 ///        a. Static and dynamic dims extracted from the first operand of `op`.
41 ///        b. Elemental type equal to the elemental type of `t`.
42 ///
43 /// This is sufficient because ElementwiseMappable guarantees that "The static
44 /// types of all vector (resp. tensor) operands and results must have the same
45 /// shape".
46 static SmallVector<Value, 4>
getOrCreateOperandsMatchingResultTypes(OpBuilder & b,Operation * op)47 getOrCreateOperandsMatchingResultTypes(OpBuilder &b, Operation *op) {
48   assert(isElementwiseMappableOpOnRankedTensors(op));
49   Location loc = op->getLoc();
50   ValueRange operands = op->getOperands();
51   TypeRange rankedTensorTypes = op->getResultTypes();
52   SmallVector<Value, 4> res;
53   res.reserve(rankedTensorTypes.size());
54   for (Type t : rankedTensorTypes) {
55     // Try to find an operand with type matching the result tensor.
56     bool found = false;
57     for (Value v : operands) {
58       if (v.getType() == t) {
59         found = true;
60         res.push_back(v);
61         break;
62       }
63     }
64     if (found)
65       continue;
66 
67     // Extract static / dynamic shape mix from the first operand.
68     res.push_back(b.create<tensor::EmptyOp>(
69         loc, tensor::getMixedSizes(b, loc, operands.front()),
70         cast<RankedTensorType>(t).getElementType()));
71   }
72   return res;
73 }
74 
75 namespace {
76 struct ConvertAnyElementwiseMappableOpOnRankedTensors : public RewritePattern {
ConvertAnyElementwiseMappableOpOnRankedTensors__anonab5fbb810111::ConvertAnyElementwiseMappableOpOnRankedTensors77   ConvertAnyElementwiseMappableOpOnRankedTensors(MLIRContext *context)
78       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
matchAndRewrite__anonab5fbb810111::ConvertAnyElementwiseMappableOpOnRankedTensors79   LogicalResult matchAndRewrite(Operation *op,
80                                 PatternRewriter &rewriter) const final {
81     if (!isElementwiseMappableOpOnRankedTensors(op))
82       return rewriter.notifyMatchFailure(
83           op, "requires elementwise op on ranked tensors");
84 
85     auto rank = cast<RankedTensorType>(op->getResult(0).getType()).getRank();
86     SmallVector<AffineMap, 3> indexingMaps(
87         op->getNumResults() + op->getNumOperands(),
88         rewriter.getMultiDimIdentityMap(rank));
89     SmallVector<utils::IteratorType, 6> iteratorTypes(
90         rank, utils::IteratorType::parallel);
91     auto outputs = getOrCreateOperandsMatchingResultTypes(rewriter, op);
92     rewriter.replaceOpWithNewOp<linalg::GenericOp>(
93         op, /*resultTensorTypes=*/op->getResultTypes(),
94         /*inputs=*/op->getOperands(),
95         /*outputs=*/outputs,
96         /*indexingMaps=*/indexingMaps,
97         /*iteratorTypes=*/iteratorTypes,
98         /*bodyBuilder=*/
99         [&](OpBuilder &builder, Location loc, ValueRange regionArgs) {
100           auto resultTypes = llvm::to_vector<6>(
101               llvm::map_range(op->getResultTypes(), [](Type type) {
102                 return cast<TensorType>(type).getElementType();
103               }));
104           auto *scalarOp =
105               builder.create(loc, op->getName().getIdentifier(),
106                              regionArgs.take_front(op->getNumOperands()),
107                              resultTypes, op->getAttrs());
108           builder.create<linalg::YieldOp>(loc, scalarOp->getResults());
109         });
110     return success();
111   }
112 };
113 } // namespace
114 
populateElementwiseToLinalgConversionPatterns(RewritePatternSet & patterns)115 void mlir::linalg::populateElementwiseToLinalgConversionPatterns(
116     RewritePatternSet &patterns) {
117   patterns.add<ConvertAnyElementwiseMappableOpOnRankedTensors>(
118       patterns.getContext());
119 }
120 
121 namespace {
122 class ConvertElementwiseToLinalgPass
123     : public impl::ConvertElementwiseToLinalgPassBase<
124           ConvertElementwiseToLinalgPass> {
125   using impl::ConvertElementwiseToLinalgPassBase<
126       ConvertElementwiseToLinalgPass>::ConvertElementwiseToLinalgPassBase;
127 
runOnOperation()128   void runOnOperation() final {
129     auto *func = getOperation();
130     auto *context = &getContext();
131     ConversionTarget target(*context);
132     RewritePatternSet patterns(context);
133 
134     mlir::linalg::populateElementwiseToLinalgConversionPatterns(patterns);
135     target.markUnknownOpDynamicallyLegal([](Operation *op) {
136       return !isElementwiseMappableOpOnRankedTensors(op);
137     });
138 
139     if (failed(applyPartialConversion(func, target, std::move(patterns))))
140       signalPassFailure();
141   }
142 };
143 } // namespace
144