xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/DecomposeGenericByUnfoldingPermutation.cpp (revision 0ac4821b718dd14e80d3856efa532d52df6878bb)
1 //===- DecomposeGenericByUnfoldingPermutation.cpp                   -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 #include "mlir/Dialect/Affine/IR/AffineOps.h"
10 #include "mlir/Dialect/Linalg/IR/Linalg.h"
11 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
12 #include <map>
13 #include <optional>
14 #include <utility>
15 
16 using namespace mlir;
17 using namespace mlir::linalg;
18 
19 namespace {
20 
21 /// This pattern decomposes the input operand(s) of a linalg.generic that has
22 /// a `transpose`, `broadcast`, or a mixture of two, into explicit transpose
23 /// and broadcast. Having them folded into the linalg.generic is a good
24 /// optimization but sometimes we may want to unwrap, i.e., `unfold` them as
25 /// explicit transpose and broadcast. This rewrite pattern helps do it for
26 /// each input operand. This is useful for instance when trying to recognize
27 /// named ops.
28 ///
29 /// The transpose, broadcast, or mixture of both, are expressed in the affine
30 /// map of the operand. Technically it is essentially `projected permutation`.
31 ///
32 ///  Example
33 ///
34 /// ```mlir
35 ///
36 /// #projection = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3, d1)>
37 /// #identity   = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
38 /// ...
39 ///    %res = linalg.generic
40 ///       { indexing_maps = [#projection, #identity, #identity],
41 ///       iterator_types = ["parallel", "parallel", "parallel",
42 ///                         "parallel", "parallel"]}
43 ///       ins(%x, %y : tensor<7x8x9xf32>, tensor<5x9x7x8x10xf32>)
44 ///       outs(%z : tensor<5x9x7x8x10xf32>) {
45 ///         ^bb0(%in: f32, %in_1: f32, %out: f32):
46 ///              %div = arith.divf %in, %in_1 : f32
47 ///              linalg.yield %div : f32
48 ///    } -> tensor<5x9x7x8x10xf32>
49 /// ```
50 ///
51 /// In the above IR operand `%x` map is a projected-permutation. This can be
52 /// unfolded as:
53 ///
54 /// ```mlir
55 ///   ...
56 ///   %x_trans = linalg.transpose
57 ///                   ins(%x : tensor<7x8x9xf32>)
58 ///                   outs(%e1 : tensor<9x7x8xf32>) permutation = [2, 0, 1]
59 ///   ...
60 ///   %x_trans_bc = linalg.broadcast
61 ///                   ins(%x_trans : tensor<9x7x8xf32>)
62 ///                   outs(%e2 : tensor<5x9x7x8x10xf32>) dimensions = [0, 4]
63 ///   %2 = linalg.div
64 ///           ins(%x_trans_bc, %y :
65 ///                  tensor<5x9x7x8x10xf32>, tensor<5x9x7x8x10xf32>)
66 ///           outs(%arg2 : tensor<5x9x7x8x10xf32>) -> tensor<5x9x7x8x10xf32>
67 ///
68 /// Note that linalg.generic has been 'specialized' to linalg.div.
69 ///
70 /// To unfold it, it is more optimal to transpose first and then do the
71 /// broadcast. However, if transpose is done first, the permutation map needs
72 /// to be expressed in terms of reduced dimension as broadcast hasn't happened
73 /// yet. Also, the broadcast dimensions in a linalg.generic come from other
74 /// operands (those not broadcasted along that particular dimension). We work
75 /// this out by computing the convex-polyhedron shape of the linalg.generic
76 /// iteration space from shapes of all the operands, both inputs and outputs.
77 ///
78 struct DecomposeProjectedPermutation : public OpRewritePattern<GenericOp> {
79   using OpRewritePattern<GenericOp>::OpRewritePattern;
80 
81   LogicalResult matchAndRewrite(GenericOp genericOp,
82                                 PatternRewriter &rewriter) const override;
83 };
84 
85 /// For the given `map`, determine what dimensions are transposed and what
86 /// dimensions are broadcasted.
87 /// Returns :
88 ///   transpose-permutation, broadcast-dimensions` (empty if not needed)
89 ///
90 std::pair<SmallVector<int64_t>, SmallVector<int64_t>>
91 computeTransposeBroadcast(AffineMap &map) {
92   assert(map.isProjectedPermutation(false) && "not a projection");
93 
94   // As the map is a projection it likely operates on a smaller set of
95   // dimensions as far as the transpose is concerned (rest are broadcast).
96   int64_t minorSize = map.getNumResults();
97 
98   SmallVector<int64_t> minorResult;
99   for (int64_t i = 0; i < minorSize; ++i) {
100     auto expr = cast<AffineDimExpr>(map.getResults()[i]);
101     minorResult.push_back(expr.getPosition());
102   }
103 
104   // If dims are not monotonically increasing then transpose is present.
105   SmallVector<int64_t> sortedResMap(minorResult);
106   std::sort(sortedResMap.begin(), sortedResMap.end());
107   bool hasTranspose = !std::equal(minorResult.begin(), minorResult.end(),
108                                   sortedResMap.begin(), sortedResMap.end());
109 
110   // Walk the sorted map result to determine which dimensions are broadcasted.
111   SmallVector<int64_t> broadcast;
112   for (int64_t i = 0, j = 0; i < map.getNumInputs(); ++i) {
113     if (j < minorSize && sortedResMap[j] == i) {
114       j++;
115       continue;
116     }
117     broadcast.push_back(i);
118   }
119 
120   SmallVector<int64_t> permutation;
121   if (hasTranspose) {
122     // Consider an operand `x : tensor<7x8x9>` of a genericOp that has
123     // affine map `affine_map<(d0, d1, d2, d3, d4) -> (d2, d3, d1)>`
124     // `x`s access is both transposed and broadcast. But when specifying
125     // the `linalg.transpose(x : tensor<7x8x9>)` the dimensions need to be
126     // specified as `affine_map<(d0,d1,d2) -> (d1, d2, d0)` instead of
127     // refering to d3, d4. Therefore, re-base the transpose dimensions so
128     // that they start from d0.
129     permutation.resize(minorSize);
130     std::map<int64_t, int64_t> minorMap;
131     for (int64_t i = 0; i < minorSize; ++i)
132       minorMap.insert({sortedResMap[i], i});
133 
134     // Re-map the dimensions.
135     SmallVector<int64_t> remappedResult(minorSize);
136     for (int64_t i = 0; i < minorSize; ++i)
137       remappedResult[i] = minorMap[minorResult[i]];
138 
139     /// Calculate the permutation for the transpose.
140     for (unsigned i = 0; i < minorSize; ++i) {
141       permutation[remappedResult[i]] = i;
142     }
143   }
144   return {permutation, broadcast};
145 }
146 
147 LogicalResult DecomposeProjectedPermutation::matchAndRewrite(
148     GenericOp op, PatternRewriter &rewriter) const {
149   if (!op.hasPureTensorSemantics() || op.isSingleInputOutput() ||
150       op.isSingleYieldOp() || !op.isAllParallelLoops())
151     return failure();
152 
153   // If the map of an operand is not a `projected permutation` then
154   // it cannot be decomposed to mere transpose and broadcast.
155   // The requirement that all maps be `projected permutation` may be
156   // over-restrictive but since we need to determine shape of the
157   // iteration space as well, reject if any map violates assumption.
158   for (auto &opOperand : op->getOpOperands()) {
159     auto map = op.getMatchingIndexingMap(&opOperand);
160     if (!map.isProjectedPermutation(false))
161       return failure();
162   }
163 
164   // Decomposing linalg.generic involves creating `tensor.empty`
165   // which can have dynamic shapes but then we would have to work
166   // out which operand can supply that runtime-value (tensor.dim).
167   // Leaving it as a future TODO.
168   if (llvm::any_of(op->getOpOperands(), [](OpOperand &oper) {
169         auto opType = cast<RankedTensorType>(oper.get().getType());
170         return ShapedType::isDynamicShape(opType.getShape());
171       }))
172     return failure();
173 
174   auto outputShape = op.getStaticLoopRanges();
175 
176   auto loc = op.getLoc();
177   bool isChanged = false;
178   SmallVector<Value> newInitValues = op.getDpsInputs();
179   SmallVector<AffineMap> newMap = op.getIndexingMapsArray();
180 
181   // Walk over each input operand and unfold if it is transposed, broadcast
182   // or mix of two via operand's affine-map.
183   for (int64_t i = 0; i < op.getNumDpsInputs(); ++i) {
184     auto &map = newMap[i];
185     auto inputRTType = cast<RankedTensorType>(newInitValues[i].getType());
186     auto elType = inputRTType.getElementType();
187 
188     /// Nothing to do if map is already an identity.
189     if (map.isIdentity())
190       continue;
191 
192     auto [permutation, broadcastedDims] = computeTransposeBroadcast(map);
193 
194     // Does it need transpose?
195     if (!permutation.empty()) {
196       /// linalg.transpose permutes the dimensions of input using
197       /// rule: dim(result, i) = dim(input, permutation[i])
198       SmallVector<int64_t> transposedShape(map.getNumResults());
199       for (int64_t i = 0; i < map.getNumResults(); ++i)
200         transposedShape[i] = inputRTType.getShape()[permutation[i]];
201 
202       Value emptyTensor =
203           rewriter.create<tensor::EmptyOp>(loc, transposedShape, elType);
204 
205       auto transposeOp = rewriter.create<TransposeOp>(loc, newInitValues[i],
206                                                       emptyTensor, permutation);
207       newInitValues[i] = transposeOp->getResult(0);
208       isChanged = true;
209     }
210 
211     // Does it require broadcast?
212     if (!broadcastedDims.empty()) {
213       assert(broadcastedDims.size() && "should have non size broadcast");
214       Value emptyTensor = rewriter.create<tensor::EmptyOp>(
215           loc, outputShape, inputRTType.getElementType());
216 
217       auto broadcastOp = rewriter.create<linalg::BroadcastOp>(
218           loc, newInitValues[i], emptyTensor, broadcastedDims);
219 
220       newInitValues[i] = broadcastOp->getResult(0);
221       isChanged = true;
222     }
223     newMap[i] = rewriter.getMultiDimIdentityMap(map.getNumDims());
224   }
225 
226   if (isChanged) {
227     SmallVector<Value> operands = op->getOperands();
228     ValueRange operandsRef(operands);
229 
230     auto newOp = rewriter.create<linalg::GenericOp>(
231         /*location=*/op.getLoc(),
232         /*resultTensorTypes=*/op->getResultTypes(),
233         /*inputs=*/newInitValues,
234         /*outputs=*/operandsRef.drop_front(op.getNumDpsInputs()),
235         /*indexingMaps=*/newMap,
236         /*iteratorTypes=*/op.getIteratorTypesArray());
237 
238     newOp.getRegion().takeBody(op->getRegion(0));
239     rewriter.replaceOp(op, newOp->getResults());
240   }
241   return success();
242 }
243 
244 } // namespace
245 
246 void mlir::linalg::populateDecomposeProjectedPermutationPatterns(
247     RewritePatternSet &patterns) {
248   patterns.insert<DecomposeProjectedPermutation>(patterns.getContext());
249 }
250