xref: /llvm-project/mlir/lib/Dialect/GPU/Transforms/MemoryPromotion.cpp (revision b23c8225e8f914d9b0fe987c443eb19fca05344e)
1 //===- MemoryPromotion.cpp - Utilities for moving data across GPU memories ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements utilities that allow one to create IR moving the data
10 // across different levels of the GPU memory hierarchy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Dialect/GPU/Transforms/MemoryPromotion.h"
15 
16 #include "mlir/Dialect/Affine/LoopUtils.h"
17 #include "mlir/Dialect/Arith/IR/Arith.h"
18 #include "mlir/Dialect/GPU/IR/GPUDialect.h"
19 #include "mlir/Dialect/MemRef/IR/MemRef.h"
20 #include "mlir/Dialect/SCF/IR/SCF.h"
21 #include "mlir/IR/ImplicitLocOpBuilder.h"
22 #include "mlir/Pass/Pass.h"
23 
24 using namespace mlir;
25 using namespace mlir::gpu;
26 
27 /// Emits the (imperfect) loop nest performing the copy between "from" and "to"
28 /// values using the bounds derived from the "from" value. Emits at least
29 /// GPUDialect::getNumWorkgroupDimensions() loops, completing the nest with
30 /// single-iteration loops. Maps the innermost loops to thread dimensions, in
31 /// reverse order to enable access coalescing in the innermost loop.
insertCopyLoops(ImplicitLocOpBuilder & b,Value from,Value to)32 static void insertCopyLoops(ImplicitLocOpBuilder &b, Value from, Value to) {
33   auto memRefType = cast<MemRefType>(from.getType());
34   auto rank = memRefType.getRank();
35 
36   SmallVector<Value, 4> lbs, ubs, steps;
37   Value zero = b.create<arith::ConstantIndexOp>(0);
38   Value one = b.create<arith::ConstantIndexOp>(1);
39 
40   // Make sure we have enough loops to use all thread dimensions, these trivial
41   // loops should be outermost and therefore inserted first.
42   if (rank < GPUDialect::getNumWorkgroupDimensions()) {
43     unsigned extraLoops = GPUDialect::getNumWorkgroupDimensions() - rank;
44     lbs.resize(extraLoops, zero);
45     ubs.resize(extraLoops, one);
46     steps.resize(extraLoops, one);
47   }
48 
49   // Add existing bounds.
50   lbs.append(rank, zero);
51   ubs.reserve(lbs.size());
52   steps.reserve(lbs.size());
53   for (auto idx = 0; idx < rank; ++idx) {
54     ubs.push_back(b.createOrFold<memref::DimOp>(from, idx));
55     steps.push_back(one);
56   }
57 
58   // Obtain thread identifiers and block sizes, necessary to map to them.
59   auto indexType = b.getIndexType();
60   SmallVector<Value, 3> threadIds, blockDims;
61   for (auto dim : {gpu::Dimension::x, gpu::Dimension::y, gpu::Dimension::z}) {
62     threadIds.push_back(b.create<gpu::ThreadIdOp>(indexType, dim));
63     blockDims.push_back(b.create<gpu::BlockDimOp>(indexType, dim));
64   }
65 
66   // Produce the loop nest with copies.
67   SmallVector<Value, 8> ivs(lbs.size());
68   mlir::scf::buildLoopNest(
69       b, b.getLoc(), lbs, ubs, steps,
70       [&](OpBuilder &b, Location loc, ValueRange loopIvs) {
71         ivs.assign(loopIvs.begin(), loopIvs.end());
72         auto activeIvs = llvm::ArrayRef(ivs).take_back(rank);
73         Value loaded = b.create<memref::LoadOp>(loc, from, activeIvs);
74         b.create<memref::StoreOp>(loc, loaded, to, activeIvs);
75       });
76 
77   // Map the innermost loops to threads in reverse order.
78   for (const auto &en :
79        llvm::enumerate(llvm::reverse(llvm::ArrayRef(ivs).take_back(
80            GPUDialect::getNumWorkgroupDimensions())))) {
81     Value v = en.value();
82     auto loop = cast<scf::ForOp>(v.getParentRegion()->getParentOp());
83     affine::mapLoopToProcessorIds(loop, {threadIds[en.index()]},
84                                   {blockDims[en.index()]});
85   }
86 }
87 
88 /// Emits the loop nests performing the copy to the designated location in the
89 /// beginning of the region, and from the designated location immediately before
90 /// the terminator of the first block of the region. The region is expected to
91 /// have one block. This boils down to the following structure
92 ///
93 ///   ^bb(...):
94 ///     <loop-bound-computation>
95 ///     for %arg0 = ... to ... step ... {
96 ///       ...
97 ///         for %argN = <thread-id-x> to ... step <block-dim-x> {
98 ///           %0 = load %from[%arg0, ..., %argN]
99 ///           store %0, %to[%arg0, ..., %argN]
100 ///         }
101 ///       ...
102 ///     }
103 ///     gpu.barrier
104 ///     <... original body ...>
105 ///     gpu.barrier
106 ///     for %arg0 = ... to ... step ... {
107 ///       ...
108 ///         for %argN = <thread-id-x> to ... step <block-dim-x> {
109 ///           %1 = load %to[%arg0, ..., %argN]
110 ///           store %1, %from[%arg0, ..., %argN]
111 ///         }
112 ///       ...
113 ///     }
114 ///
115 /// Inserts the barriers unconditionally since different threads may be copying
116 /// values and reading them. An analysis would be required to eliminate barriers
117 /// in case where value is only used by the thread that copies it. Both copies
118 /// are inserted unconditionally, an analysis would be required to only copy
119 /// live-in and live-out values when necessary. This copies the entire memref
120 /// pointed to by "from". In case a smaller block would be sufficient, the
121 /// caller can create a subview of the memref and promote it instead.
insertCopies(Region & region,Location loc,Value from,Value to)122 static void insertCopies(Region &region, Location loc, Value from, Value to) {
123   auto fromType = cast<MemRefType>(from.getType());
124   auto toType = cast<MemRefType>(to.getType());
125   (void)fromType;
126   (void)toType;
127   assert(fromType.getShape() == toType.getShape());
128   assert(fromType.getRank() != 0);
129   assert(llvm::hasSingleElement(region) &&
130          "unstructured control flow not supported");
131 
132   auto b = ImplicitLocOpBuilder::atBlockBegin(loc, &region.front());
133   insertCopyLoops(b, from, to);
134   b.create<gpu::BarrierOp>();
135 
136   b.setInsertionPoint(&region.front().back());
137   b.create<gpu::BarrierOp>();
138   insertCopyLoops(b, to, from);
139 }
140 
141 /// Promotes a function argument to workgroup memory in the given function. The
142 /// copies will be inserted in the beginning and in the end of the function.
promoteToWorkgroupMemory(GPUFuncOp op,unsigned arg)143 void mlir::promoteToWorkgroupMemory(GPUFuncOp op, unsigned arg) {
144   Value value = op.getArgument(arg);
145   auto type = dyn_cast<MemRefType>(value.getType());
146   assert(type && type.hasStaticShape() && "can only promote memrefs");
147 
148   // Get the type of the buffer in the workgroup memory.
149   auto workgroupMemoryAddressSpace = gpu::AddressSpaceAttr::get(
150       op->getContext(), gpu::AddressSpace::Workgroup);
151   auto bufferType = MemRefType::get(type.getShape(), type.getElementType(),
152                                     MemRefLayoutAttrInterface{},
153                                     Attribute(workgroupMemoryAddressSpace));
154   Value attribution = op.addWorkgroupAttribution(bufferType, value.getLoc());
155 
156   // Replace the uses first since only the original uses are currently present.
157   // Then insert the copies.
158   value.replaceAllUsesWith(attribution);
159   insertCopies(op.getBody(), op.getLoc(), value, attribution);
160 }
161