xref: /llvm-project/mlir/lib/Dialect/Affine/Transforms/LoopFusion.cpp (revision 469f9d5fb8fcfe7dc42baa2daa7e230147f234de)
1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements affine fusion.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Affine/Passes.h"
14 
15 #include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
16 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
17 #include "mlir/Dialect/Affine/Analysis/Utils.h"
18 #include "mlir/Dialect/Affine/IR/AffineOps.h"
19 #include "mlir/Dialect/Affine/LoopFusionUtils.h"
20 #include "mlir/Dialect/Affine/LoopUtils.h"
21 #include "mlir/Dialect/Affine/Utils.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/Transforms/Passes.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <iomanip>
34 #include <optional>
35 #include <sstream>
36 
37 namespace mlir {
38 namespace affine {
39 #define GEN_PASS_DEF_AFFINELOOPFUSION
40 #include "mlir/Dialect/Affine/Passes.h.inc"
41 } // namespace affine
42 } // namespace mlir
43 
44 #define DEBUG_TYPE "affine-loop-fusion"
45 
46 using namespace mlir;
47 using namespace mlir::affine;
48 
49 namespace {
50 /// Loop fusion pass. This pass currently supports a greedy fusion policy,
51 /// which fuses loop nests with single-writer/single-reader memref dependences
52 /// with the goal of improving locality.
53 // TODO: Support fusion of source loop nests which write to multiple
54 // memrefs, where each memref can have multiple users (if profitable).
55 struct LoopFusion : public affine::impl::AffineLoopFusionBase<LoopFusion> {
56   LoopFusion() = default;
57   LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
58              bool maximalFusion, enum FusionMode affineFusionMode) {
59     this->fastMemorySpace = fastMemorySpace;
60     this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
61     this->maximalFusion = maximalFusion;
62     this->affineFusionMode = affineFusionMode;
63   }
64 
65   void runOnBlock(Block *block);
66   void runOnOperation() override;
67 };
68 
69 } // namespace
70 
71 /// Returns true if node 'srcId' can be removed after fusing it with node
72 /// 'dstId'. The node can be removed if any of the following conditions are met:
73 ///   1. 'srcId' has no output dependences after fusion and no escaping memrefs.
74 ///   2. 'srcId' has no output dependences after fusion, has escaping memrefs
75 ///       and the fusion slice is maximal.
76 ///   3. 'srcId' has output dependences after fusion, the fusion slice is
77 ///      maximal and the fusion insertion point dominates all the dependences.
78 static bool canRemoveSrcNodeAfterFusion(
79     unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
80     Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
81     MemRefDependenceGraph *mdg) {
82 
83   Operation *dstNodeOp = mdg->getNode(dstId)->op;
84   bool hasOutDepsAfterFusion = false;
85 
86   for (auto &outEdge : mdg->outEdges[srcId]) {
87     Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
88     // Skip dependence with dstOp since it will be removed after fusion.
89     if (depNodeOp == dstNodeOp)
90       continue;
91 
92     // Only fusion within the same block is supported. Use domination analysis
93     // when needed.
94     if (depNodeOp->getBlock() != dstNodeOp->getBlock())
95       return false;
96 
97     // Check if the insertion point of the fused loop dominates the dependence.
98     // Otherwise, the src loop can't be removed.
99     if (fusedLoopInsPoint != depNodeOp &&
100         !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
101       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
102                                  "dominate dependence\n");
103       return false;
104     }
105 
106     hasOutDepsAfterFusion = true;
107   }
108 
109   // If src loop has dependences after fusion or it writes to an live-out or
110   // escaping memref, we can only remove it if the fusion slice is maximal so
111   // that all the dependences are preserved.
112   if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
113     std::optional<bool> isMaximal = fusionSlice.isMaximal();
114     if (!isMaximal) {
115       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
116                                  "if fusion is maximal\n");
117       return false;
118     }
119 
120     if (!*isMaximal) {
121       LLVM_DEBUG(llvm::dbgs()
122                  << "Src loop can't be removed: fusion is not maximal\n");
123       return false;
124     }
125   }
126 
127   return true;
128 }
129 
130 /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
131 /// 'dstId'. Candidates are sorted by node id order. This order corresponds to
132 /// the program order when the 'mdg' is created. However, program order is not
133 /// guaranteed and must not be required by the client. Program order won't be
134 /// held if the 'mdg' is reused from a previous fusion step or if the node
135 /// creation order changes in the future to support more advance cases.
136 // TODO: Move this to a loop fusion utility once 'mdg' is also moved.
137 static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
138                                   SmallVectorImpl<unsigned> &srcIdCandidates) {
139   // Skip if no input edges along which to fuse.
140   if (mdg->inEdges.count(dstId) == 0)
141     return;
142 
143   // Gather memrefs from loads in 'dstId'.
144   auto *dstNode = mdg->getNode(dstId);
145   DenseSet<Value> consumedMemrefs;
146   for (Operation *load : dstNode->loads)
147     consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
148 
149   // Traverse 'dstId' incoming edges and gather the nodes that contain a store
150   // to one of the consumed memrefs.
151   for (auto &srcEdge : mdg->inEdges[dstId]) {
152     auto *srcNode = mdg->getNode(srcEdge.id);
153     // Skip if 'srcNode' is not a loop nest.
154     if (!isa<AffineForOp>(srcNode->op))
155       continue;
156 
157     if (any_of(srcNode->stores, [&](Operation *op) {
158           auto storeOp = cast<AffineWriteOpInterface>(op);
159           return consumedMemrefs.count(storeOp.getMemRef()) > 0;
160         }))
161       srcIdCandidates.push_back(srcNode->id);
162   }
163 
164   llvm::sort(srcIdCandidates);
165   srcIdCandidates.erase(llvm::unique(srcIdCandidates), srcIdCandidates.end());
166 }
167 
168 /// Returns in 'producerConsumerMemrefs' the memrefs involved in a
169 /// producer-consumer dependence between 'srcId' and 'dstId'.
170 static void
171 gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
172                               MemRefDependenceGraph *mdg,
173                               DenseSet<Value> &producerConsumerMemrefs) {
174   auto *dstNode = mdg->getNode(dstId);
175   auto *srcNode = mdg->getNode(srcId);
176   gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
177                                 producerConsumerMemrefs);
178 }
179 
180 /// A memref escapes in the context of the fusion pass if either:
181 ///   1. it (or its alias) is a block argument, or
182 ///   2. created by an op not known to guarantee alias freedom,
183 ///   3. it (or its alias) are used by ops other than affine dereferencing ops
184 ///   (e.g., by call op, memref load/store ops, alias creating ops, unknown ops,
185 ///   terminator ops, etc.); such ops do not deference the memref in an affine
186 ///   way.
187 static bool isEscapingMemref(Value memref, Block *block) {
188   Operation *defOp = memref.getDefiningOp();
189   // Check if 'memref' is a block argument.
190   if (!defOp)
191     return true;
192 
193   // Check if this is defined to be an alias of another memref.
194   if (auto viewOp = dyn_cast<mlir::ViewLikeOpInterface>(defOp))
195     if (isEscapingMemref(viewOp.getViewSource(), block))
196       return true;
197 
198   // Any op besides allocating ops wouldn't guarantee alias freedom
199   if (!hasSingleEffect<mlir::MemoryEffects::Allocate>(defOp, memref))
200     return true;
201 
202   // Check if 'memref' is used by a non-deferencing op (including unknown ones)
203   // (e.g., call ops, alias creating ops, etc.).
204   return llvm::any_of(memref.getUsers(), [&](Operation *user) {
205     // Ignore users outside of `block`.
206     Operation *ancestorOp = block->getParent()->findAncestorOpInRegion(*user);
207     if (!ancestorOp)
208       return true;
209     if (ancestorOp->getBlock() != block)
210       return false;
211     return !isa<AffineMapAccessInterface>(*user);
212   });
213 }
214 
215 /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
216 /// that escape the block or are accessed in a non-affine way.
217 static void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
218                                   DenseSet<Value> &escapingMemRefs) {
219   auto *node = mdg->getNode(id);
220   for (Operation *storeOp : node->stores) {
221     auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef();
222     if (escapingMemRefs.count(memref))
223       continue;
224     if (isEscapingMemref(memref, &mdg->block))
225       escapingMemRefs.insert(memref);
226   }
227 }
228 
229 // Sinks all sequential loops to the innermost levels (while preserving
230 // relative order among them) and moves all parallel loops to the
231 // outermost (while again preserving relative order among them).
232 // This can increase the loop depth at which we can fuse a slice, since we are
233 // pushing loop carried dependence to a greater depth in the loop nest.
234 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
235   assert(isa<AffineForOp>(node->op));
236   AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
237   node->op = newRootForOp;
238 }
239 
240 // Creates and returns a private (single-user) memref for fused loop rooted
241 // at 'forOp', with (potentially reduced) memref size based on the
242 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
243 // TODO: consider refactoring the common code from generateDma and
244 // this one.
245 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
246                                  unsigned dstLoopDepth,
247                                  std::optional<unsigned> fastMemorySpace,
248                                  uint64_t localBufSizeThreshold) {
249   Operation *forInst = forOp.getOperation();
250 
251   // Create builder to insert alloc op just before 'forOp'.
252   OpBuilder b(forInst);
253   // Builder to create constants at the top level.
254   OpBuilder top(forInst->getParentRegion());
255   // Create new memref type based on slice bounds.
256   auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
257   auto oldMemRefType = cast<MemRefType>(oldMemRef.getType());
258   unsigned rank = oldMemRefType.getRank();
259 
260   // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
261   MemRefRegion region(srcStoreOpInst->getLoc());
262   bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
263   (void)validRegion;
264   assert(validRegion && "unexpected memref region failure");
265   SmallVector<int64_t, 4> newShape;
266   std::vector<SmallVector<int64_t, 4>> lbs;
267   SmallVector<int64_t, 8> lbDivisors;
268   lbs.reserve(rank);
269   // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
270   // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
271   std::optional<int64_t> numElements =
272       region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
273   assert(numElements && "non-constant number of elts in local buffer");
274 
275   const FlatAffineValueConstraints *cst = region.getConstraints();
276   // 'outerIVs' holds the values that this memory region is symbolic/parametric
277   // on; this would correspond to loop IVs surrounding the level at which the
278   // slice is being materialized.
279   SmallVector<Value, 8> outerIVs;
280   cst->getValues(rank, cst->getNumVars(), &outerIVs);
281 
282   // Build 'rank' AffineExprs from MemRefRegion 'lbs'
283   SmallVector<AffineExpr, 4> offsets;
284   offsets.reserve(rank);
285   for (unsigned d = 0; d < rank; ++d) {
286     assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
287 
288     AffineExpr offset = top.getAffineConstantExpr(0);
289     for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
290       offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
291     }
292     assert(lbDivisors[d] > 0);
293     offset =
294         (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
295     offsets.push_back(offset);
296   }
297 
298   // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
299   // by 'srcStoreOpInst'.
300   auto eltSize = getMemRefIntOrFloatEltSizeInBytes(oldMemRefType);
301   assert(eltSize && "memrefs with size elt types expected");
302   uint64_t bufSize = *eltSize * *numElements;
303   unsigned newMemSpace;
304   if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) {
305     newMemSpace = *fastMemorySpace;
306   } else {
307     newMemSpace = oldMemRefType.getMemorySpaceAsInt();
308   }
309   auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
310                                        {}, newMemSpace);
311 
312   // Create new private memref for fused loop 'forOp'. 'newShape' is always
313   // a constant shape.
314   // TODO: Create/move alloc ops for private memrefs closer to their
315   // consumer loop nests to reduce their live range. Currently they are added
316   // at the beginning of the block, because loop nests can be reordered
317   // during the fusion pass.
318   Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType);
319 
320   // Build an AffineMap to remap access functions based on lower bound offsets.
321   SmallVector<AffineExpr, 4> remapExprs;
322   remapExprs.reserve(rank);
323   for (unsigned i = 0; i < rank; i++) {
324     auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
325 
326     auto remapExpr =
327         simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
328     remapExprs.push_back(remapExpr);
329   }
330 
331   auto indexRemap =
332       AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
333 
334   // Replace all users of 'oldMemRef' with 'newMemRef'.
335   LogicalResult res =
336       replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
337                                /*extraOperands=*/outerIVs,
338                                /*symbolOperands=*/{},
339                                /*domOpFilter=*/&*forOp.getBody()->begin());
340   assert(succeeded(res) &&
341          "replaceAllMemrefUsesWith should always succeed here");
342   (void)res;
343   return newMemRef;
344 }
345 
346 /// Returns true if there are any non-affine uses of `memref` in any of
347 /// the operations between `start` and `end` (both exclusive). Any other
348 /// than affine read/write are treated as non-affine uses of `memref`.
349 static bool hasNonAffineUsersOnPath(Operation *start, Operation *end,
350                                     Value memref) {
351   assert(start->getBlock() == end->getBlock());
352   assert(start->isBeforeInBlock(end) && "start expected to be before end");
353   Block *block = start->getBlock();
354   // Check if there is a non-affine memref user in any op between `start` and
355   // `end`.
356   return llvm::any_of(memref.getUsers(), [&](Operation *user) {
357     if (isa<AffineReadOpInterface, AffineWriteOpInterface>(user))
358       return false;
359     Operation *ancestor = block->findAncestorOpInBlock(*user);
360     return ancestor && start->isBeforeInBlock(ancestor) &&
361            ancestor->isBeforeInBlock(end);
362   });
363 }
364 
365 /// Check whether a memref value used in any operation of 'src' has a
366 /// non-affine operation that is between `src` and `end` (exclusive of `src`
367 /// and `end`)  where `src` and `end` are expected to be in the same Block.
368 /// Any other than affine read/write are treated as non-affine uses of memref.
369 static bool hasNonAffineUsersOnPath(Operation *src, Operation *end) {
370   assert(src->getBlock() == end->getBlock() && "same block expected");
371 
372   // Trivial case. `src` and `end` are exclusive.
373   if (src == end || end->isBeforeInBlock(src))
374     return false;
375 
376   // Collect relevant memref values.
377   llvm::SmallDenseSet<Value, 2> memRefValues;
378   src->walk([&](Operation *op) {
379     for (Value v : op->getOperands())
380       // Collect memref values only.
381       if (isa<MemRefType>(v.getType()))
382         memRefValues.insert(v);
383     return WalkResult::advance();
384   });
385   // Look for non-affine users between `src` and `end`.
386   return llvm::any_of(memRefValues, [&](Value memref) {
387     return hasNonAffineUsersOnPath(src, end, memref);
388   });
389 }
390 
391 // Checks the profitability of fusing a backwards slice of the loop nest
392 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
393 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
394 // the memref being produced and consumed, which is an input to the cost model.
395 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
396 // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
397 // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
398 // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
399 // unique store op in the src node, which will be used to check that the write
400 // region is the same after input-reuse fusion. Computation slices are provided
401 // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
402 // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
403 // profitable to fuse the candidate loop nests. Returns false otherwise.
404 // `dstLoopDepth` is set to the most profitable depth at which to materialize
405 // the source loop nest slice.
406 // The profitability model executes the following steps:
407 // *) Computes the backward computation slice at 'srcOpInst'. This
408 //    computation slice of the loop nest surrounding 'srcOpInst' is
409 //    represented by modified src loop bounds in 'sliceState', which are
410 //    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
411 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
412 //    loop nest is the total number of dynamic operation instances in the loop
413 //    nest).
414 // *) Computes the cost of fusing a slice of the src loop nest into the dst
415 //    loop nest at various values of dst loop depth, attempting to fuse
416 //    the largest computation slice at the maximal dst loop depth (closest to
417 //    the load) to minimize reuse distance and potentially enable subsequent
418 //    load/store forwarding.
419 //    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
420 //    nest, at which the src computation slice is inserted/fused.
421 //    NOTE: We attempt to maximize the dst loop depth, but there are cases
422 //    where a particular setting for 'dstLoopNest' might fuse an unsliced
423 //    loop (within the src computation slice) at a depth which results in
424 //    excessive recomputation (see unit tests for examples).
425 // *) Compares the total cost of the unfused loop nests to the min cost fused
426 //    loop nest computed in the previous step, and returns true if the latter
427 //    is lower.
428 // TODO: Extend profitability analysis to support scenarios with multiple
429 // stores.
430 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
431                                AffineForOp dstForOp,
432                                ArrayRef<ComputationSliceState> depthSliceUnions,
433                                unsigned maxLegalFusionDepth,
434                                unsigned *dstLoopDepth,
435                                double computeToleranceThreshold) {
436   LLVM_DEBUG({
437     llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
438     llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
439     llvm::dbgs() << dstForOp << "\n";
440   });
441 
442   if (maxLegalFusionDepth == 0) {
443     LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth is 0\n");
444     return false;
445   }
446 
447   // Compute cost of sliced and unsliced src loop nest.
448   SmallVector<AffineForOp, 4> srcLoopIVs;
449   getAffineForIVs(*srcOpInst, &srcLoopIVs);
450 
451   // Walk src loop nest and collect stats.
452   LoopNestStats srcLoopNestStats;
453   if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
454     return false;
455 
456   // Compute cost of dst loop nest.
457   LoopNestStats dstLoopNestStats;
458   if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
459     return false;
460 
461   // Search for min cost value for 'dstLoopDepth'. At each value of
462   // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
463   // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
464   // of these bounds). Next the union slice bounds are used to calculate
465   // the cost of the slice and the cost of the slice inserted into the dst
466   // loop nest at 'dstLoopDepth'.
467   uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
468   double maxStorageReduction = 0.0;
469   std::optional<uint64_t> sliceMemEstimate;
470 
471   // The best loop depth at which to materialize the slice.
472   std::optional<unsigned> bestDstLoopDepth;
473 
474   // Compute op instance count for the src loop nest without iteration slicing.
475   uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
476 
477   // Compute src loop nest write region size.
478   MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
479   if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
480     LLVM_DEBUG(llvm::dbgs()
481                << "Unable to compute MemRefRegion for source operation\n");
482     return false;
483   }
484 
485   std::optional<int64_t> maybeSrcWriteRegionSizeBytes =
486       srcWriteRegion.getRegionSize();
487   if (!maybeSrcWriteRegionSizeBytes.has_value())
488     return false;
489   int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes;
490 
491   // Compute op instance count for the src loop nest.
492   uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
493 
494   // Evaluate all depth choices for materializing the slice in the destination
495   // loop nest.
496   for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
497     const ComputationSliceState &slice = depthSliceUnions[i - 1];
498     // Skip slice union if it wasn't computed for this depth.
499     if (slice.isEmpty())
500       continue;
501 
502     int64_t fusedLoopNestComputeCost;
503     if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
504                               dstLoopNestStats, slice,
505                               &fusedLoopNestComputeCost)) {
506       LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost\n");
507       continue;
508     }
509 
510     double additionalComputeFraction =
511         fusedLoopNestComputeCost /
512             (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
513         1;
514 
515     // Determine what the slice write MemRefRegion would be, if the src loop
516     // nest slice 'slice' were to be inserted into the dst loop nest at loop
517     // depth 'i'.
518     MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
519     if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
520                                         &slice))) {
521       LLVM_DEBUG(llvm::dbgs()
522                  << "Failed to compute slice write region at loopDepth: " << i
523                  << "\n");
524       continue;
525     }
526 
527     std::optional<int64_t> maybeSliceWriteRegionSizeBytes =
528         sliceWriteRegion.getRegionSize();
529     if (!maybeSliceWriteRegionSizeBytes.has_value() ||
530         *maybeSliceWriteRegionSizeBytes == 0) {
531       LLVM_DEBUG(llvm::dbgs()
532                  << "Failed to get slice write region size at loopDepth: " << i
533                  << "\n");
534       continue;
535     }
536     int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes;
537 
538     // If we are fusing for reuse, check that write regions remain the same.
539     // TODO: Write region check should check sizes and offsets in
540     // each dimension, so that we are sure they are covering the same memref
541     // region. Also, move this out to a isMemRefRegionSuperSet helper function.
542     if (srcOpInst != srcStoreOpInst &&
543         sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
544       continue;
545 
546     double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
547                               static_cast<double>(sliceWriteRegionSizeBytes);
548 
549     LLVM_DEBUG({
550       std::stringstream msg;
551       msg << "  evaluating fusion profitability at depth : " << i << "\n"
552           << std::fixed << std::setprecision(2)
553           << "   additional compute fraction: "
554           << 100.0 * additionalComputeFraction << "%\n"
555           << "   storage reduction factor: " << storageReduction << "x\n"
556           << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
557           << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
558           << "   slice write region size: " << sliceWriteRegionSizeBytes
559           << "\n";
560       llvm::dbgs() << msg.str();
561     });
562 
563     // TODO: This is a placeholder cost model.
564     // Among all choices that add an acceptable amount of redundant computation
565     // (as per computeToleranceThreshold), we will simply pick the one that
566     // reduces the intermediary size the most.
567     if ((storageReduction > maxStorageReduction) &&
568         (additionalComputeFraction < computeToleranceThreshold)) {
569       maxStorageReduction = storageReduction;
570       bestDstLoopDepth = i;
571       minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
572       sliceMemEstimate = sliceWriteRegionSizeBytes;
573     }
574   }
575 
576   // A simple cost model: fuse if it reduces the memory footprint.
577 
578   if (!bestDstLoopDepth) {
579     LLVM_DEBUG(
580         llvm::dbgs()
581         << "All fusion choices involve more than the threshold amount of "
582            "redundant computation; NOT fusing.\n");
583     return false;
584   }
585 
586   if (!bestDstLoopDepth) {
587     LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
588     return false;
589   }
590 
591   // Set dstLoopDepth based on best values from search.
592   *dstLoopDepth = *bestDstLoopDepth;
593 
594   LLVM_DEBUG(
595       llvm::dbgs() << " LoopFusion fusion stats:"
596                    << "\n  best loop depth: " << bestDstLoopDepth
597                    << "\n  src loop nest compute cost: " << srcLoopNestCost
598                    << "\n  dst loop nest compute cost: " << dstLoopNestCost
599                    << "\n  fused loop nest compute cost: "
600                    << minFusedLoopNestComputeCost << "\n");
601 
602   auto dstMemSize = getMemoryFootprintBytes(dstForOp);
603   auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
604 
605   std::optional<double> storageReduction;
606 
607   if (!dstMemSize || !srcMemSize) {
608     LLVM_DEBUG(llvm::dbgs()
609                << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
610     return false;
611   }
612 
613   auto srcMemSizeVal = *srcMemSize;
614   auto dstMemSizeVal = *dstMemSize;
615 
616   assert(sliceMemEstimate && "expected value");
617   auto fusedMem = dstMemSizeVal + *sliceMemEstimate;
618 
619   LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
620                           << "   dst mem: " << dstMemSizeVal << "\n"
621                           << "   fused mem: " << fusedMem << "\n"
622                           << "   slice mem: " << sliceMemEstimate << "\n");
623 
624   if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
625     LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
626     return false;
627   }
628   storageReduction =
629       100.0 *
630       (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
631 
632   double additionalComputeFraction =
633       100.0 * (minFusedLoopNestComputeCost /
634                    (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
635                1);
636   (void)additionalComputeFraction;
637   LLVM_DEBUG({
638     std::stringstream msg;
639     msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
640         << std::setprecision(2) << additionalComputeFraction
641         << "% redundant computation and a ";
642     msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>");
643     msg << "% storage reduction.\n";
644     llvm::dbgs() << msg.str();
645   });
646 
647   return true;
648 }
649 
650 namespace {
651 
652 // GreedyFusion greedily fuses loop nests which have a producer/consumer or
653 // input-reuse relationship on a memref, with the goal of improving locality.
654 //
655 // The steps of the producer-consumer fusion algorithm are as follows:
656 //
657 // *) A worklist is initialized with node ids from the dependence graph.
658 // *) For each node id in the worklist:
659 //   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
660 //      candidate destination AffineForOp into which fusion will be attempted.
661 //   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
662 //   *) For each LoadOp in 'dstLoadOps' do:
663 //      *) Look up dependent loop nests which have a single store op to the same
664 //         memref.
665 //      *) Check if dependences would be violated by the fusion.
666 //      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
667 //         bounds to be functions of 'dstLoopNest' IVs and symbols.
668 //      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
669 //         at a loop depth determined by the cost model in 'isFusionProfitable'.
670 //      *) Add the newly fused load/store operations to the state,
671 //         and also add newly fused load ops to 'dstLoopOps' to be considered
672 //         as fusion dst load ops in another iteration.
673 //      *) Remove old src loop nest and its associated state.
674 //
675 // The steps of the input-reuse fusion algorithm are as follows:
676 //
677 // *) Initialize 'worklist' with node ids from the dependence graph.
678 // *) For each 'dstNode' in the worklist:
679 //   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
680 //      loads from the same memref, but which has no dependence paths to/from.
681 //   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
682 //      bounds to be functions of 'dstLoopNest' IVs and symbols.
683 //   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
684 //      at a loop depth determined by the cost model in 'isFusionProfitable'.
685 //      This function also checks that the memref write region of 'sibLoopNest',
686 //      is preserved in the fused loop nest.
687 //   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
688 //
689 // Given a graph where top-level operations are vertices in the set 'V' and
690 // edges in the set 'E' are dependences between vertices, this algorithm
691 // takes O(V) time for initialization, and has runtime O(V + E).
692 //
693 // This greedy algorithm is not 'maximal' due to the current restriction of
694 // fusing along single producer consumer edges, but there is a TODO: to fix
695 // this.
696 //
697 // TODO: Experiment with other fusion policies.
698 struct GreedyFusion {
699 public:
700   // The data dependence graph to traverse during fusion.
701   MemRefDependenceGraph *mdg;
702   // Worklist of graph nodes visited during the fusion pass.
703   SmallVector<unsigned, 8> worklist;
704   // Parameter for local buffer size threshold.
705   unsigned localBufSizeThreshold;
706   // Parameter for fast memory space.
707   std::optional<unsigned> fastMemorySpace;
708   // If true, ignore any additional (redundant) computation tolerance threshold
709   // that would have prevented fusion.
710   bool maximalFusion;
711   // The amount of additional computation that is tolerated while fusing
712   // pair-wise as a fraction of the total computation.
713   double computeToleranceThreshold;
714 
715   using Node = MemRefDependenceGraph::Node;
716 
717   GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
718                std::optional<unsigned> fastMemorySpace, bool maximalFusion,
719                double computeToleranceThreshold)
720       : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
721         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
722         computeToleranceThreshold(computeToleranceThreshold) {}
723 
724   /// Initializes 'worklist' with nodes from 'mdg'.
725   void init() {
726     // TODO: Add a priority queue for prioritizing nodes by different
727     // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
728     worklist.clear();
729     for (auto &idAndNode : mdg->nodes) {
730       const Node &node = idAndNode.second;
731       worklist.push_back(node.id);
732     }
733   }
734   /// Run only sibling fusion on the `mdg`.
735   void runSiblingFusionOnly() {
736     fuseSiblingNodes();
737     eraseUnusedMemRefAllocations();
738   }
739 
740   /// Run only producer/consumer fusion on the `mdg`.
741   void runProducerConsumerFusionOnly() {
742     fuseProducerConsumerNodes(
743         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
744     eraseUnusedMemRefAllocations();
745   }
746 
747   // Run the GreedyFusion pass.
748   // *) First pass through the nodes fuses single-use producer nodes into their
749   //    unique consumer.
750   // *) Second pass fuses sibling nodes which share no dependence edges.
751   // *) Third pass fuses any remaining producer nodes into their users.
752   void runGreedyFusion() {
753     // TODO: Run this repeatedly until a fixed-point is reached.
754     fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
755     fuseSiblingNodes();
756     fuseProducerConsumerNodes(
757         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
758     eraseUnusedMemRefAllocations();
759   }
760 
761   /// Returns true if a private memref can be created for `memref` given
762   /// the fusion scenario reflected by the other arguments.
763   bool canCreatePrivateMemRef(Value memref,
764                               const DenseSet<Value> &srcEscapingMemRefs,
765                               unsigned producerId, unsigned consumerId,
766                               bool removeSrcNode) {
767     const Node *consumerNode = mdg->getNode(consumerId);
768     // If `memref` is an escaping one, do not create a private memref
769     // for the below scenarios, since doing so will leave the escaping
770     // memref unmodified as all the writes originally meant for the
771     // escaping memref would be performed on the private memref:
772     // 1. The source is to be removed after fusion,
773     // OR
774     // 2. The destination writes to `memref`.
775     if (srcEscapingMemRefs.count(memref) > 0 &&
776         (removeSrcNode || consumerNode->getStoreOpCount(memref) > 0))
777       return false;
778 
779     // Don't create a private memref if 'srcNode' has in edges on
780     // 'memref' or 'dstNode' has out edges on 'memref'.
781     if (mdg->getIncomingMemRefAccesses(producerId, memref) > 0 ||
782         mdg->getOutEdgeCount(consumerId, memref) > 0)
783       return false;
784 
785     // If 'srcNode' will be removed but it has out edges on 'memref' to
786     // nodes other than 'dstNode', we have to preserve dependences and
787     // cannot create a private memref.
788     if (removeSrcNode &&
789         any_of(mdg->outEdges[producerId], [&](const auto &edge) {
790           return edge.value == memref && edge.id != consumerId;
791         }))
792       return false;
793 
794     return true;
795   }
796 
797   /// Perform fusions with node `dstId` as the destination of fusion, with
798   /// No fusion is performed when producers with a user count greater than
799   /// `maxSrcUserCount` for any of the memrefs involved.
800   void performFusionsIntoDest(unsigned dstId, unsigned maxSrcUserCount) {
801     LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
802     // Skip if this node was removed (fused into another node).
803     if (mdg->nodes.count(dstId) == 0)
804       return;
805     // Get 'dstNode' into which to attempt fusion.
806     auto *dstNode = mdg->getNode(dstId);
807     // Skip if 'dstNode' is not a loop nest.
808     if (!isa<AffineForOp>(dstNode->op))
809       return;
810     // Skip if 'dstNode' is a loop nest returning values.
811     // TODO: support loop nests that return values.
812     if (dstNode->op->getNumResults() > 0)
813       return;
814 
815     LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
816 
817     // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
818     // while preserving relative order. This can increase the maximum loop
819     // depth at which we can fuse a slice of a producer loop nest into a
820     // consumer loop nest.
821     sinkSequentialLoops(dstNode);
822     auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
823 
824     // Try to fuse 'dstNode' with candidate producer loops until a fixed point
825     // is reached. Fusing two loops may expose new fusion opportunities.
826     bool dstNodeChanged;
827     do {
828       // Gather src loop candidates for 'dstNode' and visit them in "quasi"
829       // reverse program order to minimize the number of iterations needed to
830       // reach the fixed point. Note that this is a best effort approach since
831       // 'getProducerCandidates' does not always guarantee that program order
832       // in 'srcIdCandidates'.
833       dstNodeChanged = false;
834       SmallVector<unsigned, 16> srcIdCandidates;
835       getProducerCandidates(dstId, mdg, srcIdCandidates);
836 
837       for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
838         // Get 'srcNode' from which to attempt fusion into 'dstNode'.
839         auto *srcNode = mdg->getNode(srcId);
840         auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
841         LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
842                                 << " for dst loop " << dstId << "\n");
843 
844         // Skip if 'srcNode' is a loop nest returning values.
845         // TODO: support loop nests that return values.
846         if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0)
847           continue;
848 
849         DenseSet<Value> producerConsumerMemrefs;
850         gatherProducerConsumerMemrefs(srcId, dstId, mdg,
851                                       producerConsumerMemrefs);
852 
853         // Skip if 'srcNode' out edge count on any memref is greater than
854         // 'maxSrcUserCount'.
855         if (any_of(producerConsumerMemrefs, [&](Value memref) {
856               return mdg->getOutEdgeCount(srcNode->id, memref) >
857                      maxSrcUserCount;
858             }))
859           continue;
860 
861         // Gather memrefs in 'srcNode' that are written and escape out of the
862         // block (e.g., memref block arguments, returned memrefs,
863         // memrefs passed to function calls, etc.).
864         DenseSet<Value> srcEscapingMemRefs;
865         gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
866 
867         // Skip if there are non-affine operations in between the 'srcNode'
868         // and 'dstNode' using their memrefs. If so, we wouldn't be able to
869         // compute a legal insertion point for now. 'srcNode' and 'dstNode'
870         // memrefs with non-affine operation users would be considered
871         // escaping memrefs so we can limit this check to only scenarios with
872         // escaping memrefs.
873         if (!srcEscapingMemRefs.empty() &&
874             hasNonAffineUsersOnPath(srcNode->op, dstNode->op)) {
875           LLVM_DEBUG(llvm::dbgs()
876                      << "Can't fuse: non-affine users in between the loops\n");
877           continue;
878         }
879 
880         // Compute an operation list insertion point for the fused loop
881         // nest which preserves dependences.
882         Operation *fusedLoopInsPoint =
883             mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
884         if (fusedLoopInsPoint == nullptr)
885           continue;
886 
887         // It's possible this fusion is at an inner depth (i.e., there are
888         // common surrounding affine loops for the source and destination for
889         // ops). We need to get this number because the call to canFuseLoops
890         // needs to be passed the absolute depth. The max legal depth and the
891         // depths we try below are however *relative* and as such don't include
892         // the common depth.
893         SmallVector<AffineForOp, 4> surroundingLoops;
894         getAffineForIVs(*dstAffineForOp, &surroundingLoops);
895         unsigned numSurroundingLoops = surroundingLoops.size();
896 
897         // Compute the innermost common loop depth for dstNode
898         // producer-consumer loads/stores.
899         SmallVector<Operation *, 2> dstMemrefOps;
900         for (Operation *op : dstNode->loads)
901           if (producerConsumerMemrefs.count(
902                   cast<AffineReadOpInterface>(op).getMemRef()) > 0)
903             dstMemrefOps.push_back(op);
904         for (Operation *op : dstNode->stores)
905           if (producerConsumerMemrefs.count(
906                   cast<AffineWriteOpInterface>(op).getMemRef()))
907             dstMemrefOps.push_back(op);
908         unsigned dstLoopDepthTest =
909             getInnermostCommonLoopDepth(dstMemrefOps) - numSurroundingLoops;
910 
911         // Check the feasibility of fusing src loop nest into dst loop nest
912         // at loop depths in range [1, dstLoopDepthTest].
913         unsigned maxLegalFusionDepth = 0;
914         SmallVector<ComputationSliceState, 8> depthSliceUnions;
915         depthSliceUnions.resize(dstLoopDepthTest);
916         FusionStrategy strategy(FusionStrategy::ProducerConsumer);
917         for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
918           FusionResult result =
919               affine::canFuseLoops(srcAffineForOp, dstAffineForOp,
920                                    /*dstLoopDepth=*/i + numSurroundingLoops,
921                                    &depthSliceUnions[i - 1], strategy);
922 
923           if (result.value == FusionResult::Success)
924             maxLegalFusionDepth = i;
925         }
926 
927         if (maxLegalFusionDepth == 0) {
928           LLVM_DEBUG(llvm::dbgs()
929                      << "Can't fuse: fusion is not legal at any depth\n");
930           continue;
931         }
932 
933         // Check if fusion would be profitable. We skip profitability analysis
934         // for maximal fusion since we already know the maximal legal depth to
935         // fuse.
936         unsigned bestDstLoopDepth = maxLegalFusionDepth;
937         if (!maximalFusion) {
938           // Retrieve producer stores from the src loop.
939           SmallVector<Operation *, 2> producerStores;
940           for (Operation *op : srcNode->stores)
941             if (producerConsumerMemrefs.count(
942                     cast<AffineWriteOpInterface>(op).getMemRef()))
943               producerStores.push_back(op);
944 
945           // TODO: Suppport multiple producer stores in profitability
946           // analysis. We limit profitability analysis to only scenarios with
947           // a single producer store for now. Note that some multi-store
948           // producer scenarios will still go through profitability analysis
949           // if only one of the stores is involved the producer-consumer
950           // relationship of the candidate loops.
951           assert(!producerStores.empty() && "Expected producer store");
952           if (producerStores.size() > 1)
953             LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
954                                        "supported for this case\n");
955           else if (!isFusionProfitable(producerStores[0], producerStores[0],
956                                        dstAffineForOp, depthSliceUnions,
957                                        maxLegalFusionDepth, &bestDstLoopDepth,
958                                        computeToleranceThreshold))
959             continue;
960         }
961 
962         assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
963         ComputationSliceState &bestSlice =
964             depthSliceUnions[bestDstLoopDepth - 1];
965         assert(!bestSlice.isEmpty() && "Missing slice union for depth");
966 
967         // Determine if 'srcId' can be removed after fusion, taking into
968         // account remaining dependences, escaping memrefs and the fusion
969         // insertion point.
970         bool removeSrcNode = canRemoveSrcNodeAfterFusion(
971             srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
972             mdg);
973 
974         DenseSet<Value> privateMemrefs;
975         for (Value memref : producerConsumerMemrefs) {
976           if (canCreatePrivateMemRef(memref, srcEscapingMemRefs, srcId, dstId,
977                                      removeSrcNode)) {
978             // Create a private version of this memref.
979             LLVM_DEBUG(llvm::dbgs()
980                        << "Creating private memref for " << memref << '\n');
981             // Create a private version of this memref.
982             privateMemrefs.insert(memref);
983           }
984         }
985 
986         // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
987         fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
988         dstNodeChanged = true;
989 
990         LLVM_DEBUG(llvm::dbgs()
991                    << "Fused src loop " << srcId << " into dst loop " << dstId
992                    << " at depth " << bestDstLoopDepth << ":\n"
993                    << dstAffineForOp << "\n");
994 
995         // Move 'dstAffineForOp' before 'insertPointInst' if needed.
996         if (fusedLoopInsPoint != dstAffineForOp)
997           dstAffineForOp->moveBefore(fusedLoopInsPoint);
998 
999         // Update edges between 'srcNode' and 'dstNode'.
1000         mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
1001                          removeSrcNode);
1002 
1003         // Create private memrefs.
1004         if (!privateMemrefs.empty()) {
1005           // Gather stores for all the private-to-be memrefs.
1006           DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
1007           dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
1008             Value storeMemRef = storeOp.getMemRef();
1009             if (privateMemrefs.count(storeMemRef) > 0)
1010               privateMemRefToStores[storeMemRef].push_back(storeOp);
1011           });
1012 
1013           // Replace original memrefs with private memrefs. Note that all the
1014           // loads and stores on these memrefs will be replaced with a new
1015           // loads and stores. Any reference to the original ones becomes
1016           // invalid after this point.
1017           for (auto &memrefToStoresPair : privateMemRefToStores) {
1018             // TODO: Use union of memref write regions to compute
1019             // private memref footprint.
1020             SmallVector<Operation *, 4> &storesForMemref =
1021                 memrefToStoresPair.second;
1022             Value newMemRef = createPrivateMemRef(
1023                 dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1024                 fastMemorySpace, localBufSizeThreshold);
1025             // Create new node in dependence graph for 'newMemRef' alloc op.
1026             unsigned newMemRefNodeId = mdg->addNode(newMemRef.getDefiningOp());
1027             // Add edge from 'newMemRef' node to dstNode.
1028             mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1029           }
1030           // One or more entries for 'newMemRef' alloc op are inserted into
1031           // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to
1032           // reallocate, update dstNode.
1033           dstNode = mdg->getNode(dstId);
1034         }
1035 
1036         // Collect dst loop stats after memref privatization transformation.
1037         LoopNestStateCollector dstLoopCollector;
1038         dstLoopCollector.collect(dstAffineForOp);
1039 
1040         // Clear and add back loads and stores.
1041         mdg->clearNodeLoadAndStores(dstNode->id);
1042         mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1043                        dstLoopCollector.storeOpInsts);
1044 
1045         if (removeSrcNode) {
1046           LLVM_DEBUG(llvm::dbgs()
1047                      << "Removing src loop " << srcId << " after fusion\n");
1048           // srcNode is no longer valid after it is removed from mdg.
1049           srcAffineForOp.erase();
1050           mdg->removeNode(srcId);
1051           srcNode = nullptr;
1052         }
1053       }
1054     } while (dstNodeChanged);
1055   }
1056 
1057   /// Visit each node in the graph, and for each node, attempt to fuse it with
1058   /// producer-consumer candidates. No fusion is performed when producers with a
1059   /// user count greater than `maxSrcUserCount` for any of the memrefs involved
1060   /// are encountered.
1061   void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1062     LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
1063     init();
1064     while (!worklist.empty()) {
1065       unsigned dstId = worklist.back();
1066       worklist.pop_back();
1067       performFusionsIntoDest(dstId, maxSrcUserCount);
1068     }
1069   }
1070 
1071   // Visits each node in the graph, and for each node, attempts to fuse it with
1072   // its sibling nodes (nodes which share a parent, but no dependence edges).
1073   void fuseSiblingNodes() {
1074     LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n");
1075     init();
1076     while (!worklist.empty()) {
1077       unsigned dstId = worklist.back();
1078       worklist.pop_back();
1079 
1080       // Skip if this node was removed (fused into another node).
1081       if (mdg->nodes.count(dstId) == 0)
1082         continue;
1083       // Get 'dstNode' into which to attempt fusion.
1084       auto *dstNode = mdg->getNode(dstId);
1085       // Skip if 'dstNode' is not a loop nest.
1086       if (!isa<AffineForOp>(dstNode->op))
1087         continue;
1088       // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1089       fuseWithSiblingNodes(dstNode);
1090     }
1091   }
1092 
1093   // Attempt to fuse 'dstNode' with sibling nodes in the graph.
1094   void fuseWithSiblingNodes(Node *dstNode) {
1095     DenseSet<unsigned> visitedSibNodeIds;
1096     std::pair<unsigned, Value> idAndMemref;
1097     auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1098 
1099     while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1100       unsigned sibId = idAndMemref.first;
1101       Value memref = idAndMemref.second;
1102       // TODO: Check that 'sibStoreOpInst' post-dominates all other
1103       // stores to the same memref in 'sibNode' loop nest.
1104       auto *sibNode = mdg->getNode(sibId);
1105       // Compute an operation list insertion point for the fused loop
1106       // nest which preserves dependences.
1107       assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1108       Operation *insertPointInst =
1109           sibNode->op->isBeforeInBlock(dstNode->op)
1110               ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1111               : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1112       if (insertPointInst == nullptr)
1113         continue;
1114 
1115       // Check if fusion would be profitable and at what depth.
1116 
1117       // Get unique 'sibNode' load op to 'memref'.
1118       SmallVector<Operation *, 2> sibLoadOpInsts;
1119       sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1120       // Currently findSiblingNodeToFuse searches for siblings with one load.
1121       assert(sibLoadOpInsts.size() == 1);
1122       Operation *sibLoadOpInst = sibLoadOpInsts[0];
1123 
1124       // Gather 'dstNode' load ops to 'memref'.
1125       SmallVector<Operation *, 2> dstLoadOpInsts;
1126       dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1127 
1128       // It's possible this fusion is at an inner depth (i.e., there are common
1129       // surrounding affine loops for the source and destination for ops). We
1130       // need to get this number because the call to canFuseLoops needs to be
1131       // passed the absolute depth. The max legal depth and the depths we try
1132       // below are however *relative* and as such don't include the common
1133       // depth.
1134       SmallVector<AffineForOp, 4> surroundingLoops;
1135       getAffineForIVs(*dstAffineForOp, &surroundingLoops);
1136       unsigned numSurroundingLoops = surroundingLoops.size();
1137       SmallVector<AffineForOp, 4> dstLoopIVs;
1138       getAffineForIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1139       unsigned dstLoopDepthTest = dstLoopIVs.size() - numSurroundingLoops;
1140       auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
1141 
1142       // Compute loop depth and slice union for fusion.
1143       SmallVector<ComputationSliceState, 8> depthSliceUnions;
1144       depthSliceUnions.resize(dstLoopDepthTest);
1145       unsigned maxLegalFusionDepth = 0;
1146       FusionStrategy strategy(memref);
1147       for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1148         FusionResult result =
1149             affine::canFuseLoops(sibAffineForOp, dstAffineForOp,
1150                                  /*dstLoopDepth=*/i + numSurroundingLoops,
1151                                  &depthSliceUnions[i - 1], strategy);
1152 
1153         if (result.value == FusionResult::Success)
1154           maxLegalFusionDepth = i;
1155       }
1156 
1157       LLVM_DEBUG(llvm::dbgs() << "Max legal depth for fusion: "
1158                               << maxLegalFusionDepth << '\n');
1159 
1160       // Skip if fusion is not feasible at any loop depths.
1161       if (maxLegalFusionDepth == 0)
1162         continue;
1163 
1164       unsigned bestDstLoopDepth = maxLegalFusionDepth;
1165       if (!maximalFusion) {
1166         // Check if fusion would be profitable. For sibling fusion, the sibling
1167         // load op is treated as the src "store" op for fusion profitability
1168         // purposes. The footprint of the load in the slice relative to the
1169         // unfused source's determines reuse.
1170         if (!isFusionProfitable(sibLoadOpInst, sibLoadOpInst, dstAffineForOp,
1171                                 depthSliceUnions, maxLegalFusionDepth,
1172                                 &bestDstLoopDepth, computeToleranceThreshold))
1173           continue;
1174       }
1175 
1176       assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1177       assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
1178              "Fusion depth has no computed slice union");
1179       // Check if source loop is being inserted in the innermost
1180       // destination loop. Based on this, the fused loop may be optimized
1181       // further inside `fuseLoops`.
1182       bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest);
1183       // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1184       affine::fuseLoops(sibAffineForOp, dstAffineForOp,
1185                         depthSliceUnions[bestDstLoopDepth - 1],
1186                         isInnermostInsertion);
1187 
1188       auto dstForInst = cast<AffineForOp>(dstNode->op);
1189       // Update operation position of fused loop nest (if needed).
1190       if (insertPointInst != dstForInst) {
1191         dstForInst->moveBefore(insertPointInst);
1192       }
1193       // Update data dependence graph state post fusion.
1194       updateStateAfterSiblingFusion(sibNode, dstNode);
1195     }
1196   }
1197 
1198   // Searches block argument uses and the graph from 'dstNode' looking for a
1199   // fusion candidate sibling node which shares no dependences with 'dstNode'
1200   // but which loads from the same memref. Returns true and sets
1201   // 'idAndMemrefToFuse' on success. Returns false otherwise.
1202   bool findSiblingNodeToFuse(Node *dstNode,
1203                              DenseSet<unsigned> *visitedSibNodeIds,
1204                              std::pair<unsigned, Value> *idAndMemrefToFuse) {
1205     // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1206     // on 'memref'.
1207     auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1208       // Skip if 'outEdge' is not a read-after-write dependence.
1209       // TODO: Remove restrict to single load op restriction.
1210       if (sibNode->getLoadOpCount(memref) != 1)
1211         return false;
1212       // Skip if there exists a path of dependent edges between
1213       // 'sibNode' and 'dstNode'.
1214       if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1215           mdg->hasDependencePath(dstNode->id, sibNode->id))
1216         return false;
1217       // Skip sib node if it loads to (and stores from) the same memref on
1218       // which it also has an input dependence edge.
1219       DenseSet<Value> loadAndStoreMemrefSet;
1220       sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1221       if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1222             return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1223           }))
1224         return false;
1225 
1226       // Check that all stores are to the same memref if any.
1227       DenseSet<Value> storeMemrefs;
1228       for (auto *storeOpInst : sibNode->stores) {
1229         storeMemrefs.insert(
1230             cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
1231       }
1232       if (storeMemrefs.size() > 1)
1233         return false;
1234 
1235       // Skip if a memref value in one node is used by a non-affine memref
1236       // access that lies between 'dstNode' and 'sibNode'.
1237       if (hasNonAffineUsersOnPath(dstNode->op, sibNode->op) ||
1238           hasNonAffineUsersOnPath(sibNode->op, dstNode->op))
1239         return false;
1240       return true;
1241     };
1242 
1243     // Search for siblings which load the same memref block argument.
1244     Block *block = dstNode->op->getBlock();
1245     for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) {
1246       for (Operation *user : block->getArgument(i).getUsers()) {
1247         auto loadOp = dyn_cast<AffineReadOpInterface>(user);
1248         if (!loadOp)
1249           continue;
1250         // Gather loops surrounding 'use'.
1251         SmallVector<AffineForOp, 4> loops;
1252         getAffineForIVs(*user, &loops);
1253         // Skip 'use' if it is not within a loop nest.
1254         // Find the surrounding affine.for nested immediately within the
1255         // block.
1256         auto *it = llvm::find_if(loops, [&](AffineForOp loop) {
1257           return loop->getBlock() == &mdg->block;
1258         });
1259         // Skip 'use' if it is not within a loop nest in `block`.
1260         if (it == loops.end())
1261           continue;
1262         Node *sibNode = mdg->getForOpNode(*it);
1263         assert(sibNode != nullptr);
1264         // Skip 'use' if it not a sibling to 'dstNode'.
1265         if (sibNode->id == dstNode->id)
1266           continue;
1267         // Skip 'use' if it has been visited.
1268         if (visitedSibNodeIds->count(sibNode->id) > 0)
1269           continue;
1270         // Skip 'use' if it does not load from the same memref as 'dstNode'.
1271         auto memref = loadOp.getMemRef();
1272         if (dstNode->getLoadOpCount(memref) == 0)
1273           continue;
1274         // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1275         if (canFuseWithSibNode(sibNode, memref)) {
1276           visitedSibNodeIds->insert(sibNode->id);
1277           idAndMemrefToFuse->first = sibNode->id;
1278           idAndMemrefToFuse->second = memref;
1279           return true;
1280         }
1281       }
1282     }
1283 
1284     // Search for siblings by following edges through an intermediate src node.
1285     // Collect candidate 'dstNode' input edges in 'inEdges'.
1286     SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1287     mdg->forEachMemRefInputEdge(
1288         dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1289           // Add 'inEdge' if it is a read-after-write dependence.
1290           if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1291               mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1292             inEdges.push_back(inEdge);
1293         });
1294 
1295     // Search for sibling nodes to fuse by visiting output edges from each input
1296     // edge in 'inEdges'.
1297     for (auto &inEdge : inEdges) {
1298       // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1299       SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1300       mdg->forEachMemRefOutputEdge(
1301           inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1302             unsigned sibNodeId = outEdge.id;
1303             if (visitedSibNodeIds->count(sibNodeId) > 0)
1304               return;
1305             // Skip output edge if not a sibling using the same memref.
1306             if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1307               return;
1308             auto *sibNode = mdg->getNode(sibNodeId);
1309             if (!isa<AffineForOp>(sibNode->op))
1310               return;
1311             // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1312             if (canFuseWithSibNode(sibNode, outEdge.value)) {
1313               // Add candidate 'outEdge' to sibling node.
1314               outEdges.push_back(outEdge);
1315             }
1316           });
1317 
1318       // Add first candidate if any were returned.
1319       if (!outEdges.empty()) {
1320         visitedSibNodeIds->insert(outEdges[0].id);
1321         idAndMemrefToFuse->first = outEdges[0].id;
1322         idAndMemrefToFuse->second = outEdges[0].value;
1323         return true;
1324       }
1325     }
1326     return false;
1327   }
1328 
1329   /// Update data dependence graph state to reflect sibling fusion of 'sibNode'
1330   /// into 'dstNode'.
1331   void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
1332     // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1333     mdg->updateEdges(sibNode->id, dstNode->id);
1334 
1335     // Collect dst loop stats after memref privatization transformation.
1336     auto dstForInst = cast<AffineForOp>(dstNode->op);
1337     LoopNestStateCollector dstLoopCollector;
1338     dstLoopCollector.collect(dstForInst);
1339     // Clear and add back loads and stores
1340     mdg->clearNodeLoadAndStores(dstNode->id);
1341     mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1342                    dstLoopCollector.storeOpInsts);
1343     // Remove old sibling loop nest if it no longer has outgoing dependence
1344     // edges, and it does not write to a memref which escapes the block.
1345     if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1346       Operation *op = sibNode->op;
1347       mdg->removeNode(sibNode->id);
1348       op->erase();
1349     }
1350   }
1351 
1352   // Clean up any allocs with no users.
1353   void eraseUnusedMemRefAllocations() {
1354     for (auto &pair : mdg->memrefEdgeCount) {
1355       if (pair.second > 0)
1356         continue;
1357       auto memref = pair.first;
1358       // Skip if there exist other uses (return operation or function calls).
1359       if (!memref.use_empty())
1360         continue;
1361       // Use list expected to match the dep graph info.
1362       auto *op = memref.getDefiningOp();
1363       if (isa_and_nonnull<memref::AllocOp>(op))
1364         op->erase();
1365     }
1366   }
1367 };
1368 
1369 } // namespace
1370 
1371 /// Run fusion on `block`.
1372 void LoopFusion::runOnBlock(Block *block) {
1373   MemRefDependenceGraph g(*block);
1374   if (!g.init()) {
1375     LLVM_DEBUG(llvm::dbgs() << "MDG init failed\n");
1376     return;
1377   }
1378 
1379   std::optional<unsigned> fastMemorySpaceOpt;
1380   if (fastMemorySpace.hasValue())
1381     fastMemorySpaceOpt = fastMemorySpace;
1382   unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
1383   GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
1384                       maximalFusion, computeToleranceThreshold);
1385 
1386   if (affineFusionMode == FusionMode::ProducerConsumer)
1387     fusion.runProducerConsumerFusionOnly();
1388   else if (affineFusionMode == FusionMode::Sibling)
1389     fusion.runSiblingFusionOnly();
1390   else
1391     fusion.runGreedyFusion();
1392 }
1393 
1394 void LoopFusion::runOnOperation() {
1395   // Call fusion on every op that has at least two affine.for nests (in post
1396   // order).
1397   getOperation()->walk([&](Operation *op) {
1398     for (Region &region : op->getRegions()) {
1399       for (Block &block : region.getBlocks()) {
1400         auto affineFors = block.getOps<AffineForOp>();
1401         if (!affineFors.empty() && !llvm::hasSingleElement(affineFors))
1402           runOnBlock(&block);
1403       }
1404     }
1405   });
1406 }
1407 
1408 std::unique_ptr<Pass> mlir::affine::createLoopFusionPass(
1409     unsigned fastMemorySpace, uint64_t localBufSizeThreshold,
1410     bool maximalFusion, enum FusionMode affineFusionMode) {
1411   return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
1412                                       maximalFusion, affineFusionMode);
1413 }
1414