1# Chapter 3: More than Simple Transform Operations 2 3## Type Constraints and ApplyEach Trait 4 5A transform operation that applies to each payload operation individually and requires it to be of a specific kind is a repeated pattern. One can use Transform dialect types to specify the preconditions of the type. Specifically, we can change the expected operand type from the wide `TransformHandleTypeInterface` to the more narrow `Transform_ConcreteOp<"func.call">`. Furthermore, we use the `TransformEachOpTrait` trait to provide the skeleton implementation of the `apply` method that performs verification, iteration over payloads and result concatenation. The improved ODS op definition is as follows. 6 7```tablegen 8// In MyExtension.td. 9 10// Define the new operation. By convention, prefix its name with the name of the dialect extension, "my.". The full operation name will be further prefixed with "transform.". 11def ChangeCallTargetOp : Op<Transform_Dialect, "my.change_call_target", 12 // Indicate that the operation implements the required TransformOpInterface and 13 // MemoryEffectsOpInterface. Use the TransformEach trait to provide the 14 // implementation for TransformOpInterface. 15 [TransformOpInterface, TransformEachOpTrait, 16 DeclareOpInterfaceMethods<MemoryEffectsOpInterface>]> { 17 // Provide a brief and a full description. It is recommended that the latter describes 18 // the effects on the operands and how the operation processes various failure modes. 19 let summary = "Changes the callee of a call operation to the specified one"; 20 let description = [{ 21 For each `func.call` payload operation associated with the handle, changes its 22 callee to be the symbol whose name is provided as an attribute to this operation. 23 24 Generates a silenceable failure if the operand is associated with payload operations 25 that are not `func.call`. 26 Only reads the operand. 27 }]; 28 29 // The arguments include the handle to the payload operations and the attribute that 30 // specifies the new callee. The handle must implement TransformHandleTypeInterface. 31 // We use a string attribute as the symbol may not exist in the transform IR so the 32 // verification may fail. 33 let arguments = (ins 34 Transform_ConcreteOpType<"func.call">:$call, 35 StrAttr:$new_target); 36 37 // The results are empty as the transformation does not produce any new payload. 38 let results = (outs); 39 40 // Provide nice syntax. 41 let assemblyFormat = "$call `,` $new_target attr-dict `:` type($call)"; 42 43 // Declare the function implementing the interface for a single payload operation. 44 let extraClassDeclaration = [{ 45 ::mlir::DiagnosedSilenceableFailure applyToOne( 46 ::mlir::transform::TransformRewriter &rewriter, 47 ::mlir::func::CallOp call, 48 ::mlir::transform::ApplyToEachResultList &results, 49 ::mlir::transform::TransformState &state); 50 }]; 51} 52``` 53 54Now, instead of defining the `apply` method with a loop, we can simply define a function that applies to an individual payload operation and the trait will take care of the rest. 55 56```c++ 57::mlir::DiagnosedSilenceableFailure ChangeCallTargetOp::applyToOne( 58 ::mlir::transform::TransformRewriter &rewriter, 59 ::mlir::func::CallOp call, 60 ::mlir::transform::ApplyToEachResultList &results, 61 ::mlir::transform::TransformState &state) { 62 // Call the actual transformation function. 63 updateCallee(call, getNewTarget()); 64 // Indicate success. 65 return DiagnosedSilenceableFailure::success(); 66} 67``` 68 69## Defining a Transform Type 70 71In addition to operations, the Transform dialect allows extensions to define and inject additional attributes and types. As we have seen above, transform types are used to specify constraints on the payload operations. Our call rewriting operation currently applies only to `func.call`. We may want to generalize it to apply to any payload operation that implements `CallOpInterface`, but the Transform dialect currently doesn’t provide a type that checks if a payload operation implements this interface. Let’s define it in our extension. 72 73Type definition is again identical to defining a dialect type with ODS. 74 75```tablegen 76// Transform dialect allows additional types to be defined and injected. 77def CallOpInterfaceHandle 78 : TypeDef<Transform_Dialect, "CallOpInterfaceHandle", 79 // The type must implement `TransformHandleTypeInterface`. 80 [DeclareTypeInterfaceMethods<TransformHandleTypeInterface>]> { 81 82 // The usual components of a type such as description, mnemonic and assembly format 83 // should be provided. 84 let summary = "handle to payload operations implementing CallOpInterface"; 85 let mnemonic = "my.call_op_interface"; 86 let assemblyFormat = ""; 87} 88``` 89 90We will omit the generation of declaration and definitions using Tablegen for brevity as it is identical to the regular case. 91 92To finalize the definition of a transform type, one must implement the interface methods. 93 94```c++ 95// In MyExtension.cpp. 96 97// The interface declares this method to verify constraints this type has on 98// payload operations. It returns the now familiar tri-state result. 99mlir::DiagnosedSilenceableFailure 100mlir::transform::CallOpInterfaceHandleType::checkPayload( 101 // Location at which diagnostics should be emitted. 102 mlir::Location loc, 103 // List of payload operations that are about to be associated with the 104 // handle that has this type. 105 llvm::ArrayRef<mlir::Operation *> payload) const { 106 107 // All payload operations are expected to implement CallOpInterface, check this. 108 for (Operation *op : payload) { 109 if (llvm::isa<mlir::CallOpInterface>(op)) 110 continue; 111 112 // By convention, these verifiers always emit a silenceable failure since they are 113 // checking a precondition. 114 DiagnosedSilenceableFailure diag = emitSilenceableError(loc) 115 << "expected the payload operation to implement CallOpInterface"; 116 diag.attachNote(op->getLoc()) << "offending operation"; 117 return diag; 118 } 119 120 // If everything is okay, return success. 121 return DiagnosedSilenceableFailure::success(); 122} 123 124``` 125 126Additional attributes and types need to be registered in the extension, next to operations. 127 128```c++ 129// In MyExtension.cpp. 130 131void MyExtension::init() { 132 // ... 133 134 registerTypes< 135#define GET_TYPEDEF_LIST 136#include "MyExtensionTypes.cpp.inc" 137 >(); 138} 139``` 140 141This type is now directly available in the Transform dialect and can be used in operations. 142 143 144```mlir 145 // Cast to our new type. 146 %casted = transform.cast %call : !transform.any_op to !transform.my.call_op_interface 147 // Using our new operation. 148 transform.my.change_call_target %casted, "microkernel" : !transform.my.call_op_interface 149``` 150 151## Operand Consumption 152 153As an exercise, let us modify the rewriting operation to consume the operand. This would be necessary, for example, if the transformation were to rewrite the `func.call` operation into a custom operation `my.mm4`. Since the operand handle is now consumed, the operation can return a new handle to the newly produced payload operation. Otherwise, the ODS definition of the transform operation remains unchanged. 154 155```tablegen 156// In MyExtension.td. 157 158// Define another transform operation. 159def CallToOp : Op<Transform_Dialect, "my.call_to_op", 160 // Indicate that the operation implements the required TransformOpInterface and 161 // MemoryEffectsOpInterface. Use the TransformEach trait to provide the 162 // implementation for TransformOpInterface. 163 [TransformOpInterface, TransformEachOpTrait, 164 DeclareOpInterfaceMethods<MemoryEffectsOpInterface>]> { 165 // Summary and description omitted for brevity. 166 167 // The argument is the handle to the payload operations. 168 let arguments = (ins CallOpInterfaceHandle:$call); 169 170 // The result is the handle to the payload operations produced during the 171 // transformation. 172 let results = (outs TransformHandleTypeInterface:$transformed); 173 174 // Provide nice syntax. 175 let assemblyFormat = "$call attr-dict `:` functional-type(inputs, outputs)"; 176 177 // Declare the function implementing the interface for a single payload operation. 178 let extraClassDeclaration = [{ 179 ::mlir::DiagnosedSilenceableFailure applyToOne( 180 ::mlir::transform::TransformRewriter &rewriter, 181 ::mlir::CallOpInterface call, 182 ::mlir::transform::ApplyToEachResultList &results, 183 ::mlir::transform::TransformState &state); 184 }]; 185} 186``` 187 188Now let’s look at the implementation of interface methods. 189 190```c++ 191// In MyExtension.cpp. 192 193::mlir::DiagnosedSilenceableFailure CallToOp::applyToOne( 194 ::mlir::transform::TransformRewriter &rewriter, 195 ::mlir::CallOpInterface call, 196 ::mlir::transform::ApplyToEachResultList &results, 197 ::mlir::transform::TransformState &state) { 198 // Call the actual rewrite. 199 Operation *rewritten = rewriteToOp(call); 200 201 // Report an error if the rewriter produced a null pointer. Note that it may have 202 // irreversibly modified the payload IR, so we produce a definite failure. 203 if (!rewritten) { 204 return emitDefiniteError() << "failed to rewrite call to operation"; 205 } 206 207 // On success, push the resulting operation into the result list. The list is expected 208 // to contain exactly one entity per result and per application. The handles will be 209 // associated with lists of the respective values produced by each application. 210 results.push_back(rewritten); 211 212 // If everything is fine, return success. 213 return DiagnosedSilenceableFailure::success(); 214} 215 216void CallToOp::getEffects( 217 ::llvm::SmallVectorImpl<::mlir::MemoryEffects::EffectInstance> &effects) { 218 // Indicate using side effects that the operand handle is consumed, and the 219 // result handle is produced. 220 consumesHandle(getCall(), effects); 221 producesHandle(getTransformed(), effects); 222 223 // Indicate that the payload IR is modified. 224 modifiesPayload(effects); 225} 226``` 227 228The overall flow of these implementations is similar to the previous one. The application also needs to specify the resulting entities that are going to be associated with the handles it produces. Operations are required to specify the entities to associate with _all_ results on success, even if the list is empty. An assertion will be triggered if it is not the case. In case of failure, the interpreter will automatically associate all results that are not yet defined with empty lists. 229 230Note that since `applyToOne` always expects one payload entity to be associated with each result handle in each application, it cannot be used to return handles associated with empty lists for non-empty operand handles. Instead, one would use `apply` directly. 231 232```c++ 233::mlir::DiagnosedSilenceableFailure SomeOtherOp::apply( 234 ::mlir::transform::TransformRewriter &rewriter, 235 ::mlir::transform::TransformResults &results, 236 ::mlir::transform::TransformState &state) { 237 // ... 238 239 // Associate the result `transformed` with an empty list of payload operations. 240 results.set(cast<OpResult>(getTransformed()), {}); 241 return DiagnosedSilenceableFailure::success(); 242} 243``` 244 245## Memory Effects Traits 246 247Some common memory effect patterns are also available as traits to minimize the boilerplate. 248 249* `FunctionalStyleTransformOpTrait` indicates that all handle-typed operands are consumed, all results are produced, and the payload IR is modified. 250* `NavigationTransformOpTrait` indicates that all handle-typed operands are only read, all results are produced, and the payload IR is only read. 251 252Using these traits removes the need to declare or define the methods of the `MemoryEffectsOpInterface`. 253 254```tablegen 255// In MyExtension.td. 256 257// Define another transform operation. 258def CallToOp : Op<Transform_Dialect, "my.call_to_op", 259 // Indicate that the operation implements the required TransformOpInterface. 260 // Use the TransformEach trait to provide implementation of this interface. 261 [TransformOpInterface, TransformEachOpTrait, 262 // Indicate that the operation implements the required MemoryEffectsOpInterface. 263 // Use the FunctionalStyle trait to provide the implementation for this interface. 264 MemoryEffectsOpInterface, FunctionalStyleTransformOpTrait]> { 265 // Summary and description omitted for brevity. 266 267 // The argument is the handle to the payload operations. 268 let arguments = (ins CallOpInterfaceHandle:$call); 269 270 // The result is the handle to the payload operations produced during the 271 // transformation. 272 let results = (outs TransformHandleTypeInterface:$transformed); 273 274 // Provide nice syntax. 275 let assemblyFormat = "$call attr-dict `:` functional-type(operands, results)"; 276 277 // Declare the function implementing the interface for a single payload operation. 278 let extraClassDeclaration = [{ 279 ::mlir::DiagnosedSilenceableFailure applyToOne( 280 ::mlir::transform::TransformRewriter &rewriter, 281 ::mlir::CallOpInterface call, 282 ::mlir::transform::ApplyToEachResultList &results, 283 ::mlir::transform::TransformState &state); 284 }]; 285} 286``` 287 288## Appendix: Autogenerated Documentation 289 290[include "Tutorials/transform/MyExtensionCh3.md"] 291 292