xref: /llvm-project/mlir/docs/Tutorials/Toy/Ch-7.md (revision bbfa7ef16dd9900b36abfa1a5f2faddb81afeb51)
1# Chapter 7: Adding a Composite Type to Toy
2
3[TOC]
4
5In the [previous chapter](Ch-6.md), we demonstrated an end-to-end compilation
6flow from our Toy front-end to LLVM IR. In this chapter, we will extend the Toy
7language to support a new composite `struct` type.
8
9## Defining a `struct` in Toy
10
11The first thing we need to define is the interface of this type in our `toy`
12source language. The general syntax of a `struct` type in Toy is as follows:
13
14```toy
15# A struct is defined by using the `struct` keyword followed by a name.
16struct MyStruct {
17  # Inside of the struct is a list of variable declarations without initializers
18  # or shapes, which may also be other previously defined structs.
19  var a;
20  var b;
21}
22```
23
24Structs may now be used in functions as variables or parameters by using the
25name of the struct instead of `var`. The members of the struct are accessed via
26a `.` access operator. Values of `struct` type may be initialized with a
27composite initializer, or a comma-separated list of other initializers
28surrounded by `{}`. An example is shown below:
29
30```toy
31struct Struct {
32  var a;
33  var b;
34}
35
36# User defined generic function may operate on struct types as well.
37def multiply_transpose(Struct value) {
38  # We can access the elements of a struct via the '.' operator.
39  return transpose(value.a) * transpose(value.b);
40}
41
42def main() {
43  # We initialize struct values using a composite initializer.
44  Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
45
46  # We pass these arguments to functions like we do with variables.
47  var c = multiply_transpose(value);
48  print(c);
49}
50```
51
52## Defining a `struct` in MLIR
53
54In MLIR, we will also need a representation for our struct types. MLIR does not
55provide a type that does exactly what we need, so we will need to define our
56own. We will simply define our `struct` as an unnamed container of a set of
57element types. The name of the `struct` and its elements are only useful for the
58AST of our `toy` compiler, so we don't need to encode it in the MLIR
59representation.
60
61### Defining the Type Class
62
63#### Defining the Type Class
64
65As mentioned in [chapter 2](Ch-2.md), [`Type`](../../LangRef.md/#type-system)
66objects in MLIR are value-typed and rely on having an internal storage object
67that holds the actual data for the type. The `Type` class in itself acts as a
68simple wrapper around an internal `TypeStorage` object that is uniqued within an
69instance of an `MLIRContext`. When constructing a `Type`, we are internally just
70constructing and uniquing an instance of a storage class.
71
72When defining a new `Type` that contains parametric data (e.g. the `struct`
73type, which requires additional information to hold the element types), we will
74need to provide a derived storage class. The `singleton` types that don't have
75any additional data (e.g. the [`index` type](../../Dialects/Builtin.md/#indextype)) don't
76require a storage class and use the default `TypeStorage`.
77
78##### Defining the Storage Class
79
80Type storage objects contain all of the data necessary to construct and unique a
81type instance. Derived storage classes must inherit from the base
82`mlir::TypeStorage` and provide a set of aliases and hooks that will be used by
83the `MLIRContext` for uniquing. Below is the definition of the storage instance
84for our `struct` type, with each of the necessary requirements detailed inline:
85
86```c++
87/// This class represents the internal storage of the Toy `StructType`.
88struct StructTypeStorage : public mlir::TypeStorage {
89  /// The `KeyTy` is a required type that provides an interface for the storage
90  /// instance. This type will be used when uniquing an instance of the type
91  /// storage. For our struct type, we will unique each instance structurally on
92  /// the elements that it contains.
93  using KeyTy = llvm::ArrayRef<mlir::Type>;
94
95  /// A constructor for the type storage instance.
96  StructTypeStorage(llvm::ArrayRef<mlir::Type> elementTypes)
97      : elementTypes(elementTypes) {}
98
99  /// Define the comparison function for the key type with the current storage
100  /// instance. This is used when constructing a new instance to ensure that we
101  /// haven't already uniqued an instance of the given key.
102  bool operator==(const KeyTy &key) const { return key == elementTypes; }
103
104  /// Define a hash function for the key type. This is used when uniquing
105  /// instances of the storage.
106  /// Note: This method isn't necessary as both llvm::ArrayRef and mlir::Type
107  /// have hash functions available, so we could just omit this entirely.
108  static llvm::hash_code hashKey(const KeyTy &key) {
109    return llvm::hash_value(key);
110  }
111
112  /// Define a construction function for the key type from a set of parameters.
113  /// These parameters will be provided when constructing the storage instance
114  /// itself, see the `StructType::get` method further below.
115  /// Note: This method isn't necessary because KeyTy can be directly
116  /// constructed with the given parameters.
117  static KeyTy getKey(llvm::ArrayRef<mlir::Type> elementTypes) {
118    return KeyTy(elementTypes);
119  }
120
121  /// Define a construction method for creating a new instance of this storage.
122  /// This method takes an instance of a storage allocator, and an instance of a
123  /// `KeyTy`. The given allocator must be used for *all* necessary dynamic
124  /// allocations used to create the type storage and its internal.
125  static StructTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
126                                      const KeyTy &key) {
127    // Copy the elements from the provided `KeyTy` into the allocator.
128    llvm::ArrayRef<mlir::Type> elementTypes = allocator.copyInto(key);
129
130    // Allocate the storage instance and construct it.
131    return new (allocator.allocate<StructTypeStorage>())
132        StructTypeStorage(elementTypes);
133  }
134
135  /// The following field contains the element types of the struct.
136  llvm::ArrayRef<mlir::Type> elementTypes;
137};
138```
139
140##### Defining the Type Class
141
142With the storage class defined, we can add the definition for the user-visible
143`StructType` class. This is the class that we will actually interface with.
144
145```c++
146/// This class defines the Toy struct type. It represents a collection of
147/// element types. All derived types in MLIR must inherit from the CRTP class
148/// 'Type::TypeBase'. It takes as template parameters the concrete type
149/// (StructType), the base class to use (Type), and the storage class
150/// (StructTypeStorage).
151class StructType : public mlir::Type::TypeBase<StructType, mlir::Type,
152                                               StructTypeStorage> {
153public:
154  /// Inherit some necessary constructors from 'TypeBase'.
155  using Base::Base;
156
157  /// Create an instance of a `StructType` with the given element types. There
158  /// *must* be at least one element type.
159  static StructType get(llvm::ArrayRef<mlir::Type> elementTypes) {
160    assert(!elementTypes.empty() && "expected at least 1 element type");
161
162    // Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
163    // of this type. The first parameter is the context to unique in. The
164    // parameters after are forwarded to the storage instance.
165    mlir::MLIRContext *ctx = elementTypes.front().getContext();
166    return Base::get(ctx, elementTypes);
167  }
168
169  /// Returns the element types of this struct type.
170  llvm::ArrayRef<mlir::Type> getElementTypes() {
171    // 'getImpl' returns a pointer to the internal storage instance.
172    return getImpl()->elementTypes;
173  }
174
175  /// Returns the number of element type held by this struct.
176  size_t getNumElementTypes() { return getElementTypes().size(); }
177};
178```
179
180We register this type in the `ToyDialect` initializer in a similar way to how we
181did with operations:
182
183```c++
184void ToyDialect::initialize() {
185  addTypes<StructType>();
186}
187```
188
189(An important note here is that when registering a type, the definition of the
190storage class must be visible.)
191
192With this we can now use our `StructType` when generating MLIR from Toy. See
193examples/toy/Ch7/mlir/MLIRGen.cpp for more details.
194
195### Exposing to ODS
196
197After defining a new type, we should make the ODS framework aware of our Type so
198that we can use it in the operation definitions and auto-generate utilities
199within the Dialect. A simple example is shown below:
200
201```tablegen
202// Provide a definition for the Toy StructType for use in ODS. This allows for
203// using StructType in a similar way to Tensor or MemRef. We use `DialectType`
204// to demarcate the StructType as belonging to the Toy dialect.
205def Toy_StructType :
206    DialectType<Toy_Dialect, CPred<"$_self.isa<StructType>()">,
207                "Toy struct type">;
208
209// Provide a definition of the types that are used within the Toy dialect.
210def Toy_Type : AnyTypeOf<[F64Tensor, Toy_StructType]>;
211```
212
213### Parsing and Printing
214
215At this point we can use our `StructType` during MLIR generation and
216transformation, but we can't output or parse `.mlir`. For this we need to add
217support for parsing and printing instances of the `StructType`. This can be done
218by overriding the `parseType` and `printType` methods on the `ToyDialect`.
219Declarations for these methods are automatically provided when the type is
220exposed to ODS as detailed in the previous section.
221
222```c++
223class ToyDialect : public mlir::Dialect {
224public:
225  /// Parse an instance of a type registered to the toy dialect.
226  mlir::Type parseType(mlir::DialectAsmParser &parser) const override;
227
228  /// Print an instance of a type registered to the toy dialect.
229  void printType(mlir::Type type,
230                 mlir::DialectAsmPrinter &printer) const override;
231};
232```
233
234These methods take an instance of a high-level parser or printer that allows for
235easily implementing the necessary functionality. Before going into the
236implementation, let's think about the syntax that we want for the `struct` type
237in the printed IR. As described in the
238[MLIR language reference](../../LangRef.md/#dialect-types), dialect types are
239generally represented as: `! dialect-namespace < type-data >`, with a pretty
240form available under certain circumstances. The responsibility of our `Toy`
241parser and printer is to provide the `type-data` bits. We will define our
242`StructType` as having the following form:
243
244```
245  struct-type ::= `struct` `<` type (`,` type)* `>`
246```
247
248#### Parsing
249
250An implementation of the parser is shown below:
251
252```c++
253/// Parse an instance of a type registered to the toy dialect.
254mlir::Type ToyDialect::parseType(mlir::DialectAsmParser &parser) const {
255  // Parse a struct type in the following form:
256  //   struct-type ::= `struct` `<` type (`,` type)* `>`
257
258  // NOTE: All MLIR parser function return a ParseResult. This is a
259  // specialization of LogicalResult that auto-converts to a `true` boolean
260  // value on failure to allow for chaining, but may be used with explicit
261  // `mlir::failed/mlir::succeeded` as desired.
262
263  // Parse: `struct` `<`
264  if (parser.parseKeyword("struct") || parser.parseLess())
265    return Type();
266
267  // Parse the element types of the struct.
268  SmallVector<mlir::Type, 1> elementTypes;
269  do {
270    // Parse the current element type.
271    SMLoc typeLoc = parser.getCurrentLocation();
272    mlir::Type elementType;
273    if (parser.parseType(elementType))
274      return nullptr;
275
276    // Check that the type is either a TensorType or another StructType.
277    if (!elementType.isa<mlir::TensorType, StructType>()) {
278      parser.emitError(typeLoc, "element type for a struct must either "
279                                "be a TensorType or a StructType, got: ")
280          << elementType;
281      return Type();
282    }
283    elementTypes.push_back(elementType);
284
285    // Parse the optional: `,`
286  } while (succeeded(parser.parseOptionalComma()));
287
288  // Parse: `>`
289  if (parser.parseGreater())
290    return Type();
291  return StructType::get(elementTypes);
292}
293```
294
295#### Printing
296
297An implementation of the printer is shown below:
298
299```c++
300/// Print an instance of a type registered to the toy dialect.
301void ToyDialect::printType(mlir::Type type,
302                           mlir::DialectAsmPrinter &printer) const {
303  // Currently the only toy type is a struct type.
304  StructType structType = type.cast<StructType>();
305
306  // Print the struct type according to the parser format.
307  printer << "struct<";
308  llvm::interleaveComma(structType.getElementTypes(), printer);
309  printer << '>';
310}
311```
312
313Before moving on, let's look at a quick of example showcasing the functionality
314we have now:
315
316```toy
317struct Struct {
318  var a;
319  var b;
320}
321
322def multiply_transpose(Struct value) {
323}
324```
325
326Which generates the following:
327
328```mlir
329module {
330  toy.func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) {
331    toy.return
332  }
333}
334```
335
336### Operating on `StructType`
337
338Now that the `struct` type has been defined, and we can round-trip it through
339the IR. The next step is to add support for using it within our operations.
340
341#### Updating Existing Operations
342
343A few of our existing operations, e.g. `ReturnOp`, will need to be updated to
344handle `Toy_StructType`.
345
346```tablegen
347def ReturnOp : Toy_Op<"return", [Terminator, HasParent<"FuncOp">]> {
348  ...
349  let arguments = (ins Variadic<Toy_Type>:$input);
350  ...
351}
352```
353
354#### Adding New `Toy` Operations
355
356In addition to the existing operations, we will be adding a few new operations
357that will provide more specific handling of `structs`.
358
359##### `toy.struct_constant`
360
361This new operation materializes a constant value for a struct. In our current
362modeling, we just use an [array attribute](../../Dialects/Builtin.md/#arrayattr)
363that contains a set of constant values for each of the `struct` elements.
364
365```mlir
366  %0 = toy.struct_constant [
367    dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64>
368  ] : !toy.struct<tensor<*xf64>>
369```
370
371##### `toy.struct_access`
372
373This new operation materializes the Nth element of a `struct` value.
374
375```mlir
376  // Using %0 from above
377  %1 = toy.struct_access %0[0] : !toy.struct<tensor<*xf64>> -> tensor<*xf64>
378```
379
380With these operations, we can revisit our original example:
381
382```toy
383struct Struct {
384  var a;
385  var b;
386}
387
388# User defined generic function may operate on struct types as well.
389def multiply_transpose(Struct value) {
390  # We can access the elements of a struct via the '.' operator.
391  return transpose(value.a) * transpose(value.b);
392}
393
394def main() {
395  # We initialize struct values using a composite initializer.
396  Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
397
398  # We pass these arguments to functions like we do with variables.
399  var c = multiply_transpose(value);
400  print(c);
401}
402```
403
404and finally get a full MLIR module:
405
406```mlir
407module {
408  toy.func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64> {
409    %0 = toy.struct_access %arg0[0] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
410    %1 = toy.transpose(%0 : tensor<*xf64>) to tensor<*xf64>
411    %2 = toy.struct_access %arg0[1] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
412    %3 = toy.transpose(%2 : tensor<*xf64>) to tensor<*xf64>
413    %4 = toy.mul %1, %3 : tensor<*xf64>
414    toy.return %4 : tensor<*xf64>
415  }
416  toy.func @main() {
417    %0 = toy.struct_constant [
418      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>,
419      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
420    ] : !toy.struct<tensor<*xf64>, tensor<*xf64>>
421    %1 = toy.generic_call @multiply_transpose(%0) : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
422    toy.print %1 : tensor<*xf64>
423    toy.return
424  }
425}
426```
427
428#### Optimizing Operations on `StructType`
429
430Now that we have a few operations operating on `StructType`, we also have many
431new constant folding opportunities.
432
433After inlining, the MLIR module in the previous section looks something like:
434
435```mlir
436module {
437  toy.func @main() {
438    %0 = toy.struct_constant [
439      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>,
440      dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
441    ] : !toy.struct<tensor<*xf64>, tensor<*xf64>>
442    %1 = toy.struct_access %0[0] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
443    %2 = toy.transpose(%1 : tensor<*xf64>) to tensor<*xf64>
444    %3 = toy.struct_access %0[1] : !toy.struct<tensor<*xf64>, tensor<*xf64>> -> tensor<*xf64>
445    %4 = toy.transpose(%3 : tensor<*xf64>) to tensor<*xf64>
446    %5 = toy.mul %2, %4 : tensor<*xf64>
447    toy.print %5 : tensor<*xf64>
448    toy.return
449  }
450}
451```
452
453We have several `toy.struct_access` operations that access into a
454`toy.struct_constant`. As detailed in [chapter 3](Ch-3.md) (FoldConstantReshape),
455we can add folders for these `toy` operations by setting the `hasFolder` bit
456on the operation definition and providing a definition of the `*Op::fold`
457method.
458
459```c++
460/// Fold constants.
461OpFoldResult ConstantOp::fold(FoldAdaptor adaptor) { return value(); }
462
463/// Fold struct constants.
464OpFoldResult StructConstantOp::fold(FoldAdaptor adaptor) {
465  return value();
466}
467
468/// Fold simple struct access operations that access into a constant.
469OpFoldResult StructAccessOp::fold(FoldAdaptor adaptor) {
470  auto structAttr = adaptor.getInput().dyn_cast_or_null<mlir::ArrayAttr>();
471  if (!structAttr)
472    return nullptr;
473
474  size_t elementIndex = index().getZExtValue();
475  return structAttr[elementIndex];
476}
477```
478
479To ensure that MLIR generates the proper constant operations when folding our
480`Toy` operations, i.e. `ConstantOp` for `TensorType` and `StructConstant` for
481`StructType`, we will need to provide an override for the dialect hook
482`materializeConstant`. This allows for generic MLIR operations to create
483constants for the `Toy` dialect when necessary.
484
485```c++
486mlir::Operation *ToyDialect::materializeConstant(mlir::OpBuilder &builder,
487                                                 mlir::Attribute value,
488                                                 mlir::Type type,
489                                                 mlir::Location loc) {
490  if (type.isa<StructType>())
491    return builder.create<StructConstantOp>(loc, type,
492                                            value.cast<mlir::ArrayAttr>());
493  return builder.create<ConstantOp>(loc, type,
494                                    value.cast<mlir::DenseElementsAttr>());
495}
496```
497
498With this, we can now generate code that can be generated to LLVM without any
499changes to our pipeline.
500
501```mlir
502module {
503  toy.func @main() {
504    %0 = toy.constant dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>
505    %1 = toy.transpose(%0 : tensor<2x3xf64>) to tensor<3x2xf64>
506    %2 = toy.mul %1, %1 : tensor<3x2xf64>
507    toy.print %2 : tensor<3x2xf64>
508    toy.return
509  }
510}
511```
512
513You can build `toyc-ch7` and try yourself: `toyc-ch7
514test/Examples/Toy/Ch7/struct-codegen.toy -emit=mlir`. More details on defining
515custom types can be found in
516[DefiningAttributesAndTypes](../../DefiningDialects/AttributesAndTypes.md).
517