1# Defining Dialects 2 3This document describes how to define [Dialects](../LangRef.md/#dialects). 4 5[TOC] 6 7## LangRef Refresher 8 9Before diving into how to define these constructs, below is a quick refresher 10from the [MLIR LangRef](../LangRef.md). 11 12Dialects are the mechanism by which to engage with and extend the MLIR 13ecosystem. They allow for defining new [attributes](../LangRef.md/#attributes), 14[operations](../LangRef.md/#operations), and [types](../LangRef.md/#type-system). 15Dialects are used to model a variety of different abstractions; from traditional 16[arithmetic](../Dialects/ArithOps.md) to 17[pattern rewrites](../Dialects/PDLOps.md); and is one of the most fundamental 18aspects of MLIR. 19 20## Defining a Dialect 21 22At the most fundamental level, defining a dialect in MLIR is as simple as 23specializing the 24[C++ `Dialect` class](https://github.com/llvm/llvm-project/blob/main/mlir/include/mlir/IR/Dialect.h). 25That being said, MLIR provides a powerful declaratively specification mechanism via 26[TableGen](https://llvm.org/docs/TableGen/index.html); a generic language with 27tooling to maintain records of domain-specific information; that simplifies the 28definition process by automatically generating all of the necessary boilerplate 29C++ code, significantly reduces maintainence burden when changing aspects of dialect 30definitions, and also provides additional tools on top (such as 31documentation generation). Given the above, the declarative specification is the 32expected mechanism for defining new dialects, and is the method detailed within 33this document. Before continuing, it is highly recommended that users review the 34[TableGen Programmer's Reference](https://llvm.org/docs/TableGen/ProgRef.html) 35for an introduction to its syntax and constructs. 36 37Below showcases an example simple Dialect definition. We generally recommend defining 38the Dialect class in a different `.td` file from the attributes, operations, types, 39and other sub-components of the dialect to establish a proper layering between 40the various different dialect components. It also prevents situations where you may 41inadvertantly generate multiple definitions for some constructs. This recommendation 42extends to all of the MLIR constructs, including [Interfaces](../Interfaces.md) for example. 43 44```tablegen 45// Include the definition of the necessary tablegen constructs for defining 46// our dialect. 47include "mlir/IR/DialectBase.td" 48 49// Here is a simple definition of a dialect. 50def MyDialect : Dialect { 51 let summary = "A short one line description of my dialect."; 52 let description = [{ 53 My dialect is a very important dialect. This section contains a much more 54 detailed description that documents all of the important pieces of information 55 to know about the document. 56 }]; 57 58 /// This is the namespace of the dialect. It is used to encapsulate the sub-components 59 /// of the dialect, such as operations ("my_dialect.foo"). 60 let name = "my_dialect"; 61 62 /// The C++ namespace that the dialect, and its sub-components, get placed in. 63 let cppNamespace = "::my_dialect"; 64} 65``` 66 67The above showcases a very simple description of a dialect, but dialects have lots 68of other capabilities that you may or may not need to utilize. 69 70### Initialization 71 72Every dialect must implement an initialization hook to add attributes, operations, types, 73attach any desired interfaces, or perform any other necessary initialization for the 74dialect that should happen on construction. This hook is declared for every dialect to 75define, and has the form: 76 77```c++ 78void MyDialect::initialize() { 79 // Dialect initialization logic should be defined in here. 80} 81``` 82 83### Documentation 84 85The `summary` and `description` fields allow for providing user documentation 86for the dialect. The `summary` field expects a simple single-line string, with the 87`description` field used for long and extensive documentation. This documentation can be 88used to generate markdown documentation for the dialect and is used by upstream 89[MLIR dialects](https://mlir.llvm.org/docs/Dialects/). 90 91### Class Name 92 93The name of the C++ class which gets generated is the same as the name of our TableGen 94dialect definition, but with any `_` characters stripped out. This means that if you name 95your dialect `Foo_Dialect`, the generated C++ class would be `FooDialect`. In the example 96above, we would get a C++ dialect named `MyDialect`. 97 98### C++ Namespace 99 100The namespace that the C++ class for our dialect, and all of its sub-components, is placed 101under is specified by the `cppNamespace` field. By default, uses the name of the dialect as 102the only namespace. To avoid placing in any namespace, use `""`. To specify nested namespaces, 103use `"::"` as the delimiter between namespace, e.g., given `"A::B"`, C++ classes will be placed 104within: `namespace A { namespace B { <classes> } }`. 105 106Note that this works in conjunction with the dialect's C++ code. Depending on how the generated files 107are included, you may want to specify a full namespace path or a partial one. In general, it's best 108to use full namespaces whenever you can. This makes it easier for dialects within different namespaces, 109and projects, to interact with each other. 110 111### C++ Accessor Generation 112 113When generating accessors for dialects and their components (attributes, operations, types, etc.), 114we prefix the name with `get` and `set` respectively, and transform `snake_style` names to camel 115case (`UpperCamel` when prefixed, and `lowerCamel` for individual variable names). For example, if an 116operation were defined as: 117 118```tablegen 119def MyOp : MyDialect<"op"> { 120 let arguments = (ins StrAttr:$value, StrAttr:$other_value); 121} 122``` 123 124It would have accessors generated for the `value` and `other_value` attributes as follows: 125 126```c++ 127StringAttr MyOp::getValue(); 128void MyOp::setValue(StringAttr newValue); 129 130StringAttr MyOp::getOtherValue(); 131void MyOp::setOtherValue(StringAttr newValue); 132``` 133 134### Dependent Dialects 135 136MLIR has a very large ecosystem, and contains dialects that serve many different purposes. It 137is quite common, given the above, that dialects may want to reuse certain components from other 138dialects. This may mean generating operations from those dialects during canonicalization, reusing 139attributes or types, etc. When a dialect has a dependency on another, i.e. when it constructs and/or 140generally relies on the components of another dialect, a dialect dependency should be explicitly 141recorded. An explicitly dependency ensures that dependent dialects are loaded alongside the 142dialect. Dialect dependencies can be recorded using the `dependentDialects` dialects field: 143 144```tablegen 145def MyDialect : Dialect { 146 // Here we register the Arithmetic and Func dialect as dependencies of our `MyDialect`. 147 let dependentDialects = [ 148 "arith::ArithDialect", 149 "func::FuncDialect" 150 ]; 151} 152``` 153 154### Extra declarations 155 156The declarative Dialect definitions try to auto-generate as much logic and methods 157as possible. With that said, there will always be long-tail cases that won't be covered. 158For such cases, `extraClassDeclaration` can be used. Code within the `extraClassDeclaration` 159field will be copied literally to the generated C++ Dialect class. 160 161Note that `extraClassDeclaration` is a mechanism intended for long-tail cases by 162power users; for not-yet-implemented widely-applicable cases, improving the 163infrastructure is preferable. 164 165### `hasConstantMaterializer`: Materializing Constants from Attributes 166 167This field is utilized to materialize a constant operation from an `Attribute` value and 168a `Type`. This is generally used when an operation within this dialect has been folded, 169and a constant operation should be generated. `hasConstantMaterializer` is used to enable 170materialization, and the `materializeConstant` hook is declared on the dialect. This 171hook takes in an `Attribute` value, generally returned by `fold`, and produces a 172"constant-like" operation that materializes that value. See the 173[documentation for canonicalization](../Canonicalization.md) for a more in-depth 174introduction to `folding` in MLIR. 175 176Constant materialization logic can then be defined in the source file: 177 178```c++ 179/// Hook to materialize a single constant operation from a given attribute value 180/// with the desired resultant type. This method should use the provided builder 181/// to create the operation without changing the insertion position. The 182/// generated operation is expected to be constant-like. On success, this hook 183/// should return the operation generated to represent the constant value. 184/// Otherwise, it should return nullptr on failure. 185Operation *MyDialect::materializeConstant(OpBuilder &builder, Attribute value, 186 Type type, Location loc) { 187 ... 188} 189``` 190 191### `hasNonDefaultDestructor`: Providing a custom destructor 192 193This field should be used when the Dialect class has a custom destructor, i.e. 194when the dialect has some special logic to be run in the `~MyDialect`. In this case, 195only the declaration of the destructor is generated for the Dialect class. 196 197### Discardable Attribute Verification 198 199As described by the [MLIR Language Reference](../LangRef.md/#attributes), 200*discardable attribute* are a type of attribute that has its semantics defined 201by the dialect whose name prefixes that of the attribute. For example, if an 202operation has an attribute named `gpu.contained_module`, the `gpu` dialect 203defines the semantics and invariants, such as when and where it is valid to use, 204of that attribute. To hook into this verification for attributes that are prefixed 205by our dialect, several hooks on the Dialect may be used: 206 207#### `hasOperationAttrVerify` 208 209This field generates the hook for verifying when a discardable attribute of this dialect 210has been used within the attribute dictionary of an operation. This hook has the form: 211 212```c++ 213/// Verify the use of the given attribute, whose name is prefixed by the namespace of this 214/// dialect, that was used in `op`s dictionary. 215LogicalResult MyDialect::verifyOperationAttribute(Operation *op, NamedAttribute attribute); 216``` 217 218#### `hasRegionArgAttrVerify` 219 220This field generates the hook for verifying when a discardable attribute of this dialect 221has been used within the attribute dictionary of a region entry block argument. Note that 222the block arguments of a region entry block do not themselves have attribute dictionaries, 223but some operations may provide special dictionary attributes that correspond to the arguments 224of a region. For example, operations that implement `FunctionOpInterface` may have attribute 225dictionaries on the operation that correspond to the arguments of entry block of the function. 226In these cases, those operations will invoke this hook on the dialect to ensure the attribute 227is verified. The hook necessary for the dialect to implement has the form: 228 229```c++ 230/// Verify the use of the given attribute, whose name is prefixed by the namespace of this 231/// dialect, that was used on the attribute dictionary of a region entry block argument. 232/// Note: As described above, when a region entry block has a dictionary is up to the individual 233/// operation to define. 234LogicalResult MyDialect::verifyRegionArgAttribute(Operation *op, unsigned regionIndex, 235 unsigned argIndex, NamedAttribute attribute); 236``` 237 238#### `hasRegionResultAttrVerify` 239 240This field generates the hook for verifying when a discardable attribute of this dialect 241has been used within the attribute dictionary of a region result. Note that the results of a 242region do not themselves have attribute dictionaries, but some operations may provide special 243dictionary attributes that correspond to the results of a region. For example, operations that 244implement `FunctionOpInterface` may have attribute dictionaries on the operation that correspond 245to the results of the function. In these cases, those operations will invoke this hook on the 246dialect to ensure the attribute is verified. The hook necessary for the dialect to implement 247has the form: 248 249```c++ 250/// Generate verification for the given attribute, whose name is prefixed by the namespace 251/// of this dialect, that was used on the attribute dictionary of a region result. 252/// Note: As described above, when a region entry block has a dictionary is up to the individual 253/// operation to define. 254LogicalResult MyDialect::verifyRegionResultAttribute(Operation *op, unsigned regionIndex, 255 unsigned argIndex, NamedAttribute attribute); 256``` 257 258### Operation Interface Fallback 259 260Some dialects have an open ecosystem and don't register all of the possible operations. In such 261cases it is still possible to provide support for implementing an `OpInterface` for these 262operations. When an operation isn't registered or does not provide an implementation for an 263interface, the query will fallback to the dialect itself. The `hasOperationInterfaceFallback` 264field may be used to declare this fallback for operations: 265 266```c++ 267/// Return an interface model for the interface with the given `typeId` for the operation 268/// with the given name. 269void *MyDialect::getRegisteredInterfaceForOp(TypeID typeID, StringAttr opName); 270``` 271 272For a more detail description of the expected usages of this hook, view the detailed 273[interface documentation](../Interfaces.md/#dialect-fallback-for-opinterface). 274 275### Default Attribute/Type Parsers and Printers 276 277When a dialect registers an Attribute or Type, it must also override the respective 278`Dialect::parseAttribute`/`Dialect::printAttribute` or 279`Dialect::parseType`/`Dialect::printType` methods. In these cases, the dialect must 280explicitly handle the parsing and printing of each individual attribute or type within 281the dialect. If all of the attributes and types of the dialect provide a mnemonic, 282however, these methods may be autogenerated by using the 283`useDefaultAttributePrinterParser` and `useDefaultTypePrinterParser` fields. By default, 284these fields are set to `1`(enabled), meaning that if a dialect needs to explicitly handle the 285parser and printer of its Attributes and Types it should set these to `0` as necessary. 286 287### Dialect-wide Canonicalization Patterns 288 289Generally, [canonicalization](../Canonicalization.md) patterns are specific to individual 290operations within a dialect. There are some cases, however, that prompt canonicalization 291patterns to be added to the dialect-level. For example, if a dialect defines a canonicalization 292pattern that operates on an interface or trait, it can be beneficial to only add this pattern 293once, instead of duplicating per-operation that implements that interface. To enable the 294generation of this hook, the `hasCanonicalizer` field may be used. This will declare 295the `getCanonicalizationPatterns` method on the dialect, which has the form: 296 297```c++ 298/// Return the canonicalization patterns for this dialect: 299void MyDialect::getCanonicalizationPatterns(RewritePatternSet &results) const; 300``` 301 302See the documentation for [Canonicalization in MLIR](../Canonicalization.md) for 303a more detailed description about canonicalization patterns. 304 305### Defining bytecode format for dialect attributes and types 306 307By default bytecode serialization of dialect attributes and types uses the 308regular textual format. Dialects can define a more compact bytecode format for 309the attributes and types in dialect by defining & attaching 310`BytecodeDialectInterface` to the dialect. Basic support for generating 311readers/writers for the bytecode dialect interface can be generated using ODS's 312`-gen-bytecode`. The rest of the section will show an example. 313 314One can define the printing and parsing for a type in dialect `Foo` as follow: 315 316```td 317include "mlir/IR/BytecodeBase.td" 318 319let cType = "MemRefType" in { 320// Written in pseudo code showing the lowered encoding: 321// /// MemRefType { 322// /// shape: svarint[], 323// /// elementType: Type, 324// /// layout: Attribute 325// /// } 326// /// 327// and the enum value: 328// kMemRefType = 1, 329// 330// The corresponding definition in the ODS generator: 331def MemRefType : DialectType<(type 332 Array<SignedVarInt>:$shape, 333 Type:$elementType, 334 MemRefLayout:$layout 335)> { 336 let printerPredicate = "!$_val.getMemorySpace()"; 337} 338 339// /// MemRefTypeWithMemSpace { 340// /// memorySpace: Attribute, 341// /// shape: svarint[], 342// /// elementType: Type, 343// /// layout: Attribute 344// /// } 345// /// Variant of MemRefType with non-default memory space. 346// kMemRefTypeWithMemSpace = 2, 347def MemRefTypeWithMemSpace : DialectType<(type 348 Attribute:$memorySpace, 349 Array<SignedVarInt>:$shape, 350 Type:$elementType, 351 MemRefLayout:$layout 352)> { 353 let printerPredicate = "!!$_val.getMemorySpace()"; 354 // Note: order of serialization does not match order of builder. 355 let cBuilder = "get<$_resultType>(context, shape, elementType, layout, memorySpace)"; 356} 357} 358 359def FooDialectTypes : DialectTypes<"Foo"> { 360 let elems = [ 361 ReservedOrDead, // assigned index 0 362 MemRefType, // assigned index 1 363 MemRefTypeWithMemSpace, // assigned index 2 364 ... 365 ]; 366} 367... 368``` 369 370Here we have: 371 372* An outer most `cType` as we are representing encoding one C++ type using two 373 different variants. 374* The different `DialectType` instances are differentiated in printing by the 375 printer predicate while parsing the different variant is already encoded and 376 different builder functions invoked. 377* Custom `cBuilder` is specified as the way its laid out on disk in the 378 bytecode doesn't match the order of arguments to the build methods of the 379 type. 380* Many of the common dialect bytecode reading and writing atoms (such as 381 `VarInt`, `SVarInt`, `Blob`) are defined in `BytecodeBase` while one can 382 also define custom forms or combine via `CompositeBytecode` instances. 383* `ReservedOrDead` is a special keyword to indicate a skipped enum instance 384 for which no read/write or dispatch code is generated. 385* `Array` is a helper method for which during printing a list is serialized 386 (e.g., a varint of number of items followed by said number of items) or 387 parsed. 388 389The generated code consists of a four standalone methods with which the 390following interface can define the bytecode dialect interface: 391 392```c++ 393#include "mlir/Dialect/Foo/FooDialectBytecode.cpp.inc" 394 395struct FooDialectBytecodeInterface : public BytecodeDialectInterface { 396 FooDialectBytecodeInterface(Dialect *dialect) 397 : BytecodeDialectInterface(dialect) {} 398 399 //===--------------------------------------------------------------------===// 400 // Attributes 401 402 Attribute readAttribute(DialectBytecodeReader &reader) const override { 403 return ::readAttribute(getContext(), reader); 404 } 405 406 LogicalResult writeAttribute(Attribute attr, 407 DialectBytecodeWriter &writer) const override { 408 return ::writeAttribute(attr, writer); 409 } 410 411 //===--------------------------------------------------------------------===// 412 // Types 413 414 Type readType(DialectBytecodeReader &reader) const override { 415 return ::readType(getContext(), reader); 416 } 417 418 LogicalResult writeType(Type type, 419 DialectBytecodeWriter &writer) const override { 420 return ::writeType(type, writer); 421 } 422}; 423``` 424 425along with defining the corresponding build rules to invoke generator 426(`-gen-bytecode -bytecode-dialect="Quant"`). 427 428## Defining an Extensible dialect 429 430This section documents the design and API of the extensible dialects. Extensible 431dialects are dialects that can be extended with new operations and types defined 432at runtime. This allows for users to define dialects via with meta-programming, 433or from another language, without having to recompile C++ code. 434 435### Defining an extensible dialect 436 437Dialects defined in C++ can be extended with new operations, types, etc., at 438runtime by inheriting from `mlir::ExtensibleDialect` instead of `mlir::Dialect` 439(note that `ExtensibleDialect` inherits from `Dialect`). The `ExtensibleDialect` 440class contains the necessary fields and methods to extend the dialect at 441runtime. 442 443```c++ 444class MyDialect : public mlir::ExtensibleDialect { 445 ... 446} 447``` 448 449For dialects defined in TableGen, this is done by setting the `isExtensible` 450flag to `1`. 451 452```tablegen 453def Test_Dialect : Dialect { 454 let isExtensible = 1; 455 ... 456} 457``` 458 459An extensible `Dialect` can be casted back to `ExtensibleDialect` using 460`llvm::dyn_cast`, or `llvm::cast`: 461 462```c++ 463if (auto extensibleDialect = llvm::dyn_cast<ExtensibleDialect>(dialect)) { 464 ... 465} 466``` 467 468### Defining a dynamic dialect 469 470Dynamic dialects are extensible dialects that can be defined at runtime. They 471are only populated with dynamic operations, types, and attributes. They can be 472registered in a `DialectRegistry` with `insertDynamic`. 473 474```c++ 475auto populateDialect = [](MLIRContext *ctx, DynamicDialect* dialect) { 476 // Code that will be ran when the dynamic dialect is created and loaded. 477 // For instance, this is where we register the dynamic operations, types, and 478 // attributes of the dialect. 479 ... 480} 481 482registry.insertDynamic("dialectName", populateDialect); 483``` 484 485Once a dynamic dialect is registered in the `MLIRContext`, it can be retrieved 486with `getOrLoadDialect`. 487 488```c++ 489Dialect *dialect = ctx->getOrLoadDialect("dialectName"); 490``` 491 492### Defining an operation at runtime 493 494The `DynamicOpDefinition` class represents the definition of an operation 495defined at runtime. It is created using the `DynamicOpDefinition::get` 496functions. An operation defined at runtime must provide a name, a dialect in 497which the operation will be registered in, an operation verifier. It may also 498optionally define a custom parser and a printer, fold hook, and more. 499 500```c++ 501// The operation name, without the dialect name prefix. 502StringRef name = "my_operation_name"; 503 504// The dialect defining the operation. 505Dialect* dialect = ctx->getOrLoadDialect<MyDialect>(); 506 507// Operation verifier definition. 508AbstractOperation::VerifyInvariantsFn verifyFn = [](Operation* op) { 509 // Logic for the operation verification. 510 ... 511} 512 513// Parser function definition. 514AbstractOperation::ParseAssemblyFn parseFn = 515 [](OpAsmParser &parser, OperationState &state) { 516 // Parse the operation, given that the name is already parsed. 517 ... 518}; 519 520// Printer function 521auto printFn = [](Operation *op, OpAsmPrinter &printer) { 522 printer << op->getName(); 523 // Print the operation, given that the name is already printed. 524 ... 525}; 526 527// General folder implementation, see AbstractOperation::foldHook for more 528// information. 529auto foldHookFn = [](Operation * op, ArrayRef<Attribute> operands, 530 SmallVectorImpl<OpFoldResult> &result) { 531 ... 532}; 533 534// Returns any canonicalization pattern rewrites that the operation 535// supports, for use by the canonicalization pass. 536auto getCanonicalizationPatterns = 537 [](RewritePatternSet &results, MLIRContext *context) { 538 ... 539} 540 541// Definition of the operation. 542std::unique_ptr<DynamicOpDefinition> opDef = 543 DynamicOpDefinition::get(name, dialect, std::move(verifyFn), 544 std::move(parseFn), std::move(printFn), std::move(foldHookFn), 545 std::move(getCanonicalizationPatterns)); 546``` 547 548Once the operation is defined, it can be registered by an `ExtensibleDialect`: 549 550```c++ 551extensibleDialect->registerDynamicOperation(std::move(opDef)); 552``` 553 554Note that the `Dialect` given to the operation should be the one registering 555the operation. 556 557### Using an operation defined at runtime 558 559It is possible to match on an operation defined at runtime using their names: 560 561```c++ 562if (op->getName().getStringRef() == "my_dialect.my_dynamic_op") { 563 ... 564} 565``` 566 567An operation defined at runtime can be created by instantiating an 568`OperationState` with the operation name, and using it with a rewriter 569(for instance a `PatternRewriter`) to create the operation. 570 571```c++ 572OperationState state(location, "my_dialect.my_dynamic_op", 573 operands, resultTypes, attributes); 574 575rewriter.createOperation(state); 576``` 577 578### Defining a type at runtime 579 580Contrary to types defined in C++ or in TableGen, types defined at runtime can 581only have as argument a list of `Attribute`. 582 583Similarily to operations, a type is defined at runtime using the class 584`DynamicTypeDefinition`, which is created using the `DynamicTypeDefinition::get` 585functions. A type definition requires a name, the dialect that will register the 586type, and a parameter verifier. It can also define optionally a custom parser 587and printer for the arguments (the type name is assumed to be already 588parsed/printed). 589 590```c++ 591// The type name, without the dialect name prefix. 592StringRef name = "my_type_name"; 593 594// The dialect defining the type. 595Dialect* dialect = ctx->getOrLoadDialect<MyDialect>(); 596 597// The type verifier. 598// A type defined at runtime has a list of attributes as parameters. 599auto verifier = [](function_ref<InFlightDiagnostic()> emitError, 600 ArrayRef<Attribute> args) { 601 ... 602}; 603 604// The type parameters parser. 605auto parser = [](DialectAsmParser &parser, 606 llvm::SmallVectorImpl<Attribute> &parsedParams) { 607 ... 608}; 609 610// The type parameters printer. 611auto printer =[](DialectAsmPrinter &printer, ArrayRef<Attribute> params) { 612 ... 613}; 614 615std::unique_ptr<DynamicTypeDefinition> typeDef = 616 DynamicTypeDefinition::get(std::move(name), std::move(dialect), 617 std::move(verifier), std::move(printer), 618 std::move(parser)); 619``` 620 621If the printer and the parser are ommited, a default parser and printer is 622generated with the format `!dialect.typename<arg1, arg2, ..., argN>`. 623 624The type can then be registered by the `ExtensibleDialect`: 625 626```c++ 627dialect->registerDynamicType(std::move(typeDef)); 628``` 629 630### Parsing types defined at runtime in an extensible dialect 631 632`parseType` methods generated by TableGen can parse types defined at runtime, 633though overriden `parseType` methods need to add the necessary support for them. 634 635```c++ 636Type MyDialect::parseType(DialectAsmParser &parser) const { 637 ... 638 639 // The type name. 640 StringRef typeTag; 641 if (failed(parser.parseKeyword(&typeTag))) 642 return Type(); 643 644 // Try to parse a dynamic type with 'typeTag' name. 645 Type dynType; 646 auto parseResult = parseOptionalDynamicType(typeTag, parser, dynType); 647 if (parseResult.has_value()) { 648 if (succeeded(parseResult.getValue())) 649 return dynType; 650 return Type(); 651 } 652 653 ... 654} 655``` 656 657### Using a type defined at runtime 658 659Dynamic types are instances of `DynamicType`. It is possible to get a dynamic 660type with `DynamicType::get` and `ExtensibleDialect::lookupTypeDefinition`. 661 662```c++ 663auto typeDef = extensibleDialect->lookupTypeDefinition("my_dynamic_type"); 664ArrayRef<Attribute> params = ...; 665auto type = DynamicType::get(typeDef, params); 666``` 667 668It is also possible to cast a `Type` known to be defined at runtime to a 669`DynamicType`. 670 671```c++ 672auto dynType = type.cast<DynamicType>(); 673auto typeDef = dynType.getTypeDef(); 674auto args = dynType.getParams(); 675``` 676 677### Defining an attribute at runtime 678 679Similar to types defined at runtime, attributes defined at runtime can only have 680as argument a list of `Attribute`. 681 682Similarily to types, an attribute is defined at runtime using the class 683`DynamicAttrDefinition`, which is created using the `DynamicAttrDefinition::get` 684functions. An attribute definition requires a name, the dialect that will 685register the attribute, and a parameter verifier. It can also define optionally 686a custom parser and printer for the arguments (the attribute name is assumed to 687be already parsed/printed). 688 689```c++ 690// The attribute name, without the dialect name prefix. 691StringRef name = "my_attribute_name"; 692 693// The dialect defining the attribute. 694Dialect* dialect = ctx->getOrLoadDialect<MyDialect>(); 695 696// The attribute verifier. 697// An attribute defined at runtime has a list of attributes as parameters. 698auto verifier = [](function_ref<InFlightDiagnostic()> emitError, 699 ArrayRef<Attribute> args) { 700 ... 701}; 702 703// The attribute parameters parser. 704auto parser = [](DialectAsmParser &parser, 705 llvm::SmallVectorImpl<Attribute> &parsedParams) { 706 ... 707}; 708 709// The attribute parameters printer. 710auto printer =[](DialectAsmPrinter &printer, ArrayRef<Attribute> params) { 711 ... 712}; 713 714std::unique_ptr<DynamicAttrDefinition> attrDef = 715 DynamicAttrDefinition::get(std::move(name), std::move(dialect), 716 std::move(verifier), std::move(printer), 717 std::move(parser)); 718``` 719 720If the printer and the parser are ommited, a default parser and printer is 721generated with the format `!dialect.attrname<arg1, arg2, ..., argN>`. 722 723The attribute can then be registered by the `ExtensibleDialect`: 724 725```c++ 726dialect->registerDynamicAttr(std::move(typeDef)); 727``` 728 729### Parsing attributes defined at runtime in an extensible dialect 730 731`parseAttribute` methods generated by TableGen can parse attributes defined at 732runtime, though overriden `parseAttribute` methods need to add the necessary 733support for them. 734 735```c++ 736Attribute MyDialect::parseAttribute(DialectAsmParser &parser, 737 Type type) const override { 738 ... 739 // The attribute name. 740 StringRef attrTag; 741 if (failed(parser.parseKeyword(&attrTag))) 742 return Attribute(); 743 744 // Try to parse a dynamic attribute with 'attrTag' name. 745 Attribute dynAttr; 746 auto parseResult = parseOptionalDynamicAttr(attrTag, parser, dynAttr); 747 if (parseResult.has_value()) { 748 if (succeeded(*parseResult)) 749 return dynAttr; 750 return Attribute(); 751 } 752``` 753 754### Using an attribute defined at runtime 755 756Similar to types, attributes defined at runtime are instances of `DynamicAttr`. 757It is possible to get a dynamic attribute with `DynamicAttr::get` and 758`ExtensibleDialect::lookupAttrDefinition`. 759 760```c++ 761auto attrDef = extensibleDialect->lookupAttrDefinition("my_dynamic_attr"); 762ArrayRef<Attribute> params = ...; 763auto attr = DynamicAttr::get(attrDef, params); 764``` 765 766It is also possible to cast an `Attribute` known to be defined at runtime to a 767`DynamicAttr`. 768 769```c++ 770auto dynAttr = attr.cast<DynamicAttr>(); 771auto attrDef = dynAttr.getAttrDef(); 772auto args = dynAttr.getParams(); 773``` 774 775### Implementation Details of Extensible Dialects 776 777#### Extensible dialect 778 779The role of extensible dialects is to own the necessary data for defined 780operations and types. They also contain the necessary accessors to easily 781access them. 782 783In order to cast a `Dialect` back to an `ExtensibleDialect`, we implement the 784`IsExtensibleDialect` interface to all `ExtensibleDialect`. The casting is done 785by checking if the `Dialect` implements `IsExtensibleDialect` or not. 786 787#### Operation representation and registration 788 789Operations are represented in mlir using the `AbstractOperation` class. They are 790registered in dialects the same way operations defined in C++ are registered, 791which is by calling `AbstractOperation::insert`. 792 793The only difference is that a new `TypeID` needs to be created for each 794operation, since operations are not represented by a C++ class. This is done 795using a `TypeIDAllocator`, which can allocate a new unique `TypeID` at runtime. 796 797#### Type representation and registration 798 799Unlike operations, types need to define a C++ storage class that takes care of 800type parameters. They also need to define another C++ class to access that 801storage. `DynamicTypeStorage` defines the storage of types defined at runtime, 802and `DynamicType` gives access to the storage, as well as defining useful 803functions. A `DynamicTypeStorage` contains a list of `Attribute` type 804parameters, as well as a pointer to the type definition. 805 806Types are registered using the `Dialect::addType` method, which expect a 807`TypeID` that is generated using a `TypeIDAllocator`. The type uniquer also 808register the type with the given `TypeID`. This mean that we can reuse our 809single `DynamicType` with different `TypeID` to represent the different types 810defined at runtime. 811 812Since the different types defined at runtime have different `TypeID`, it is not 813possible to use `TypeID` to cast a `Type` into a `DynamicType`. Thus, similar to 814`Dialect`, all `DynamicType` define a `IsDynamicTypeTrait`, so casting a `Type` 815to a `DynamicType` boils down to querying the `IsDynamicTypeTrait` trait. 816