xref: /llvm-project/llvm/utils/TableGen/AsmMatcherEmitter.cpp (revision 0e4a10dff8eac9ac38d7dbed0c0d32d4a68a5a69)
1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits a target specifier matcher for converting parsed
10 // assembly operands in the MCInst structures. It also emits a matcher for
11 // custom operand parsing.
12 //
13 // Converting assembly operands into MCInst structures
14 // ---------------------------------------------------
15 //
16 // The input to the target specific matcher is a list of literal tokens and
17 // operands. The target specific parser should generally eliminate any syntax
18 // which is not relevant for matching; for example, comma tokens should have
19 // already been consumed and eliminated by the parser. Most instructions will
20 // end up with a single literal token (the instruction name) and some number of
21 // operands.
22 //
23 // Some example inputs, for X86:
24 //   'addl' (immediate ...) (register ...)
25 //   'add' (immediate ...) (memory ...)
26 //   'call' '*' %epc
27 //
28 // The assembly matcher is responsible for converting this input into a precise
29 // machine instruction (i.e., an instruction with a well defined encoding). This
30 // mapping has several properties which complicate matching:
31 //
32 //  - It may be ambiguous; many architectures can legally encode particular
33 //    variants of an instruction in different ways (for example, using a smaller
34 //    encoding for small immediates). Such ambiguities should never be
35 //    arbitrarily resolved by the assembler, the assembler is always responsible
36 //    for choosing the "best" available instruction.
37 //
38 //  - It may depend on the subtarget or the assembler context. Instructions
39 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
40 //    an SSE instruction in a file being assembled for i486) should be accepted
41 //    and rejected by the assembler front end. However, if the proper encoding
42 //    for an instruction is dependent on the assembler context then the matcher
43 //    is responsible for selecting the correct machine instruction for the
44 //    current mode.
45 //
46 // The core matching algorithm attempts to exploit the regularity in most
47 // instruction sets to quickly determine the set of possibly matching
48 // instructions, and the simplify the generated code. Additionally, this helps
49 // to ensure that the ambiguities are intentionally resolved by the user.
50 //
51 // The matching is divided into two distinct phases:
52 //
53 //   1. Classification: Each operand is mapped to the unique set which (a)
54 //      contains it, and (b) is the largest such subset for which a single
55 //      instruction could match all members.
56 //
57 //      For register classes, we can generate these subgroups automatically. For
58 //      arbitrary operands, we expect the user to define the classes and their
59 //      relations to one another (for example, 8-bit signed immediates as a
60 //      subset of 32-bit immediates).
61 //
62 //      By partitioning the operands in this way, we guarantee that for any
63 //      tuple of classes, any single instruction must match either all or none
64 //      of the sets of operands which could classify to that tuple.
65 //
66 //      In addition, the subset relation amongst classes induces a partial order
67 //      on such tuples, which we use to resolve ambiguities.
68 //
69 //   2. The input can now be treated as a tuple of classes (static tokens are
70 //      simple singleton sets). Each such tuple should generally map to a single
71 //      instruction (we currently ignore cases where this isn't true, whee!!!),
72 //      which we can emit a simple matcher for.
73 //
74 // Custom Operand Parsing
75 // ----------------------
76 //
77 //  Some targets need a custom way to parse operands, some specific instructions
78 //  can contain arguments that can represent processor flags and other kinds of
79 //  identifiers that need to be mapped to specific values in the final encoded
80 //  instructions. The target specific custom operand parsing works in the
81 //  following way:
82 //
83 //   1. A operand match table is built, each entry contains a mnemonic, an
84 //      operand class, a mask for all operand positions for that same
85 //      class/mnemonic and target features to be checked while trying to match.
86 //
87 //   2. The operand matcher will try every possible entry with the same
88 //      mnemonic and will check if the target feature for this mnemonic also
89 //      matches. After that, if the operand to be matched has its index
90 //      present in the mask, a successful match occurs. Otherwise, fallback
91 //      to the regular operand parsing.
92 //
93 //   3. For a match success, each operand class that has a 'ParserMethod'
94 //      becomes part of a switch from where the custom method is called.
95 //
96 //===----------------------------------------------------------------------===//
97 
98 #include "Common/CodeGenInstAlias.h"
99 #include "Common/CodeGenInstruction.h"
100 #include "Common/CodeGenRegisters.h"
101 #include "Common/CodeGenTarget.h"
102 #include "Common/SubtargetFeatureInfo.h"
103 #include "Common/Types.h"
104 #include "llvm/ADT/CachedHashString.h"
105 #include "llvm/ADT/PointerUnion.h"
106 #include "llvm/ADT/STLExtras.h"
107 #include "llvm/ADT/SmallPtrSet.h"
108 #include "llvm/ADT/SmallVector.h"
109 #include "llvm/ADT/StringExtras.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Debug.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/TableGen/Error.h"
114 #include "llvm/TableGen/Record.h"
115 #include "llvm/TableGen/StringMatcher.h"
116 #include "llvm/TableGen/StringToOffsetTable.h"
117 #include "llvm/TableGen/TableGenBackend.h"
118 #include <cassert>
119 #include <cctype>
120 #include <forward_list>
121 #include <map>
122 #include <set>
123 
124 using namespace llvm;
125 
126 #define DEBUG_TYPE "asm-matcher-emitter"
127 
128 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
129 
130 static cl::opt<std::string>
131     MatchPrefix("match-prefix", cl::init(""),
132                 cl::desc("Only match instructions with the given prefix"),
133                 cl::cat(AsmMatcherEmitterCat));
134 
135 namespace {
136 class AsmMatcherInfo;
137 
138 // Register sets are used as keys in some second-order sets TableGen creates
139 // when generating its data structures. This means that the order of two
140 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
141 // can even affect compiler output (at least seen in diagnostics produced when
142 // all matches fail). So we use a type that sorts them consistently.
143 typedef std::set<const Record *, LessRecordByID> RegisterSet;
144 
145 class AsmMatcherEmitter {
146   const RecordKeeper &Records;
147 
148 public:
149   AsmMatcherEmitter(const RecordKeeper &R) : Records(R) {}
150 
151   void run(raw_ostream &o);
152 };
153 
154 /// ClassInfo - Helper class for storing the information about a particular
155 /// class of operands which can be matched.
156 struct ClassInfo {
157   enum ClassInfoKind {
158     /// Invalid kind, for use as a sentinel value.
159     Invalid = 0,
160 
161     /// The class for a particular token.
162     Token,
163 
164     /// The (first) register class, subsequent register classes are
165     /// RegisterClass0+1, and so on.
166     RegisterClass0,
167 
168     /// The (first) user defined class, subsequent user defined classes are
169     /// UserClass0+1, and so on.
170     UserClass0 = 1 << 16
171   };
172 
173   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
174   /// N) for the Nth user defined class.
175   unsigned Kind;
176 
177   /// SuperClasses - The super classes of this class. Note that for simplicities
178   /// sake user operands only record their immediate super class, while register
179   /// operands include all superclasses.
180   std::vector<ClassInfo *> SuperClasses;
181 
182   /// Name - The full class name, suitable for use in an enum.
183   std::string Name;
184 
185   /// ClassName - The unadorned generic name for this class (e.g., Token).
186   std::string ClassName;
187 
188   /// ValueName - The name of the value this class represents; for a token this
189   /// is the literal token string, for an operand it is the TableGen class (or
190   /// empty if this is a derived class).
191   std::string ValueName;
192 
193   /// PredicateMethod - The name of the operand method to test whether the
194   /// operand matches this class; this is not valid for Token or register kinds.
195   std::string PredicateMethod;
196 
197   /// RenderMethod - The name of the operand method to add this operand to an
198   /// MCInst; this is not valid for Token or register kinds.
199   std::string RenderMethod;
200 
201   /// ParserMethod - The name of the operand method to do a target specific
202   /// parsing on the operand.
203   std::string ParserMethod;
204 
205   /// For register classes: the records for all the registers in this class.
206   RegisterSet Registers;
207 
208   /// For custom match classes: the diagnostic kind for when the predicate
209   /// fails.
210   std::string DiagnosticType;
211 
212   /// For custom match classes: the diagnostic string for when the predicate
213   /// fails.
214   std::string DiagnosticString;
215 
216   /// Is this operand optional and not always required.
217   bool IsOptional;
218 
219   /// DefaultMethod - The name of the method that returns the default operand
220   /// for optional operand
221   std::string DefaultMethod;
222 
223 public:
224   /// isRegisterClass() - Check if this is a register class.
225   bool isRegisterClass() const {
226     return Kind >= RegisterClass0 && Kind < UserClass0;
227   }
228 
229   /// isUserClass() - Check if this is a user defined class.
230   bool isUserClass() const { return Kind >= UserClass0; }
231 
232   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
233   /// are related if they are in the same class hierarchy.
234   bool isRelatedTo(const ClassInfo &RHS) const {
235     // Tokens are only related to tokens.
236     if (Kind == Token || RHS.Kind == Token)
237       return Kind == Token && RHS.Kind == Token;
238 
239     // Registers classes are only related to registers classes, and only if
240     // their intersection is non-empty.
241     if (isRegisterClass() || RHS.isRegisterClass()) {
242       if (!isRegisterClass() || !RHS.isRegisterClass())
243         return false;
244 
245       std::vector<const Record *> Tmp;
246       std::set_intersection(Registers.begin(), Registers.end(),
247                             RHS.Registers.begin(), RHS.Registers.end(),
248                             std::back_inserter(Tmp), LessRecordByID());
249 
250       return !Tmp.empty();
251     }
252 
253     // Otherwise we have two users operands; they are related if they are in the
254     // same class hierarchy.
255     //
256     // FIXME: This is an oversimplification, they should only be related if they
257     // intersect, however we don't have that information.
258     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
259     const ClassInfo *Root = this;
260     while (!Root->SuperClasses.empty())
261       Root = Root->SuperClasses.front();
262 
263     const ClassInfo *RHSRoot = &RHS;
264     while (!RHSRoot->SuperClasses.empty())
265       RHSRoot = RHSRoot->SuperClasses.front();
266 
267     return Root == RHSRoot;
268   }
269 
270   /// isSubsetOf - Test whether this class is a subset of \p RHS.
271   bool isSubsetOf(const ClassInfo &RHS) const {
272     // This is a subset of RHS if it is the same class...
273     if (this == &RHS)
274       return true;
275 
276     // ... or if any of its super classes are a subset of RHS.
277     SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
278                                                 SuperClasses.end());
279     SmallPtrSet<const ClassInfo *, 16> Visited;
280     while (!Worklist.empty()) {
281       auto *CI = Worklist.pop_back_val();
282       if (CI == &RHS)
283         return true;
284       for (auto *Super : CI->SuperClasses)
285         if (Visited.insert(Super).second)
286           Worklist.push_back(Super);
287     }
288 
289     return false;
290   }
291 
292   int getTreeDepth() const {
293     int Depth = 0;
294     const ClassInfo *Root = this;
295     while (!Root->SuperClasses.empty()) {
296       Depth++;
297       Root = Root->SuperClasses.front();
298     }
299     return Depth;
300   }
301 
302   const ClassInfo *findRoot() const {
303     const ClassInfo *Root = this;
304     while (!Root->SuperClasses.empty())
305       Root = Root->SuperClasses.front();
306     return Root;
307   }
308 
309   /// Compare two classes. This does not produce a total ordering, but does
310   /// guarantee that subclasses are sorted before their parents, and that the
311   /// ordering is transitive.
312   bool operator<(const ClassInfo &RHS) const {
313     if (this == &RHS)
314       return false;
315 
316     // First, enforce the ordering between the three different types of class.
317     // Tokens sort before registers, which sort before user classes.
318     if (Kind == Token) {
319       if (RHS.Kind != Token)
320         return true;
321       assert(RHS.Kind == Token);
322     } else if (isRegisterClass()) {
323       if (RHS.Kind == Token)
324         return false;
325       else if (RHS.isUserClass())
326         return true;
327       assert(RHS.isRegisterClass());
328     } else if (isUserClass()) {
329       if (!RHS.isUserClass())
330         return false;
331       assert(RHS.isUserClass());
332     } else {
333       llvm_unreachable("Unknown ClassInfoKind");
334     }
335 
336     if (Kind == Token || isUserClass()) {
337       // Related tokens and user classes get sorted by depth in the inheritence
338       // tree (so that subclasses are before their parents).
339       if (isRelatedTo(RHS)) {
340         if (getTreeDepth() > RHS.getTreeDepth())
341           return true;
342         if (getTreeDepth() < RHS.getTreeDepth())
343           return false;
344       } else {
345         // Unrelated tokens and user classes are ordered by the name of their
346         // root nodes, so that there is a consistent ordering between
347         // unconnected trees.
348         return findRoot()->ValueName < RHS.findRoot()->ValueName;
349       }
350     } else if (isRegisterClass()) {
351       // For register sets, sort by number of registers. This guarantees that
352       // a set will always sort before all of it's strict supersets.
353       if (Registers.size() != RHS.Registers.size())
354         return Registers.size() < RHS.Registers.size();
355     } else {
356       llvm_unreachable("Unknown ClassInfoKind");
357     }
358 
359     // FIXME: We should be able to just return false here, as we only need a
360     // partial order (we use stable sorts, so this is deterministic) and the
361     // name of a class shouldn't be significant. However, some of the backends
362     // accidentally rely on this behaviour, so it will have to stay like this
363     // until they are fixed.
364     return ValueName < RHS.ValueName;
365   }
366 };
367 
368 class AsmVariantInfo {
369 public:
370   StringRef RegisterPrefix;
371   StringRef TokenizingCharacters;
372   StringRef SeparatorCharacters;
373   StringRef BreakCharacters;
374   StringRef Name;
375   int AsmVariantNo;
376 };
377 
378 bool getPreferSmallerInstructions(CodeGenTarget const &Target) {
379   return Target.getAsmParser()->getValueAsBit("PreferSmallerInstructions");
380 }
381 
382 /// MatchableInfo - Helper class for storing the necessary information for an
383 /// instruction or alias which is capable of being matched.
384 struct MatchableInfo {
385   struct AsmOperand {
386     /// Token - This is the token that the operand came from.
387     StringRef Token;
388 
389     /// The unique class instance this operand should match.
390     ClassInfo *Class;
391 
392     /// The operand name this is, if anything.
393     StringRef SrcOpName;
394 
395     /// The operand name this is, before renaming for tied operands.
396     StringRef OrigSrcOpName;
397 
398     /// The suboperand index within SrcOpName, or -1 for the entire operand.
399     int SubOpIdx;
400 
401     /// Whether the token is "isolated", i.e., it is preceded and followed
402     /// by separators.
403     bool IsIsolatedToken;
404 
405     /// Register record if this token is singleton register.
406     const Record *SingletonReg;
407 
408     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
409         : Token(T), Class(nullptr), SubOpIdx(-1),
410           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
411   };
412 
413   /// ResOperand - This represents a single operand in the result instruction
414   /// generated by the match.  In cases (like addressing modes) where a single
415   /// assembler operand expands to multiple MCOperands, this represents the
416   /// single assembler operand, not the MCOperand.
417   struct ResOperand {
418     enum {
419       /// RenderAsmOperand - This represents an operand result that is
420       /// generated by calling the render method on the assembly operand.  The
421       /// corresponding AsmOperand is specified by AsmOperandNum.
422       RenderAsmOperand,
423 
424       /// TiedOperand - This represents a result operand that is a duplicate of
425       /// a previous result operand.
426       TiedOperand,
427 
428       /// ImmOperand - This represents an immediate value that is dumped into
429       /// the operand.
430       ImmOperand,
431 
432       /// RegOperand - This represents a fixed register that is dumped in.
433       RegOperand
434     } Kind;
435 
436     /// Tuple containing the index of the (earlier) result operand that should
437     /// be copied from, as well as the indices of the corresponding (parsed)
438     /// operands in the asm string.
439     struct TiedOperandsTuple {
440       unsigned ResOpnd;
441       unsigned SrcOpnd1Idx;
442       unsigned SrcOpnd2Idx;
443     };
444 
445     union {
446       /// This is the operand # in the AsmOperands list that this should be
447       /// copied from.
448       unsigned AsmOperandNum;
449 
450       /// Description of tied operands.
451       TiedOperandsTuple TiedOperands;
452 
453       /// ImmVal - This is the immediate value added to the instruction.
454       int64_t ImmVal;
455 
456       /// Register - This is the register record.
457       const Record *Register;
458     };
459 
460     /// MINumOperands - The number of MCInst operands populated by this
461     /// operand.
462     unsigned MINumOperands;
463 
464     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
465       ResOperand X;
466       X.Kind = RenderAsmOperand;
467       X.AsmOperandNum = AsmOpNum;
468       X.MINumOperands = NumOperands;
469       return X;
470     }
471 
472     static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
473                                 unsigned SrcOperand2) {
474       ResOperand X;
475       X.Kind = TiedOperand;
476       X.TiedOperands = {TiedOperandNum, SrcOperand1, SrcOperand2};
477       X.MINumOperands = 1;
478       return X;
479     }
480 
481     static ResOperand getImmOp(int64_t Val) {
482       ResOperand X;
483       X.Kind = ImmOperand;
484       X.ImmVal = Val;
485       X.MINumOperands = 1;
486       return X;
487     }
488 
489     static ResOperand getRegOp(const Record *Reg) {
490       ResOperand X;
491       X.Kind = RegOperand;
492       X.Register = Reg;
493       X.MINumOperands = 1;
494       return X;
495     }
496   };
497 
498   /// AsmVariantID - Target's assembly syntax variant no.
499   int AsmVariantID;
500 
501   /// AsmString - The assembly string for this instruction (with variants
502   /// removed), e.g. "movsx $src, $dst".
503   std::string AsmString;
504 
505   /// TheDef - This is the definition of the instruction or InstAlias that this
506   /// matchable came from.
507   const Record *const TheDef;
508 
509   // ResInstSize - The size of the resulting instruction for this matchable.
510   unsigned ResInstSize;
511 
512   /// DefRec - This is the definition that it came from.
513   PointerUnion<const CodeGenInstruction *, const CodeGenInstAlias *> DefRec;
514 
515   const CodeGenInstruction *getResultInst() const {
516     if (isa<const CodeGenInstruction *>(DefRec))
517       return cast<const CodeGenInstruction *>(DefRec);
518     return cast<const CodeGenInstAlias *>(DefRec)->ResultInst;
519   }
520 
521   /// ResOperands - This is the operand list that should be built for the result
522   /// MCInst.
523   SmallVector<ResOperand, 8> ResOperands;
524 
525   /// Mnemonic - This is the first token of the matched instruction, its
526   /// mnemonic.
527   StringRef Mnemonic;
528 
529   /// AsmOperands - The textual operands that this instruction matches,
530   /// annotated with a class and where in the OperandList they were defined.
531   /// This directly corresponds to the tokenized AsmString after the mnemonic is
532   /// removed.
533   SmallVector<AsmOperand, 8> AsmOperands;
534 
535   /// Predicates - The required subtarget features to match this instruction.
536   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
537 
538   /// ConversionFnKind - The enum value which is passed to the generated
539   /// convertToMCInst to convert parsed operands into an MCInst for this
540   /// function.
541   std::string ConversionFnKind;
542 
543   /// If this instruction is deprecated in some form.
544   bool HasDeprecation = false;
545 
546   /// If this is an alias, this is use to determine whether or not to using
547   /// the conversion function defined by the instruction's AsmMatchConverter
548   /// or to use the function generated by the alias.
549   bool UseInstAsmMatchConverter;
550 
551   MatchableInfo(const CodeGenInstruction &CGI)
552       : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef),
553         ResInstSize(TheDef->getValueAsInt("Size")), DefRec(&CGI),
554         UseInstAsmMatchConverter(true) {}
555 
556   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
557       : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
558         ResInstSize(Alias->ResultInst->TheDef->getValueAsInt("Size")),
559         DefRec(Alias.release()), UseInstAsmMatchConverter(TheDef->getValueAsBit(
560                                      "UseInstAsmMatchConverter")) {}
561 
562   // Could remove this and the dtor if PointerUnion supported unique_ptr
563   // elements with a dynamic failure/assertion (like the one below) in the case
564   // where it was copied while being in an owning state.
565   MatchableInfo(const MatchableInfo &RHS)
566       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
567         TheDef(RHS.TheDef), ResInstSize(RHS.ResInstSize), DefRec(RHS.DefRec),
568         ResOperands(RHS.ResOperands), Mnemonic(RHS.Mnemonic),
569         AsmOperands(RHS.AsmOperands), RequiredFeatures(RHS.RequiredFeatures),
570         ConversionFnKind(RHS.ConversionFnKind),
571         HasDeprecation(RHS.HasDeprecation),
572         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
573     assert(!isa<const CodeGenInstAlias *>(DefRec));
574   }
575 
576   ~MatchableInfo() {
577     delete dyn_cast_if_present<const CodeGenInstAlias *>(DefRec);
578   }
579 
580   // Two-operand aliases clone from the main matchable, but mark the second
581   // operand as a tied operand of the first for purposes of the assembler.
582   void formTwoOperandAlias(StringRef Constraint);
583 
584   void initialize(const AsmMatcherInfo &Info,
585                   SmallPtrSetImpl<const Record *> &SingletonRegisters,
586                   AsmVariantInfo const &Variant, bool HasMnemonicFirst);
587 
588   /// validate - Return true if this matchable is a valid thing to match against
589   /// and perform a bunch of validity checking.
590   bool validate(StringRef CommentDelimiter, bool IsAlias) const;
591 
592   /// findAsmOperand - Find the AsmOperand with the specified name and
593   /// suboperand index.
594   int findAsmOperand(StringRef N, int SubOpIdx) const {
595     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
596       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
597     });
598     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
599   }
600 
601   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
602   /// This does not check the suboperand index.
603   int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
604     auto I =
605         llvm::find_if(llvm::drop_begin(AsmOperands, LastIdx + 1),
606                       [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
607     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
608   }
609 
610   int findAsmOperandOriginallyNamed(StringRef N) const {
611     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
612       return Op.OrigSrcOpName == N;
613     });
614     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
615   }
616 
617   void buildInstructionResultOperands();
618   void buildAliasResultOperands(bool AliasConstraintsAreChecked);
619 
620   /// shouldBeMatchedBefore - Compare two matchables for ordering.
621   bool shouldBeMatchedBefore(const MatchableInfo &RHS,
622                              bool PreferSmallerInstructions) const {
623     // The primary comparator is the instruction mnemonic.
624     if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic))
625       return Cmp == -1;
626 
627     // (Optionally) Order by the resultant instuctions size.
628     // eg. for ARM thumb instructions smaller encodings should be preferred.
629     if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize)
630       return ResInstSize < RHS.ResInstSize;
631 
632     if (AsmOperands.size() != RHS.AsmOperands.size())
633       return AsmOperands.size() < RHS.AsmOperands.size();
634 
635     // Compare lexicographically by operand. The matcher validates that other
636     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
637     for (const auto &[LHSOp, RHSOp] : zip_equal(AsmOperands, RHS.AsmOperands)) {
638       if (*LHSOp.Class < *RHSOp.Class)
639         return true;
640       if (*RHSOp.Class < *LHSOp.Class)
641         return false;
642     }
643 
644     // For X86 AVX/AVX512 instructions, we prefer vex encoding because the
645     // vex encoding size is smaller. Since X86InstrSSE.td is included ahead
646     // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID.
647     // We use the ID to sort AVX instruction before AVX512 instruction in
648     // matching table. As well as InstAlias.
649     if (getResultInst()->TheDef->isSubClassOf("Instruction") &&
650         getResultInst()->TheDef->getValueAsBit("HasPositionOrder") &&
651         RHS.getResultInst()->TheDef->isSubClassOf("Instruction") &&
652         RHS.getResultInst()->TheDef->getValueAsBit("HasPositionOrder"))
653       return getResultInst()->TheDef->getID() <
654              RHS.getResultInst()->TheDef->getID();
655 
656     // Give matches that require more features higher precedence. This is useful
657     // because we cannot define AssemblerPredicates with the negation of
658     // processor features. For example, ARM v6 "nop" may be either a HINT or
659     // MOV. With v6, we want to match HINT. The assembler has no way to
660     // predicate MOV under "NoV6", but HINT will always match first because it
661     // requires V6 while MOV does not.
662     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
663       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
664 
665     return false;
666   }
667 
668   /// couldMatchAmbiguouslyWith - Check whether this matchable could
669   /// ambiguously match the same set of operands as \p RHS (without being a
670   /// strictly superior match).
671   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS,
672                                  bool PreferSmallerInstructions) const {
673     // The primary comparator is the instruction mnemonic.
674     if (Mnemonic != RHS.Mnemonic)
675       return false;
676 
677     // Different variants can't conflict.
678     if (AsmVariantID != RHS.AsmVariantID)
679       return false;
680 
681     // The size of instruction is unambiguous.
682     if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize)
683       return false;
684 
685     // The number of operands is unambiguous.
686     if (AsmOperands.size() != RHS.AsmOperands.size())
687       return false;
688 
689     // Otherwise, make sure the ordering of the two instructions is unambiguous
690     // by checking that either (a) a token or operand kind discriminates them,
691     // or (b) the ordering among equivalent kinds is consistent.
692 
693     // Tokens and operand kinds are unambiguous (assuming a correct target
694     // specific parser).
695     for (const auto &[LHSOp, RHSOp] : zip_equal(AsmOperands, RHS.AsmOperands)) {
696       if (LHSOp.Class->Kind != RHSOp.Class->Kind ||
697           LHSOp.Class->Kind == ClassInfo::Token)
698         if (*LHSOp.Class < *RHSOp.Class || *RHSOp.Class < *LHSOp.Class)
699           return false;
700     }
701 
702     // Otherwise, this operand could commute if all operands are equivalent, or
703     // there is a pair of operands that compare less than and a pair that
704     // compare greater than.
705     bool HasLT = false, HasGT = false;
706     for (const auto &[LHSOp, RHSOp] : zip_equal(AsmOperands, RHS.AsmOperands)) {
707       if (*LHSOp.Class < *RHSOp.Class)
708         HasLT = true;
709       if (*RHSOp.Class < *LHSOp.Class)
710         HasGT = true;
711     }
712 
713     return HasLT == HasGT;
714   }
715 
716   void dump() const;
717 
718 private:
719   void tokenizeAsmString(AsmMatcherInfo const &Info,
720                          AsmVariantInfo const &Variant);
721   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
722 };
723 
724 struct OperandMatchEntry {
725   unsigned OperandMask;
726   const MatchableInfo *MI;
727   ClassInfo *CI;
728 
729   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
730                                   unsigned opMask) {
731     OperandMatchEntry X;
732     X.OperandMask = opMask;
733     X.CI = ci;
734     X.MI = mi;
735     return X;
736   }
737 };
738 
739 class AsmMatcherInfo {
740 public:
741   /// Tracked Records
742   const RecordKeeper &Records;
743 
744   /// The tablegen AsmParser record.
745   const Record *AsmParser;
746 
747   /// Target - The target information.
748   const CodeGenTarget &Target;
749 
750   /// The classes which are needed for matching.
751   std::forward_list<ClassInfo> Classes;
752 
753   /// The information on the matchables to match.
754   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
755 
756   /// Info for custom matching operands by user defined methods.
757   std::vector<OperandMatchEntry> OperandMatchInfo;
758 
759   /// Map of Register records to their class information.
760   typedef std::map<const Record *, ClassInfo *, LessRecordByID>
761       RegisterClassesTy;
762   RegisterClassesTy RegisterClasses;
763 
764   /// Map of Predicate records to their subtarget information.
765   SubtargetFeatureInfoMap SubtargetFeatures;
766 
767   /// Map of AsmOperandClass records to their class information.
768   std::map<const Record *, ClassInfo *> AsmOperandClasses;
769 
770   /// Map of RegisterClass records to their class information.
771   std::map<const Record *, ClassInfo *> RegisterClassClasses;
772 
773 private:
774   /// Map of token to class information which has already been constructed.
775   std::map<std::string, ClassInfo *> TokenClasses;
776 
777 private:
778   /// getTokenClass - Lookup or create the class for the given token.
779   ClassInfo *getTokenClass(StringRef Token);
780 
781   /// getOperandClass - Lookup or create the class for the given operand.
782   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
783                              int SubOpIdx);
784   ClassInfo *getOperandClass(const Record *Rec, int SubOpIdx);
785 
786   /// buildRegisterClasses - Build the ClassInfo* instances for register
787   /// classes.
788   void
789   buildRegisterClasses(SmallPtrSetImpl<const Record *> &SingletonRegisters);
790 
791   /// buildOperandClasses - Build the ClassInfo* instances for user defined
792   /// operand classes.
793   void buildOperandClasses();
794 
795   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
796                                         unsigned AsmOpIdx);
797   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
798                                   MatchableInfo::AsmOperand &Op);
799 
800 public:
801   AsmMatcherInfo(const Record *AsmParser, const CodeGenTarget &Target,
802                  const RecordKeeper &Records);
803 
804   /// Construct the various tables used during matching.
805   void buildInfo();
806 
807   /// buildOperandMatchInfo - Build the necessary information to handle user
808   /// defined operand parsing methods.
809   void buildOperandMatchInfo();
810 
811   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
812   /// given operand.
813   const SubtargetFeatureInfo *getSubtargetFeature(const Record *Def) const {
814     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
815     const auto &I = SubtargetFeatures.find(Def);
816     return I == SubtargetFeatures.end() ? nullptr : &I->second;
817   }
818 
819   const RecordKeeper &getRecords() const { return Records; }
820 
821   bool hasOptionalOperands() const {
822     return any_of(Classes,
823                   [](const ClassInfo &Class) { return Class.IsOptional; });
824   }
825 };
826 
827 } // end anonymous namespace
828 
829 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
830 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
831   errs() << TheDef->getName() << " -- "
832          << "flattened:\"" << AsmString << "\"\n";
833 
834   errs() << "  variant: " << AsmVariantID << "\n";
835 
836   for (const auto &[Idx, Op] : enumerate(AsmOperands)) {
837     errs() << "  op[" << Idx << "] = " << Op.Class->ClassName << " - ";
838     errs() << '\"' << Op.Token << "\"\n";
839   }
840 }
841 #endif
842 
843 static std::pair<StringRef, StringRef>
844 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
845   // Split via the '='.
846   std::pair<StringRef, StringRef> Ops = S.split('=');
847   if (Ops.second == "")
848     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
849   // Trim whitespace and the leading '$' on the operand names.
850   size_t start = Ops.first.find_first_of('$');
851   if (start == std::string::npos)
852     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
853   Ops.first = Ops.first.substr(start + 1);
854   size_t end = Ops.first.find_last_of(" \t");
855   Ops.first = Ops.first.slice(0, end);
856   // Now the second operand.
857   start = Ops.second.find_first_of('$');
858   if (start == std::string::npos)
859     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
860   Ops.second = Ops.second.substr(start + 1);
861   end = Ops.second.find_last_of(" \t");
862   Ops.first = Ops.first.slice(0, end);
863   return Ops;
864 }
865 
866 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
867   // Figure out which operands are aliased and mark them as tied.
868   std::pair<StringRef, StringRef> Ops =
869       parseTwoOperandConstraint(Constraint, TheDef->getLoc());
870 
871   // Find the AsmOperands that refer to the operands we're aliasing.
872   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
873   int DstAsmOperand = findAsmOperandNamed(Ops.second);
874   if (SrcAsmOperand == -1)
875     PrintFatalError(TheDef->getLoc(),
876                     "unknown source two-operand alias operand '" + Ops.first +
877                         "'.");
878   if (DstAsmOperand == -1)
879     PrintFatalError(TheDef->getLoc(),
880                     "unknown destination two-operand alias operand '" +
881                         Ops.second + "'.");
882 
883   // Find the ResOperand that refers to the operand we're aliasing away
884   // and update it to refer to the combined operand instead.
885   for (ResOperand &Op : ResOperands) {
886     if (Op.Kind == ResOperand::RenderAsmOperand &&
887         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
888       Op.AsmOperandNum = DstAsmOperand;
889       break;
890     }
891   }
892   // Remove the AsmOperand for the alias operand.
893   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
894   // Adjust the ResOperand references to any AsmOperands that followed
895   // the one we just deleted.
896   for (ResOperand &Op : ResOperands) {
897     switch (Op.Kind) {
898     default:
899       // Nothing to do for operands that don't reference AsmOperands.
900       break;
901     case ResOperand::RenderAsmOperand:
902       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
903         --Op.AsmOperandNum;
904       break;
905     }
906   }
907 }
908 
909 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
910 /// if present, from specified token.
911 static void extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
912                                                   const AsmMatcherInfo &Info,
913                                                   StringRef RegisterPrefix) {
914   StringRef Tok = Op.Token;
915 
916   // If this token is not an isolated token, i.e., it isn't separated from
917   // other tokens (e.g. with whitespace), don't interpret it as a register name.
918   if (!Op.IsIsolatedToken)
919     return;
920 
921   if (RegisterPrefix.empty()) {
922     std::string LoweredTok = Tok.lower();
923     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
924       Op.SingletonReg = Reg->TheDef;
925     return;
926   }
927 
928   if (!Tok.starts_with(RegisterPrefix))
929     return;
930 
931   StringRef RegName = Tok.substr(RegisterPrefix.size());
932   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
933     Op.SingletonReg = Reg->TheDef;
934 
935   // If there is no register prefix (i.e. "%" in "%eax"), then this may
936   // be some random non-register token, just ignore it.
937 }
938 
939 void MatchableInfo::initialize(
940     const AsmMatcherInfo &Info,
941     SmallPtrSetImpl<const Record *> &SingletonRegisters,
942     AsmVariantInfo const &Variant, bool HasMnemonicFirst) {
943   AsmVariantID = Variant.AsmVariantNo;
944   AsmString = CodeGenInstruction::FlattenAsmStringVariants(
945       AsmString, Variant.AsmVariantNo);
946 
947   tokenizeAsmString(Info, Variant);
948 
949   // The first token of the instruction is the mnemonic, which must be a
950   // simple string, not a $foo variable or a singleton register.
951   if (AsmOperands.empty())
952     PrintFatalError(TheDef->getLoc(),
953                     "Instruction '" + TheDef->getName() + "' has no tokens");
954 
955   assert(!AsmOperands[0].Token.empty());
956   if (HasMnemonicFirst) {
957     Mnemonic = AsmOperands[0].Token;
958     if (Mnemonic[0] == '$')
959       PrintFatalError(TheDef->getLoc(),
960                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
961 
962     // Remove the first operand, it is tracked in the mnemonic field.
963     AsmOperands.erase(AsmOperands.begin());
964   } else if (AsmOperands[0].Token[0] != '$')
965     Mnemonic = AsmOperands[0].Token;
966 
967   // Compute the require features.
968   for (const Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
969     if (const SubtargetFeatureInfo *Feature =
970             Info.getSubtargetFeature(Predicate))
971       RequiredFeatures.push_back(Feature);
972 
973   // Collect singleton registers, if used.
974   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
975     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
976     if (Op.SingletonReg)
977       SingletonRegisters.insert(Op.SingletonReg);
978   }
979 
980   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
981   if (!DepMask)
982     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
983 
984   HasDeprecation =
985       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
986 }
987 
988 /// Append an AsmOperand for the given substring of AsmString.
989 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
990   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
991 }
992 
993 /// tokenizeAsmString - Tokenize a simplified assembly string.
994 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
995                                       AsmVariantInfo const &Variant) {
996   StringRef String = AsmString;
997   size_t Prev = 0;
998   bool InTok = false;
999   bool IsIsolatedToken = true;
1000   for (size_t i = 0, e = String.size(); i != e; ++i) {
1001     char Char = String[i];
1002     if (Variant.BreakCharacters.contains(Char)) {
1003       if (InTok) {
1004         addAsmOperand(String.substr(Prev, i - Prev), false);
1005         Prev = i;
1006         IsIsolatedToken = false;
1007       }
1008       InTok = true;
1009       continue;
1010     }
1011     if (Variant.TokenizingCharacters.contains(Char)) {
1012       if (InTok) {
1013         addAsmOperand(String.substr(Prev, i - Prev), IsIsolatedToken);
1014         InTok = false;
1015         IsIsolatedToken = false;
1016       }
1017       addAsmOperand(String.substr(i, 1), IsIsolatedToken);
1018       Prev = i + 1;
1019       IsIsolatedToken = true;
1020       continue;
1021     }
1022     if (Variant.SeparatorCharacters.contains(Char)) {
1023       if (InTok) {
1024         addAsmOperand(String.substr(Prev, i - Prev), IsIsolatedToken);
1025         InTok = false;
1026       }
1027       Prev = i + 1;
1028       IsIsolatedToken = true;
1029       continue;
1030     }
1031 
1032     switch (Char) {
1033     case '\\':
1034       if (InTok) {
1035         addAsmOperand(String.substr(Prev, i - Prev), false);
1036         InTok = false;
1037         IsIsolatedToken = false;
1038       }
1039       ++i;
1040       assert(i != String.size() && "Invalid quoted character");
1041       addAsmOperand(String.substr(i, 1), IsIsolatedToken);
1042       Prev = i + 1;
1043       IsIsolatedToken = false;
1044       break;
1045 
1046     case '$': {
1047       if (InTok) {
1048         addAsmOperand(String.substr(Prev, i - Prev), IsIsolatedToken);
1049         InTok = false;
1050         IsIsolatedToken = false;
1051       }
1052 
1053       // If this isn't "${", start new identifier looking like "$xxx"
1054       if (i + 1 == String.size() || String[i + 1] != '{') {
1055         Prev = i;
1056         break;
1057       }
1058 
1059       size_t EndPos = String.find('}', i);
1060       assert(EndPos != StringRef::npos &&
1061              "Missing brace in operand reference!");
1062       addAsmOperand(String.substr(i, EndPos + 1 - i), IsIsolatedToken);
1063       Prev = EndPos + 1;
1064       i = EndPos;
1065       IsIsolatedToken = false;
1066       break;
1067     }
1068 
1069     default:
1070       InTok = true;
1071       break;
1072     }
1073   }
1074   if (InTok && Prev != String.size())
1075     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1076 }
1077 
1078 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1079   // Reject matchables with no .s string.
1080   if (AsmString.empty())
1081     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1082 
1083   // Reject any matchables with a newline in them, they should be marked
1084   // isCodeGenOnly if they are pseudo instructions.
1085   if (AsmString.find('\n') != std::string::npos)
1086     PrintFatalError(TheDef->getLoc(),
1087                     "multiline instruction is not valid for the asmparser, "
1088                     "mark it isCodeGenOnly");
1089 
1090   // Remove comments from the asm string.  We know that the asmstring only
1091   // has one line.
1092   if (!CommentDelimiter.empty() &&
1093       StringRef(AsmString).contains(CommentDelimiter))
1094     PrintFatalError(TheDef->getLoc(),
1095                     "asmstring for instruction has comment character in it, "
1096                     "mark it isCodeGenOnly");
1097 
1098   // Reject matchables with operand modifiers, these aren't something we can
1099   // handle, the target should be refactored to use operands instead of
1100   // modifiers.
1101   //
1102   // Also, check for instructions which reference the operand multiple times,
1103   // if they don't define a custom AsmMatcher: this implies a constraint that
1104   // the built-in matching code would not honor.
1105   std::set<std::string> OperandNames;
1106   for (const AsmOperand &Op : AsmOperands) {
1107     StringRef Tok = Op.Token;
1108     if (Tok[0] == '$' && Tok.contains(':'))
1109       PrintFatalError(
1110           TheDef->getLoc(),
1111           "matchable with operand modifier '" + Tok +
1112               "' not supported by asm matcher.  Mark isCodeGenOnly!");
1113     // Verify that any operand is only mentioned once.
1114     // We reject aliases and ignore instructions for now.
1115     if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1116         Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
1117       LLVM_DEBUG({
1118         errs() << "warning: '" << TheDef->getName() << "': "
1119                << "ignoring instruction with tied operand '" << Tok << "'\n";
1120       });
1121       return false;
1122     }
1123   }
1124 
1125   return true;
1126 }
1127 
1128 static std::string getEnumNameForToken(StringRef Str) {
1129   std::string Res;
1130 
1131   for (char C : Str) {
1132     switch (C) {
1133     case '*':
1134       Res += "_STAR_";
1135       break;
1136     case '%':
1137       Res += "_PCT_";
1138       break;
1139     case ':':
1140       Res += "_COLON_";
1141       break;
1142     case '!':
1143       Res += "_EXCLAIM_";
1144       break;
1145     case '.':
1146       Res += "_DOT_";
1147       break;
1148     case '<':
1149       Res += "_LT_";
1150       break;
1151     case '>':
1152       Res += "_GT_";
1153       break;
1154     case '-':
1155       Res += "_MINUS_";
1156       break;
1157     case '#':
1158       Res += "_HASH_";
1159       break;
1160     default:
1161       if (isAlnum(C))
1162         Res += C;
1163       else
1164         Res += "_" + utostr((unsigned)C) + "_";
1165     }
1166   }
1167 
1168   return Res;
1169 }
1170 
1171 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1172   ClassInfo *&Entry = TokenClasses[std::string(Token)];
1173 
1174   if (!Entry) {
1175     Classes.emplace_front();
1176     Entry = &Classes.front();
1177     Entry->Kind = ClassInfo::Token;
1178     Entry->ClassName = "Token";
1179     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1180     Entry->ValueName = std::string(Token);
1181     Entry->PredicateMethod = "<invalid>";
1182     Entry->RenderMethod = "<invalid>";
1183     Entry->ParserMethod = "";
1184     Entry->DiagnosticType = "";
1185     Entry->IsOptional = false;
1186     Entry->DefaultMethod = "<invalid>";
1187   }
1188 
1189   return Entry;
1190 }
1191 
1192 ClassInfo *
1193 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1194                                 int SubOpIdx) {
1195   const Record *Rec = OI.Rec;
1196   if (SubOpIdx != -1)
1197     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1198   return getOperandClass(Rec, SubOpIdx);
1199 }
1200 
1201 ClassInfo *AsmMatcherInfo::getOperandClass(const Record *Rec, int SubOpIdx) {
1202   if (Rec->isSubClassOf("RegisterOperand")) {
1203     // RegisterOperand may have an associated ParserMatchClass. If it does,
1204     // use it, else just fall back to the underlying register class.
1205     const RecordVal *R = Rec->getValue("ParserMatchClass");
1206     if (!R || !R->getValue())
1207       PrintFatalError(Rec->getLoc(),
1208                       "Record `" + Rec->getName() +
1209                           "' does not have a ParserMatchClass!\n");
1210 
1211     if (const DefInit *DI = dyn_cast<DefInit>(R->getValue())) {
1212       const Record *MatchClass = DI->getDef();
1213       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1214         return CI;
1215     }
1216 
1217     // No custom match class. Just use the register class.
1218     const Record *ClassRec = Rec->getValueAsDef("RegClass");
1219     if (!ClassRec)
1220       PrintFatalError(Rec->getLoc(),
1221                       "RegisterOperand `" + Rec->getName() +
1222                           "' has no associated register class!\n");
1223     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1224       return CI;
1225     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1226   }
1227 
1228   if (Rec->isSubClassOf("RegisterClass")) {
1229     if (ClassInfo *CI = RegisterClassClasses[Rec])
1230       return CI;
1231     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1232   }
1233 
1234   if (!Rec->isSubClassOf("Operand"))
1235     PrintFatalError(Rec->getLoc(),
1236                     "Operand `" + Rec->getName() +
1237                         "' does not derive from class Operand!\n");
1238   const Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1239   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1240     return CI;
1241 
1242   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1243 }
1244 
1245 struct LessRegisterSet {
1246   bool operator()(const RegisterSet &LHS, const RegisterSet &RHS) const {
1247     // std::set<T> defines its own compariso "operator<", but it
1248     // performs a lexicographical comparison by T's innate comparison
1249     // for some reason. We don't want non-deterministic pointer
1250     // comparisons so use this instead.
1251     return std::lexicographical_compare(LHS.begin(), LHS.end(), RHS.begin(),
1252                                         RHS.end(), LessRecordByID());
1253   }
1254 };
1255 
1256 void AsmMatcherInfo::buildRegisterClasses(
1257     SmallPtrSetImpl<const Record *> &SingletonRegisters) {
1258   const auto &Registers = Target.getRegBank().getRegisters();
1259   auto &RegClassList = Target.getRegBank().getRegClasses();
1260 
1261   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1262 
1263   // The register sets used for matching.
1264   RegisterSetSet RegisterSets;
1265 
1266   // Gather the defined sets.
1267   for (const CodeGenRegisterClass &RC : RegClassList)
1268     RegisterSets.insert(
1269         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1270 
1271   // Add any required singleton sets.
1272   for (const Record *Rec : SingletonRegisters) {
1273     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1274   }
1275 
1276   // Introduce derived sets where necessary (when a register does not determine
1277   // a unique register set class), and build the mapping of registers to the set
1278   // they should classify to.
1279   std::map<const Record *, RegisterSet> RegisterMap;
1280   for (const CodeGenRegister &CGR : Registers) {
1281     // Compute the intersection of all sets containing this register.
1282     RegisterSet ContainingSet;
1283 
1284     for (const RegisterSet &RS : RegisterSets) {
1285       if (!RS.count(CGR.TheDef))
1286         continue;
1287 
1288       if (ContainingSet.empty()) {
1289         ContainingSet = RS;
1290         continue;
1291       }
1292 
1293       RegisterSet Tmp;
1294       std::set_intersection(ContainingSet.begin(), ContainingSet.end(),
1295                             RS.begin(), RS.end(),
1296                             std::inserter(Tmp, Tmp.begin()), LessRecordByID());
1297       ContainingSet = std::move(Tmp);
1298     }
1299 
1300     if (!ContainingSet.empty()) {
1301       RegisterSets.insert(ContainingSet);
1302       RegisterMap.try_emplace(CGR.TheDef, ContainingSet);
1303     }
1304   }
1305 
1306   // Construct the register classes.
1307   std::map<RegisterSet, ClassInfo *, LessRegisterSet> RegisterSetClasses;
1308   unsigned Index = 0;
1309   for (const RegisterSet &RS : RegisterSets) {
1310     Classes.emplace_front();
1311     ClassInfo *CI = &Classes.front();
1312     CI->Kind = ClassInfo::RegisterClass0 + Index;
1313     CI->ClassName = "Reg" + utostr(Index);
1314     CI->Name = "MCK_Reg" + utostr(Index);
1315     CI->ValueName = "";
1316     CI->PredicateMethod = ""; // unused
1317     CI->RenderMethod = "addRegOperands";
1318     CI->Registers = RS;
1319     // FIXME: diagnostic type.
1320     CI->DiagnosticType = "";
1321     CI->IsOptional = false;
1322     CI->DefaultMethod = ""; // unused
1323     RegisterSetClasses.try_emplace(RS, CI);
1324     ++Index;
1325   }
1326 
1327   // Find the superclasses; we could compute only the subgroup lattice edges,
1328   // but there isn't really a point.
1329   for (const RegisterSet &RS : RegisterSets) {
1330     ClassInfo *CI = RegisterSetClasses[RS];
1331     for (const RegisterSet &RS2 : RegisterSets)
1332       if (RS != RS2 && std::includes(RS2.begin(), RS2.end(), RS.begin(),
1333                                      RS.end(), LessRecordByID()))
1334         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1335   }
1336 
1337   // Name the register classes which correspond to a user defined RegisterClass.
1338   for (const CodeGenRegisterClass &RC : RegClassList) {
1339     // Def will be NULL for non-user defined register classes.
1340     const Record *Def = RC.getDef();
1341     if (!Def)
1342       continue;
1343     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1344                                                    RC.getOrder().end())];
1345     if (CI->ValueName.empty()) {
1346       CI->ClassName = RC.getName();
1347       CI->Name = "MCK_" + RC.getName();
1348       CI->ValueName = RC.getName();
1349     } else
1350       CI->ValueName = CI->ValueName + "," + RC.getName();
1351 
1352     const Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1353     if (const StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1354       CI->DiagnosticType = std::string(SI->getValue());
1355 
1356     const Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1357     if (const StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1358       CI->DiagnosticString = std::string(SI->getValue());
1359 
1360     // If we have a diagnostic string but the diagnostic type is not specified
1361     // explicitly, create an anonymous diagnostic type.
1362     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1363       CI->DiagnosticType = RC.getName();
1364 
1365     RegisterClassClasses.try_emplace(Def, CI);
1366   }
1367 
1368   // Populate the map for individual registers.
1369   for (auto &It : RegisterMap)
1370     RegisterClasses[It.first] = RegisterSetClasses[It.second];
1371 
1372   // Name the register classes which correspond to singleton registers.
1373   for (const Record *Rec : SingletonRegisters) {
1374     ClassInfo *CI = RegisterClasses[Rec];
1375     assert(CI && "Missing singleton register class info!");
1376 
1377     if (CI->ValueName.empty()) {
1378       CI->ClassName = std::string(Rec->getName());
1379       CI->Name = "MCK_" + Rec->getName().str();
1380       CI->ValueName = std::string(Rec->getName());
1381     } else
1382       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1383   }
1384 }
1385 
1386 void AsmMatcherInfo::buildOperandClasses() {
1387   ArrayRef<const Record *> AsmOperands =
1388       Records.getAllDerivedDefinitions("AsmOperandClass");
1389 
1390   // Pre-populate AsmOperandClasses map.
1391   for (const Record *Rec : AsmOperands) {
1392     Classes.emplace_front();
1393     AsmOperandClasses[Rec] = &Classes.front();
1394   }
1395 
1396   unsigned Index = 0;
1397   for (const Record *Rec : AsmOperands) {
1398     ClassInfo *CI = AsmOperandClasses[Rec];
1399     CI->Kind = ClassInfo::UserClass0 + Index;
1400 
1401     const ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1402     for (const Init *I : Supers->getValues()) {
1403       const DefInit *DI = dyn_cast<DefInit>(I);
1404       if (!DI) {
1405         PrintError(Rec->getLoc(), "Invalid super class reference!");
1406         continue;
1407       }
1408 
1409       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1410       if (!SC)
1411         PrintError(Rec->getLoc(), "Invalid super class reference!");
1412       else
1413         CI->SuperClasses.push_back(SC);
1414     }
1415     CI->ClassName = std::string(Rec->getValueAsString("Name"));
1416     CI->Name = "MCK_" + CI->ClassName;
1417     CI->ValueName = std::string(Rec->getName());
1418 
1419     // Get or construct the predicate method name.
1420     const Init *PMName = Rec->getValueInit("PredicateMethod");
1421     if (const StringInit *SI = dyn_cast<StringInit>(PMName)) {
1422       CI->PredicateMethod = std::string(SI->getValue());
1423     } else {
1424       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1425       CI->PredicateMethod = "is" + CI->ClassName;
1426     }
1427 
1428     // Get or construct the render method name.
1429     const Init *RMName = Rec->getValueInit("RenderMethod");
1430     if (const StringInit *SI = dyn_cast<StringInit>(RMName)) {
1431       CI->RenderMethod = std::string(SI->getValue());
1432     } else {
1433       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1434       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1435     }
1436 
1437     // Get the parse method name or leave it as empty.
1438     const Init *PRMName = Rec->getValueInit("ParserMethod");
1439     if (const StringInit *SI = dyn_cast<StringInit>(PRMName))
1440       CI->ParserMethod = std::string(SI->getValue());
1441 
1442     // Get the diagnostic type and string or leave them as empty.
1443     const Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1444     if (const StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1445       CI->DiagnosticType = std::string(SI->getValue());
1446     const Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1447     if (const StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1448       CI->DiagnosticString = std::string(SI->getValue());
1449     // If we have a DiagnosticString, we need a DiagnosticType for use within
1450     // the matcher.
1451     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1452       CI->DiagnosticType = CI->ClassName;
1453 
1454     const Init *IsOptional = Rec->getValueInit("IsOptional");
1455     if (const BitInit *BI = dyn_cast<BitInit>(IsOptional))
1456       CI->IsOptional = BI->getValue();
1457 
1458     // Get or construct the default method name.
1459     const Init *DMName = Rec->getValueInit("DefaultMethod");
1460     if (const StringInit *SI = dyn_cast<StringInit>(DMName)) {
1461       CI->DefaultMethod = std::string(SI->getValue());
1462     } else {
1463       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1464       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1465     }
1466 
1467     ++Index;
1468   }
1469 }
1470 
1471 AsmMatcherInfo::AsmMatcherInfo(const Record *asmParser,
1472                                const CodeGenTarget &target,
1473                                const RecordKeeper &records)
1474     : Records(records), AsmParser(asmParser), Target(target) {}
1475 
1476 /// buildOperandMatchInfo - Build the necessary information to handle user
1477 /// defined operand parsing methods.
1478 void AsmMatcherInfo::buildOperandMatchInfo() {
1479   /// Map containing a mask with all operands indices that can be found for
1480   /// that class inside a instruction.
1481   typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1482   OpClassMaskTy OpClassMask;
1483 
1484   bool CallCustomParserForAllOperands =
1485       AsmParser->getValueAsBit("CallCustomParserForAllOperands");
1486   for (const auto &MI : Matchables) {
1487     OpClassMask.clear();
1488 
1489     // Keep track of all operands of this instructions which belong to the
1490     // same class.
1491     unsigned NumOptionalOps = 0;
1492     for (const auto &[Idx, Op] : enumerate(MI->AsmOperands)) {
1493       if (CallCustomParserForAllOperands || !Op.Class->ParserMethod.empty()) {
1494         unsigned &OperandMask = OpClassMask[Op.Class];
1495         OperandMask |= maskTrailingOnes<unsigned>(NumOptionalOps + 1)
1496                        << (Idx - NumOptionalOps);
1497       }
1498       if (Op.Class->IsOptional)
1499         ++NumOptionalOps;
1500     }
1501 
1502     // Generate operand match info for each mnemonic/operand class pair.
1503     for (const auto [CI, OpMask] : OpClassMask) {
1504       OperandMatchInfo.push_back(
1505           OperandMatchEntry::create(MI.get(), CI, OpMask));
1506     }
1507   }
1508 }
1509 
1510 void AsmMatcherInfo::buildInfo() {
1511   // Build information about all of the AssemblerPredicates.
1512   SubtargetFeaturesInfoVec SubtargetFeaturePairs =
1513       SubtargetFeatureInfo::getAll(Records);
1514   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1515                            SubtargetFeaturePairs.end());
1516 #ifndef NDEBUG
1517   for (const auto &Pair : SubtargetFeatures)
1518     LLVM_DEBUG(Pair.second.dump());
1519 #endif // NDEBUG
1520 
1521   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1522   bool ReportMultipleNearMisses =
1523       AsmParser->getValueAsBit("ReportMultipleNearMisses");
1524 
1525   // Parse the instructions; we need to do this first so that we can gather the
1526   // singleton register classes.
1527   SmallPtrSet<const Record *, 16> SingletonRegisters;
1528   unsigned VariantCount = Target.getAsmParserVariantCount();
1529   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1530     const Record *AsmVariant = Target.getAsmParserVariant(VC);
1531     StringRef CommentDelimiter =
1532         AsmVariant->getValueAsString("CommentDelimiter");
1533     AsmVariantInfo Variant;
1534     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1535     Variant.TokenizingCharacters =
1536         AsmVariant->getValueAsString("TokenizingCharacters");
1537     Variant.SeparatorCharacters =
1538         AsmVariant->getValueAsString("SeparatorCharacters");
1539     Variant.BreakCharacters = AsmVariant->getValueAsString("BreakCharacters");
1540     Variant.Name = AsmVariant->getValueAsString("Name");
1541     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1542 
1543     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1544 
1545       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1546       // filter the set of instructions we consider.
1547       if (!StringRef(CGI->TheDef->getName()).starts_with(MatchPrefix))
1548         continue;
1549 
1550       // Ignore "codegen only" instructions.
1551       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1552         continue;
1553 
1554       // Ignore instructions for different instructions
1555       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1556       if (!V.empty() && V != Variant.Name)
1557         continue;
1558 
1559       auto II = std::make_unique<MatchableInfo>(*CGI);
1560 
1561       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1562 
1563       // Ignore instructions which shouldn't be matched and diagnose invalid
1564       // instruction definitions with an error.
1565       if (!II->validate(CommentDelimiter, false))
1566         continue;
1567 
1568       Matchables.push_back(std::move(II));
1569     }
1570 
1571     // Parse all of the InstAlias definitions and stick them in the list of
1572     // matchables.
1573     for (const Record *InstAlias :
1574          Records.getAllDerivedDefinitions("InstAlias")) {
1575       auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target);
1576 
1577       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1578       // filter the set of instruction aliases we consider, based on the target
1579       // instruction.
1580       if (!StringRef(Alias->ResultInst->TheDef->getName())
1581                .starts_with(MatchPrefix))
1582         continue;
1583 
1584       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1585       if (!V.empty() && V != Variant.Name)
1586         continue;
1587 
1588       auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1589 
1590       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1591 
1592       // Validate the alias definitions.
1593       II->validate(CommentDelimiter, true);
1594 
1595       Matchables.push_back(std::move(II));
1596     }
1597   }
1598 
1599   // Build info for the register classes.
1600   buildRegisterClasses(SingletonRegisters);
1601 
1602   // Build info for the user defined assembly operand classes.
1603   buildOperandClasses();
1604 
1605   // Build the information about matchables, now that we have fully formed
1606   // classes.
1607   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1608   for (auto &II : Matchables) {
1609     // Parse the tokens after the mnemonic.
1610     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1611     // don't precompute the loop bound, i.e., cannot use range based for loop
1612     // here.
1613     for (size_t Idx = 0; Idx < II->AsmOperands.size(); ++Idx) {
1614       MatchableInfo::AsmOperand &Op = II->AsmOperands[Idx];
1615       StringRef Token = Op.Token;
1616       // Check for singleton registers.
1617       if (const Record *RegRecord = Op.SingletonReg) {
1618         Op.Class = RegisterClasses[RegRecord];
1619         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1620                "Unexpected class for singleton register");
1621         continue;
1622       }
1623 
1624       // Check for simple tokens.
1625       if (Token[0] != '$') {
1626         Op.Class = getTokenClass(Token);
1627         continue;
1628       }
1629 
1630       if (Token.size() > 1 && isdigit(Token[1])) {
1631         Op.Class = getTokenClass(Token);
1632         continue;
1633       }
1634 
1635       // Otherwise this is an operand reference.
1636       StringRef OperandName;
1637       if (Token[1] == '{')
1638         OperandName = Token.substr(2, Token.size() - 3);
1639       else
1640         OperandName = Token.substr(1);
1641 
1642       if (isa<const CodeGenInstruction *>(II->DefRec))
1643         buildInstructionOperandReference(II.get(), OperandName, Idx);
1644       else
1645         buildAliasOperandReference(II.get(), OperandName, Op);
1646     }
1647 
1648     if (isa<const CodeGenInstruction *>(II->DefRec)) {
1649       II->buildInstructionResultOperands();
1650       // If the instruction has a two-operand alias, build up the
1651       // matchable here. We'll add them in bulk at the end to avoid
1652       // confusing this loop.
1653       StringRef Constraint =
1654           II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1655       if (Constraint != "") {
1656         // Start by making a copy of the original matchable.
1657         auto AliasII = std::make_unique<MatchableInfo>(*II);
1658 
1659         // Adjust it to be a two-operand alias.
1660         AliasII->formTwoOperandAlias(Constraint);
1661 
1662         // Add the alias to the matchables list.
1663         NewMatchables.push_back(std::move(AliasII));
1664       }
1665     } else
1666       // FIXME: The tied operands checking is not yet integrated with the
1667       // framework for reporting multiple near misses. To prevent invalid
1668       // formats from being matched with an alias if a tied-operands check
1669       // would otherwise have disallowed it, we just disallow such constructs
1670       // in TableGen completely.
1671       II->buildAliasResultOperands(!ReportMultipleNearMisses);
1672   }
1673   if (!NewMatchables.empty())
1674     Matchables.insert(Matchables.end(),
1675                       std::make_move_iterator(NewMatchables.begin()),
1676                       std::make_move_iterator(NewMatchables.end()));
1677 
1678   // Process token alias definitions and set up the associated superclass
1679   // information.
1680   for (const Record *Rec : Records.getAllDerivedDefinitions("TokenAlias")) {
1681     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1682     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1683     if (FromClass == ToClass)
1684       PrintFatalError(Rec->getLoc(),
1685                       "error: Destination value identical to source value.");
1686     FromClass->SuperClasses.push_back(ToClass);
1687   }
1688 
1689   // Reorder classes so that classes precede super classes.
1690   Classes.sort();
1691 
1692 #ifdef EXPENSIVE_CHECKS
1693   // Verify that the table is sorted and operator < works transitively.
1694   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1695     for (auto J = I; J != E; ++J) {
1696       assert(!(*J < *I));
1697       assert(I == J || !J->isSubsetOf(*I));
1698     }
1699   }
1700 #endif
1701 }
1702 
1703 /// buildInstructionOperandReference - The specified operand is a reference to a
1704 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1705 void AsmMatcherInfo::buildInstructionOperandReference(MatchableInfo *II,
1706                                                       StringRef OperandName,
1707                                                       unsigned AsmOpIdx) {
1708   const CodeGenInstruction &CGI = *cast<const CodeGenInstruction *>(II->DefRec);
1709   const CGIOperandList &Operands = CGI.Operands;
1710   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1711 
1712   // Map this token to an operand.
1713   unsigned Idx;
1714   if (!Operands.hasOperandNamed(OperandName, Idx))
1715     PrintFatalError(II->TheDef->getLoc(),
1716                     "error: unable to find operand: '" + OperandName + "'");
1717 
1718   // If the instruction operand has multiple suboperands, but the parser
1719   // match class for the asm operand is still the default "ImmAsmOperand",
1720   // then handle each suboperand separately.
1721   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1722     const Record *Rec = Operands[Idx].Rec;
1723     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1724     const Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1725     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1726       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1727       StringRef Token = Op->Token; // save this in case Op gets moved
1728       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1729         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1730         NewAsmOp.SubOpIdx = SI;
1731         II->AsmOperands.insert(II->AsmOperands.begin() + AsmOpIdx + SI,
1732                                NewAsmOp);
1733       }
1734       // Replace Op with first suboperand.
1735       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1736       Op->SubOpIdx = 0;
1737     }
1738   }
1739 
1740   // Set up the operand class.
1741   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1742   Op->OrigSrcOpName = OperandName;
1743 
1744   // If the named operand is tied, canonicalize it to the untied operand.
1745   // For example, something like:
1746   //   (outs GPR:$dst), (ins GPR:$src)
1747   // with an asmstring of
1748   //   "inc $src"
1749   // we want to canonicalize to:
1750   //   "inc $dst"
1751   // so that we know how to provide the $dst operand when filling in the result.
1752   int OITied = -1;
1753   if (Operands[Idx].MINumOperands == 1)
1754     OITied = Operands[Idx].getTiedRegister();
1755   if (OITied != -1) {
1756     // The tied operand index is an MIOperand index, find the operand that
1757     // contains it.
1758     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1759     OperandName = Operands[Idx.first].Name;
1760     Op->SubOpIdx = Idx.second;
1761   }
1762 
1763   Op->SrcOpName = OperandName;
1764 }
1765 
1766 /// buildAliasOperandReference - When parsing an operand reference out of the
1767 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1768 /// operand reference is by looking it up in the result pattern definition.
1769 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1770                                                 StringRef OperandName,
1771                                                 MatchableInfo::AsmOperand &Op) {
1772   const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(II->DefRec);
1773 
1774   // Set up the operand class.
1775   for (const auto &[ResultOp, SubOpIdx] :
1776        zip_equal(CGA.ResultOperands, CGA.ResultInstOperandIndex)) {
1777     if (ResultOp.isRecord() && ResultOp.getName() == OperandName) {
1778       // It's safe to go with the first one we find, because CodeGenInstAlias
1779       // validates that all operands with the same name have the same record.
1780       Op.SubOpIdx = SubOpIdx.second;
1781       // Use the match class from the Alias definition, not the
1782       // destination instruction, as we may have an immediate that's
1783       // being munged by the match class.
1784       Op.Class = getOperandClass(ResultOp.getRecord(), Op.SubOpIdx);
1785       Op.SrcOpName = OperandName;
1786       Op.OrigSrcOpName = OperandName;
1787       return;
1788     }
1789   }
1790 
1791   PrintFatalError(II->TheDef->getLoc(),
1792                   "error: unable to find operand: '" + OperandName + "'");
1793 }
1794 
1795 void MatchableInfo::buildInstructionResultOperands() {
1796   const CodeGenInstruction *ResultInst = getResultInst();
1797 
1798   // Loop over all operands of the result instruction, determining how to
1799   // populate them.
1800   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1801     // If this is a tied operand, just copy from the previously handled operand.
1802     int TiedOp = -1;
1803     if (OpInfo.MINumOperands == 1)
1804       TiedOp = OpInfo.getTiedRegister();
1805     if (TiedOp != -1) {
1806       int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1807       if (TiedSrcOperand != -1 &&
1808           ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1809         ResOperands.push_back(ResOperand::getTiedOp(
1810             TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1811       else
1812         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1813       continue;
1814     }
1815 
1816     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1817     if (OpInfo.Name.empty() || SrcOperand == -1) {
1818       // This may happen for operands that are tied to a suboperand of a
1819       // complex operand.  Simply use a dummy value here; nobody should
1820       // use this operand slot.
1821       // FIXME: The long term goal is for the MCOperand list to not contain
1822       // tied operands at all.
1823       ResOperands.push_back(ResOperand::getImmOp(0));
1824       continue;
1825     }
1826 
1827     // Check if the one AsmOperand populates the entire operand.
1828     unsigned NumOperands = OpInfo.MINumOperands;
1829     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1830       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1831       continue;
1832     }
1833 
1834     // Add a separate ResOperand for each suboperand.
1835     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1836       assert(AsmOperands[SrcOperand + AI].SubOpIdx == (int)AI &&
1837              AsmOperands[SrcOperand + AI].SrcOpName == OpInfo.Name &&
1838              "unexpected AsmOperands for suboperands");
1839       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1840     }
1841   }
1842 }
1843 
1844 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1845   const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(DefRec);
1846   const CodeGenInstruction *ResultInst = getResultInst();
1847 
1848   // Map of:  $reg -> #lastref
1849   //   where $reg is the name of the operand in the asm string
1850   //   where #lastref is the last processed index where $reg was referenced in
1851   //   the asm string.
1852   SmallDenseMap<StringRef, int> OperandRefs;
1853 
1854   // Loop over all operands of the result instruction, determining how to
1855   // populate them.
1856   unsigned AliasOpNo = 0;
1857   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1858   for (const auto &[Idx, OpInfo] : enumerate(ResultInst->Operands)) {
1859     // If this is a tied operand, just copy from the previously handled operand.
1860     int TiedOp = -1;
1861     if (OpInfo.MINumOperands == 1)
1862       TiedOp = OpInfo.getTiedRegister();
1863     if (TiedOp != -1) {
1864       unsigned SrcOp1 = 0;
1865       unsigned SrcOp2 = 0;
1866 
1867       // If an operand has been specified twice in the asm string,
1868       // add the two source operand's indices to the TiedOp so that
1869       // at runtime the 'tied' constraint is checked.
1870       if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1871         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1872 
1873         // Find the next operand (similarly named operand) in the string.
1874         StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1875         auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1876         SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1877 
1878         // Not updating the record in OperandRefs will cause TableGen
1879         // to fail with an error at the end of this function.
1880         if (AliasConstraintsAreChecked)
1881           Insert.first->second = SrcOp2;
1882 
1883         // In case it only has one reference in the asm string,
1884         // it doesn't need to be checked for tied constraints.
1885         SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1886       }
1887 
1888       // If the alias operand is of a different operand class, we only want
1889       // to benefit from the tied-operands check and just match the operand
1890       // as a normal, but not copy the original (TiedOp) to the result
1891       // instruction. We do this by passing -1 as the tied operand to copy.
1892       if (OpInfo.Rec->getName() !=
1893           ResultInst->Operands[TiedOp].Rec->getName()) {
1894         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1895         int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1896         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1897         SrcOp2 = findAsmOperand(Name, SubIdx);
1898         ResOperands.push_back(
1899             ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1900       } else {
1901         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1902         continue;
1903       }
1904     }
1905 
1906     // Handle all the suboperands for this operand.
1907     const std::string &OpName = OpInfo.Name;
1908     for (; AliasOpNo < LastOpNo &&
1909            CGA.ResultInstOperandIndex[AliasOpNo].first == Idx;
1910          ++AliasOpNo) {
1911       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1912 
1913       // Find out what operand from the asmparser that this MCInst operand
1914       // comes from.
1915       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1916       case CodeGenInstAlias::ResultOperand::K_Record: {
1917         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1918         int SrcOperand = findAsmOperand(Name, SubIdx);
1919         if (SrcOperand == -1)
1920           PrintFatalError(TheDef->getLoc(),
1921                           "Instruction '" + TheDef->getName() +
1922                               "' has operand '" + OpName +
1923                               "' that doesn't appear in asm string!");
1924 
1925         // Add it to the operand references. If it is added a second time, the
1926         // record won't be updated and it will fail later on.
1927         OperandRefs.try_emplace(Name, SrcOperand);
1928 
1929         unsigned NumOperands = (SubIdx == -1 ? OpInfo.MINumOperands : 1);
1930         ResOperands.push_back(
1931             ResOperand::getRenderedOp(SrcOperand, NumOperands));
1932         break;
1933       }
1934       case CodeGenInstAlias::ResultOperand::K_Imm: {
1935         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1936         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1937         break;
1938       }
1939       case CodeGenInstAlias::ResultOperand::K_Reg: {
1940         const Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1941         ResOperands.push_back(ResOperand::getRegOp(Reg));
1942         break;
1943       }
1944       }
1945     }
1946   }
1947 
1948   // Check that operands are not repeated more times than is supported.
1949   for (auto &T : OperandRefs) {
1950     if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1951       PrintFatalError(TheDef->getLoc(),
1952                       "Operand '" + T.first + "' can never be matched");
1953   }
1954 }
1955 
1956 static unsigned
1957 getConverterOperandID(const std::string &Name,
1958                       SmallSetVector<CachedHashString, 16> &Table,
1959                       bool &IsNew) {
1960   IsNew = Table.insert(CachedHashString(Name));
1961 
1962   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1963 
1964   assert(ID < Table.size());
1965 
1966   return ID;
1967 }
1968 
1969 static unsigned
1970 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1971                  std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1972                  bool HasMnemonicFirst, bool HasOptionalOperands,
1973                  raw_ostream &OS) {
1974   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1975   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1976   std::vector<std::vector<uint8_t>> ConversionTable;
1977   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1978 
1979   // TargetOperandClass - This is the target's operand class, like X86Operand.
1980   std::string TargetOperandClass = Target.getName().str() + "Operand";
1981 
1982   // Write the convert function to a separate stream, so we can drop it after
1983   // the enum. We'll build up the conversion handlers for the individual
1984   // operand types opportunistically as we encounter them.
1985   std::string ConvertFnBody;
1986   raw_string_ostream CvtOS(ConvertFnBody);
1987   // Start the unified conversion function.
1988   if (HasOptionalOperands) {
1989     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1990           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1991           << "unsigned Opcode,\n"
1992           << "                const OperandVector &Operands,\n"
1993           << "                const SmallBitVector &OptionalOperandsMask,\n"
1994           << "                ArrayRef<unsigned> DefaultsOffset) {\n";
1995   } else {
1996     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1997           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1998           << "unsigned Opcode,\n"
1999           << "                const OperandVector &Operands) {\n";
2000   }
2001   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
2002   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
2003   CvtOS << "  Inst.setOpcode(Opcode);\n";
2004   CvtOS << "  for (const uint8_t *p = Converter; *p; p += 2) {\n";
2005   if (HasOptionalOperands) {
2006     // When optional operands are involved, formal and actual operand indices
2007     // may differ. Map the former to the latter by subtracting the number of
2008     // absent optional operands.
2009     // FIXME: This is not an operand index in the CVT_Tied case
2010     CvtOS << "    unsigned OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
2011   } else {
2012     CvtOS << "    unsigned OpIdx = *(p + 1);\n";
2013   }
2014   CvtOS << "    switch (*p) {\n";
2015   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
2016   CvtOS << "    case CVT_Reg:\n";
2017   CvtOS << "      static_cast<" << TargetOperandClass
2018         << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
2019   CvtOS << "      break;\n";
2020   CvtOS << "    case CVT_Tied: {\n";
2021   CvtOS << "      assert(*(p + 1) < (size_t)(std::end(TiedAsmOperandTable) -\n";
2022   CvtOS
2023       << "                              std::begin(TiedAsmOperandTable)) &&\n";
2024   CvtOS << "             \"Tied operand not found\");\n";
2025   CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[*(p + 1)][0];\n";
2026   CvtOS << "      if (TiedResOpnd != (uint8_t)-1)\n";
2027   CvtOS << "        Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
2028   CvtOS << "      break;\n";
2029   CvtOS << "    }\n";
2030 
2031   std::string OperandFnBody;
2032   raw_string_ostream OpOS(OperandFnBody);
2033   // Start the operand number lookup function.
2034   OpOS << "void " << Target.getName() << ClassName << "::\n"
2035        << "convertToMapAndConstraints(unsigned Kind,\n";
2036   OpOS.indent(27);
2037   OpOS << "const OperandVector &Operands) {\n"
2038        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2039        << "  unsigned NumMCOperands = 0;\n"
2040        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
2041        << "  for (const uint8_t *p = Converter; *p; p += 2) {\n"
2042        << "    switch (*p) {\n"
2043        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
2044        << "    case CVT_Reg:\n"
2045        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2046        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
2047        << "      ++NumMCOperands;\n"
2048        << "      break;\n"
2049        << "    case CVT_Tied:\n"
2050        << "      ++NumMCOperands;\n"
2051        << "      break;\n";
2052 
2053   // Pre-populate the operand conversion kinds with the standard always
2054   // available entries.
2055   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2056   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2057   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2058   enum { CVT_Done, CVT_Reg, CVT_Tied };
2059 
2060   // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2061   std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2062       TiedOperandsEnumMap;
2063 
2064   for (auto &II : Infos) {
2065     // Check if we have a custom match function.
2066     StringRef AsmMatchConverter =
2067         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2068     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2069       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2070       II->ConversionFnKind = Signature;
2071 
2072       // Check if we have already generated this signature.
2073       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2074         continue;
2075 
2076       // Remember this converter for the kind enum.
2077       unsigned KindID = OperandConversionKinds.size();
2078       OperandConversionKinds.insert(
2079           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2080 
2081       // Add the converter row for this instruction.
2082       ConversionTable.emplace_back();
2083       ConversionTable.back().push_back(KindID);
2084       ConversionTable.back().push_back(CVT_Done);
2085 
2086       // Add the handler to the conversion driver function.
2087       CvtOS << "    case CVT_" << getEnumNameForToken(AsmMatchConverter)
2088             << ":\n"
2089             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2090             << "      break;\n";
2091 
2092       // FIXME: Handle the operand number lookup for custom match functions.
2093       continue;
2094     }
2095 
2096     // Build the conversion function signature.
2097     std::string Signature = "Convert";
2098 
2099     std::vector<uint8_t> ConversionRow;
2100 
2101     // Compute the convert enum and the case body.
2102     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size() * 2 + 1);
2103 
2104     for (const auto &[Idx, OpInfo] : enumerate(II->ResOperands)) {
2105       // Generate code to populate each result operand.
2106       switch (OpInfo.Kind) {
2107       case MatchableInfo::ResOperand::RenderAsmOperand: {
2108         // This comes from something we parsed.
2109         const MatchableInfo::AsmOperand &Op =
2110             II->AsmOperands[OpInfo.AsmOperandNum];
2111 
2112         // Registers are always converted the same, don't duplicate the
2113         // conversion function based on them.
2114         Signature += "__";
2115         std::string Class;
2116         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2117         Signature += Class;
2118         Signature += utostr(OpInfo.MINumOperands);
2119         Signature += "_" + itostr(OpInfo.AsmOperandNum);
2120 
2121         // Add the conversion kind, if necessary, and get the associated ID
2122         // the index of its entry in the vector).
2123         std::string Name =
2124             "CVT_" +
2125             (Op.Class->isRegisterClass() ? "Reg" : Op.Class->RenderMethod);
2126         if (Op.Class->IsOptional) {
2127           // For optional operands we must also care about DefaultMethod
2128           assert(HasOptionalOperands);
2129           Name += "_" + Op.Class->DefaultMethod;
2130         }
2131         Name = getEnumNameForToken(Name);
2132 
2133         bool IsNewConverter = false;
2134         unsigned ID =
2135             getConverterOperandID(Name, OperandConversionKinds, IsNewConverter);
2136 
2137         // Add the operand entry to the instruction kind conversion row.
2138         ConversionRow.push_back(ID);
2139         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2140 
2141         if (!IsNewConverter)
2142           break;
2143 
2144         // This is a new operand kind. Add a handler for it to the
2145         // converter driver.
2146         CvtOS << "    case " << Name << ":\n";
2147         if (Op.Class->IsOptional) {
2148           // If optional operand is not present in actual instruction then we
2149           // should call its DefaultMethod before RenderMethod
2150           assert(HasOptionalOperands);
2151           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2152                 << "        " << Op.Class->DefaultMethod << "()"
2153                 << "->" << Op.Class->RenderMethod << "(Inst, "
2154                 << OpInfo.MINumOperands << ");\n"
2155                 << "      } else {\n"
2156                 << "        static_cast<" << TargetOperandClass
2157                 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2158                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2159                 << "      }\n";
2160         } else {
2161           CvtOS << "      static_cast<" << TargetOperandClass
2162                 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2163                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2164         }
2165         CvtOS << "      break;\n";
2166 
2167         // Add a handler for the operand number lookup.
2168         OpOS << "    case " << Name << ":\n"
2169              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2170 
2171         if (Op.Class->isRegisterClass())
2172           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2173         else
2174           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2175         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2176              << "      break;\n";
2177         break;
2178       }
2179       case MatchableInfo::ResOperand::TiedOperand: {
2180         // If this operand is tied to a previous one, just copy the MCInst
2181         // operand from the earlier one.We can only tie single MCOperand values.
2182         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2183         uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2184         uint8_t SrcOp1 = OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2185         uint8_t SrcOp2 = OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2186         assert((Idx > TiedOp || TiedOp == (uint8_t)-1) &&
2187                "Tied operand precedes its target!");
2188         auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2189                              utostr(SrcOp1) + '_' + utostr(SrcOp2);
2190         Signature += "__" + TiedTupleName;
2191         ConversionRow.push_back(CVT_Tied);
2192         ConversionRow.push_back(TiedOp);
2193         ConversionRow.push_back(SrcOp1);
2194         ConversionRow.push_back(SrcOp2);
2195 
2196         // Also create an 'enum' for this combination of tied operands.
2197         auto Key = std::tuple(TiedOp, SrcOp1, SrcOp2);
2198         TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2199         break;
2200       }
2201       case MatchableInfo::ResOperand::ImmOperand: {
2202         int64_t Val = OpInfo.ImmVal;
2203         std::string Ty = "imm_" + itostr(Val);
2204         Ty = getEnumNameForToken(Ty);
2205         Signature += "__" + Ty;
2206 
2207         std::string Name = "CVT_" + Ty;
2208         bool IsNewConverter = false;
2209         unsigned ID =
2210             getConverterOperandID(Name, OperandConversionKinds, IsNewConverter);
2211         // Add the operand entry to the instruction kind conversion row.
2212         ConversionRow.push_back(ID);
2213         ConversionRow.push_back(0);
2214 
2215         if (!IsNewConverter)
2216           break;
2217 
2218         CvtOS << "    case " << Name << ":\n"
2219               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2220               << "      break;\n";
2221 
2222         OpOS << "    case " << Name << ":\n"
2223              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2224              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2225              << "      ++NumMCOperands;\n"
2226              << "      break;\n";
2227         break;
2228       }
2229       case MatchableInfo::ResOperand::RegOperand: {
2230         std::string Reg, Name;
2231         if (!OpInfo.Register) {
2232           Name = "reg0";
2233           Reg = "0";
2234         } else {
2235           Reg = getQualifiedName(OpInfo.Register);
2236           Name = "reg" + OpInfo.Register->getName().str();
2237         }
2238         Signature += "__" + Name;
2239         Name = "CVT_" + Name;
2240         bool IsNewConverter = false;
2241         unsigned ID =
2242             getConverterOperandID(Name, OperandConversionKinds, IsNewConverter);
2243         // Add the operand entry to the instruction kind conversion row.
2244         ConversionRow.push_back(ID);
2245         ConversionRow.push_back(0);
2246 
2247         if (!IsNewConverter)
2248           break;
2249         CvtOS << "    case " << Name << ":\n"
2250               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2251               << "      break;\n";
2252 
2253         OpOS << "    case " << Name << ":\n"
2254              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2255              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2256              << "      ++NumMCOperands;\n"
2257              << "      break;\n";
2258       }
2259       }
2260     }
2261 
2262     // If there were no operands, add to the signature to that effect
2263     if (Signature == "Convert")
2264       Signature += "_NoOperands";
2265 
2266     II->ConversionFnKind = Signature;
2267 
2268     // Save the signature. If we already have it, don't add a new row
2269     // to the table.
2270     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2271       continue;
2272 
2273     // Add the row to the table.
2274     ConversionTable.push_back(std::move(ConversionRow));
2275   }
2276 
2277   // Finish up the converter driver function.
2278   CvtOS << "    }\n  }\n}\n\n";
2279 
2280   // Finish up the operand number lookup function.
2281   OpOS << "    }\n  }\n}\n\n";
2282 
2283   // Output a static table for tied operands.
2284   if (TiedOperandsEnumMap.size()) {
2285     // The number of tied operand combinations will be small in practice,
2286     // but just add the assert to be sure.
2287     assert(TiedOperandsEnumMap.size() <= 254 &&
2288            "Too many tied-operand combinations to reference with "
2289            "an 8bit offset from the conversion table, where index "
2290            "'255' is reserved as operand not to be copied.");
2291 
2292     OS << "enum {\n";
2293     for (auto &KV : TiedOperandsEnumMap) {
2294       OS << "  " << KV.second << ",\n";
2295     }
2296     OS << "};\n\n";
2297 
2298     OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2299     for (auto &KV : TiedOperandsEnumMap) {
2300       OS << "  /* " << KV.second << " */ { " << utostr(std::get<0>(KV.first))
2301          << ", " << utostr(std::get<1>(KV.first)) << ", "
2302          << utostr(std::get<2>(KV.first)) << " },\n";
2303     }
2304     OS << "};\n\n";
2305   } else
2306     OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2307           "{ /* empty  */ {0, 0, 0} };\n\n";
2308 
2309   OS << "namespace {\n";
2310 
2311   // Output the operand conversion kind enum.
2312   OS << "enum OperatorConversionKind {\n";
2313   for (const auto &Converter : OperandConversionKinds)
2314     OS << "  " << Converter << ",\n";
2315   OS << "  CVT_NUM_CONVERTERS\n";
2316   OS << "};\n\n";
2317 
2318   // Output the instruction conversion kind enum.
2319   OS << "enum InstructionConversionKind {\n";
2320   for (const auto &Signature : InstructionConversionKinds)
2321     OS << "  " << Signature << ",\n";
2322   OS << "  CVT_NUM_SIGNATURES\n";
2323   OS << "};\n\n";
2324 
2325   OS << "} // end anonymous namespace\n\n";
2326 
2327   // Output the conversion table.
2328   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2329      << MaxRowLength << "] = {\n";
2330 
2331   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2332     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2333     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2334     OS << "  { ";
2335     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2336       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2337       if (OperandConversionKinds[ConversionTable[Row][i]] !=
2338           CachedHashString("CVT_Tied")) {
2339         OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2340         continue;
2341       }
2342 
2343       // For a tied operand, emit a reference to the TiedAsmOperandTable
2344       // that contains the operand to copy, and the parsed operands to
2345       // check for their tied constraints.
2346       auto Key = std::tuple((uint8_t)ConversionTable[Row][i + 1],
2347                             (uint8_t)ConversionTable[Row][i + 2],
2348                             (uint8_t)ConversionTable[Row][i + 3]);
2349       auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2350       assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2351              "No record for tied operand pair");
2352       OS << TiedOpndEnum->second << ", ";
2353       i += 2;
2354     }
2355     OS << "CVT_Done },\n";
2356   }
2357 
2358   OS << "};\n\n";
2359 
2360   // Spit out the conversion driver function.
2361   OS << ConvertFnBody;
2362 
2363   // Spit out the operand number lookup function.
2364   OS << OperandFnBody;
2365 
2366   return ConversionTable.size();
2367 }
2368 
2369 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2370 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2371                                       std::forward_list<ClassInfo> &Infos,
2372                                       raw_ostream &OS) {
2373   OS << "namespace {\n\n";
2374 
2375   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2376      << "/// instruction matching.\n";
2377   OS << "enum MatchClassKind {\n";
2378   OS << "  InvalidMatchClass = 0,\n";
2379   OS << "  OptionalMatchClass = 1,\n";
2380   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2381   StringRef LastName = "OptionalMatchClass";
2382   for (const auto &CI : Infos) {
2383     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2384       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2385     } else if (LastKind < ClassInfo::UserClass0 &&
2386                CI.Kind >= ClassInfo::UserClass0) {
2387       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2388     }
2389     LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2390     LastName = CI.Name;
2391 
2392     OS << "  " << CI.Name << ", // ";
2393     if (CI.Kind == ClassInfo::Token) {
2394       OS << "'" << CI.ValueName << "'\n";
2395     } else if (CI.isRegisterClass()) {
2396       if (!CI.ValueName.empty())
2397         OS << "register class '" << CI.ValueName << "'\n";
2398       else
2399         OS << "derived register class\n";
2400     } else {
2401       OS << "user defined class '" << CI.ValueName << "'\n";
2402     }
2403   }
2404   OS << "  NumMatchClassKinds\n";
2405   OS << "};\n\n";
2406 
2407   OS << "} // end anonymous namespace\n\n";
2408 }
2409 
2410 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2411 /// used when an assembly operand does not match the expected operand class.
2412 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info,
2413                                              raw_ostream &OS) {
2414   // If the target does not use DiagnosticString for any operands, don't emit
2415   // an unused function.
2416   if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
2417         return CI.DiagnosticString.empty();
2418       }))
2419     return;
2420 
2421   OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2422      << "AsmParser::" << Info.Target.getName()
2423      << "MatchResultTy MatchResult) {\n";
2424   OS << "  switch (MatchResult) {\n";
2425 
2426   for (const auto &CI : Info.Classes) {
2427     if (!CI.DiagnosticString.empty()) {
2428       assert(!CI.DiagnosticType.empty() &&
2429              "DiagnosticString set without DiagnosticType");
2430       OS << "  case " << Info.Target.getName() << "AsmParser::Match_"
2431          << CI.DiagnosticType << ":\n";
2432       OS << "    return \"" << CI.DiagnosticString << "\";\n";
2433     }
2434   }
2435 
2436   OS << "  default:\n";
2437   OS << "    return nullptr;\n";
2438 
2439   OS << "  }\n";
2440   OS << "}\n\n";
2441 }
2442 
2443 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2444   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2445         "RegisterClass) {\n";
2446   if (none_of(Info.Classes, [](const ClassInfo &CI) {
2447         return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2448       })) {
2449     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2450   } else {
2451     OS << "  switch (RegisterClass) {\n";
2452     for (const auto &CI : Info.Classes) {
2453       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2454         OS << "  case " << CI.Name << ":\n";
2455         OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2456            << CI.DiagnosticType << ";\n";
2457       }
2458     }
2459 
2460     OS << "  default:\n";
2461     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2462 
2463     OS << "  }\n";
2464   }
2465   OS << "}\n\n";
2466 }
2467 
2468 /// emitValidateOperandClass - Emit the function to validate an operand class.
2469 static void emitValidateOperandClass(const CodeGenTarget &Target,
2470                                      AsmMatcherInfo &Info, raw_ostream &OS) {
2471   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2472      << "MatchClassKind Kind) {\n";
2473   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2474      << Info.Target.getName() << "Operand &)GOp;\n";
2475 
2476   // The InvalidMatchClass is not to match any operand.
2477   OS << "  if (Kind == InvalidMatchClass)\n";
2478   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2479 
2480   // Check for Token operands first.
2481   // FIXME: Use a more specific diagnostic type.
2482   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2483   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2484      << "             MCTargetAsmParser::Match_Success :\n"
2485      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2486 
2487   // Check the user classes. We don't care what order since we're only
2488   // actually matching against one of them.
2489   OS << "  switch (Kind) {\n"
2490         "  default: break;\n";
2491   for (const auto &CI : Info.Classes) {
2492     if (!CI.isUserClass())
2493       continue;
2494 
2495     OS << "  case " << CI.Name << ": {\n";
2496     OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2497        << "());\n";
2498     OS << "    if (DP.isMatch())\n";
2499     OS << "      return MCTargetAsmParser::Match_Success;\n";
2500     if (!CI.DiagnosticType.empty()) {
2501       OS << "    if (DP.isNearMatch())\n";
2502       OS << "      return " << Info.Target.getName() << "AsmParser::Match_"
2503          << CI.DiagnosticType << ";\n";
2504       OS << "    break;\n";
2505     } else
2506       OS << "    break;\n";
2507     OS << "  }\n";
2508   }
2509   OS << "  } // end switch (Kind)\n\n";
2510 
2511   // Check for register operands, including sub-classes.
2512   const auto &Regs = Target.getRegBank().getRegisters();
2513   StringRef Namespace = Regs.front().TheDef->getValueAsString("Namespace");
2514   SmallVector<StringRef> Table(1 + Regs.size(), "InvalidMatchClass");
2515   for (const auto &RC : Info.RegisterClasses) {
2516     const auto &Reg = Target.getRegBank().getReg(RC.first);
2517     Table[Reg->EnumValue] = RC.second->Name;
2518   }
2519   OS << "  if (Operand.isReg()) {\n";
2520   OS << "    static constexpr uint16_t Table[" << Namespace
2521      << "::NUM_TARGET_REGS] = {\n";
2522   for (auto &MatchClassName : Table)
2523     OS << "      " << MatchClassName << ",\n";
2524   OS << "    };\n\n";
2525   OS << "    MCRegister Reg = Operand.getReg();\n";
2526   OS << "    MatchClassKind OpKind = Reg.isPhysical() ? "
2527         "(MatchClassKind)Table[Reg.id()] : InvalidMatchClass;\n";
2528   OS << "    return isSubclass(OpKind, Kind) ? "
2529      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2530      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2531 
2532   // Expected operand is a register, but actual is not.
2533   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2534   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2535 
2536   // Generic fallthrough match failure case for operands that don't have
2537   // specialized diagnostic types.
2538   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2539   OS << "}\n\n";
2540 }
2541 
2542 /// emitIsSubclass - Emit the subclass predicate function.
2543 static void emitIsSubclass(CodeGenTarget &Target,
2544                            std::forward_list<ClassInfo> &Infos,
2545                            raw_ostream &OS) {
2546   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2547   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2548   OS << "  if (A == B)\n";
2549   OS << "    return true;\n\n";
2550 
2551   // TODO: Use something like SequenceToOffsetTable to allow sequences to
2552   // overlap in this table.
2553   SmallVector<bool> SuperClassData;
2554 
2555   OS << "  [[maybe_unused]] static constexpr struct {\n";
2556   OS << "    uint32_t Offset;\n";
2557   OS << "    uint16_t Start;\n";
2558   OS << "    uint16_t Length;\n";
2559   OS << "  } Table[] = {\n";
2560   OS << "    {0, 0, 0},\n"; // InvalidMatchClass
2561   OS << "    {0, 0, 0},\n"; // OptionalMatchClass
2562   for (const auto &A : Infos) {
2563     SmallVector<bool> SuperClasses;
2564     SuperClasses.push_back(false);        // InvalidMatchClass
2565     SuperClasses.push_back(A.IsOptional); // OptionalMatchClass
2566     for (const auto &B : Infos)
2567       SuperClasses.push_back(&A != &B && A.isSubsetOf(B));
2568 
2569     // Trim leading and trailing zeros.
2570     auto End = find_if(reverse(SuperClasses), [](bool B) { return B; }).base();
2571     auto Start =
2572         std::find_if(SuperClasses.begin(), End, [](bool B) { return B; });
2573 
2574     unsigned Offset = SuperClassData.size();
2575     SuperClassData.append(Start, End);
2576 
2577     OS << "    {" << Offset << ", " << (Start - SuperClasses.begin()) << ", "
2578        << (End - Start) << "},\n";
2579   }
2580   OS << "  };\n\n";
2581 
2582   if (SuperClassData.empty()) {
2583     OS << "  return false;\n";
2584   } else {
2585     // Dump the boolean data packed into bytes.
2586     SuperClassData.append(-SuperClassData.size() % 8, false);
2587     OS << "  static constexpr uint8_t Data[] = {\n";
2588     for (unsigned I = 0, E = SuperClassData.size(); I < E; I += 8) {
2589       unsigned Byte = 0;
2590       for (unsigned J = 0; J < 8; ++J)
2591         Byte |= (unsigned)SuperClassData[I + J] << J;
2592       OS << formatv("    {:X2},\n", Byte);
2593     }
2594     OS << "  };\n\n";
2595 
2596     OS << "  auto &Entry = Table[A];\n";
2597     OS << "  unsigned Idx = B - Entry.Start;\n";
2598     OS << "  if (Idx >= Entry.Length)\n";
2599     OS << "    return false;\n";
2600     OS << "  Idx += Entry.Offset;\n";
2601     OS << "  return (Data[Idx / 8] >> (Idx % 8)) & 1;\n";
2602   }
2603   OS << "}\n\n";
2604 }
2605 
2606 /// emitMatchTokenString - Emit the function to match a token string to the
2607 /// appropriate match class value.
2608 static void emitMatchTokenString(CodeGenTarget &Target,
2609                                  std::forward_list<ClassInfo> &Infos,
2610                                  raw_ostream &OS) {
2611   // Construct the match list.
2612   std::vector<StringMatcher::StringPair> Matches;
2613   for (const auto &CI : Infos) {
2614     if (CI.Kind == ClassInfo::Token)
2615       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2616   }
2617 
2618   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2619 
2620   StringMatcher("Name", Matches, OS).Emit();
2621 
2622   OS << "  return InvalidMatchClass;\n";
2623   OS << "}\n\n";
2624 }
2625 
2626 /// emitMatchRegisterName - Emit the function to match a string to the target
2627 /// specific register enum.
2628 static void emitMatchRegisterName(const CodeGenTarget &Target,
2629                                   const Record *AsmParser, raw_ostream &OS) {
2630   // Construct the match list.
2631   std::vector<StringMatcher::StringPair> Matches;
2632   const auto &Regs = Target.getRegBank().getRegisters();
2633   std::string Namespace =
2634       Regs.front().TheDef->getValueAsString("Namespace").str();
2635   for (const CodeGenRegister &Reg : Regs) {
2636     StringRef AsmName = Reg.TheDef->getValueAsString("AsmName");
2637     if (AsmName.empty())
2638       continue;
2639 
2640     Matches.emplace_back(AsmName.str(), "return " + Namespace +
2641                                             "::" + Reg.getName().str() + ';');
2642   }
2643 
2644   OS << "static MCRegister MatchRegisterName(StringRef Name) {\n";
2645 
2646   bool IgnoreDuplicates =
2647       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2648   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2649 
2650   OS << "  return " << Namespace << "::NoRegister;\n";
2651   OS << "}\n\n";
2652 }
2653 
2654 /// Emit the function to match a string to the target
2655 /// specific register enum.
2656 static void emitMatchRegisterAltName(const CodeGenTarget &Target,
2657                                      const Record *AsmParser, raw_ostream &OS) {
2658   // Construct the match list.
2659   std::vector<StringMatcher::StringPair> Matches;
2660   const auto &Regs = Target.getRegBank().getRegisters();
2661   std::string Namespace =
2662       Regs.front().TheDef->getValueAsString("Namespace").str();
2663   for (const CodeGenRegister &Reg : Regs) {
2664 
2665     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2666 
2667     for (auto AltName : AltNames) {
2668       AltName = StringRef(AltName).trim();
2669 
2670       // don't handle empty alternative names
2671       if (AltName.empty())
2672         continue;
2673 
2674       Matches.emplace_back(AltName.str(), "return " + Namespace +
2675                                               "::" + Reg.getName().str() + ';');
2676     }
2677   }
2678 
2679   OS << "static MCRegister MatchRegisterAltName(StringRef Name) {\n";
2680 
2681   bool IgnoreDuplicates =
2682       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2683   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2684 
2685   OS << "  return " << Namespace << "::NoRegister;\n";
2686   OS << "}\n\n";
2687 }
2688 
2689 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2690 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2691   // Get the set of diagnostic types from all of the operand classes.
2692   std::set<StringRef> Types;
2693   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2694     if (!OpClassEntry.second->DiagnosticType.empty())
2695       Types.insert(OpClassEntry.second->DiagnosticType);
2696   }
2697   for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2698     if (!OpClassEntry.second->DiagnosticType.empty())
2699       Types.insert(OpClassEntry.second->DiagnosticType);
2700   }
2701 
2702   if (Types.empty())
2703     return;
2704 
2705   // Now emit the enum entries.
2706   for (StringRef Type : Types)
2707     OS << "  Match_" << Type << ",\n";
2708   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2709 }
2710 
2711 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2712 /// user-level name for a subtarget feature.
2713 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2714   OS << "// User-level names for subtarget features that participate in\n"
2715      << "// instruction matching.\n"
2716      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2717   if (!Info.SubtargetFeatures.empty()) {
2718     OS << "  switch(Val) {\n";
2719     for (const auto &SF : Info.SubtargetFeatures) {
2720       const SubtargetFeatureInfo &SFI = SF.second;
2721       // FIXME: Totally just a placeholder name to get the algorithm working.
2722       OS << "  case " << SFI.getEnumBitName() << ": return \""
2723          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2724     }
2725     OS << "  default: return \"(unknown)\";\n";
2726     OS << "  }\n";
2727   } else {
2728     // Nothing to emit, so skip the switch
2729     OS << "  return \"(unknown)\";\n";
2730   }
2731   OS << "}\n\n";
2732 }
2733 
2734 static std::string GetAliasRequiredFeatures(const Record *R,
2735                                             const AsmMatcherInfo &Info) {
2736   std::string Result;
2737 
2738   bool First = true;
2739   for (const Record *RF : R->getValueAsListOfDefs("Predicates")) {
2740     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(RF);
2741     if (!F)
2742       PrintFatalError(R->getLoc(),
2743                       "Predicate '" + RF->getName() +
2744                           "' is not marked as an AssemblerPredicate!");
2745     if (!First)
2746       Result += " && ";
2747     Result += "Features.test(" + F->getEnumBitName() + ')';
2748     First = false;
2749   }
2750 
2751   return Result;
2752 }
2753 
2754 static void
2755 emitMnemonicAliasVariant(raw_ostream &OS, const AsmMatcherInfo &Info,
2756                          ArrayRef<const Record *> Aliases, unsigned Indent = 0,
2757                          StringRef AsmParserVariantName = StringRef()) {
2758   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2759   // iteration order of the map is stable.
2760   std::map<std::string, std::vector<const Record *>> AliasesFromMnemonic;
2761 
2762   for (const Record *R : Aliases) {
2763     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2764     StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2765     if (AsmVariantName != AsmParserVariantName)
2766       continue;
2767     AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()].push_back(
2768         R);
2769   }
2770   if (AliasesFromMnemonic.empty())
2771     return;
2772 
2773   // Process each alias a "from" mnemonic at a time, building the code executed
2774   // by the string remapper.
2775   std::vector<StringMatcher::StringPair> Cases;
2776   for (const auto &AliasEntry : AliasesFromMnemonic) {
2777     // Loop through each alias and emit code that handles each case.  If there
2778     // are two instructions without predicates, emit an error.  If there is one,
2779     // emit it last.
2780     std::string MatchCode;
2781     int AliasWithNoPredicate = -1;
2782 
2783     ArrayRef<const Record *> ToVec = AliasEntry.second;
2784     for (const auto &[Idx, R] : enumerate(ToVec)) {
2785       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2786 
2787       // If this unconditionally matches, remember it for later and diagnose
2788       // duplicates.
2789       if (FeatureMask.empty()) {
2790         if (AliasWithNoPredicate != -1 &&
2791             R->getValueAsString("ToMnemonic") !=
2792                 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) {
2793           // We can't have two different aliases from the same mnemonic with no
2794           // predicate.
2795           PrintError(
2796               ToVec[AliasWithNoPredicate]->getLoc(),
2797               "two different MnemonicAliases with the same 'from' mnemonic!");
2798           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2799         }
2800 
2801         AliasWithNoPredicate = Idx;
2802         continue;
2803       }
2804       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2805         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2806 
2807       if (!MatchCode.empty())
2808         MatchCode += "else ";
2809       MatchCode += "if (" + FeatureMask + ")\n";
2810       MatchCode += "  Mnemonic = \"";
2811       MatchCode += R->getValueAsString("ToMnemonic").lower();
2812       MatchCode += "\";\n";
2813     }
2814 
2815     if (AliasWithNoPredicate != -1) {
2816       const Record *R = ToVec[AliasWithNoPredicate];
2817       if (!MatchCode.empty())
2818         MatchCode += "else\n  ";
2819       MatchCode += "Mnemonic = \"";
2820       MatchCode += R->getValueAsString("ToMnemonic").lower();
2821       MatchCode += "\";\n";
2822     }
2823 
2824     MatchCode += "return;";
2825 
2826     Cases.emplace_back(AliasEntry.first, MatchCode);
2827   }
2828   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2829 }
2830 
2831 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2832 /// emit a function for them and return true, otherwise return false.
2833 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2834                                 CodeGenTarget &Target) {
2835   // Ignore aliases when match-prefix is set.
2836   if (!MatchPrefix.empty())
2837     return false;
2838 
2839   ArrayRef<const Record *> Aliases =
2840       Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2841   if (Aliases.empty())
2842     return false;
2843 
2844   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2845         "const FeatureBitset &Features, unsigned VariantID) {\n";
2846   unsigned VariantCount = Target.getAsmParserVariantCount();
2847   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2848     const Record *AsmVariant = Target.getAsmParserVariant(VC);
2849     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2850     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2851 
2852     // If the variant doesn't have a name, defer to the emitMnemonicAliasVariant
2853     // call after the loop.
2854     if (AsmParserVariantName.empty()) {
2855       assert(VariantCount == 1 && "Multiple variants should each be named");
2856       continue;
2857     }
2858 
2859     if (VC == 0)
2860       OS << "  switch (VariantID) {\n";
2861     OS << "  case " << AsmParserVariantNo << ":\n";
2862     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2863                              AsmParserVariantName);
2864     OS << "    break;\n";
2865 
2866     if (VC == VariantCount - 1)
2867       OS << "  }\n";
2868   }
2869 
2870   // Emit aliases that apply to all variants.
2871   emitMnemonicAliasVariant(OS, Info, Aliases);
2872 
2873   OS << "}\n\n";
2874 
2875   return true;
2876 }
2877 
2878 static void
2879 emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2880                          const AsmMatcherInfo &Info, StringRef ClassName,
2881                          const StringToOffsetTable &StringTable,
2882                          unsigned MaxMnemonicIndex, unsigned MaxFeaturesIndex,
2883                          bool HasMnemonicFirst, const Record &AsmParser) {
2884   unsigned MaxMask = 0;
2885   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2886     MaxMask |= OMI.OperandMask;
2887   }
2888 
2889   // Emit the static custom operand parsing table;
2890   OS << "namespace {\n";
2891   OS << "  struct OperandMatchEntry {\n";
2892   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n";
2893   OS << "    " << getMinimalTypeForRange(MaxMask) << " OperandMask;\n";
2894   OS << "    "
2895      << getMinimalTypeForRange(
2896             std::distance(Info.Classes.begin(), Info.Classes.end()) +
2897             2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */)
2898      << " Class;\n";
2899   OS << "    " << getMinimalTypeForRange(MaxFeaturesIndex)
2900      << " RequiredFeaturesIdx;\n\n";
2901   OS << "    StringRef getMnemonic() const {\n";
2902   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2903   OS << "                       MnemonicTable[Mnemonic]);\n";
2904   OS << "    }\n";
2905   OS << "  };\n\n";
2906 
2907   OS << "  // Predicate for searching for an opcode.\n";
2908   OS << "  struct LessOpcodeOperand {\n";
2909   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2910   OS << "      return LHS.getMnemonic()  < RHS;\n";
2911   OS << "    }\n";
2912   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2913   OS << "      return LHS < RHS.getMnemonic();\n";
2914   OS << "    }\n";
2915   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2916   OS << " const OperandMatchEntry &RHS) {\n";
2917   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2918   OS << "    }\n";
2919   OS << "  };\n";
2920 
2921   OS << "} // end anonymous namespace\n\n";
2922 
2923   OS << "static const OperandMatchEntry OperandMatchTable["
2924      << Info.OperandMatchInfo.size() << "] = {\n";
2925 
2926   OS << "  /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2927   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2928     const MatchableInfo &II = *OMI.MI;
2929 
2930     OS << "  { ";
2931 
2932     // Store a pascal-style length byte in the mnemonic.
2933     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2934     OS << *StringTable.GetStringOffset(LenMnemonic) << " /* " << II.Mnemonic
2935        << " */, ";
2936 
2937     OS << OMI.OperandMask;
2938     OS << " /* ";
2939     ListSeparator LS;
2940     for (int i = 0, e = 31; i != e; ++i)
2941       if (OMI.OperandMask & (1 << i))
2942         OS << LS << i;
2943     OS << " */, ";
2944 
2945     OS << OMI.CI->Name;
2946 
2947     // Write the required features mask.
2948     OS << ", AMFBS";
2949     if (II.RequiredFeatures.empty())
2950       OS << "_None";
2951     else
2952       for (const auto &F : II.RequiredFeatures)
2953         OS << '_' << F->TheDef->getName();
2954 
2955     OS << " },\n";
2956   }
2957   OS << "};\n\n";
2958 
2959   // Emit the operand class switch to call the correct custom parser for
2960   // the found operand class.
2961   OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2962      << "tryCustomParseOperand(OperandVector"
2963      << " &Operands,\n                      unsigned MCK) {\n\n"
2964      << "  switch(MCK) {\n";
2965 
2966   for (const auto &CI : Info.Classes) {
2967     if (CI.ParserMethod.empty())
2968       continue;
2969     OS << "  case " << CI.Name << ":\n"
2970        << "    return " << CI.ParserMethod << "(Operands);\n";
2971   }
2972 
2973   OS << "  default:\n";
2974   OS << "    return ParseStatus::NoMatch;\n";
2975   OS << "  }\n";
2976   OS << "  return ParseStatus::NoMatch;\n";
2977   OS << "}\n\n";
2978 
2979   // Emit the static custom operand parser. This code is very similar with
2980   // the other matcher. Also use MatchResultTy here just in case we go for
2981   // a better error handling.
2982   OS << "ParseStatus " << Target.getName() << ClassName << "::\n"
2983      << "MatchOperandParserImpl(OperandVector"
2984      << " &Operands,\n                       StringRef Mnemonic,\n"
2985      << "                       bool ParseForAllFeatures) {\n";
2986 
2987   // Emit code to get the available features.
2988   OS << "  // Get the current feature set.\n";
2989   OS << "  const FeatureBitset &AvailableFeatures = "
2990         "getAvailableFeatures();\n\n";
2991 
2992   OS << "  // Get the next operand index.\n";
2993   OS << "  unsigned NextOpNum = Operands.size()"
2994      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2995 
2996   // Emit code to search the table.
2997   OS << "  // Search the table.\n";
2998   if (HasMnemonicFirst) {
2999     OS << "  auto MnemonicRange =\n";
3000     OS << "    std::equal_range(std::begin(OperandMatchTable), "
3001           "std::end(OperandMatchTable),\n";
3002     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
3003   } else {
3004     OS << "  auto MnemonicRange = std::pair(std::begin(OperandMatchTable),"
3005           " std::end(OperandMatchTable));\n";
3006     OS << "  if (!Mnemonic.empty())\n";
3007     OS << "    MnemonicRange =\n";
3008     OS << "      std::equal_range(std::begin(OperandMatchTable), "
3009           "std::end(OperandMatchTable),\n";
3010     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
3011   }
3012 
3013   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3014   OS << "    return ParseStatus::NoMatch;\n\n";
3015 
3016   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
3017      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
3018 
3019   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3020   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
3021 
3022   // Emit check that the required features are available.
3023   OS << "    // check if the available features match\n";
3024   OS << "    const FeatureBitset &RequiredFeatures = "
3025         "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3026   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
3027         "RequiredFeatures) != RequiredFeatures)\n";
3028   OS << "      continue;\n\n";
3029 
3030   // Emit check to ensure the operand number matches.
3031   OS << "    // check if the operand in question has a custom parser.\n";
3032   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
3033   OS << "      continue;\n\n";
3034 
3035   // Emit call to the custom parser method
3036   StringRef ParserName = AsmParser.getValueAsString("OperandParserMethod");
3037   if (ParserName.empty())
3038     ParserName = "tryCustomParseOperand";
3039   OS << "    // call custom parse method to handle the operand\n";
3040   OS << "    ParseStatus Result = " << ParserName << "(Operands, it->Class);\n";
3041   OS << "    if (!Result.isNoMatch())\n";
3042   OS << "      return Result;\n";
3043   OS << "  }\n\n";
3044 
3045   OS << "  // Okay, we had no match.\n";
3046   OS << "  return ParseStatus::NoMatch;\n";
3047   OS << "}\n\n";
3048 }
3049 
3050 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
3051                                           AsmMatcherInfo &Info, raw_ostream &OS,
3052                                           bool HasOptionalOperands) {
3053   std::string AsmParserName =
3054       std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
3055   OS << "static bool ";
3056   OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3057      << AsmParserName << "&AsmParser,\n";
3058   OS << "                               unsigned Kind, const OperandVector "
3059         "&Operands,\n";
3060   if (HasOptionalOperands)
3061     OS << "                               ArrayRef<unsigned> DefaultsOffset,\n";
3062   OS << "                               uint64_t &ErrorInfo) {\n";
3063   OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3064   OS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
3065   OS << "  for (const uint8_t *p = Converter; *p; p += 2) {\n";
3066   OS << "    switch (*p) {\n";
3067   OS << "    case CVT_Tied: {\n";
3068   OS << "      unsigned OpIdx = *(p + 1);\n";
3069   OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3070   OS << "                              std::begin(TiedAsmOperandTable)) &&\n";
3071   OS << "             \"Tied operand not found\");\n";
3072   OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3073   OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3074   if (HasOptionalOperands) {
3075     // When optional operands are involved, formal and actual operand indices
3076     // may differ. Map the former to the latter by subtracting the number of
3077     // absent optional operands.
3078     OS << "      OpndNum1 = OpndNum1 - DefaultsOffset[OpndNum1];\n";
3079     OS << "      OpndNum2 = OpndNum2 - DefaultsOffset[OpndNum2];\n";
3080   }
3081   OS << "      if (OpndNum1 != OpndNum2) {\n";
3082   OS << "        auto &SrcOp1 = Operands[OpndNum1];\n";
3083   OS << "        auto &SrcOp2 = Operands[OpndNum2];\n";
3084   OS << "        if (!AsmParser.areEqualRegs(*SrcOp1, *SrcOp2)) {\n";
3085   OS << "          ErrorInfo = OpndNum2;\n";
3086   OS << "          return false;\n";
3087   OS << "        }\n";
3088   OS << "      }\n";
3089   OS << "      break;\n";
3090   OS << "    }\n";
3091   OS << "    default:\n";
3092   OS << "      break;\n";
3093   OS << "    }\n";
3094   OS << "  }\n";
3095   OS << "  return true;\n";
3096   OS << "}\n\n";
3097 }
3098 
3099 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3100                                      unsigned VariantCount) {
3101   OS << "static std::string " << Target.getName()
3102      << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3103      << " unsigned VariantID) {\n";
3104   if (!VariantCount)
3105     OS << "  return \"\";";
3106   else {
3107     OS << "  const unsigned MaxEditDist = 2;\n";
3108     OS << "  std::vector<StringRef> Candidates;\n";
3109     OS << "  StringRef Prev = \"\";\n\n";
3110 
3111     OS << "  // Find the appropriate table for this asm variant.\n";
3112     OS << "  const MatchEntry *Start, *End;\n";
3113     OS << "  switch (VariantID) {\n";
3114     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3115     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3116       const Record *AsmVariant = Target.getAsmParserVariant(VC);
3117       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3118       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3119          << "); End = std::end(MatchTable" << VC << "); break;\n";
3120     }
3121     OS << "  }\n\n";
3122     OS << "  for (auto I = Start; I < End; I++) {\n";
3123     OS << "    // Ignore unsupported instructions.\n";
3124     OS << "    const FeatureBitset &RequiredFeatures = "
3125           "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3126     OS << "    if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3127     OS << "      continue;\n";
3128     OS << "\n";
3129     OS << "    StringRef T = I->getMnemonic();\n";
3130     OS << "    // Avoid recomputing the edit distance for the same string.\n";
3131     OS << "    if (T == Prev)\n";
3132     OS << "      continue;\n";
3133     OS << "\n";
3134     OS << "    Prev = T;\n";
3135     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3136     OS << "    if (Dist <= MaxEditDist)\n";
3137     OS << "      Candidates.push_back(T);\n";
3138     OS << "  }\n";
3139     OS << "\n";
3140     OS << "  if (Candidates.empty())\n";
3141     OS << "    return \"\";\n";
3142     OS << "\n";
3143     OS << "  std::string Res = \", did you mean: \";\n";
3144     OS << "  unsigned i = 0;\n";
3145     OS << "  for (; i < Candidates.size() - 1; i++)\n";
3146     OS << "    Res += Candidates[i].str() + \", \";\n";
3147     OS << "  return Res + Candidates[i].str() + \"?\";\n";
3148   }
3149   OS << "}\n";
3150   OS << "\n";
3151 }
3152 
3153 static void emitMnemonicChecker(raw_ostream &OS, CodeGenTarget &Target,
3154                                 unsigned VariantCount, bool HasMnemonicFirst,
3155                                 bool HasMnemonicAliases) {
3156   OS << "static bool " << Target.getName()
3157      << "CheckMnemonic(StringRef Mnemonic,\n";
3158   OS << "                                "
3159      << "const FeatureBitset &AvailableFeatures,\n";
3160   OS << "                                "
3161      << "unsigned VariantID) {\n";
3162 
3163   if (!VariantCount) {
3164     OS << "  return false;\n";
3165   } else {
3166     if (HasMnemonicAliases) {
3167       OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3168       OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3169       OS << "\n\n";
3170     }
3171     OS << "  // Find the appropriate table for this asm variant.\n";
3172     OS << "  const MatchEntry *Start, *End;\n";
3173     OS << "  switch (VariantID) {\n";
3174     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3175     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3176       const Record *AsmVariant = Target.getAsmParserVariant(VC);
3177       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3178       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3179          << "); End = std::end(MatchTable" << VC << "); break;\n";
3180     }
3181     OS << "  }\n\n";
3182 
3183     OS << "  // Search the table.\n";
3184     if (HasMnemonicFirst) {
3185       OS << "  auto MnemonicRange = "
3186             "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3187     } else {
3188       OS << "  auto MnemonicRange = std::pair(Start, End);\n";
3189       OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3190       OS << "  if (!Mnemonic.empty())\n";
3191       OS << "    MnemonicRange = "
3192          << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3193     }
3194 
3195     OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3196     OS << "    return false;\n\n";
3197 
3198     OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3199        << "*ie = MnemonicRange.second;\n";
3200     OS << "       it != ie; ++it) {\n";
3201     OS << "    const FeatureBitset &RequiredFeatures =\n";
3202     OS << "      FeatureBitsets[it->RequiredFeaturesIdx];\n";
3203     OS << "    if ((AvailableFeatures & RequiredFeatures) == ";
3204     OS << "RequiredFeatures)\n";
3205     OS << "      return true;\n";
3206     OS << "  }\n";
3207     OS << "  return false;\n";
3208   }
3209   OS << "}\n";
3210   OS << "\n";
3211 }
3212 
3213 // Emit a function mapping match classes to strings, for debugging.
3214 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3215                                     raw_ostream &OS) {
3216   OS << "#ifndef NDEBUG\n";
3217   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3218   OS << "  switch (Kind) {\n";
3219 
3220   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3221   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3222   for (const auto &CI : Infos) {
3223     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3224   }
3225   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3226 
3227   OS << "  }\n";
3228   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3229   OS << "}\n\n";
3230   OS << "#endif // NDEBUG\n";
3231 }
3232 
3233 static std::string
3234 getNameForFeatureBitset(ArrayRef<const Record *> FeatureBitset) {
3235   std::string Name = "AMFBS";
3236   for (const Record *Feature : FeatureBitset)
3237     Name += ("_" + Feature->getName()).str();
3238   return Name;
3239 }
3240 
3241 void AsmMatcherEmitter::run(raw_ostream &OS) {
3242   CodeGenTarget Target(Records);
3243   const Record *AsmParser = Target.getAsmParser();
3244   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3245 
3246   emitSourceFileHeader("Assembly Matcher Source Fragment", OS, Records);
3247 
3248   // Compute the information on the instructions to match.
3249   AsmMatcherInfo Info(AsmParser, Target, Records);
3250   Info.buildInfo();
3251 
3252   bool PreferSmallerInstructions = getPreferSmallerInstructions(Target);
3253   // Sort the instruction table using the partial order on classes. We use
3254   // stable_sort to ensure that ambiguous instructions are still
3255   // deterministically ordered.
3256   llvm::stable_sort(
3257       Info.Matchables,
3258       [PreferSmallerInstructions](const std::unique_ptr<MatchableInfo> &A,
3259                                   const std::unique_ptr<MatchableInfo> &B) {
3260         return A->shouldBeMatchedBefore(*B, PreferSmallerInstructions);
3261       });
3262 
3263 #ifdef EXPENSIVE_CHECKS
3264   // Verify that the table is sorted and operator < works transitively.
3265   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3266        ++I) {
3267     for (auto J = I; J != E; ++J) {
3268       assert(!(*J)->shouldBeMatchedBefore(**I, PreferSmallerInstructions));
3269     }
3270   }
3271 #endif
3272 
3273   DEBUG_WITH_TYPE("instruction_info", {
3274     for (const auto &MI : Info.Matchables)
3275       MI->dump();
3276   });
3277 
3278   // Check for ambiguous matchables.
3279   DEBUG_WITH_TYPE("ambiguous_instrs", {
3280     unsigned NumAmbiguous = 0;
3281     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3282          ++I) {
3283       for (auto J = std::next(I); J != E; ++J) {
3284         const MatchableInfo &A = **I;
3285         const MatchableInfo &B = **J;
3286 
3287         if (A.couldMatchAmbiguouslyWith(B, PreferSmallerInstructions)) {
3288           errs() << "warning: ambiguous matchables:\n";
3289           A.dump();
3290           errs() << "\nis incomparable with:\n";
3291           B.dump();
3292           errs() << "\n\n";
3293           ++NumAmbiguous;
3294         }
3295       }
3296     }
3297     if (NumAmbiguous)
3298       errs() << "warning: " << NumAmbiguous << " ambiguous matchables!\n";
3299   });
3300 
3301   // Compute the information on the custom operand parsing.
3302   Info.buildOperandMatchInfo();
3303 
3304   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3305   bool HasOptionalOperands = Info.hasOptionalOperands();
3306   bool ReportMultipleNearMisses =
3307       AsmParser->getValueAsBit("ReportMultipleNearMisses");
3308 
3309   // Write the output.
3310 
3311   // Information for the class declaration.
3312   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3313   OS << "#undef GET_ASSEMBLER_HEADER\n";
3314   OS << "  // This should be included into the middle of the declaration of\n";
3315   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3316   OS << "  FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) "
3317         "const;\n";
3318   if (HasOptionalOperands) {
3319     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3320        << "unsigned Opcode,\n"
3321        << "                       const OperandVector &Operands,\n"
3322        << "                       const SmallBitVector "
3323           "&OptionalOperandsMask,\n"
3324        << "                       ArrayRef<unsigned> DefaultsOffset);\n";
3325   } else {
3326     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3327        << "unsigned Opcode,\n"
3328        << "                       const OperandVector &Operands);\n";
3329   }
3330   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3331   OS << "           const OperandVector &Operands) override;\n";
3332   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3333      << "                                MCInst &Inst,\n";
3334   if (ReportMultipleNearMisses)
3335     OS << "                                SmallVectorImpl<NearMissInfo> "
3336           "*NearMisses,\n";
3337   else
3338     OS << "                                uint64_t &ErrorInfo,\n"
3339        << "                                FeatureBitset &MissingFeatures,\n";
3340   OS << "                                bool matchingInlineAsm,\n"
3341      << "                                unsigned VariantID = 0);\n";
3342   if (!ReportMultipleNearMisses)
3343     OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3344        << "                                MCInst &Inst,\n"
3345        << "                                uint64_t &ErrorInfo,\n"
3346        << "                                bool matchingInlineAsm,\n"
3347        << "                                unsigned VariantID = 0) {\n"
3348        << "    FeatureBitset MissingFeatures;\n"
3349        << "    return MatchInstructionImpl(Operands, Inst, ErrorInfo, "
3350           "MissingFeatures,\n"
3351        << "                                matchingInlineAsm, VariantID);\n"
3352        << "  }\n\n";
3353 
3354   if (!Info.OperandMatchInfo.empty()) {
3355     OS << "  ParseStatus MatchOperandParserImpl(\n";
3356     OS << "    OperandVector &Operands,\n";
3357     OS << "    StringRef Mnemonic,\n";
3358     OS << "    bool ParseForAllFeatures = false);\n";
3359 
3360     OS << "  ParseStatus tryCustomParseOperand(\n";
3361     OS << "    OperandVector &Operands,\n";
3362     OS << "    unsigned MCK);\n\n";
3363   }
3364 
3365   OS << "#endif // GET_ASSEMBLER_HEADER\n\n";
3366 
3367   // Emit the operand match diagnostic enum names.
3368   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3369   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3370   emitOperandDiagnosticTypes(Info, OS);
3371   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3372 
3373   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3374   OS << "#undef GET_REGISTER_MATCHER\n\n";
3375 
3376   // Emit the subtarget feature enumeration.
3377   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3378       Info.SubtargetFeatures, OS);
3379 
3380   // Emit the function to match a register name to number.
3381   // This should be omitted for Mips target
3382   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3383     emitMatchRegisterName(Target, AsmParser, OS);
3384 
3385   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3386     emitMatchRegisterAltName(Target, AsmParser, OS);
3387 
3388   OS << "#endif // GET_REGISTER_MATCHER\n\n";
3389 
3390   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3391   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3392 
3393   // Generate the helper function to get the names for subtarget features.
3394   emitGetSubtargetFeatureName(Info, OS);
3395 
3396   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3397 
3398   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3399   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3400 
3401   // Generate the function that remaps for mnemonic aliases.
3402   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3403 
3404   // Generate the convertToMCInst function to convert operands into an MCInst.
3405   // Also, generate the convertToMapAndConstraints function for MS-style inline
3406   // assembly.  The latter doesn't actually generate a MCInst.
3407   unsigned NumConverters =
3408       emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
3409                        HasOptionalOperands, OS);
3410 
3411   // Emit the enumeration for classes which participate in matching.
3412   emitMatchClassEnumeration(Target, Info.Classes, OS);
3413 
3414   // Emit a function to get the user-visible string to describe an operand
3415   // match failure in diagnostics.
3416   emitOperandMatchErrorDiagStrings(Info, OS);
3417 
3418   // Emit a function to map register classes to operand match failure codes.
3419   emitRegisterMatchErrorFunc(Info, OS);
3420 
3421   // Emit the routine to match token strings to their match class.
3422   emitMatchTokenString(Target, Info.Classes, OS);
3423 
3424   // Emit the subclass predicate routine.
3425   emitIsSubclass(Target, Info.Classes, OS);
3426 
3427   // Emit the routine to validate an operand against a match class.
3428   emitValidateOperandClass(Target, Info, OS);
3429 
3430   emitMatchClassKindNames(Info.Classes, OS);
3431 
3432   // Emit the available features compute function.
3433   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3434       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3435       Info.SubtargetFeatures, OS);
3436 
3437   if (!ReportMultipleNearMisses)
3438     emitAsmTiedOperandConstraints(Target, Info, OS, HasOptionalOperands);
3439 
3440   StringToOffsetTable StringTable;
3441 
3442   size_t MaxNumOperands = 0;
3443   unsigned MaxMnemonicIndex = 0;
3444   bool HasDeprecation = false;
3445   for (const auto &MI : Info.Matchables) {
3446     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3447     HasDeprecation |= MI->HasDeprecation;
3448 
3449     // Store a pascal-style length byte in the mnemonic.
3450     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3451     MaxMnemonicIndex = std::max(
3452         MaxMnemonicIndex, StringTable.GetOrAddStringOffset(LenMnemonic, false));
3453   }
3454 
3455   OS << "static const char MnemonicTable[] =\n";
3456   StringTable.EmitString(OS);
3457   OS << ";\n\n";
3458 
3459   std::vector<std::vector<const Record *>> FeatureBitsets;
3460   for (const auto &MI : Info.Matchables) {
3461     if (MI->RequiredFeatures.empty())
3462       continue;
3463     FeatureBitsets.emplace_back();
3464     for (const auto *F : MI->RequiredFeatures)
3465       FeatureBitsets.back().push_back(F->TheDef);
3466   }
3467 
3468   llvm::sort(FeatureBitsets,
3469              [&](ArrayRef<const Record *> A, ArrayRef<const Record *> B) {
3470                if (A.size() != B.size())
3471                  return A.size() < B.size();
3472                for (const auto [ARec, BRec] : zip_equal(A, B)) {
3473                  if (ARec->getName() != BRec->getName())
3474                    return ARec->getName() < BRec->getName();
3475                }
3476                return false;
3477              });
3478   FeatureBitsets.erase(llvm::unique(FeatureBitsets), FeatureBitsets.end());
3479   OS << "// Feature bitsets.\n"
3480      << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3481      << "  AMFBS_None,\n";
3482   for (const auto &FeatureBitset : FeatureBitsets) {
3483     if (FeatureBitset.empty())
3484       continue;
3485     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3486   }
3487   OS << "};\n\n"
3488      << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3489      << "  {}, // AMFBS_None\n";
3490   for (const auto &FeatureBitset : FeatureBitsets) {
3491     if (FeatureBitset.empty())
3492       continue;
3493     OS << "  {";
3494     for (const auto &Feature : FeatureBitset) {
3495       const auto &I = Info.SubtargetFeatures.find(Feature);
3496       assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3497       OS << I->second.getEnumBitName() << ", ";
3498     }
3499     OS << "},\n";
3500   }
3501   OS << "};\n\n";
3502 
3503   // Emit the static match table; unused classes get initialized to 0 which is
3504   // guaranteed to be InvalidMatchClass.
3505   //
3506   // FIXME: We can reduce the size of this table very easily. First, we change
3507   // it so that store the kinds in separate bit-fields for each index, which
3508   // only needs to be the max width used for classes at that index (we also need
3509   // to reject based on this during classification). If we then make sure to
3510   // order the match kinds appropriately (putting mnemonics last), then we
3511   // should only end up using a few bits for each class, especially the ones
3512   // following the mnemonic.
3513   OS << "namespace {\n";
3514   OS << "  struct MatchEntry {\n";
3515   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n";
3516   OS << "    uint16_t Opcode;\n";
3517   OS << "    " << getMinimalTypeForRange(NumConverters) << " ConvertFn;\n";
3518   OS << "    " << getMinimalTypeForRange(FeatureBitsets.size())
3519      << " RequiredFeaturesIdx;\n";
3520   OS << "    "
3521      << getMinimalTypeForRange(
3522             std::distance(Info.Classes.begin(), Info.Classes.end()) +
3523             2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */)
3524      << " Classes[" << MaxNumOperands << "];\n";
3525   OS << "    StringRef getMnemonic() const {\n";
3526   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3527   OS << "                       MnemonicTable[Mnemonic]);\n";
3528   OS << "    }\n";
3529   OS << "  };\n\n";
3530 
3531   OS << "  // Predicate for searching for an opcode.\n";
3532   OS << "  struct LessOpcode {\n";
3533   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3534   OS << "      return LHS.getMnemonic() < RHS;\n";
3535   OS << "    }\n";
3536   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3537   OS << "      return LHS < RHS.getMnemonic();\n";
3538   OS << "    }\n";
3539   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3540   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3541   OS << "    }\n";
3542   OS << "  };\n";
3543 
3544   OS << "} // end anonymous namespace\n\n";
3545 
3546   unsigned VariantCount = Target.getAsmParserVariantCount();
3547   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3548     const Record *AsmVariant = Target.getAsmParserVariant(VC);
3549     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3550 
3551     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3552 
3553     for (const auto &MI : Info.Matchables) {
3554       if (MI->AsmVariantID != AsmVariantNo)
3555         continue;
3556 
3557       // Store a pascal-style length byte in the mnemonic.
3558       std::string LenMnemonic =
3559           char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3560       OS << "  { " << *StringTable.GetStringOffset(LenMnemonic) << " /* "
3561          << MI->Mnemonic << " */, " << Target.getInstNamespace()
3562          << "::" << MI->getResultInst()->TheDef->getName() << ", "
3563          << MI->ConversionFnKind << ", ";
3564 
3565       // Write the required features mask.
3566       OS << "AMFBS";
3567       if (MI->RequiredFeatures.empty())
3568         OS << "_None";
3569       else
3570         for (const auto &F : MI->RequiredFeatures)
3571           OS << '_' << F->TheDef->getName();
3572 
3573       OS << ", { ";
3574       ListSeparator LS;
3575       for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
3576         OS << LS << Op.Class->Name;
3577       OS << " }, },\n";
3578     }
3579 
3580     OS << "};\n\n";
3581   }
3582 
3583   OS << "#include \"llvm/Support/Debug.h\"\n";
3584   OS << "#include \"llvm/Support/Format.h\"\n\n";
3585 
3586   // Finally, build the match function.
3587   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3588      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3589   OS << "                     MCInst &Inst,\n";
3590   if (ReportMultipleNearMisses)
3591     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3592   else
3593     OS << "                     uint64_t &ErrorInfo,\n"
3594        << "                     FeatureBitset &MissingFeatures,\n";
3595   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3596 
3597   if (!ReportMultipleNearMisses) {
3598     OS << "  // Eliminate obvious mismatches.\n";
3599     OS << "  if (Operands.size() > " << (MaxNumOperands + HasMnemonicFirst)
3600        << ") {\n";
3601     OS << "    ErrorInfo = " << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3602     OS << "    return Match_InvalidOperand;\n";
3603     OS << "  }\n\n";
3604   }
3605 
3606   // Emit code to get the available features.
3607   OS << "  // Get the current feature set.\n";
3608   OS << "  const FeatureBitset &AvailableFeatures = "
3609         "getAvailableFeatures();\n\n";
3610 
3611   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3612   if (HasMnemonicFirst) {
3613     OS << "  StringRef Mnemonic = ((" << Target.getName()
3614        << "Operand &)*Operands[0]).getToken();\n\n";
3615   } else {
3616     OS << "  StringRef Mnemonic;\n";
3617     OS << "  if (Operands[0]->isToken())\n";
3618     OS << "    Mnemonic = ((" << Target.getName()
3619        << "Operand &)*Operands[0]).getToken();\n\n";
3620   }
3621 
3622   if (HasMnemonicAliases) {
3623     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3624     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3625   }
3626 
3627   // Emit code to compute the class list for this operand vector.
3628   if (!ReportMultipleNearMisses) {
3629     OS << "  // Some state to try to produce better error messages.\n";
3630     OS << "  bool HadMatchOtherThanFeatures = false;\n";
3631     OS << "  bool HadMatchOtherThanPredicate = false;\n";
3632     OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3633     OS << "  MissingFeatures.set();\n";
3634     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3635     OS << "  // wrong for all instances of the instruction.\n";
3636     OS << "  ErrorInfo = ~0ULL;\n";
3637   }
3638 
3639   if (HasOptionalOperands) {
3640     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3641   }
3642 
3643   // Emit code to search the table.
3644   OS << "  // Find the appropriate table for this asm variant.\n";
3645   OS << "  const MatchEntry *Start, *End;\n";
3646   OS << "  switch (VariantID) {\n";
3647   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3648   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3649     const Record *AsmVariant = Target.getAsmParserVariant(VC);
3650     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3651     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3652        << "); End = std::end(MatchTable" << VC << "); break;\n";
3653   }
3654   OS << "  }\n";
3655 
3656   OS << "  // Search the table.\n";
3657   if (HasMnemonicFirst) {
3658     OS << "  auto MnemonicRange = "
3659           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3660   } else {
3661     OS << "  auto MnemonicRange = std::pair(Start, End);\n";
3662     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3663     OS << "  if (!Mnemonic.empty())\n";
3664     OS << "    MnemonicRange = "
3665           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3666   }
3667 
3668   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" "
3669         "<<\n"
3670      << "  std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3671      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3672 
3673   OS << "  // Return a more specific error code if no mnemonics match.\n";
3674   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3675   OS << "    return Match_MnemonicFail;\n\n";
3676 
3677   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3678      << "*ie = MnemonicRange.second;\n";
3679   OS << "       it != ie; ++it) {\n";
3680   OS << "    const FeatureBitset &RequiredFeatures = "
3681         "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3682   OS << "    bool HasRequiredFeatures =\n";
3683   OS << "      (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3684   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match "
3685         "opcode \"\n";
3686   OS << "                                          << MII.getName(it->Opcode) "
3687         "<< \"\\n\");\n";
3688 
3689   if (ReportMultipleNearMisses) {
3690     OS << "    // Some state to record ways in which this instruction did not "
3691           "match.\n";
3692     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3693     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3694     OS << "    NearMissInfo EarlyPredicateNearMiss = "
3695           "NearMissInfo::getSuccess();\n";
3696     OS << "    NearMissInfo LatePredicateNearMiss = "
3697           "NearMissInfo::getSuccess();\n";
3698     OS << "    bool MultipleInvalidOperands = false;\n";
3699   }
3700 
3701   if (HasMnemonicFirst) {
3702     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3703     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3704   }
3705 
3706   // Emit check that the subclasses match.
3707   if (!ReportMultipleNearMisses)
3708     OS << "    bool OperandsValid = true;\n";
3709   if (HasOptionalOperands) {
3710     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3711   }
3712   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3713      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3714      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3715   OS << "      auto Formal = "
3716      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3717   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3718   OS << "                      dbgs() << \"  Matching formal operand class \" "
3719         "<< getMatchClassName(Formal)\n";
3720   OS << "                             << \" against actual operand at index \" "
3721         "<< ActualIdx);\n";
3722   OS << "      if (ActualIdx < Operands.size())\n";
3723   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3724   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << "
3725         "\"): \");\n";
3726   OS << "      else\n";
3727   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3728   OS << "      if (ActualIdx >= Operands.size()) {\n";
3729   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand "
3730         "index out of range\\n\");\n";
3731   if (ReportMultipleNearMisses) {
3732     OS << "        bool ThisOperandValid = (Formal == "
3733        << "InvalidMatchClass) || "
3734           "isSubclass(Formal, OptionalMatchClass);\n";
3735     OS << "        if (!ThisOperandValid) {\n";
3736     OS << "          if (!OperandNearMiss) {\n";
3737     OS << "            // Record info about match failure for later use.\n";
3738     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording "
3739           "too-few-operands near miss\\n\");\n";
3740     OS << "            OperandNearMiss =\n";
3741     OS << "                NearMissInfo::getTooFewOperands(Formal, "
3742           "it->Opcode);\n";
3743     OS << "          } else if (OperandNearMiss.getKind() != "
3744           "NearMissInfo::NearMissTooFewOperands) {\n";
3745     OS << "            // If more than one operand is invalid, give up on this "
3746           "match entry.\n";
3747     OS << "            DEBUG_WITH_TYPE(\n";
3748     OS << "                \"asm-matcher\",\n";
3749     OS << "                dbgs() << \"second invalid operand, giving up on "
3750           "this opcode\\n\");\n";
3751     OS << "            MultipleInvalidOperands = true;\n";
3752     OS << "            break;\n";
3753     OS << "          }\n";
3754     OS << "        } else {\n";
3755     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal "
3756           "operand not required\\n\");\n";
3757     OS << "          if (isSubclass(Formal, OptionalMatchClass)) {\n";
3758     OS << "            OptionalOperandsMask.set(FormalIdx);\n";
3759     OS << "          }\n";
3760     OS << "        }\n";
3761     OS << "        continue;\n";
3762   } else {
3763     OS << "        if (Formal == InvalidMatchClass) {\n";
3764     if (HasOptionalOperands) {
3765       OS << "          OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3766          << ");\n";
3767     }
3768     OS << "          break;\n";
3769     OS << "        }\n";
3770     OS << "        if (isSubclass(Formal, OptionalMatchClass)) {\n";
3771     if (HasOptionalOperands) {
3772       OS << "          OptionalOperandsMask.set(FormalIdx);\n";
3773     }
3774     OS << "          continue;\n";
3775     OS << "        }\n";
3776     OS << "        OperandsValid = false;\n";
3777     OS << "        ErrorInfo = ActualIdx;\n";
3778     OS << "        break;\n";
3779   }
3780   OS << "      }\n";
3781   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3782   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3783   OS << "      if (Diag == Match_Success) {\n";
3784   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3785   OS << "                        dbgs() << \"match success using generic "
3786         "matcher\\n\");\n";
3787   OS << "        ++ActualIdx;\n";
3788   OS << "        continue;\n";
3789   OS << "      }\n";
3790   OS << "      // If the generic handler indicates an invalid operand\n";
3791   OS << "      // failure, check for a special case.\n";
3792   OS << "      if (Diag != Match_Success) {\n";
3793   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, "
3794         "Formal);\n";
3795   OS << "        if (TargetDiag == Match_Success) {\n";
3796   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3797   OS << "                          dbgs() << \"match success using target "
3798         "matcher\\n\");\n";
3799   OS << "          ++ActualIdx;\n";
3800   OS << "          continue;\n";
3801   OS << "        }\n";
3802   OS << "        // If the target matcher returned a specific error code use\n";
3803   OS << "        // that, else use the one from the generic matcher.\n";
3804   OS << "        if (TargetDiag != Match_InvalidOperand && "
3805         "HasRequiredFeatures)\n";
3806   OS << "          Diag = TargetDiag;\n";
3807   OS << "      }\n";
3808   OS << "      // If current formal operand wasn't matched and it is optional\n"
3809      << "      // then try to match next formal operand\n";
3810   OS << "      if (Diag == Match_InvalidOperand "
3811      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3812   if (HasOptionalOperands) {
3813     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3814   }
3815   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring "
3816         "optional operand\\n\");\n";
3817   OS << "        continue;\n";
3818   OS << "      }\n";
3819 
3820   if (ReportMultipleNearMisses) {
3821     OS << "      if (!OperandNearMiss) {\n";
3822     OS << "        // If this is the first invalid operand we have seen, "
3823           "record some\n";
3824     OS << "        // information about it.\n";
3825     OS << "        DEBUG_WITH_TYPE(\n";
3826     OS << "            \"asm-matcher\",\n";
3827     OS << "            dbgs()\n";
3828     OS << "                << \"operand match failed, recording near-miss with "
3829           "diag code \"\n";
3830     OS << "                << Diag << \"\\n\");\n";
3831     OS << "        OperandNearMiss =\n";
3832     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, "
3833           "it->Opcode, ActualIdx);\n";
3834     OS << "        ++ActualIdx;\n";
3835     OS << "      } else {\n";
3836     OS << "        // If more than one operand is invalid, give up on this "
3837           "match entry.\n";
3838     OS << "        DEBUG_WITH_TYPE(\n";
3839     OS << "            \"asm-matcher\",\n";
3840     OS << "            dbgs() << \"second operand mismatch, skipping this "
3841           "opcode\\n\");\n";
3842     OS << "        MultipleInvalidOperands = true;\n";
3843     OS << "        break;\n";
3844     OS << "      }\n";
3845     OS << "    }\n\n";
3846   } else {
3847     OS << "      // If this operand is broken for all of the instances of "
3848           "this\n";
3849     OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3850     OS << "      // If we already had a match that only failed due to a\n";
3851     OS << "      // target predicate, that diagnostic is preferred.\n";
3852     OS << "      if (!HadMatchOtherThanPredicate &&\n";
3853     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) "
3854           "{\n";
3855     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3856           "!= Match_InvalidOperand))\n";
3857     OS << "          RetCode = Diag;\n";
3858     OS << "        ErrorInfo = ActualIdx;\n";
3859     OS << "      }\n";
3860     OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3861     OS << "      OperandsValid = false;\n";
3862     OS << "      break;\n";
3863     OS << "    }\n\n";
3864   }
3865 
3866   if (ReportMultipleNearMisses)
3867     OS << "    if (MultipleInvalidOperands) {\n";
3868   else
3869     OS << "    if (!OperandsValid) {\n";
3870   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
3871         "multiple \"\n";
3872   OS << "                                               \"operand mismatches, "
3873         "ignoring \"\n";
3874   OS << "                                               \"this opcode\\n\");\n";
3875   OS << "      continue;\n";
3876   OS << "    }\n";
3877 
3878   // Emit check that the required features are available.
3879   OS << "    if (!HasRequiredFeatures) {\n";
3880   if (!ReportMultipleNearMisses)
3881     OS << "      HadMatchOtherThanFeatures = true;\n";
3882   OS << "      FeatureBitset NewMissingFeatures = RequiredFeatures & "
3883         "~AvailableFeatures;\n";
3884   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target "
3885         "features:\";\n";
3886   OS << "                      for (unsigned I = 0, E = "
3887         "NewMissingFeatures.size(); I != E; ++I)\n";
3888   OS << "                        if (NewMissingFeatures[I])\n";
3889   OS << "                          dbgs() << ' ' << I;\n";
3890   OS << "                      dbgs() << \"\\n\");\n";
3891   if (ReportMultipleNearMisses) {
3892     OS << "      FeaturesNearMiss = "
3893           "NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3894   } else {
3895     OS << "      if (NewMissingFeatures.count() <=\n"
3896           "          MissingFeatures.count())\n";
3897     OS << "        MissingFeatures = NewMissingFeatures;\n";
3898     OS << "      continue;\n";
3899   }
3900   OS << "    }\n";
3901   OS << "\n";
3902   OS << "    Inst.clear();\n\n";
3903   OS << "    Inst.setOpcode(it->Opcode);\n";
3904   // Verify the instruction with the target-specific match predicate function.
3905   OS << "    // We have a potential match but have not rendered the operands.\n"
3906      << "    // Check the target predicate to handle any context sensitive\n"
3907         "    // constraints.\n"
3908      << "    // For example, Ties that are referenced multiple times must be\n"
3909         "    // checked here to ensure the input is the same for each match\n"
3910         "    // constraints. If we leave it any later the ties will have been\n"
3911         "    // canonicalized\n"
3912      << "    unsigned MatchResult;\n"
3913      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3914         "Operands)) != Match_Success) {\n"
3915      << "      Inst.clear();\n";
3916   OS << "      DEBUG_WITH_TYPE(\n";
3917   OS << "          \"asm-matcher\",\n";
3918   OS << "          dbgs() << \"Early target match predicate failed with diag "
3919         "code \"\n";
3920   OS << "                 << MatchResult << \"\\n\");\n";
3921   if (ReportMultipleNearMisses) {
3922     OS << "      EarlyPredicateNearMiss = "
3923           "NearMissInfo::getMissedPredicate(MatchResult);\n";
3924   } else {
3925     OS << "      RetCode = MatchResult;\n"
3926        << "      HadMatchOtherThanPredicate = true;\n"
3927        << "      continue;\n";
3928   }
3929   OS << "    }\n\n";
3930 
3931   if (ReportMultipleNearMisses) {
3932     OS << "    // If we did not successfully match the operands, then we can't "
3933           "convert to\n";
3934     OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3935     OS << "    if (OperandNearMiss) {\n";
3936     OS << "      // If the operand mismatch was the only problem, reprrt it as "
3937           "a near-miss.\n";
3938     OS << "      if (NearMisses && !FeaturesNearMiss && "
3939           "!EarlyPredicateNearMiss) {\n";
3940     OS << "        DEBUG_WITH_TYPE(\n";
3941     OS << "            \"asm-matcher\",\n";
3942     OS << "            dbgs()\n";
3943     OS << "                << \"Opcode result: one mismatched operand, adding "
3944           "near-miss\\n\");\n";
3945     OS << "        NearMisses->push_back(OperandNearMiss);\n";
3946     OS << "      } else {\n";
3947     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
3948           "multiple \"\n";
3949     OS << "                                                 \"types of "
3950           "mismatch, so not \"\n";
3951     OS << "                                                 \"reporting "
3952           "near-miss\\n\");\n";
3953     OS << "      }\n";
3954     OS << "      continue;\n";
3955     OS << "    }\n\n";
3956   }
3957 
3958   // When converting parsed operands to MCInst we need to know whether optional
3959   // operands were parsed or not so that we can choose the correct converter
3960   // function. We also need to know this when checking tied operand constraints.
3961   // DefaultsOffset is an array of deltas between the formal (MCInst) and the
3962   // actual (parsed operand array) operand indices. When all optional operands
3963   // are present, all elements of the array are zeros. If some of the optional
3964   // operands are absent, the array might look like '0, 0, 1, 1, 1, 2, 2, 3',
3965   // where each increment in value reflects the absence of an optional operand.
3966   if (HasOptionalOperands) {
3967     OS << "    unsigned DefaultsOffset[" << (MaxNumOperands + 1)
3968        << "] = { 0 };\n";
3969     OS << "    assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
3970        << ");\n";
3971     OS << "    for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
3972        << "; ++i) {\n";
3973     OS << "      DefaultsOffset[i + 1] = NumDefaults;\n";
3974     OS << "      NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
3975     OS << "    }\n\n";
3976   }
3977 
3978   OS << "    if (matchingInlineAsm) {\n";
3979   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3980   if (!ReportMultipleNearMisses) {
3981     if (HasOptionalOperands) {
3982       OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3983             "Operands,\n";
3984       OS << "                                          DefaultsOffset, "
3985             "ErrorInfo))\n";
3986     } else {
3987       OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3988             "Operands,\n";
3989       OS << "                                          ErrorInfo))\n";
3990     }
3991     OS << "        return Match_InvalidTiedOperand;\n";
3992     OS << "\n";
3993   }
3994   OS << "      return Match_Success;\n";
3995   OS << "    }\n\n";
3996   OS << "    // We have selected a definite instruction, convert the parsed\n"
3997      << "    // operands into the appropriate MCInst.\n";
3998   if (HasOptionalOperands) {
3999     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
4000        << "                    OptionalOperandsMask, DefaultsOffset);\n";
4001   } else {
4002     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
4003   }
4004   OS << "\n";
4005 
4006   // Verify the instruction with the target-specific match predicate function.
4007   OS << "    // We have a potential match. Check the target predicate to\n"
4008      << "    // handle any context sensitive constraints.\n"
4009      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
4010      << " Match_Success) {\n"
4011      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
4012      << "                      dbgs() << \"Target match predicate failed with "
4013         "diag code \"\n"
4014      << "                             << MatchResult << \"\\n\");\n"
4015      << "      Inst.clear();\n";
4016   if (ReportMultipleNearMisses) {
4017     OS << "      LatePredicateNearMiss = "
4018           "NearMissInfo::getMissedPredicate(MatchResult);\n";
4019   } else {
4020     OS << "      RetCode = MatchResult;\n"
4021        << "      HadMatchOtherThanPredicate = true;\n"
4022        << "      continue;\n";
4023   }
4024   OS << "    }\n\n";
4025 
4026   if (ReportMultipleNearMisses) {
4027     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
4028     OS << "                         (int)(bool)FeaturesNearMiss +\n";
4029     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
4030     OS << "                         (int)(bool)LatePredicateNearMiss);\n";
4031     OS << "    if (NumNearMisses == 1) {\n";
4032     OS << "      // We had exactly one type of near-miss, so add that to the "
4033           "list.\n";
4034     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled "
4035           "earlier\");\n";
4036     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
4037           "found one type of \"\n";
4038     OS << "                                            \"mismatch, so "
4039           "reporting a \"\n";
4040     OS << "                                            \"near-miss\\n\");\n";
4041     OS << "      if (NearMisses && FeaturesNearMiss)\n";
4042     OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
4043     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
4044     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
4045     OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
4046     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
4047     OS << "\n";
4048     OS << "      continue;\n";
4049     OS << "    } else if (NumNearMisses > 1) {\n";
4050     OS << "      // This instruction missed in more than one way, so ignore "
4051           "it.\n";
4052     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: "
4053           "multiple \"\n";
4054     OS << "                                               \"types of mismatch, "
4055           "so not \"\n";
4056     OS << "                                               \"reporting "
4057           "near-miss\\n\");\n";
4058     OS << "      continue;\n";
4059     OS << "    }\n";
4060   }
4061 
4062   // Call the post-processing function, if used.
4063   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
4064   if (!InsnCleanupFn.empty())
4065     OS << "    " << InsnCleanupFn << "(Inst);\n";
4066 
4067   if (HasDeprecation) {
4068     OS << "    std::string Info;\n";
4069     OS << "    if "
4070           "(!getParser().getTargetParser().getTargetOptions()."
4071           "MCNoDeprecatedWarn &&\n";
4072     OS << "        MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
4073     OS << "      SMLoc Loc = ((" << Target.getName()
4074        << "Operand &)*Operands[0]).getStartLoc();\n";
4075     OS << "      getParser().Warning(Loc, Info, std::nullopt);\n";
4076     OS << "    }\n";
4077   }
4078 
4079   if (!ReportMultipleNearMisses) {
4080     if (HasOptionalOperands) {
4081       OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
4082             "Operands,\n";
4083       OS << "                                         DefaultsOffset, "
4084             "ErrorInfo))\n";
4085     } else {
4086       OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
4087             "Operands,\n";
4088       OS << "                                         ErrorInfo))\n";
4089     }
4090     OS << "      return Match_InvalidTiedOperand;\n";
4091     OS << "\n";
4092   }
4093 
4094   OS << "    DEBUG_WITH_TYPE(\n";
4095   OS << "        \"asm-matcher\",\n";
4096   OS << "        dbgs() << \"Opcode result: complete match, selecting this "
4097         "opcode\\n\");\n";
4098   OS << "    return Match_Success;\n";
4099   OS << "  }\n\n";
4100 
4101   if (ReportMultipleNearMisses) {
4102     OS << "  // No instruction variants matched exactly.\n";
4103     OS << "  return Match_NearMisses;\n";
4104   } else {
4105     OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
4106     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
4107     OS << "    return RetCode;\n\n";
4108     OS << "  ErrorInfo = 0;\n";
4109     OS << "  return Match_MissingFeature;\n";
4110   }
4111   OS << "}\n\n";
4112 
4113   if (!Info.OperandMatchInfo.empty())
4114     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
4115                              MaxMnemonicIndex, FeatureBitsets.size(),
4116                              HasMnemonicFirst, *AsmParser);
4117 
4118   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
4119 
4120   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
4121   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
4122 
4123   emitMnemonicSpellChecker(OS, Target, VariantCount);
4124 
4125   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
4126 
4127   OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
4128   OS << "#undef GET_MNEMONIC_CHECKER\n\n";
4129 
4130   emitMnemonicChecker(OS, Target, VariantCount, HasMnemonicFirst,
4131                       HasMnemonicAliases);
4132 
4133   OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
4134 }
4135 
4136 static TableGen::Emitter::OptClass<AsmMatcherEmitter>
4137     X("gen-asm-matcher", "Generate assembly instruction matcher");
4138