xref: /llvm-project/llvm/unittests/ADT/ArrayRefTest.cpp (revision c4b39cd09c4eeef2b3e3d32cb674f92c17eeb517)
1 //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/Support/Allocator.h"
11 #include "llvm/Support/raw_ostream.h"
12 #include "gtest/gtest.h"
13 #include <limits>
14 #include <vector>
15 using namespace llvm;
16 
17 // Check that the ArrayRef-of-pointer converting constructor only allows adding
18 // cv qualifiers (not removing them, or otherwise changing the type)
19 static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<const int *>>,
20               "Adding const");
21 static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<volatile int *>>,
22               "Adding volatile");
23 static_assert(!std::is_convertible_v<ArrayRef<int *>, ArrayRef<float *>>,
24               "Changing pointer of one type to a pointer of another");
25 static_assert(!std::is_convertible_v<ArrayRef<const int *>, ArrayRef<int *>>,
26               "Removing const");
27 static_assert(!std::is_convertible_v<ArrayRef<volatile int *>, ArrayRef<int *>>,
28               "Removing volatile");
29 
30 // Check that we can't accidentally assign a temporary location to an ArrayRef.
31 // (Unfortunately we can't make use of the same thing with constructors.)
32 static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *>,
33               "Assigning from single prvalue element");
34 static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *&&>,
35               "Assigning from single xvalue element");
36 static_assert(std::is_assignable_v<ArrayRef<int *> &, int *&>,
37               "Assigning from single lvalue element");
38 static_assert(
39     !std::is_assignable_v<ArrayRef<int *> &, std::initializer_list<int *>>,
40     "Assigning from an initializer list");
41 
42 namespace {
43 
TEST(ArrayRefTest,AllocatorCopy)44 TEST(ArrayRefTest, AllocatorCopy) {
45   BumpPtrAllocator Alloc;
46   static const uint16_t Words1[] = { 1, 4, 200, 37 };
47   ArrayRef<uint16_t> Array1 = ArrayRef(Words1, 4);
48   static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
49   ArrayRef<uint16_t> Array2 = ArrayRef(Words2, 5);
50   ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
51   ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
52   EXPECT_TRUE(Array1.equals(Array1c));
53   EXPECT_NE(Array1.data(), Array1c.data());
54   EXPECT_TRUE(Array2.equals(Array2c));
55   EXPECT_NE(Array2.data(), Array2c.data());
56 
57   // Check that copy can cope with uninitialized memory.
58   struct NonAssignable {
59     const char *Ptr;
60 
61     NonAssignable(const char *Ptr) : Ptr(Ptr) {}
62     NonAssignable(const NonAssignable &RHS) = default;
63     void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
64     bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
65   } Array3Src[] = {"hello", "world"};
66   ArrayRef<NonAssignable> Array3Copy = ArrayRef(Array3Src).copy(Alloc);
67   EXPECT_EQ(ArrayRef(Array3Src), Array3Copy);
68   EXPECT_NE(ArrayRef(Array3Src).data(), Array3Copy.data());
69 }
70 
71 // This test is pure UB given the ArrayRef<> implementation.
72 // You are not allowed to produce non-null pointers given null base pointer.
TEST(ArrayRefTest,DISABLED_SizeTSizedOperations)73 TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) {
74   ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
75 
76   // Check that drop_back accepts size_t-sized numbers.
77   EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
78 
79   // Check that drop_front accepts size_t-sized numbers.
80   EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
81 
82   // Check that slice accepts size_t-sized numbers.
83   EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
84   EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
85 }
86 
TEST(ArrayRefTest,DropBack)87 TEST(ArrayRefTest, DropBack) {
88   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
89   ArrayRef<int> AR1(TheNumbers);
90   ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
91   EXPECT_TRUE(AR1.drop_back().equals(AR2));
92 }
93 
TEST(ArrayRefTest,DropFront)94 TEST(ArrayRefTest, DropFront) {
95   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
96   ArrayRef<int> AR1(TheNumbers);
97   ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
98   EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
99 }
100 
TEST(ArrayRefTest,DropWhile)101 TEST(ArrayRefTest, DropWhile) {
102   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
103   ArrayRef<int> AR1(TheNumbers);
104   ArrayRef<int> Expected = AR1.drop_front(3);
105   EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
106 
107   EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
108   EXPECT_EQ(ArrayRef<int>(),
109             AR1.drop_while([](const int &N) { return N > 0; }));
110 }
111 
TEST(ArrayRefTest,DropUntil)112 TEST(ArrayRefTest, DropUntil) {
113   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
114   ArrayRef<int> AR1(TheNumbers);
115   ArrayRef<int> Expected = AR1.drop_front(3);
116   EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
117 
118   EXPECT_EQ(ArrayRef<int>(),
119             AR1.drop_until([](const int &N) { return N < 0; }));
120   EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
121 }
122 
TEST(ArrayRefTest,TakeBack)123 TEST(ArrayRefTest, TakeBack) {
124   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
125   ArrayRef<int> AR1(TheNumbers);
126   ArrayRef<int> AR2(AR1.end() - 1, 1);
127   EXPECT_TRUE(AR1.take_back().equals(AR2));
128 }
129 
TEST(ArrayRefTest,TakeFront)130 TEST(ArrayRefTest, TakeFront) {
131   static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
132   ArrayRef<int> AR1(TheNumbers);
133   ArrayRef<int> AR2(AR1.data(), 2);
134   EXPECT_TRUE(AR1.take_front(2).equals(AR2));
135 }
136 
TEST(ArrayRefTest,TakeWhile)137 TEST(ArrayRefTest, TakeWhile) {
138   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
139   ArrayRef<int> AR1(TheNumbers);
140   ArrayRef<int> Expected = AR1.take_front(3);
141   EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
142 
143   EXPECT_EQ(ArrayRef<int>(),
144             AR1.take_while([](const int &N) { return N < 0; }));
145   EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
146 }
147 
TEST(ArrayRefTest,TakeUntil)148 TEST(ArrayRefTest, TakeUntil) {
149   static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
150   ArrayRef<int> AR1(TheNumbers);
151   ArrayRef<int> Expected = AR1.take_front(3);
152   EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
153 
154   EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
155   EXPECT_EQ(ArrayRef<int>(),
156             AR1.take_until([](const int &N) { return N > 0; }));
157 }
158 
TEST(ArrayRefTest,Equals)159 TEST(ArrayRefTest, Equals) {
160   static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
161   ArrayRef<int> AR1(A1);
162   EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
163   EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
164   EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
165   EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
166   EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
167   EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
168   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
169   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
170   EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
171 
172   ArrayRef<int> AR1a = AR1.drop_back();
173   EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
174   EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
175 
176   ArrayRef<int> AR1b = AR1a.slice(2, 4);
177   EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
178   EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
179   EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
180 }
181 
TEST(ArrayRefTest,EmptyEquals)182 TEST(ArrayRefTest, EmptyEquals) {
183   EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
184 }
185 
TEST(ArrayRefTest,ConstConvert)186 TEST(ArrayRefTest, ConstConvert) {
187   int buf[4];
188   for (int i = 0; i < 4; ++i)
189     buf[i] = i;
190 
191   static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
192   ArrayRef<const int *> a((ArrayRef<int *>(A)));
193   a = ArrayRef<int *>(A);
194 }
195 
ReturnTest12()196 static std::vector<int> ReturnTest12() { return {1, 2}; }
ArgTest12(ArrayRef<int> A)197 static void ArgTest12(ArrayRef<int> A) {
198   EXPECT_EQ(2U, A.size());
199   EXPECT_EQ(1, A[0]);
200   EXPECT_EQ(2, A[1]);
201 }
202 
TEST(ArrayRefTest,InitializerList)203 TEST(ArrayRefTest, InitializerList) {
204   std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
205   ArrayRef<int> A = init_list;
206   for (int i = 0; i < 5; ++i)
207     EXPECT_EQ(i, A[i]);
208 
209   std::vector<int> B = ReturnTest12();
210   A = B;
211   EXPECT_EQ(1, A[0]);
212   EXPECT_EQ(2, A[1]);
213 
214   ArgTest12({1, 2});
215 }
216 
TEST(ArrayRefTest,EmptyInitializerList)217 TEST(ArrayRefTest, EmptyInitializerList) {
218   ArrayRef<int> A = {};
219   EXPECT_TRUE(A.empty());
220 
221   A = {};
222   EXPECT_TRUE(A.empty());
223 }
224 
TEST(ArrayRefTest,ArrayRef)225 TEST(ArrayRefTest, ArrayRef) {
226   static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
227 
228   // A copy is expected for non-const ArrayRef (thin copy)
229   ArrayRef<int> AR1(A1);
230   const ArrayRef<int> &AR1Ref = ArrayRef(AR1);
231   EXPECT_NE(&AR1, &AR1Ref);
232   EXPECT_TRUE(AR1.equals(AR1Ref));
233 
234   // A copy is expected for non-const ArrayRef (thin copy)
235   const ArrayRef<int> AR2(A1);
236   const ArrayRef<int> &AR2Ref = ArrayRef(AR2);
237   EXPECT_NE(&AR2Ref, &AR2);
238   EXPECT_TRUE(AR2.equals(AR2Ref));
239 }
240 
TEST(ArrayRefTest,OwningArrayRef)241 TEST(ArrayRefTest, OwningArrayRef) {
242   static const int A1[] = {0, 1};
243   OwningArrayRef<int> A{ArrayRef(A1)};
244   OwningArrayRef<int> B(std::move(A));
245   EXPECT_EQ(A.data(), nullptr);
246 }
247 
TEST(ArrayRefTest,ArrayRefFromStdArray)248 TEST(ArrayRefTest, ArrayRefFromStdArray) {
249   std::array<int, 5> A1{{42, -5, 0, 1000000, -1000000}};
250   ArrayRef<int> A2 = ArrayRef(A1);
251 
252   EXPECT_EQ(A1.size(), A2.size());
253   for (std::size_t i = 0; i < A1.size(); ++i) {
254     EXPECT_EQ(A1[i], A2[i]);
255   }
256 }
257 
258 static_assert(std::is_trivially_copyable_v<ArrayRef<int>>,
259               "trivially copyable");
260 
TEST(ArrayRefTest,MutableArrayRefDeductionGuides)261 TEST(ArrayRefTest, MutableArrayRefDeductionGuides) {
262   // Single element
263   {
264     int x = 0;
265     auto aref = MutableArrayRef(x);
266     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
267     EXPECT_EQ(aref.data(), &x);
268     EXPECT_EQ(aref.size(), 1u);
269 
270     // Make sure it's mutable still
271     aref[0] = 1;
272     EXPECT_EQ(x, 1);
273   }
274 
275   // Pointer + length
276   {
277     int x[] = {0, 1, 2, 3};
278     auto aref = MutableArrayRef(&x[0], 4);
279     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
280     EXPECT_EQ(aref.data(), &x[0]);
281     EXPECT_EQ(aref.size(), 4u);
282   }
283 
284   // // Pointer + pointer
285   {
286     int x[] = {0, 1, 2, 3};
287     auto aref = MutableArrayRef(std::begin(x), std::end(x));
288     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
289     EXPECT_EQ(aref.data(), &x[0]);
290     EXPECT_EQ(aref.size(), 4u);
291   }
292 
293   // SmallVector
294   {
295     SmallVector<int> sv1;
296     SmallVectorImpl<int> &sv2 = sv1;
297     sv1.resize(5);
298     auto aref1 = MutableArrayRef(sv1);
299     auto aref2 = MutableArrayRef(sv2);
300     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref1)>);
301     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>);
302     EXPECT_EQ(aref1.data(), sv1.data());
303     EXPECT_EQ(aref1.size(), sv1.size());
304     EXPECT_EQ(aref2.data(), sv2.data());
305     EXPECT_EQ(aref2.size(), sv2.size());
306   }
307 
308   // std::vector
309   {
310     std::vector<int> x(5);
311     auto aref = MutableArrayRef(x);
312     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
313     EXPECT_EQ(aref.data(), x.data());
314     EXPECT_EQ(aref.size(), x.size());
315   }
316 
317   // std::array
318   {
319     std::array<int, 5> x{};
320     auto aref = MutableArrayRef(x);
321     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
322     EXPECT_EQ(aref.data(), x.data());
323     EXPECT_EQ(aref.size(), x.size());
324   }
325 
326   // MutableArrayRef
327   {
328     MutableArrayRef<int> x{};
329     auto aref = MutableArrayRef(x);
330     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
331     EXPECT_EQ(aref.data(), x.data());
332     EXPECT_EQ(aref.size(), x.size());
333 
334     const MutableArrayRef<int> y{};
335     auto aref2 = MutableArrayRef(y);
336     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>);
337     EXPECT_EQ(aref2.data(), y.data());
338     EXPECT_EQ(aref2.size(), y.size());
339   }
340 
341   // C-style array
342   {
343     int x[] = {0, 1, 2, 3};
344     auto aref = MutableArrayRef(x);
345     static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
346     EXPECT_EQ(aref.data(), &x[0]);
347     EXPECT_EQ(aref.size(), 4u);
348   }
349 }
350 
351 } // end anonymous namespace
352