xref: /llvm-project/llvm/tools/llvm-exegesis/lib/SchedClassResolution.cpp (revision faf675ce34ee1e2c6105e9a816f220412fd2f8d5)
1 //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SchedClassResolution.h"
10 #include "BenchmarkResult.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCAsmInfo.h"
13 #include "llvm/MCA/Support.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <vector>
16 
17 namespace llvm {
18 namespace exegesis {
19 
20 // Return the non-redundant list of WriteProcRes used by the given sched class.
21 // The scheduling model for LLVM is such that each instruction has a certain
22 // number of uops which consume resources which are described by WriteProcRes
23 // entries. Each entry describe how many cycles are spent on a specific ProcRes
24 // kind.
25 // For example, an instruction might have 3 uOps, one dispatching on P0
26 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
27 // Note that LLVM additionally denormalizes resource consumption to include
28 // usage of super resources by subresources. So in practice if there exists a
29 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
30 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
31 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
32 // denote implied usage of superresources by subresources:
33 //            P0      P06    P016
34 //     uOp1    1      (1)     (1)
35 //     uOp2            1      (1)
36 //     uOp3            1      (1)
37 //     =============================
38 //             1       3       3
39 // Eventually we end up with three entries for the WriteProcRes of the
40 // instruction:
41 //    {ProcResIdx=1,  Cycles=1}  // P0
42 //    {ProcResIdx=7,  Cycles=3}  // P06
43 //    {ProcResIdx=10, Cycles=3}  // P016
44 //
45 // Note that in this case, P016 does not contribute any cycles, so it would
46 // be removed by this function.
47 // FIXME: Merge this with the equivalent in llvm-mca.
48 static SmallVector<MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const MCSchedClassDesc & SCDesc,const MCSubtargetInfo & STI)49 getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc,
50                             const MCSubtargetInfo &STI) {
51   SmallVector<MCWriteProcResEntry, 8> Result;
52   const auto &SM = STI.getSchedModel();
53   const unsigned NumProcRes = SM.getNumProcResourceKinds();
54 
55   // Collect resource masks.
56   SmallVector<uint64_t> ProcResourceMasks(NumProcRes);
57   mca::computeProcResourceMasks(SM, ProcResourceMasks);
58 
59   // Sort entries by smaller resources for (basic) topological ordering.
60   using ResourceMaskAndEntry = std::pair<uint64_t, const MCWriteProcResEntry *>;
61   SmallVector<ResourceMaskAndEntry, 8> ResourceMaskAndEntries;
62   for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
63                   *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
64        WPR != WPREnd; ++WPR) {
65     uint64_t Mask = ProcResourceMasks[WPR->ProcResourceIdx];
66     ResourceMaskAndEntries.push_back({Mask, WPR});
67   }
68   sort(ResourceMaskAndEntries,
69        [](const ResourceMaskAndEntry &A, const ResourceMaskAndEntry &B) {
70          unsigned popcntA = popcount(A.first);
71          unsigned popcntB = popcount(B.first);
72          if (popcntA < popcntB)
73            return true;
74          if (popcntA > popcntB)
75            return false;
76          return A.first < B.first;
77        });
78 
79   SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
80   for (const ResourceMaskAndEntry &Entry : ResourceMaskAndEntries) {
81     const MCWriteProcResEntry *WPR = Entry.second;
82     const MCProcResourceDesc *const ProcResDesc =
83         SM.getProcResource(WPR->ProcResourceIdx);
84     // TODO: Handle AcquireAtAtCycle in llvm-exegesis and llvm-mca. See
85     // https://github.com/llvm/llvm-project/issues/62680 and
86     // https://github.com/llvm/llvm-project/issues/62681
87     assert(WPR->AcquireAtCycle == 0 &&
88            "`llvm-exegesis` does not handle AcquireAtCycle > 0");
89     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
90       // This is a ProcResUnit.
91       Result.push_back(
92           {WPR->ProcResourceIdx, WPR->ReleaseAtCycle, WPR->AcquireAtCycle});
93       ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->ReleaseAtCycle;
94     } else {
95       // This is a ProcResGroup. First see if it contributes any cycles or if
96       // it has cycles just from subunits.
97       float RemainingCycles = WPR->ReleaseAtCycle;
98       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
99            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
100            ++SubResIdx) {
101         RemainingCycles -= ProcResUnitUsage[*SubResIdx];
102       }
103       if (RemainingCycles < 0.01f) {
104         // The ProcResGroup contributes no cycles of its own.
105         continue;
106       }
107       // The ProcResGroup contributes `RemainingCycles` cycles of its own.
108       Result.push_back({WPR->ProcResourceIdx,
109                         static_cast<uint16_t>(std::round(RemainingCycles)),
110                         WPR->AcquireAtCycle});
111       // Spread the remaining cycles over all subunits.
112       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
113            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
114            ++SubResIdx) {
115         ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
116       }
117     }
118   }
119   return Result;
120 }
121 
122 // Distributes a pressure budget as evenly as possible on the provided subunits
123 // given the already existing port pressure distribution.
124 //
125 // The algorithm is as follows: while there is remaining pressure to
126 // distribute, find the subunits with minimal pressure, and distribute
127 // remaining pressure equally up to the pressure of the unit with
128 // second-to-minimal pressure.
129 // For example, let's assume we want to distribute 2*P1256
130 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
131 //     DensePressure =        P0   P1   P2   P3   P4   P5   P6   P7
132 //                           0.1  0.3  0.2  0.0  0.0  0.5  0.5  0.5
133 //     RemainingPressure = 2.0
134 // We sort the subunits by pressure:
135 //     Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
136 // We'll first start by the subunits with minimal pressure, which are at
137 // the beginning of the sorted array. In this example there is one (P2).
138 // The subunit with second-to-minimal pressure is the next one in the
139 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
140 // from the budget.
141 //     Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
142 //     RemainingPressure = 1.9
143 // We repeat this process: distribute 0.2 pressure on each of the minimal
144 // P2 and P1, decrease budget by 2*0.2:
145 //     Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
146 //     RemainingPressure = 1.5
147 // There are no second-to-minimal subunits so we just share the remaining
148 // budget (1.5 cycles) equally:
149 //     Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
150 //     RemainingPressure = 0.0
151 // We stop as there is no remaining budget to distribute.
distributePressure(float RemainingPressure,SmallVector<uint16_t,32> Subunits,SmallVector<float,32> & DensePressure)152 static void distributePressure(float RemainingPressure,
153                                SmallVector<uint16_t, 32> Subunits,
154                                SmallVector<float, 32> &DensePressure) {
155   // Find the number of subunits with minimal pressure (they are at the
156   // front).
157   sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
158     return DensePressure[A] < DensePressure[B];
159   });
160   const auto getPressureForSubunit = [&DensePressure,
161                                       &Subunits](size_t I) -> float & {
162     return DensePressure[Subunits[I]];
163   };
164   size_t NumMinimalSU = 1;
165   while (NumMinimalSU < Subunits.size() &&
166          getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
167     ++NumMinimalSU;
168   }
169   while (RemainingPressure > 0.0f) {
170     if (NumMinimalSU == Subunits.size()) {
171       // All units are minimal, just distribute evenly and be done.
172       for (size_t I = 0; I < NumMinimalSU; ++I) {
173         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
174       }
175       return;
176     }
177     // Distribute the remaining pressure equally.
178     const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
179     const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
180     assert(MinimalPressure < SecondToMinimalPressure);
181     const float Increment = SecondToMinimalPressure - MinimalPressure;
182     if (RemainingPressure <= NumMinimalSU * Increment) {
183       // There is not enough remaining pressure.
184       for (size_t I = 0; I < NumMinimalSU; ++I) {
185         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
186       }
187       return;
188     }
189     // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
190     for (size_t I = 0; I < NumMinimalSU; ++I) {
191       getPressureForSubunit(I) = SecondToMinimalPressure;
192       RemainingPressure -= SecondToMinimalPressure;
193     }
194     while (NumMinimalSU < Subunits.size() &&
195            getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
196       ++NumMinimalSU;
197     }
198   }
199 }
200 
201 std::vector<std::pair<uint16_t, float>>
computeIdealizedProcResPressure(const MCSchedModel & SM,SmallVector<MCWriteProcResEntry,8> WPRS)202 computeIdealizedProcResPressure(const MCSchedModel &SM,
203                                 SmallVector<MCWriteProcResEntry, 8> WPRS) {
204   // DensePressure[I] is the port pressure for Proc Resource I.
205   SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
206   sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) {
207     return A.ProcResourceIdx < B.ProcResourceIdx;
208   });
209   for (const MCWriteProcResEntry &WPR : WPRS) {
210     // Get units for the entry.
211     const MCProcResourceDesc *const ProcResDesc =
212         SM.getProcResource(WPR.ProcResourceIdx);
213     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
214       // This is a ProcResUnit.
215       DensePressure[WPR.ProcResourceIdx] += WPR.ReleaseAtCycle;
216     } else {
217       // This is a ProcResGroup.
218       SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
219                                          ProcResDesc->SubUnitsIdxBegin +
220                                              ProcResDesc->NumUnits);
221       distributePressure(WPR.ReleaseAtCycle, Subunits, DensePressure);
222     }
223   }
224   // Turn dense pressure into sparse pressure by removing zero entries.
225   std::vector<std::pair<uint16_t, float>> Pressure;
226   for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
227     if (DensePressure[I] > 0.0f)
228       Pressure.emplace_back(I, DensePressure[I]);
229   }
230   return Pressure;
231 }
232 
ResolvedSchedClass(const MCSubtargetInfo & STI,unsigned ResolvedSchedClassId,bool WasVariant)233 ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI,
234                                        unsigned ResolvedSchedClassId,
235                                        bool WasVariant)
236     : SchedClassId(ResolvedSchedClassId),
237       SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
238       WasVariant(WasVariant),
239       NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
240       IdealizedProcResPressure(computeIdealizedProcResPressure(
241           STI.getSchedModel(), NonRedundantWriteProcRes)) {
242   assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
243          "ResolvedSchedClass should never be variant");
244 }
245 
ResolveVariantSchedClassId(const MCSubtargetInfo & STI,const MCInstrInfo & InstrInfo,unsigned SchedClassId,const MCInst & MCI)246 static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI,
247                                            const MCInstrInfo &InstrInfo,
248                                            unsigned SchedClassId,
249                                            const MCInst &MCI) {
250   const auto &SM = STI.getSchedModel();
251   while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) {
252     SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo,
253                                                 SM.getProcessorID());
254   }
255   return SchedClassId;
256 }
257 
258 std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
resolveSchedClassId(const MCSubtargetInfo & SubtargetInfo,const MCInstrInfo & InstrInfo,const MCInst & MCI)259 ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo,
260                                         const MCInstrInfo &InstrInfo,
261                                         const MCInst &MCI) {
262   unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
263   const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
264                                               .getSchedClassDesc(SchedClassId)
265                                               ->isVariant();
266   SchedClassId =
267       ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI);
268   return std::make_pair(SchedClassId, WasVariant);
269 }
270 
271 // Returns a ProxResIdx by id or name.
findProcResIdx(const MCSubtargetInfo & STI,const StringRef NameOrId)272 static unsigned findProcResIdx(const MCSubtargetInfo &STI,
273                                const StringRef NameOrId) {
274   // Interpret the key as an ProcResIdx.
275   unsigned ProcResIdx = 0;
276   if (to_integer(NameOrId, ProcResIdx, 10))
277     return ProcResIdx;
278   // Interpret the key as a ProcRes name.
279   const auto &SchedModel = STI.getSchedModel();
280   for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
281     if (NameOrId == SchedModel.getProcResource(I)->Name)
282       return I;
283   }
284   return 0;
285 }
286 
getAsPoint(Benchmark::ModeE Mode,const MCSubtargetInfo & STI,ArrayRef<PerInstructionStats> Representative) const287 std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint(
288     Benchmark::ModeE Mode, const MCSubtargetInfo &STI,
289     ArrayRef<PerInstructionStats> Representative) const {
290   const size_t NumMeasurements = Representative.size();
291 
292   std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
293 
294   if (Mode == Benchmark::Latency) {
295     assert(NumMeasurements == 1 && "Latency is a single measure.");
296     BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0];
297 
298     // Find the latency.
299     LatencyMeasure.PerInstructionValue = 0.0;
300 
301     for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) {
302       const MCWriteLatencyEntry *const WLE =
303           STI.getWriteLatencyEntry(SCDesc, I);
304       LatencyMeasure.PerInstructionValue =
305           std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles);
306     }
307   } else if (Mode == Benchmark::Uops) {
308     for (auto I : zip(SchedClassPoint, Representative)) {
309       BenchmarkMeasure &Measure = std::get<0>(I);
310       const PerInstructionStats &Stats = std::get<1>(I);
311 
312       StringRef Key = Stats.key();
313       uint16_t ProcResIdx = findProcResIdx(STI, Key);
314       if (ProcResIdx > 0) {
315         // Find the pressure on ProcResIdx `Key`.
316         const auto ProcResPressureIt =
317             find_if(IdealizedProcResPressure,
318                     [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
319                       return WPR.first == ProcResIdx;
320                     });
321         Measure.PerInstructionValue =
322             ProcResPressureIt == IdealizedProcResPressure.end()
323                 ? 0.0
324                 : ProcResPressureIt->second;
325       } else if (Key == "NumMicroOps") {
326         Measure.PerInstructionValue = SCDesc->NumMicroOps;
327       } else {
328         errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
329                   "name, got "
330                << Key << "\n";
331         return {};
332       }
333     }
334   } else if (Mode == Benchmark::InverseThroughput) {
335     assert(NumMeasurements == 1 && "Inverse Throughput is a single measure.");
336     BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0];
337 
338     RThroughputMeasure.PerInstructionValue =
339         MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
340   } else {
341     llvm_unreachable("unimplemented measurement matching mode");
342   }
343 
344   return SchedClassPoint;
345 }
346 
347 } // namespace exegesis
348 } // namespace llvm
349