xref: /llvm-project/llvm/test/Transforms/SROA/basictest.ll (revision 57a554800b804a0d849858972822142e1f75d37f)
1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2; RUN: opt < %s -passes='sroa<preserve-cfg>' -S | FileCheck %s --check-prefixes=CHECK,CHECK-PRESERVE-CFG
3; RUN: opt < %s -passes='sroa<modify-cfg>' -S | FileCheck %s --check-prefixes=CHECK,CHECK-MODIFY-CFG
4
5target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
6
7declare void @llvm.lifetime.start.p0(i64, ptr nocapture)
8declare void @llvm.lifetime.end.p0(i64, ptr nocapture)
9
10define i32 @test0() {
11; CHECK-LABEL: @test0(
12; CHECK-NEXT:  entry:
13; CHECK-NEXT:    [[V2_INT:%.*]] = bitcast float 0.000000e+00 to i32
14; CHECK-NEXT:    [[SUM1:%.*]] = add i32 0, [[V2_INT]]
15; CHECK-NEXT:    ret i32 [[SUM1]]
16;
17entry:
18  %a1 = alloca i32
19  %a2 = alloca float
20
21  call void @llvm.lifetime.start.p0(i64 4, ptr %a1)
22
23  store i32 0, ptr %a1
24  %v1 = load i32, ptr %a1
25
26  call void @llvm.lifetime.end.p0(i64 4, ptr %a1)
27
28  call void @llvm.lifetime.start.p0(i64 4, ptr %a2)
29
30  store float 0.0, ptr %a2
31  %v2 = load float , ptr %a2
32  %v2.int = bitcast float %v2 to i32
33  %sum1 = add i32 %v1, %v2.int
34
35  call void @llvm.lifetime.end.p0(i64 4, ptr %a2)
36
37  ret i32 %sum1
38}
39
40define i32 @test1() {
41; CHECK-LABEL: @test1(
42; CHECK-NEXT:  entry:
43; CHECK-NEXT:    ret i32 0
44;
45entry:
46  %X = alloca { i32, float }
47  %Y = getelementptr { i32, float }, ptr %X, i64 0, i32 0
48  store i32 0, ptr %Y
49  %Z = load i32, ptr %Y
50  ret i32 %Z
51}
52
53define i64 @test2(i64 %X) {
54; CHECK-LABEL: @test2(
55; CHECK-NEXT:  entry:
56; CHECK-NEXT:    br label [[L2:%.*]]
57; CHECK:       L2:
58; CHECK-NEXT:    ret i64 [[X:%.*]]
59;
60entry:
61  %A = alloca [8 x i8]
62  store i64 %X, ptr %A
63  br label %L2
64
65L2:
66  %Z = load i64, ptr %A
67  ret i64 %Z
68}
69
70define i64 @test2_addrspacecast(i64 %X) {
71; CHECK-LABEL: @test2_addrspacecast(
72; CHECK-NEXT:  entry:
73; CHECK-NEXT:    br label [[L2:%.*]]
74; CHECK:       L2:
75; CHECK-NEXT:    ret i64 [[X:%.*]]
76;
77entry:
78  %A = alloca [8 x i8]
79  %B = addrspacecast ptr %A to ptr addrspace(1)
80  store i64 %X, ptr addrspace(1) %B
81  br label %L2
82
83L2:
84  %Z = load i64, ptr addrspace(1) %B
85  ret i64 %Z
86}
87
88define i64 @test2_addrspacecast_gep(i64 %X, i16 %idx) {
89; CHECK-LABEL: @test2_addrspacecast_gep(
90; CHECK-NEXT:  entry:
91; CHECK-NEXT:    br label [[L2:%.*]]
92; CHECK:       L2:
93; CHECK-NEXT:    ret i64 [[X:%.*]]
94;
95entry:
96  %A = alloca [256 x i8]
97  %B = addrspacecast ptr %A to ptr addrspace(1)
98  %gepA = getelementptr [256 x i8], ptr %A, i16 0, i16 32
99  %gepB = getelementptr i64, ptr addrspace(1) %B, i16 4
100  store i64 %X, ptr addrspace(1) %gepB, align 1
101  br label %L2
102
103L2:
104  %Z = load i64, ptr %gepA, align 1
105  ret i64 %Z
106}
107
108; Avoid crashing when load/storing at at different offsets.
109define i64 @test2_addrspacecast_gep_offset(i64 %X) {
110; CHECK-LABEL: @test2_addrspacecast_gep_offset(
111; CHECK-NEXT:  entry:
112; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca [10 x i8], align 1
113; CHECK-NEXT:    [[A_SROA_0_2_GEPB_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_0]], i16 2
114; CHECK-NEXT:    [[A_SROA_0_2_GEPB_SROA_CAST:%.*]] = addrspacecast ptr [[A_SROA_0_2_GEPB_SROA_IDX]] to ptr addrspace(1)
115; CHECK-NEXT:    store i64 [[X:%.*]], ptr addrspace(1) [[A_SROA_0_2_GEPB_SROA_CAST]], align 1
116; CHECK-NEXT:    br label [[L2:%.*]]
117; CHECK:       L2:
118; CHECK-NEXT:    [[A_SROA_0_0_A_SROA_0_30_Z:%.*]] = load i64, ptr [[A_SROA_0]], align 1
119; CHECK-NEXT:    ret i64 [[A_SROA_0_0_A_SROA_0_30_Z]]
120;
121entry:
122  %A = alloca [256 x i8]
123  %B = addrspacecast ptr %A to ptr addrspace(1)
124  %gepA = getelementptr [256 x i8], ptr %A, i16 0, i16 30
125  %gepB = getelementptr i64, ptr addrspace(1) %B, i16 4
126  store i64 %X, ptr addrspace(1) %gepB, align 1
127  br label %L2
128
129L2:
130  %Z = load i64, ptr %gepA, align 1
131  ret i64 %Z
132}
133
134define void @test3(ptr %dst, ptr align 8 %src) {
135; CHECK-LABEL: @test3(
136; CHECK-NEXT:  entry:
137; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca [42 x i8], align 1
138; CHECK-NEXT:    [[A_SROA_3:%.*]] = alloca [99 x i8], align 1
139; CHECK-NEXT:    [[A_SROA_32:%.*]] = alloca [16 x i8], align 1
140; CHECK-NEXT:    [[A_SROA_15:%.*]] = alloca [42 x i8], align 1
141; CHECK-NEXT:    [[A_SROA_16:%.*]] = alloca [7 x i8], align 1
142; CHECK-NEXT:    [[A_SROA_235:%.*]] = alloca [7 x i8], align 1
143; CHECK-NEXT:    [[A_SROA_31:%.*]] = alloca [85 x i8], align 1
144; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_0]], ptr align 8 [[SRC:%.*]], i32 42, i1 false), !tbaa [[TBAA0:![0-9]+]]
145; CHECK-NEXT:    [[A_SROA_2_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 42
146; CHECK-NEXT:    [[A_SROA_2_0_COPYLOAD:%.*]] = load i8, ptr [[A_SROA_2_0_SRC_SROA_IDX]], align 2, !tbaa [[TBAA0]]
147; CHECK-NEXT:    [[A_SROA_3_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 43
148; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_3]], ptr align 1 [[A_SROA_3_0_SRC_SROA_IDX]], i32 99, i1 false), !tbaa [[TBAA0]]
149; CHECK-NEXT:    [[A_SROA_32_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 142
150; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_32]], ptr align 2 [[A_SROA_32_0_SRC_SROA_IDX]], i32 16, i1 false), !tbaa [[TBAA0]]
151; CHECK-NEXT:    [[A_SROA_15_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 158
152; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_15]], ptr align 2 [[A_SROA_15_0_SRC_SROA_IDX]], i32 42, i1 false), !tbaa [[TBAA0]]
153; CHECK-NEXT:    [[A_SROA_16_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 200
154; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_16]], ptr align 8 [[A_SROA_16_0_SRC_SROA_IDX]], i32 7, i1 false), !tbaa [[TBAA0]]
155; CHECK-NEXT:    [[A_SROA_23_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 207
156; CHECK-NEXT:    [[A_SROA_23_0_COPYLOAD:%.*]] = load i8, ptr [[A_SROA_23_0_SRC_SROA_IDX]], align 1, !tbaa [[TBAA0]]
157; CHECK-NEXT:    [[A_SROA_235_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 208
158; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_235]], ptr align 8 [[A_SROA_235_0_SRC_SROA_IDX]], i32 7, i1 false), !tbaa [[TBAA0]]
159; CHECK-NEXT:    [[A_SROA_31_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 215
160; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_31]], ptr align 1 [[A_SROA_31_0_SRC_SROA_IDX]], i32 85, i1 false), !tbaa [[TBAA0]]
161; CHECK-NEXT:    store i8 1, ptr [[A_SROA_32]], align 1, !tbaa [[TBAA3:![0-9]+]]
162; CHECK-NEXT:    store i16 1, ptr [[A_SROA_32]], align 1, !tbaa [[TBAA5:![0-9]+]]
163; CHECK-NEXT:    store i32 1, ptr [[A_SROA_32]], align 1, !tbaa [[TBAA7:![0-9]+]]
164; CHECK-NEXT:    store i64 1, ptr [[A_SROA_32]], align 1, !tbaa [[TBAA9:![0-9]+]]
165; CHECK-NEXT:    [[A_SROA_32_1_OVERLAP_2_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 1
166; CHECK-NEXT:    store i64 2, ptr [[A_SROA_32_1_OVERLAP_2_I8_SROA_IDX]], align 1, !tbaa [[TBAA11:![0-9]+]]
167; CHECK-NEXT:    [[A_SROA_32_2_OVERLAP_3_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 2
168; CHECK-NEXT:    store i64 3, ptr [[A_SROA_32_2_OVERLAP_3_I8_SROA_IDX]], align 1, !tbaa [[TBAA13:![0-9]+]]
169; CHECK-NEXT:    [[A_SROA_32_3_OVERLAP_4_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 3
170; CHECK-NEXT:    store i64 4, ptr [[A_SROA_32_3_OVERLAP_4_I8_SROA_IDX]], align 1, !tbaa [[TBAA15:![0-9]+]]
171; CHECK-NEXT:    [[A_SROA_32_4_OVERLAP_5_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 4
172; CHECK-NEXT:    store i64 5, ptr [[A_SROA_32_4_OVERLAP_5_I8_SROA_IDX]], align 1, !tbaa [[TBAA17:![0-9]+]]
173; CHECK-NEXT:    [[A_SROA_32_5_OVERLAP_6_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 5
174; CHECK-NEXT:    store i64 6, ptr [[A_SROA_32_5_OVERLAP_6_I8_SROA_IDX]], align 1, !tbaa [[TBAA19:![0-9]+]]
175; CHECK-NEXT:    [[A_SROA_32_6_OVERLAP_7_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 6
176; CHECK-NEXT:    store i64 7, ptr [[A_SROA_32_6_OVERLAP_7_I8_SROA_IDX]], align 1, !tbaa [[TBAA21:![0-9]+]]
177; CHECK-NEXT:    [[A_SROA_32_7_OVERLAP_8_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 7
178; CHECK-NEXT:    store i64 8, ptr [[A_SROA_32_7_OVERLAP_8_I8_SROA_IDX]], align 1, !tbaa [[TBAA23:![0-9]+]]
179; CHECK-NEXT:    [[A_SROA_32_8_OVERLAP_9_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_32]], i64 8
180; CHECK-NEXT:    store i64 9, ptr [[A_SROA_32_8_OVERLAP_9_I8_SROA_IDX]], align 1, !tbaa [[TBAA25:![0-9]+]]
181; CHECK-NEXT:    store i8 1, ptr [[A_SROA_16]], align 1, !tbaa [[TBAA27:![0-9]+]]
182; CHECK-NEXT:    store i16 1, ptr [[A_SROA_16]], align 1, !tbaa [[TBAA29:![0-9]+]]
183; CHECK-NEXT:    store i32 1, ptr [[A_SROA_16]], align 1, !tbaa [[TBAA31:![0-9]+]]
184; CHECK-NEXT:    [[A_SROA_16_1_OVERLAP2_1_1_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_16]], i64 1
185; CHECK-NEXT:    store i32 2, ptr [[A_SROA_16_1_OVERLAP2_1_1_I8_SROA_IDX]], align 1, !tbaa [[TBAA33:![0-9]+]]
186; CHECK-NEXT:    [[A_SROA_16_2_OVERLAP2_1_2_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_16]], i64 2
187; CHECK-NEXT:    store i32 3, ptr [[A_SROA_16_2_OVERLAP2_1_2_I8_SROA_IDX]], align 1, !tbaa [[TBAA35:![0-9]+]]
188; CHECK-NEXT:    [[A_SROA_16_3_OVERLAP2_1_3_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_16]], i64 3
189; CHECK-NEXT:    store i32 4, ptr [[A_SROA_16_3_OVERLAP2_1_3_I8_SROA_IDX]], align 1, !tbaa [[TBAA37:![0-9]+]]
190; CHECK-NEXT:    store i32 1, ptr [[A_SROA_235]], align 1, !tbaa [[TBAA39:![0-9]+]]
191; CHECK-NEXT:    [[A_SROA_235_1_OVERLAP2_2_1_I8_SROA_IDX11:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_235]], i64 1
192; CHECK-NEXT:    store i8 1, ptr [[A_SROA_235_1_OVERLAP2_2_1_I8_SROA_IDX11]], align 1, !tbaa [[TBAA41:![0-9]+]]
193; CHECK-NEXT:    [[A_SROA_235_1_OVERLAP2_2_1_I8_SROA_IDX10:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_235]], i64 1
194; CHECK-NEXT:    store i16 1, ptr [[A_SROA_235_1_OVERLAP2_2_1_I8_SROA_IDX10]], align 1, !tbaa [[TBAA43:![0-9]+]]
195; CHECK-NEXT:    [[A_SROA_235_1_OVERLAP2_2_1_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_235]], i64 1
196; CHECK-NEXT:    store i32 1, ptr [[A_SROA_235_1_OVERLAP2_2_1_I8_SROA_IDX]], align 1, !tbaa [[TBAA45:![0-9]+]]
197; CHECK-NEXT:    [[A_SROA_235_2_OVERLAP2_2_2_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_235]], i64 2
198; CHECK-NEXT:    store i32 3, ptr [[A_SROA_235_2_OVERLAP2_2_2_I8_SROA_IDX]], align 1, !tbaa [[TBAA47:![0-9]+]]
199; CHECK-NEXT:    [[A_SROA_235_3_OVERLAP2_2_3_I8_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_235]], i64 3
200; CHECK-NEXT:    store i32 4, ptr [[A_SROA_235_3_OVERLAP2_2_3_I8_SROA_IDX]], align 1, !tbaa [[TBAA49:![0-9]+]]
201; CHECK-NEXT:    [[A_SROA_15_197_OVERLAP2_PREFIX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_15]], i64 39
202; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_15_197_OVERLAP2_PREFIX_SROA_IDX]], ptr align 1 [[SRC]], i32 3, i1 false), !tbaa [[TBAA51:![0-9]+]]
203; CHECK-NEXT:    [[A_SROA_16_197_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 3
204; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_16]], ptr align 1 [[A_SROA_16_197_SRC_SROA_IDX]], i32 5, i1 false), !tbaa [[TBAA51]]
205; CHECK-NEXT:    [[A_SROA_16_2_OVERLAP2_1_2_I8_SROA_IDX12:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_16]], i64 2
206; CHECK-NEXT:    call void @llvm.memset.p0.i32(ptr align 1 [[A_SROA_16_2_OVERLAP2_1_2_I8_SROA_IDX12]], i8 42, i32 5, i1 false), !tbaa [[TBAA53:![0-9]+]]
207; CHECK-NEXT:    call void @llvm.memset.p0.i32(ptr align 1 [[A_SROA_235]], i8 42, i32 2, i1 false), !tbaa [[TBAA53]]
208; CHECK-NEXT:    [[A_SROA_235_209_OVERLAP2_2_1_I8_SROA_IDX8:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_235]], i64 1
209; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_235_209_OVERLAP2_2_1_I8_SROA_IDX8]], ptr align 1 [[SRC]], i32 5, i1 false), !tbaa [[TBAA55:![0-9]+]]
210; CHECK-NEXT:    [[A_SROA_235_210_OVERLAP2_2_2_I8_SROA_IDX9:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_235]], i64 2
211; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_235_210_OVERLAP2_2_2_I8_SROA_IDX9]], ptr align 1 [[SRC]], i32 5, i1 false), !tbaa [[TBAA57:![0-9]+]]
212; CHECK-NEXT:    [[A_SROA_31_210_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 5
213; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_31]], ptr align 1 [[A_SROA_31_210_SRC_SROA_IDX]], i32 3, i1 false), !tbaa [[TBAA57]]
214; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[DST:%.*]], ptr align 1 [[A_SROA_0]], i32 42, i1 false), !tbaa [[TBAA59:![0-9]+]]
215; CHECK-NEXT:    [[A_SROA_2_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 42
216; CHECK-NEXT:    store i8 0, ptr [[A_SROA_2_0_DST_SROA_IDX]], align 1, !tbaa [[TBAA59]]
217; CHECK-NEXT:    [[A_SROA_3_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 43
218; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_3_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_3]], i32 99, i1 false), !tbaa [[TBAA59]]
219; CHECK-NEXT:    [[A_SROA_32_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 142
220; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_32_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_32]], i32 16, i1 false), !tbaa [[TBAA59]]
221; CHECK-NEXT:    [[A_SROA_15_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 158
222; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_15_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_15]], i32 42, i1 false), !tbaa [[TBAA59]]
223; CHECK-NEXT:    [[A_SROA_16_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 200
224; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_16_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_16]], i32 7, i1 false), !tbaa [[TBAA59]]
225; CHECK-NEXT:    [[A_SROA_23_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 207
226; CHECK-NEXT:    store i8 42, ptr [[A_SROA_23_0_DST_SROA_IDX]], align 1, !tbaa [[TBAA59]]
227; CHECK-NEXT:    [[A_SROA_235_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 208
228; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_235_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_235]], i32 7, i1 false), !tbaa [[TBAA59]]
229; CHECK-NEXT:    [[A_SROA_31_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 215
230; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_31_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_31]], i32 85, i1 false), !tbaa [[TBAA59]]
231; CHECK-NEXT:    ret void
232;
233entry:
234  %a = alloca [300 x i8]
235
236  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr align 8 %src, i32 300, i1 false), !tbaa !0
237
238  ; Clobber a single element of the array, this should be promotable, and be deleted.
239  %c = getelementptr [300 x i8], ptr %a, i64 0, i64 42
240  store i8 0, ptr %c
241
242  ; Make a sequence of overlapping stores to the array. These overlap both in
243  ; forward strides and in shrinking accesses.
244  %overlap.1.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 142
245  %overlap.2.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 143
246  %overlap.3.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 144
247  %overlap.4.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 145
248  %overlap.5.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 146
249  %overlap.6.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 147
250  %overlap.7.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 148
251  %overlap.8.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 149
252  %overlap.9.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 150
253  store i8 1, ptr %overlap.1.i8, !tbaa !3
254  store i16 1, ptr %overlap.1.i8, !tbaa !5
255  store i32 1, ptr %overlap.1.i8, !tbaa !7
256  store i64 1, ptr %overlap.1.i8, !tbaa !9
257  store i64 2, ptr %overlap.2.i8, !tbaa !11
258  store i64 3, ptr %overlap.3.i8, !tbaa !13
259  store i64 4, ptr %overlap.4.i8, !tbaa !15
260  store i64 5, ptr %overlap.5.i8, !tbaa !17
261  store i64 6, ptr %overlap.6.i8, !tbaa !19
262  store i64 7, ptr %overlap.7.i8, !tbaa !21
263  store i64 8, ptr %overlap.8.i8, !tbaa !23
264  store i64 9, ptr %overlap.9.i8, !tbaa !25
265
266  ; Make two sequences of overlapping stores with more gaps and irregularities.
267  %overlap2.1.0.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 200
268  %overlap2.1.1.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 201
269  %overlap2.1.2.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 202
270  %overlap2.1.3.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 203
271
272  %overlap2.2.0.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 208
273  %overlap2.2.1.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 209
274  %overlap2.2.2.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 210
275  %overlap2.2.3.i8 = getelementptr [300 x i8], ptr %a, i64 0, i64 211
276
277  store i8 1,  ptr  %overlap2.1.0.i8, !tbaa !27
278  store i16 1, ptr %overlap2.1.0.i8, !tbaa !29
279  store i32 1, ptr %overlap2.1.0.i8, !tbaa !31
280  store i32 2, ptr %overlap2.1.1.i8, !tbaa !33
281  store i32 3, ptr %overlap2.1.2.i8, !tbaa !35
282  store i32 4, ptr %overlap2.1.3.i8, !tbaa !37
283
284  store i32 1, ptr %overlap2.2.0.i8, !tbaa !39
285  store i8 1,  ptr  %overlap2.2.1.i8, !tbaa !41
286  store i16 1, ptr %overlap2.2.1.i8, !tbaa !43
287  store i32 1, ptr %overlap2.2.1.i8, !tbaa !45
288  store i32 3, ptr %overlap2.2.2.i8, !tbaa !47
289  store i32 4, ptr %overlap2.2.3.i8, !tbaa !49
290
291  %overlap2.prefix = getelementptr i8, ptr %overlap2.1.1.i8, i64 -4
292  call void @llvm.memcpy.p0.p0.i32(ptr %overlap2.prefix, ptr %src, i32 8, i1 false), !tbaa !51
293
294  ; Bridge between the overlapping areas
295  call void @llvm.memset.p0.i32(ptr %overlap2.1.2.i8, i8 42, i32 8, i1 false), !tbaa !53
296; ...promoted i8 store...
297
298  ; Entirely within the second overlap.
299  call void @llvm.memcpy.p0.p0.i32(ptr %overlap2.2.1.i8, ptr %src, i32 5, i1 false), !tbaa !55
300
301  ; Trailing past the second overlap.
302  call void @llvm.memcpy.p0.p0.i32(ptr %overlap2.2.2.i8, ptr %src, i32 8, i1 false), !tbaa !57
303
304  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %a, i32 300, i1 false), !tbaa !59
305
306  ret void
307}
308
309define void @test4(ptr %dst, ptr %src) {
310; CHECK-LABEL: @test4(
311; CHECK-NEXT:  entry:
312; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca [20 x i8], align 1
313; CHECK-NEXT:    [[A_SROA_2_SROA_4:%.*]] = alloca [7 x i8], align 1
314; CHECK-NEXT:    [[A_SROA_3:%.*]] = alloca [10 x i8], align 1
315; CHECK-NEXT:    [[A_SROA_31_SROA_5:%.*]] = alloca [7 x i8], align 1
316; CHECK-NEXT:    [[A_SROA_6_SROA_4:%.*]] = alloca [7 x i8], align 1
317; CHECK-NEXT:    [[A_SROA_7:%.*]] = alloca [40 x i8], align 1
318; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_0]], ptr align 1 [[SRC:%.*]], i32 20, i1 false), !tbaa [[TBAA0]]
319; CHECK-NEXT:    [[A_SROA_2_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 20
320; CHECK-NEXT:    [[A_SROA_2_SROA_0_0_COPYLOAD:%.*]] = load i16, ptr [[A_SROA_2_0_SRC_SROA_IDX]], align 1, !tbaa [[TBAA0]]
321; CHECK-NEXT:    [[A_SROA_2_SROA_3_0_A_SROA_2_0_SRC_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_2_0_SRC_SROA_IDX]], i64 2
322; CHECK-NEXT:    [[A_SROA_2_SROA_3_0_COPYLOAD:%.*]] = load i8, ptr [[A_SROA_2_SROA_3_0_A_SROA_2_0_SRC_SROA_IDX_SROA_IDX]], align 1, !tbaa [[TBAA0]]
323; CHECK-NEXT:    [[A_SROA_2_SROA_4_0_A_SROA_2_0_SRC_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_2_0_SRC_SROA_IDX]], i64 3
324; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_2_SROA_4]], ptr align 1 [[A_SROA_2_SROA_4_0_A_SROA_2_0_SRC_SROA_IDX_SROA_IDX]], i32 7, i1 false), !tbaa [[TBAA0]]
325; CHECK-NEXT:    [[A_SROA_3_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 30
326; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_3]], ptr align 1 [[A_SROA_3_0_SRC_SROA_IDX]], i32 10, i1 false), !tbaa [[TBAA0]]
327; CHECK-NEXT:    [[A_SROA_31_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 40
328; CHECK-NEXT:    [[A_SROA_31_SROA_0_0_COPYLOAD:%.*]] = load i16, ptr [[A_SROA_31_0_SRC_SROA_IDX]], align 1, !tbaa [[TBAA0]]
329; CHECK-NEXT:    [[A_SROA_31_SROA_4_0_A_SROA_31_0_SRC_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_31_0_SRC_SROA_IDX]], i64 2
330; CHECK-NEXT:    [[A_SROA_31_SROA_4_0_COPYLOAD:%.*]] = load i8, ptr [[A_SROA_31_SROA_4_0_A_SROA_31_0_SRC_SROA_IDX_SROA_IDX]], align 1, !tbaa [[TBAA0]]
331; CHECK-NEXT:    [[A_SROA_31_SROA_5_0_A_SROA_31_0_SRC_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_31_0_SRC_SROA_IDX]], i64 3
332; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_31_SROA_5]], ptr align 1 [[A_SROA_31_SROA_5_0_A_SROA_31_0_SRC_SROA_IDX_SROA_IDX]], i32 7, i1 false), !tbaa [[TBAA0]]
333; CHECK-NEXT:    [[A_SROA_6_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 50
334; CHECK-NEXT:    [[A_SROA_6_SROA_0_0_COPYLOAD:%.*]] = load i16, ptr [[A_SROA_6_0_SRC_SROA_IDX]], align 1, !tbaa [[TBAA0]]
335; CHECK-NEXT:    [[A_SROA_6_SROA_3_0_A_SROA_6_0_SRC_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_6_0_SRC_SROA_IDX]], i64 2
336; CHECK-NEXT:    [[A_SROA_6_SROA_3_0_COPYLOAD:%.*]] = load i8, ptr [[A_SROA_6_SROA_3_0_A_SROA_6_0_SRC_SROA_IDX_SROA_IDX]], align 1, !tbaa [[TBAA0]]
337; CHECK-NEXT:    [[A_SROA_6_SROA_4_0_A_SROA_6_0_SRC_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_6_0_SRC_SROA_IDX]], i64 3
338; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_6_SROA_4]], ptr align 1 [[A_SROA_6_SROA_4_0_A_SROA_6_0_SRC_SROA_IDX_SROA_IDX]], i32 7, i1 false), !tbaa [[TBAA0]]
339; CHECK-NEXT:    [[A_SROA_7_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 60
340; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_7]], ptr align 1 [[A_SROA_7_0_SRC_SROA_IDX]], i32 40, i1 false), !tbaa [[TBAA0]]
341; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_31_SROA_5]], ptr align 1 [[A_SROA_2_SROA_4]], i32 7, i1 false), !tbaa [[TBAA3]]
342; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_31_SROA_5]], ptr align 1 [[A_SROA_6_SROA_4]], i32 7, i1 false), !tbaa [[TBAA5]]
343; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[DST:%.*]], ptr align 1 [[A_SROA_0]], i32 20, i1 false), !tbaa [[TBAA7]]
344; CHECK-NEXT:    [[A_SROA_2_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 20
345; CHECK-NEXT:    store i16 [[A_SROA_2_SROA_0_0_COPYLOAD]], ptr [[A_SROA_2_0_DST_SROA_IDX]], align 1, !tbaa [[TBAA7]]
346; CHECK-NEXT:    [[A_SROA_2_SROA_3_0_A_SROA_2_0_DST_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_2_0_DST_SROA_IDX]], i64 2
347; CHECK-NEXT:    store i8 [[A_SROA_2_SROA_3_0_COPYLOAD]], ptr [[A_SROA_2_SROA_3_0_A_SROA_2_0_DST_SROA_IDX_SROA_IDX]], align 1, !tbaa [[TBAA7]]
348; CHECK-NEXT:    [[A_SROA_2_SROA_4_0_A_SROA_2_0_DST_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_2_0_DST_SROA_IDX]], i64 3
349; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_2_SROA_4_0_A_SROA_2_0_DST_SROA_IDX_SROA_IDX]], ptr align 1 [[A_SROA_2_SROA_4]], i32 7, i1 false), !tbaa [[TBAA7]]
350; CHECK-NEXT:    [[A_SROA_3_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 30
351; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_3_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_3]], i32 10, i1 false), !tbaa [[TBAA7]]
352; CHECK-NEXT:    [[A_SROA_31_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 40
353; CHECK-NEXT:    store i16 [[A_SROA_6_SROA_0_0_COPYLOAD]], ptr [[A_SROA_31_0_DST_SROA_IDX]], align 1, !tbaa [[TBAA7]]
354; CHECK-NEXT:    [[A_SROA_31_SROA_4_0_A_SROA_31_0_DST_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_31_0_DST_SROA_IDX]], i64 2
355; CHECK-NEXT:    store i8 [[A_SROA_6_SROA_3_0_COPYLOAD]], ptr [[A_SROA_31_SROA_4_0_A_SROA_31_0_DST_SROA_IDX_SROA_IDX]], align 1, !tbaa [[TBAA7]]
356; CHECK-NEXT:    [[A_SROA_31_SROA_5_0_A_SROA_31_0_DST_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_31_0_DST_SROA_IDX]], i64 3
357; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_31_SROA_5_0_A_SROA_31_0_DST_SROA_IDX_SROA_IDX]], ptr align 1 [[A_SROA_31_SROA_5]], i32 7, i1 false), !tbaa [[TBAA7]]
358; CHECK-NEXT:    [[A_SROA_6_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 50
359; CHECK-NEXT:    store i16 [[A_SROA_6_SROA_0_0_COPYLOAD]], ptr [[A_SROA_6_0_DST_SROA_IDX]], align 1, !tbaa [[TBAA7]]
360; CHECK-NEXT:    [[A_SROA_6_SROA_3_0_A_SROA_6_0_DST_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_6_0_DST_SROA_IDX]], i64 2
361; CHECK-NEXT:    store i8 [[A_SROA_6_SROA_3_0_COPYLOAD]], ptr [[A_SROA_6_SROA_3_0_A_SROA_6_0_DST_SROA_IDX_SROA_IDX]], align 1, !tbaa [[TBAA7]]
362; CHECK-NEXT:    [[A_SROA_6_SROA_4_0_A_SROA_6_0_DST_SROA_IDX_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A_SROA_6_0_DST_SROA_IDX]], i64 3
363; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_6_SROA_4_0_A_SROA_6_0_DST_SROA_IDX_SROA_IDX]], ptr align 1 [[A_SROA_6_SROA_4]], i32 7, i1 false), !tbaa [[TBAA7]]
364; CHECK-NEXT:    [[A_SROA_7_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 60
365; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_7_0_DST_SROA_IDX]], ptr align 1 [[A_SROA_7]], i32 40, i1 false), !tbaa [[TBAA7]]
366; CHECK-NEXT:    ret void
367;
368entry:
369  %a = alloca [100 x i8]
370
371  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %src, i32 100, i1 false), !tbaa !0
372
373  %a.src.1 = getelementptr [100 x i8], ptr %a, i64 0, i64 20
374  %a.dst.1 = getelementptr [100 x i8], ptr %a, i64 0, i64 40
375  call void @llvm.memcpy.p0.p0.i32(ptr %a.dst.1, ptr %a.src.1, i32 10, i1 false), !tbaa !3
376
377  ; Clobber a single element of the array, this should be promotable, and be deleted.
378  %c = getelementptr [100 x i8], ptr %a, i64 0, i64 42
379  store i8 0, ptr %c
380
381  %a.src.2 = getelementptr [100 x i8], ptr %a, i64 0, i64 50
382  call void @llvm.memmove.p0.p0.i32(ptr %a.dst.1, ptr %a.src.2, i32 10, i1 false), !tbaa !5
383
384  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %a, i32 100, i1 false), !tbaa !7
385
386  ret void
387}
388
389declare void @llvm.memcpy.p0.p0.i32(ptr nocapture, ptr nocapture, i32, i1) nounwind
390declare void @llvm.memcpy.p1.p0.i32(ptr addrspace(1) nocapture, ptr nocapture, i32, i1) nounwind
391declare void @llvm.memmove.p0.p0.i32(ptr nocapture, ptr nocapture, i32, i1) nounwind
392declare void @llvm.memset.p0.i32(ptr nocapture, i8, i32, i1) nounwind
393
394define i16 @test5() {
395; CHECK-LABEL: @test5(
396; CHECK-NEXT:  entry:
397; CHECK-NEXT:    [[TMP0:%.*]] = bitcast float 0.000000e+00 to i32
398; CHECK-NEXT:    [[A_SROA_0_2_EXTRACT_SHIFT:%.*]] = lshr i32 [[TMP0]], 16
399; CHECK-NEXT:    [[A_SROA_0_2_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_0_2_EXTRACT_SHIFT]] to i16
400; CHECK-NEXT:    ret i16 [[A_SROA_0_2_EXTRACT_TRUNC]]
401;
402entry:
403  %a = alloca [4 x i8]
404  store float 0.0, ptr %a
405  %ptr = getelementptr [4 x i8], ptr %a, i32 0, i32 2
406  %val = load i16, ptr %ptr
407  ret i16 %val
408}
409
410define i16 @test5_multi_addrspace_access() {
411; CHECK-LABEL: @test5_multi_addrspace_access(
412; CHECK-NEXT:  entry:
413; CHECK-NEXT:    [[TMP0:%.*]] = bitcast float 0.000000e+00 to i32
414; CHECK-NEXT:    [[A_SROA_0_2_EXTRACT_SHIFT:%.*]] = lshr i32 [[TMP0]], 16
415; CHECK-NEXT:    [[A_SROA_0_2_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_0_2_EXTRACT_SHIFT]] to i16
416; CHECK-NEXT:    ret i16 [[A_SROA_0_2_EXTRACT_TRUNC]]
417;
418entry:
419  %a = alloca [4 x i8]
420  %fptr.as1 = addrspacecast ptr %a to ptr addrspace(1)
421  store float 0.0, ptr addrspace(1) %fptr.as1
422  %ptr = getelementptr [4 x i8], ptr %a, i32 0, i32 2
423  %val = load i16, ptr %ptr
424  ret i16 %val
425}
426
427define i32 @test6() {
428; CHECK-LABEL: @test6(
429; CHECK-NEXT:  entry:
430; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca i32, align 4
431; CHECK-NEXT:    store volatile i32 707406378, ptr [[A_SROA_0]], align 4
432; CHECK-NEXT:    [[A_SROA_0_0_A_SROA_0_0_VAL:%.*]] = load i32, ptr [[A_SROA_0]], align 4
433; CHECK-NEXT:    ret i32 [[A_SROA_0_0_A_SROA_0_0_VAL]]
434;
435entry:
436  %a = alloca [4 x i8]
437  call void @llvm.memset.p0.i32(ptr %a, i8 42, i32 4, i1 true)
438  %val = load i32, ptr %a
439  ret i32 %val
440}
441
442define void @test7(ptr %src, ptr %dst) {
443; CHECK-LABEL: @test7(
444; CHECK-NEXT:  entry:
445; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca i32, align 4
446; CHECK-NEXT:    [[A_SROA_0_0_COPYLOAD:%.*]] = load volatile i32, ptr [[SRC:%.*]], align 1, !tbaa [[TBAA0]]
447; CHECK-NEXT:    store volatile i32 [[A_SROA_0_0_COPYLOAD]], ptr [[A_SROA_0]], align 4, !tbaa [[TBAA0]]
448; CHECK-NEXT:    [[A_SROA_0_0_A_SROA_0_0_COPYLOAD1:%.*]] = load volatile i32, ptr [[A_SROA_0]], align 4, !tbaa [[TBAA3]]
449; CHECK-NEXT:    store volatile i32 [[A_SROA_0_0_A_SROA_0_0_COPYLOAD1]], ptr [[DST:%.*]], align 1, !tbaa [[TBAA3]]
450; CHECK-NEXT:    ret void
451;
452entry:
453  %a = alloca [4 x i8]
454  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %src, i32 4, i1 true), !tbaa !0
455  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %a, i32 4, i1 true), !tbaa !3
456  ret void
457}
458
459
460%S1 = type { i32, i32, [16 x i8] }
461%S2 = type { ptr, ptr }
462
463define %S2 @test8(ptr %arg) {
464; CHECK-LABEL: @test8(
465; CHECK-NEXT:  entry:
466; CHECK-NEXT:    [[S2_NEXT_PTR:%.*]] = getelementptr [[S2:%.*]], ptr [[ARG:%.*]], i64 0, i32 1
467; CHECK-NEXT:    [[S2_NEXT:%.*]] = load ptr, ptr [[S2_NEXT_PTR]], align 8, !tbaa [[TBAA0]]
468; CHECK-NEXT:    [[S2_NEXT_S1:%.*]] = load ptr, ptr [[S2_NEXT]], align 8, !tbaa [[TBAA3]]
469; CHECK-NEXT:    [[S2_NEXT_NEXT_PTR:%.*]] = getelementptr [[S2]], ptr [[S2_NEXT]], i64 0, i32 1
470; CHECK-NEXT:    [[S2_NEXT_NEXT:%.*]] = load ptr, ptr [[S2_NEXT_NEXT_PTR]], align 8, !tbaa [[TBAA7]]
471; CHECK-NEXT:    [[RESULT1:%.*]] = insertvalue [[S2]] poison, ptr [[S2_NEXT_S1]], 0
472; CHECK-NEXT:    [[RESULT2:%.*]] = insertvalue [[S2]] [[RESULT1]], ptr [[S2_NEXT_NEXT]], 1
473; CHECK-NEXT:    ret [[S2]] [[RESULT2]]
474;
475entry:
476  %new = alloca %S2
477
478  %s2.next.ptr = getelementptr %S2, ptr %arg, i64 0, i32 1
479  %s2.next = load ptr, ptr %s2.next.ptr, !tbaa !0
480
481  %s2.next.s1 = load ptr, ptr %s2.next, !tbaa !3
482  store ptr %s2.next.s1, ptr %new, !tbaa !5
483  %s2.next.next.ptr = getelementptr %S2, ptr %s2.next, i64 0, i32 1
484  %s2.next.next = load ptr, ptr %s2.next.next.ptr, !tbaa !7
485  %new.next.ptr = getelementptr %S2, ptr %new, i64 0, i32 1
486  store ptr %s2.next.next, ptr %new.next.ptr, !tbaa !9
487
488  %new.s1 = load ptr, ptr %new
489  %result1 = insertvalue %S2 poison, ptr %new.s1, 0
490  %new.next = load ptr, ptr %new.next.ptr
491  %result2 = insertvalue %S2 %result1, ptr %new.next, 1
492  ret %S2 %result2
493}
494
495define i64 @test9() {
496; Ensure we can handle loads off the end of an alloca even when wrapped in
497; weird bit casts and types. This is valid IR due to the alignment and masking
498; off the bits past the end of the alloca.
499;
500;
501; CHECK-LABEL: @test9(
502; CHECK-NEXT:  entry:
503; CHECK-NEXT:    [[A_SROA_3_0_INSERT_EXT:%.*]] = zext i8 26 to i64
504; CHECK-NEXT:    [[A_SROA_3_0_INSERT_SHIFT:%.*]] = shl i64 [[A_SROA_3_0_INSERT_EXT]], 16
505; CHECK-NEXT:    [[A_SROA_3_0_INSERT_MASK:%.*]] = and i64 undef, -16711681
506; CHECK-NEXT:    [[A_SROA_3_0_INSERT_INSERT:%.*]] = or i64 [[A_SROA_3_0_INSERT_MASK]], [[A_SROA_3_0_INSERT_SHIFT]]
507; CHECK-NEXT:    [[A_SROA_2_0_INSERT_EXT:%.*]] = zext i8 0 to i64
508; CHECK-NEXT:    [[A_SROA_2_0_INSERT_SHIFT:%.*]] = shl i64 [[A_SROA_2_0_INSERT_EXT]], 8
509; CHECK-NEXT:    [[A_SROA_2_0_INSERT_MASK:%.*]] = and i64 [[A_SROA_3_0_INSERT_INSERT]], -65281
510; CHECK-NEXT:    [[A_SROA_2_0_INSERT_INSERT:%.*]] = or i64 [[A_SROA_2_0_INSERT_MASK]], [[A_SROA_2_0_INSERT_SHIFT]]
511; CHECK-NEXT:    [[A_SROA_0_0_INSERT_EXT:%.*]] = zext i8 0 to i64
512; CHECK-NEXT:    [[A_SROA_0_0_INSERT_MASK:%.*]] = and i64 [[A_SROA_2_0_INSERT_INSERT]], -256
513; CHECK-NEXT:    [[A_SROA_0_0_INSERT_INSERT:%.*]] = or i64 [[A_SROA_0_0_INSERT_MASK]], [[A_SROA_0_0_INSERT_EXT]]
514; CHECK-NEXT:    [[RESULT:%.*]] = and i64 [[A_SROA_0_0_INSERT_INSERT]], 16777215
515; CHECK-NEXT:    ret i64 [[RESULT]]
516;
517entry:
518  %a = alloca { [3 x i8] }, align 8
519  store i8 0, ptr %a, align 1
520  %gep2 = getelementptr inbounds { [3 x i8] }, ptr %a, i32 0, i32 0, i32 1
521  store i8 0, ptr %gep2, align 1
522  %gep3 = getelementptr inbounds { [3 x i8] }, ptr %a, i32 0, i32 0, i32 2
523  store i8 26, ptr %gep3, align 1
524  %load = load i64, ptr %a
525  %result = and i64 %load, 16777215
526  ret i64 %result
527}
528
529define ptr @test10() {
530; CHECK-LABEL: @test10(
531; CHECK-NEXT:  entry:
532; CHECK-NEXT:    [[TMP0:%.*]] = ptrtoint ptr null to i64
533; CHECK-NEXT:    ret ptr null
534;
535entry:
536  %a = alloca [8 x i8]
537  call void @llvm.memset.p0.i32(ptr %a, i8 0, i32 8, i1 false)
538  %s2ptr = load ptr, ptr %a
539  ret ptr %s2ptr
540}
541
542define i32 @test11(i1 %c1) {
543; CHECK-LABEL: @test11(
544; CHECK-NEXT:  entry:
545; CHECK-NEXT:    br i1 [[C1:%.*]], label [[GOOD:%.*]], label [[BAD:%.*]]
546; CHECK:       good:
547; CHECK-NEXT:    ret i32 0
548; CHECK:       bad:
549; CHECK-NEXT:    ret i32 poison
550;
551entry:
552  %X = alloca i32
553  br i1 %c1, label %good, label %bad
554
555good:
556  store i32 0, ptr %X
557  %Z = load i32, ptr %X
558  ret i32 %Z
559
560bad:
561  %Y2 = getelementptr i32, ptr %X, i64 1
562  store i32 0, ptr %Y2
563  %Z2 = load i32, ptr %Y2
564  ret i32 %Z2
565}
566
567define i8 @test12() {
568; We fully promote these to the i24 load or store size, resulting in just masks
569; and other operations that instcombine will fold, but no alloca.
570;
571;
572; CHECK-LABEL: @test12(
573; CHECK-NEXT:  entry:
574; CHECK-NEXT:    [[A_SROA_3_0_INSERT_EXT:%.*]] = zext i8 0 to i24
575; CHECK-NEXT:    [[A_SROA_3_0_INSERT_SHIFT:%.*]] = shl i24 [[A_SROA_3_0_INSERT_EXT]], 16
576; CHECK-NEXT:    [[A_SROA_3_0_INSERT_MASK:%.*]] = and i24 undef, 65535
577; CHECK-NEXT:    [[A_SROA_3_0_INSERT_INSERT:%.*]] = or i24 [[A_SROA_3_0_INSERT_MASK]], [[A_SROA_3_0_INSERT_SHIFT]]
578; CHECK-NEXT:    [[A_SROA_2_0_INSERT_EXT:%.*]] = zext i8 0 to i24
579; CHECK-NEXT:    [[A_SROA_2_0_INSERT_SHIFT:%.*]] = shl i24 [[A_SROA_2_0_INSERT_EXT]], 8
580; CHECK-NEXT:    [[A_SROA_2_0_INSERT_MASK:%.*]] = and i24 [[A_SROA_3_0_INSERT_INSERT]], -65281
581; CHECK-NEXT:    [[A_SROA_2_0_INSERT_INSERT:%.*]] = or i24 [[A_SROA_2_0_INSERT_MASK]], [[A_SROA_2_0_INSERT_SHIFT]]
582; CHECK-NEXT:    [[A_SROA_0_0_INSERT_EXT:%.*]] = zext i8 0 to i24
583; CHECK-NEXT:    [[A_SROA_0_0_INSERT_MASK:%.*]] = and i24 [[A_SROA_2_0_INSERT_INSERT]], -256
584; CHECK-NEXT:    [[A_SROA_0_0_INSERT_INSERT:%.*]] = or i24 [[A_SROA_0_0_INSERT_MASK]], [[A_SROA_0_0_INSERT_EXT]]
585; CHECK-NEXT:    [[B_SROA_0_0_EXTRACT_TRUNC:%.*]] = trunc i24 [[A_SROA_0_0_INSERT_INSERT]] to i8
586; CHECK-NEXT:    [[B_SROA_2_0_EXTRACT_SHIFT:%.*]] = lshr i24 [[A_SROA_0_0_INSERT_INSERT]], 8
587; CHECK-NEXT:    [[B_SROA_2_0_EXTRACT_TRUNC:%.*]] = trunc i24 [[B_SROA_2_0_EXTRACT_SHIFT]] to i8
588; CHECK-NEXT:    [[B_SROA_3_0_EXTRACT_SHIFT:%.*]] = lshr i24 [[A_SROA_0_0_INSERT_INSERT]], 16
589; CHECK-NEXT:    [[B_SROA_3_0_EXTRACT_TRUNC:%.*]] = trunc i24 [[B_SROA_3_0_EXTRACT_SHIFT]] to i8
590; CHECK-NEXT:    [[BSUM0:%.*]] = add i8 [[B_SROA_0_0_EXTRACT_TRUNC]], [[B_SROA_2_0_EXTRACT_TRUNC]]
591; CHECK-NEXT:    [[BSUM1:%.*]] = add i8 [[BSUM0]], [[B_SROA_3_0_EXTRACT_TRUNC]]
592; CHECK-NEXT:    ret i8 [[BSUM1]]
593;
594entry:
595  %a = alloca [3 x i8]
596  %b = alloca [3 x i8]
597
598  store i8 0, ptr %a
599  %a1ptr = getelementptr [3 x i8], ptr %a, i64 0, i32 1
600  store i8 0, ptr %a1ptr
601  %a2ptr = getelementptr [3 x i8], ptr %a, i64 0, i32 2
602  store i8 0, ptr %a2ptr
603  %ai = load i24, ptr %a
604
605  store i24 %ai, ptr %b
606  %b0 = load i8, ptr %b
607  %b1ptr = getelementptr [3 x i8], ptr %b, i64 0, i32 1
608  %b1 = load i8, ptr %b1ptr
609  %b2ptr = getelementptr [3 x i8], ptr %b, i64 0, i32 2
610  %b2 = load i8, ptr %b2ptr
611
612  %bsum0 = add i8 %b0, %b1
613  %bsum1 = add i8 %bsum0, %b2
614  ret i8 %bsum1
615}
616
617define i32 @test13() {
618; Ensure we don't crash and handle undefined loads that straddle the end of the
619; allocation.
620;
621; CHECK-LABEL: @test13(
622; CHECK-NEXT:  entry:
623; CHECK-NEXT:    [[A_SROA_2_2_LOAD_EXT:%.*]] = zext i8 0 to i16
624; CHECK-NEXT:    [[RET:%.*]] = zext i16 [[A_SROA_2_2_LOAD_EXT]] to i32
625; CHECK-NEXT:    ret i32 [[RET]]
626;
627entry:
628  %a = alloca [3 x i8], align 2
629  store i8 0, ptr %a
630  %b1ptr = getelementptr [3 x i8], ptr %a, i64 0, i32 1
631  store i8 0, ptr %b1ptr
632  %b2ptr = getelementptr [3 x i8], ptr %a, i64 0, i32 2
633  store i8 0, ptr %b2ptr
634  %iptrgep = getelementptr i16, ptr %a, i64 1
635  %i = load i16, ptr %iptrgep
636  %ret = zext i16 %i to i32
637  ret i32 %ret
638}
639
640%test14.struct = type { [3 x i32] }
641
642define void @test14(...) nounwind uwtable {
643; This is a strange case where we split allocas into promotable partitions, but
644; also gain enough data to prove they must be dead allocas due to GEPs that walk
645; across two adjacent allocas. Test that we don't try to promote or otherwise
646; do bad things to these dead allocas, they should just be removed.
647;
648; CHECK-LABEL: @test14(
649; CHECK-NEXT:  entry:
650; CHECK-NEXT:    ret void
651;
652entry:
653  %a = alloca %test14.struct
654  %p = alloca ptr
655  %0 = getelementptr i8, ptr %a, i64 12
656  %1 = load i32, ptr %a, align 4
657  store i32 %1, ptr %0, align 4
658  %2 = getelementptr inbounds i32, ptr %0, i32 1
659  %3 = getelementptr inbounds i32, ptr %a, i32 1
660  %4 = load i32, ptr %3, align 4
661  store i32 %4, ptr %2, align 4
662  %5 = getelementptr inbounds i32, ptr %0, i32 2
663  %6 = getelementptr inbounds i32, ptr %a, i32 2
664  %7 = load i32, ptr %6, align 4
665  store i32 %7, ptr %5, align 4
666  ret void
667}
668
669define i32 @test15(i1 %flag) nounwind uwtable {
670; Ensure that when there are dead instructions using an alloca that are not
671; loads or stores we still delete them during partitioning and rewriting.
672; Otherwise we'll go to promote them while thy still have unpromotable uses.
673;
674; CHECK-LABEL: @test15(
675; CHECK-NEXT:  entry:
676; CHECK-NEXT:    br label [[LOOP:%.*]]
677; CHECK:       loop:
678; CHECK-NEXT:    br label [[LOOP]]
679;
680entry:
681  %l0 = alloca i64
682  %l1 = alloca i64
683  %l2 = alloca i64
684  %l3 = alloca i64
685  br label %loop
686
687loop:
688  %dead3 = phi ptr [ %gep3, %loop ], [ null, %entry ]
689
690  store i64 1879048192, ptr %l0, align 8
691  %gep0 = getelementptr i8, ptr %l0, i64 3
692
693  store i64 1879048192, ptr %l1, align 8
694  %gep1 = getelementptr i8, ptr %l1, i64 3
695  %dead1 = getelementptr i8, ptr %gep1, i64 1
696
697  store i64 1879048192, ptr %l2, align 8
698  %gep2.1 = getelementptr i8, ptr %l2, i64 1
699  %gep2.2 = getelementptr i8, ptr %l2, i64 3
700  ; Note that this select should get visited multiple times due to using two
701  ; different GEPs off the same alloca. We should only delete it once.
702  %dead2 = select i1 %flag, ptr %gep2.1, ptr %gep2.2
703
704  store i64 1879048192, ptr %l3, align 8
705  %gep3 = getelementptr i8, ptr %l3, i64 3
706
707  br label %loop
708}
709
710define void @test16(ptr %src, ptr %dst) {
711; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
712;
713; CHECK-LABEL: @test16(
714; CHECK-NEXT:  entry:
715; CHECK-NEXT:    [[A_SROA_0_0_COPYLOAD:%.*]] = load i24, ptr [[SRC:%.*]], align 1, !tbaa [[TBAA0]]
716; CHECK-NEXT:    store i24 0, ptr [[DST:%.*]], align 1, !tbaa [[TBAA5]]
717; CHECK-NEXT:    ret void
718;
719entry:
720  %a = alloca [3 x i8]
721  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %src, i32 4, i1 false), !tbaa !0
722  store i24 0, ptr %a, !tbaa !3
723  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %a, i32 4, i1 false), !tbaa !5
724  ret void
725}
726
727define void @test17(ptr %src, ptr %dst) {
728; Ensure that we can rewrite unpromotable memcpys which extend past the end of
729; the alloca.
730;
731; CHECK-LABEL: @test17(
732; CHECK-NEXT:  entry:
733; CHECK-NEXT:    [[A:%.*]] = alloca [3 x i8], align 1
734; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr [[A]], ptr [[SRC:%.*]], i32 4, i1 true), !tbaa [[TBAA0]]
735; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr [[DST:%.*]], ptr [[A]], i32 4, i1 true), !tbaa [[TBAA3]]
736; CHECK-NEXT:    ret void
737;
738entry:
739  %a = alloca [3 x i8]
740  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %src, i32 4, i1 true), !tbaa !0
741  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %a, i32 4, i1 true), !tbaa !3
742  ret void
743}
744
745define void @test18(ptr %src, ptr %dst, i32 %size) {
746; Preserve transfer intrinsics with a variable size, even if they overlap with
747; fixed size operations. Further, continue to split and promote allocas preceding
748; the variable sized intrinsic.
749;
750; CHECK-LABEL: @test18(
751; CHECK-NEXT:  entry:
752; CHECK-NEXT:    [[A_SROA_33:%.*]] = alloca [34 x i8], align 1
753; CHECK-NEXT:    [[A_SROA_0_0_COPYLOAD:%.*]] = load i32, ptr [[SRC:%.*]], align 1, !tbaa [[TBAA0]]
754; CHECK-NEXT:    [[A_SROA_3_0_SRC_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i64 4
755; CHECK-NEXT:    [[A_SROA_3_0_COPYLOAD:%.*]] = load i32, ptr [[A_SROA_3_0_SRC_SROA_IDX]], align 1, !tbaa [[TBAA0]]
756; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[A_SROA_33]], ptr [[SRC]], i32 [[SIZE:%.*]], i1 false), !tbaa [[TBAA3]]
757; CHECK-NEXT:    call void @llvm.memset.p0.i32(ptr align 1 [[A_SROA_33]], i8 42, i32 [[SIZE]], i1 false), !tbaa [[TBAA5]]
758; CHECK-NEXT:    store i32 42, ptr [[DST:%.*]], align 1, !tbaa [[TBAA9]]
759; CHECK-NEXT:    [[A_SROA_3_0_DST_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[DST]], i64 4
760; CHECK-NEXT:    store i32 [[A_SROA_3_0_COPYLOAD]], ptr [[A_SROA_3_0_DST_SROA_IDX]], align 1, !tbaa [[TBAA9]]
761; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr [[DST]], ptr align 1 [[A_SROA_33]], i32 [[SIZE]], i1 false), !tbaa [[TBAA11]]
762; CHECK-NEXT:    ret void
763;
764entry:
765  %a = alloca [42 x i8]
766  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %src, i32 8, i1 false), !tbaa !0
767  %ptr2 = getelementptr [42 x i8], ptr %a, i32 0, i32 8
768  call void @llvm.memcpy.p0.p0.i32(ptr %ptr2, ptr %src, i32 %size, i1 false), !tbaa !3
769  call void @llvm.memset.p0.i32(ptr %ptr2, i8 42, i32 %size, i1 false), !tbaa !5
770  store i32 42, ptr %a, !tbaa !7
771  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %a, i32 8, i1 false), !tbaa !9
772  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %ptr2, i32 %size, i1 false), !tbaa !11
773  ret void
774}
775
776%opaque = type opaque
777
778define i64 @test19(ptr %x) {
779; This input will cause us to try to compute a natural GEP when rewriting
780; pointers in such a way that we try to GEP through the opaque type. Previously,
781; a check for an unsized type was missing and this crashed. Ensure it behaves
782; reasonably now.
783;
784; CHECK-LABEL: @test19(
785; CHECK-NEXT:  entry:
786; CHECK-NEXT:    [[A_SROA_0_0_COPYLOAD:%.*]] = load i64, ptr [[X:%.*]], align 1
787; CHECK-NEXT:    [[A_SROA_2_0_X_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[X]], i64 8
788; CHECK-NEXT:    [[A_SROA_2_0_COPYLOAD:%.*]] = load ptr, ptr [[A_SROA_2_0_X_SROA_IDX]], align 1
789; CHECK-NEXT:    ret i64 [[A_SROA_0_0_COPYLOAD]]
790;
791entry:
792  %a = alloca { i64, ptr }
793  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %x, i32 16, i1 false)
794  %gep = getelementptr inbounds { i64, ptr }, ptr %a, i32 0, i32 0
795  %val = load i64, ptr %gep
796  ret i64 %val
797}
798
799declare void @llvm.memcpy.p0.p1.i32(ptr nocapture, ptr addrspace(1) nocapture, i32, i32, i1) nounwind
800
801define i64 @test19_addrspacecast(ptr %x) {
802; This input will cause us to try to compute a natural GEP when rewriting
803; pointers in such a way that we try to GEP through the opaque type. Previously,
804; a check for an unsized type was missing and this crashed. Ensure it behaves
805; reasonably now.
806;
807; CHECK-LABEL: @test19_addrspacecast(
808; CHECK-NEXT:  entry:
809; CHECK-NEXT:    [[CAST1:%.*]] = addrspacecast ptr [[X:%.*]] to ptr addrspace(1)
810; CHECK-NEXT:    [[A_SROA_0_0_COPYLOAD:%.*]] = load i64, ptr addrspace(1) [[CAST1]], align 1
811; CHECK-NEXT:    [[A_SROA_2_0_CAST1_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr addrspace(1) [[CAST1]], i16 8
812; CHECK-NEXT:    [[A_SROA_2_0_COPYLOAD:%.*]] = load ptr, ptr addrspace(1) [[A_SROA_2_0_CAST1_SROA_IDX]], align 1
813; CHECK-NEXT:    ret i64 [[A_SROA_0_0_COPYLOAD]]
814;
815entry:
816  %a = alloca { i64, ptr }
817  %cast1 = addrspacecast ptr %x to ptr addrspace(1)
818  call void @llvm.memcpy.p0.p1.i32(ptr %a, ptr addrspace(1) %cast1, i32 16, i32 1, i1 false)
819  %gep = getelementptr inbounds { i64, ptr }, ptr %a, i32 0, i32 0
820  %val = load i64, ptr %gep
821  ret i64 %val
822}
823
824define i32 @test20() {
825; Ensure we can track negative offsets (before the beginning of the alloca) and
826; negative relative offsets from offsets starting past the end of the alloca.
827;
828; CHECK-LABEL: @test20(
829; CHECK-NEXT:  entry:
830; CHECK-NEXT:    [[SUM1:%.*]] = add i32 1, 2
831; CHECK-NEXT:    [[SUM2:%.*]] = add i32 [[SUM1]], 3
832; CHECK-NEXT:    ret i32 [[SUM2]]
833;
834entry:
835  %a = alloca [3 x i32]
836  store i32 1, ptr %a
837  %gep2.1 = getelementptr [3 x i32], ptr %a, i32 0, i32 -2
838  %gep2.2 = getelementptr i32, ptr %gep2.1, i32 3
839  store i32 2, ptr %gep2.2
840  %gep3.1 = getelementptr [3 x i32], ptr %a, i32 0, i32 14
841  %gep3.2 = getelementptr i32, ptr %gep3.1, i32 -12
842  store i32 3, ptr %gep3.2
843
844  %load1 = load i32, ptr %a
845  %load2 = load i32, ptr %gep2.2
846  %load3 = load i32, ptr %gep3.2
847  %sum1 = add i32 %load1, %load2
848  %sum2 = add i32 %sum1, %load3
849  ret i32 %sum2
850}
851
852declare void @llvm.memset.p0.i64(ptr nocapture, i8, i64, i1) nounwind
853
854define i8 @test21() {
855; Test allocations and offsets which border on overflow of the int64_t used
856; internally. This is really awkward to really test as LLVM doesn't really
857; support such extreme constructs cleanly.
858;
859; CHECK-LABEL: @test21(
860; CHECK-NEXT:  entry:
861; CHECK-NEXT:    [[RESULT:%.*]] = or i8 -1, -1
862; CHECK-NEXT:    ret i8 [[RESULT]]
863;
864entry:
865  %a = alloca [2305843009213693951 x i8]
866  %gep0 = getelementptr [2305843009213693951 x i8], ptr %a, i64 0, i64 2305843009213693949
867  store i8 255, ptr %gep0
868  %gep1 = getelementptr [2305843009213693951 x i8], ptr %a, i64 0, i64 -9223372036854775807
869  %gep2 = getelementptr i8, ptr %gep1, i64 -1
870  call void @llvm.memset.p0.i64(ptr %gep2, i8 0, i64 18446744073709551615, i1 false)
871  %gep3 = getelementptr i8, ptr %gep1, i64 9223372036854775807
872  %gep4 = getelementptr i8, ptr %gep3, i64 9223372036854775807
873  %gep5 = getelementptr i8, ptr %gep4, i64 -6917529027641081857
874  store i8 255, ptr %gep5
875  store i32 0, ptr %gep4
876  %load = load i8, ptr %gep0
877  %gep6 = getelementptr i8, ptr %gep0, i32 1
878  %load2 = load i8, ptr %gep6
879  %result = or i8 %load, %load2
880  ret i8 %result
881}
882
883%PR13916.struct = type { i8 }
884
885define void @PR13916.1() {
886; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
887; the case where there is a directly identical value for both source and dest.
888;
889; CHECK-LABEL: @PR13916.1(
890; CHECK-NEXT:  entry:
891; CHECK-NEXT:    ret void
892;
893entry:
894  %a = alloca i8
895  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %a, i32 1, i1 false)
896  %tmp2 = load i8, ptr %a
897  ret void
898}
899
900define void @PR13916.2(i1 %c1) {
901; Check whether we continue to handle them correctly when they start off with
902; different pointer value chains, but during rewriting we coalesce them into the
903; same value.
904;
905; CHECK-LABEL: @PR13916.2(
906; CHECK-NEXT:  entry:
907; CHECK-NEXT:    br i1 [[C1:%.*]], label [[IF_THEN:%.*]], label [[IF_END:%.*]]
908; CHECK:       if.then:
909; CHECK-NEXT:    br label [[IF_END]]
910; CHECK:       if.end:
911; CHECK-NEXT:    ret void
912;
913entry:
914  %a = alloca %PR13916.struct, align 1
915  br i1 %c1, label %if.then, label %if.end
916
917if.then:
918  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %a, i32 1, i1 false)
919  br label %if.end
920
921if.end:
922  %tmp2 = load i8, ptr %a
923  ret void
924}
925
926define void @PR13990(i1 %c1, i1 %c2, i1 %c3, i1 %c4, ptr %ptr) {
927; Ensure we can handle cases where processing one alloca causes the other
928; alloca to become dead and get deleted. This might crash or fail under
929; Valgrind if we regress.
930;
931; CHECK-LABEL: @PR13990(
932; CHECK-NEXT:  entry:
933; CHECK-NEXT:    br i1 [[C1:%.*]], label [[BB1:%.*]], label [[BB2:%.*]]
934; CHECK:       bb1:
935; CHECK-NEXT:    br i1 [[C2:%.*]], label [[BB2]], label [[BB3:%.*]]
936; CHECK:       bb2:
937; CHECK-NEXT:    br i1 [[C4:%.*]], label [[BB3]], label [[BB4:%.*]]
938; CHECK:       bb3:
939; CHECK-NEXT:    unreachable
940; CHECK:       bb4:
941; CHECK-NEXT:    unreachable
942;
943entry:
944  %tmp1 = alloca ptr
945  %tmp2 = alloca ptr
946  br i1 %c1, label %bb1, label %bb2
947
948bb1:
949  store ptr %ptr, ptr %tmp2
950  br i1 %c2, label %bb2, label %bb3
951
952bb2:
953  %tmp50 = select i1 %c3, ptr %tmp2, ptr %tmp1
954  br i1 %c4, label %bb3, label %bb4
955
956bb3:
957  unreachable
958
959bb4:
960  unreachable
961}
962
963define double @PR13969(double %x) {
964; Check that we detect when promotion will un-escape an alloca and iterate to
965; re-try running SROA over that alloca. Without that, the two allocas that are
966; stored into a dead alloca don't get rewritten and promoted.
967;
968; CHECK-LABEL: @PR13969(
969; CHECK-NEXT:  entry:
970; CHECK-NEXT:    ret double [[X:%.*]]
971;
972entry:
973  %a = alloca double
974  %b = alloca ptr
975  %c = alloca double
976
977  store double %x, ptr %a
978  store ptr %c, ptr %b
979  store ptr %a, ptr %b
980  store double %x, ptr %c
981  %ret = load double, ptr %a
982
983  ret double %ret
984}
985
986%PR14034.struct = type { { {} }, i32, %PR14034.list }
987%PR14034.list = type { ptr, ptr }
988
989define void @PR14034(ptr %ptr, ptr %ptr2) {
990; This test case tries to form GEPs into the empty leading struct members, and
991; subsequently crashed (under valgrind) before we fixed the PR. The important
992; thing is to handle empty structs gracefully.
993;
994; CHECK-LABEL: @PR14034(
995; CHECK-NEXT:  entry:
996; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca [12 x i8], align 8
997; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 1 [[PTR2:%.*]], ptr align 8 [[A_SROA_0]], i32 12, i1 false)
998; CHECK-NEXT:    ret void
999;
1000entry:
1001  %a = alloca %PR14034.struct
1002  %list = getelementptr %PR14034.struct, ptr %a, i32 0, i32 2
1003  %prev = getelementptr %PR14034.list, ptr %list, i32 0, i32 1
1004  store ptr %ptr, ptr %prev
1005  call void @llvm.memcpy.p0.p0.i32(ptr %ptr2, ptr %a, i32 12, i1 false)
1006  ret void
1007}
1008
1009define i32 @test22(i32 %x) {
1010; Test that SROA and promotion is not confused by a grab bax mixture of pointer
1011; types involving wrapper aggregates and zero-length aggregate members.
1012;
1013; CHECK-LABEL: @test22(
1014; CHECK-NEXT:  entry:
1015; CHECK-NEXT:    [[WRAP1:%.*]] = insertvalue [1 x { i32 }] poison, i32 [[X:%.*]], 0, 0
1016; CHECK-NEXT:    [[WRAP1_FCA_0_0_EXTRACT:%.*]] = extractvalue [1 x { i32 }] [[WRAP1]], 0, 0
1017; CHECK-NEXT:    [[TMP0:%.*]] = bitcast i32 [[WRAP1_FCA_0_0_EXTRACT]] to float
1018; CHECK-NEXT:    [[LOAD1_FCA_0_0_0_INSERT:%.*]] = insertvalue { [1 x { float }] } poison, float [[TMP0]], 0, 0, 0
1019; CHECK-NEXT:    [[UNWRAP1:%.*]] = extractvalue { [1 x { float }] } [[LOAD1_FCA_0_0_0_INSERT]], 0, 0
1020; CHECK-NEXT:    [[WRAP2:%.*]] = insertvalue { {}, { float }, [0 x i8] } poison, { float } [[UNWRAP1]], 1
1021; CHECK-NEXT:    [[WRAP2_FCA_1_0_EXTRACT:%.*]] = extractvalue { {}, { float }, [0 x i8] } [[WRAP2]], 1, 0
1022; CHECK-NEXT:    [[TMP1:%.*]] = bitcast float [[WRAP2_FCA_1_0_EXTRACT]] to <4 x i8>
1023; CHECK-NEXT:    [[VALCAST1:%.*]] = bitcast <4 x i8> [[TMP1]] to i32
1024; CHECK-NEXT:    [[WRAP3:%.*]] = insertvalue [1 x [1 x i32]] poison, i32 [[VALCAST1]], 0, 0
1025; CHECK-NEXT:    [[WRAP4:%.*]] = insertvalue { [1 x [1 x i32]], {} } poison, [1 x [1 x i32]] [[WRAP3]], 0
1026; CHECK-NEXT:    [[WRAP4_FCA_0_0_0_EXTRACT:%.*]] = extractvalue { [1 x [1 x i32]], {} } [[WRAP4]], 0, 0, 0
1027; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i32 [[WRAP4_FCA_0_0_0_EXTRACT]] to <4 x i8>
1028; CHECK-NEXT:    [[TMP3:%.*]] = bitcast <4 x i8> [[TMP2]] to float
1029; CHECK-NEXT:    [[LOAD4_FCA_1_INSERT:%.*]] = insertvalue { {}, float, {} } poison, float [[TMP3]], 1
1030; CHECK-NEXT:    [[UNWRAP2:%.*]] = extractvalue { {}, float, {} } [[LOAD4_FCA_1_INSERT]], 1
1031; CHECK-NEXT:    [[VALCAST2:%.*]] = bitcast float [[UNWRAP2]] to i32
1032; CHECK-NEXT:    ret i32 [[VALCAST2]]
1033;
1034entry:
1035  %a1 = alloca { { [1 x { i32 }] } }
1036  %a2 = alloca { {}, { float }, [0 x i8] }
1037  %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
1038
1039  %wrap1 = insertvalue [1 x { i32 }] poison, i32 %x, 0, 0
1040  store [1 x { i32 }] %wrap1, ptr %a1
1041
1042  %load1 = load { [1 x { float }] }, ptr %a1
1043  %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
1044
1045  %wrap2 = insertvalue { {}, { float }, [0 x i8] } poison, { float } %unwrap1, 1
1046  store { {}, { float }, [0 x i8] } %wrap2, ptr %a2
1047
1048  %gep3 = getelementptr { {}, { float }, [0 x i8] }, ptr %a2, i32 0, i32 1, i32 0
1049  %load3 = load <4 x i8>, ptr %gep3
1050  %valcast1 = bitcast <4 x i8> %load3 to i32
1051
1052  %wrap3 = insertvalue [1 x [1 x i32]] poison, i32 %valcast1, 0, 0
1053  %wrap4 = insertvalue { [1 x [1 x i32]], {} } poison, [1 x [1 x i32]] %wrap3, 0
1054  %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, ptr %a3, i32 0, i32 1
1055  store { [1 x [1 x i32]], {} } %wrap4, ptr %gep4
1056
1057  %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, ptr %a3, i32 0, i32 1, i32 1, i32 0
1058  %load4 = load { {}, float, {} }, ptr %gep5
1059  %unwrap2 = extractvalue { {}, float, {} } %load4, 1
1060  %valcast2 = bitcast float %unwrap2 to i32
1061
1062  ret i32 %valcast2
1063}
1064
1065define void @PR14059.1(ptr %d) {
1066; In PR14059 a peculiar construct was identified as something that is used
1067; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
1068; of doubles via an array of i32 in order to place the data into integer
1069; registers. This in turn was missed as an optimization by SROA due to the
1070; partial loads and stores of integers to the double alloca we were trying to
1071; form and promote. The solution is to widen the integer operations to be
1072; whole-alloca operations, and perform the appropriate bitcasting on the
1073; *values* rather than the pointers. When this works, partial reads and writes
1074; via integers can be promoted away.
1075;
1076; CHECK-LABEL: @PR14059.1(
1077; CHECK-NEXT:  entry:
1078; CHECK-NEXT:    [[TMP0:%.*]] = bitcast double undef to i64
1079; CHECK-NEXT:    [[X_SROA_0_I_0_INSERT_MASK:%.*]] = and i64 [[TMP0]], -4294967296
1080; CHECK-NEXT:    [[X_SROA_0_I_0_INSERT_INSERT:%.*]] = or i64 [[X_SROA_0_I_0_INSERT_MASK]], 0
1081; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i64 [[X_SROA_0_I_0_INSERT_INSERT]] to double
1082; CHECK-NEXT:    [[TMP2:%.*]] = bitcast double [[TMP1]] to i64
1083; CHECK-NEXT:    [[X_SROA_0_I_2_INSERT_MASK:%.*]] = and i64 [[TMP2]], -281474976645121
1084; CHECK-NEXT:    [[X_SROA_0_I_2_INSERT_INSERT:%.*]] = or i64 [[X_SROA_0_I_2_INSERT_MASK]], 0
1085; CHECK-NEXT:    [[TMP3:%.*]] = bitcast i64 [[X_SROA_0_I_2_INSERT_INSERT]] to double
1086; CHECK-NEXT:    [[TMP4:%.*]] = bitcast double [[TMP3]] to i64
1087; CHECK-NEXT:    [[X_SROA_0_I_4_COPYLOAD:%.*]] = load i32, ptr [[D:%.*]], align 1
1088; CHECK-NEXT:    [[TMP5:%.*]] = bitcast double 0.000000e+00 to i64
1089; CHECK-NEXT:    [[X_SROA_0_I_4_INSERT_EXT:%.*]] = zext i32 [[X_SROA_0_I_4_COPYLOAD]] to i64
1090; CHECK-NEXT:    [[X_SROA_0_I_4_INSERT_SHIFT:%.*]] = shl i64 [[X_SROA_0_I_4_INSERT_EXT]], 32
1091; CHECK-NEXT:    [[X_SROA_0_I_4_INSERT_MASK3:%.*]] = and i64 [[TMP5]], 4294967295
1092; CHECK-NEXT:    [[X_SROA_0_I_4_INSERT_INSERT4:%.*]] = or i64 [[X_SROA_0_I_4_INSERT_MASK3]], [[X_SROA_0_I_4_INSERT_SHIFT]]
1093; CHECK-NEXT:    [[TMP6:%.*]] = bitcast i64 [[X_SROA_0_I_4_INSERT_INSERT4]] to double
1094; CHECK-NEXT:    [[TMP7:%.*]] = bitcast double [[TMP6]] to i64
1095; CHECK-NEXT:    [[X_SROA_0_I_4_INSERT_MASK:%.*]] = and i64 [[TMP7]], 4294967295
1096; CHECK-NEXT:    [[X_SROA_0_I_4_INSERT_INSERT:%.*]] = or i64 [[X_SROA_0_I_4_INSERT_MASK]], 4607182418800017408
1097; CHECK-NEXT:    [[TMP8:%.*]] = bitcast i64 [[X_SROA_0_I_4_INSERT_INSERT]] to double
1098; CHECK-NEXT:    [[ACCUM_REAL_I:%.*]] = load double, ptr [[D]], align 8
1099; CHECK-NEXT:    [[ADD_R_I:%.*]] = fadd double [[ACCUM_REAL_I]], [[TMP8]]
1100; CHECK-NEXT:    store double [[ADD_R_I]], ptr [[D]], align 8
1101; CHECK-NEXT:    ret void
1102;
1103entry:
1104  %X.sroa.0.i = alloca double, align 8
1105  call void @llvm.lifetime.start.p0(i64 -1, ptr %X.sroa.0.i)
1106
1107  ; Store to the low 32-bits...
1108  store i32 0, ptr %X.sroa.0.i, align 8
1109
1110  ; Also use a memset to the middle 32-bits for fun.
1111  %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, ptr %X.sroa.0.i, i32 2
1112  call void @llvm.memset.p0.i64(ptr %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i1 false)
1113
1114  ; Or a memset of the whole thing.
1115  call void @llvm.memset.p0.i64(ptr %X.sroa.0.i, i8 0, i64 8, i1 false)
1116
1117  ; Write to the high 32-bits with a memcpy.
1118  %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, ptr %X.sroa.0.i, i32 4
1119  call void @llvm.memcpy.p0.p0.i32(ptr %X.sroa.0.4.raw_idx4.i, ptr %d, i32 4, i1 false)
1120
1121  ; Store to the high 32-bits...
1122  store i32 1072693248, ptr %X.sroa.0.4.raw_idx4.i, align 4
1123
1124  ; Do the actual math...
1125  %X.sroa.0.0.load1.i = load double, ptr %X.sroa.0.i, align 8
1126  %accum.real.i = load double, ptr %d, align 8
1127  %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
1128  store double %add.r.i, ptr %d, align 8
1129  call void @llvm.lifetime.end.p0(i64 -1, ptr %X.sroa.0.i)
1130  ret void
1131}
1132
1133define i64 @PR14059.2(ptr %phi) {
1134; Check that SROA can split up alloca-wide integer loads and stores where the
1135; underlying alloca has smaller components that are accessed independently. This
1136; shows up particularly with ABI lowering patterns coming out of Clang that rely
1137; on the particular register placement of a single large integer return value.
1138;
1139; CHECK-LABEL: @PR14059.2(
1140; CHECK-NEXT:  entry:
1141; CHECK-NEXT:    [[PHI_REALP:%.*]] = getelementptr inbounds { float, float }, ptr [[PHI:%.*]], i32 0, i32 0
1142; CHECK-NEXT:    [[PHI_REAL:%.*]] = load float, ptr [[PHI_REALP]], align 4
1143; CHECK-NEXT:    [[PHI_IMAGP:%.*]] = getelementptr inbounds { float, float }, ptr [[PHI]], i32 0, i32 1
1144; CHECK-NEXT:    [[PHI_IMAG:%.*]] = load float, ptr [[PHI_IMAGP]], align 4
1145; CHECK-NEXT:    [[TMP0:%.*]] = bitcast float [[PHI_REAL]] to i32
1146; CHECK-NEXT:    [[TMP1:%.*]] = bitcast float [[PHI_IMAG]] to i32
1147; CHECK-NEXT:    [[RETVAL_SROA_3_0_INSERT_EXT:%.*]] = zext i32 [[TMP1]] to i64
1148; CHECK-NEXT:    [[RETVAL_SROA_3_0_INSERT_SHIFT:%.*]] = shl i64 [[RETVAL_SROA_3_0_INSERT_EXT]], 32
1149; CHECK-NEXT:    [[RETVAL_SROA_3_0_INSERT_MASK:%.*]] = and i64 undef, 4294967295
1150; CHECK-NEXT:    [[RETVAL_SROA_3_0_INSERT_INSERT:%.*]] = or i64 [[RETVAL_SROA_3_0_INSERT_MASK]], [[RETVAL_SROA_3_0_INSERT_SHIFT]]
1151; CHECK-NEXT:    [[RETVAL_SROA_0_0_INSERT_EXT:%.*]] = zext i32 [[TMP0]] to i64
1152; CHECK-NEXT:    [[RETVAL_SROA_0_0_INSERT_MASK:%.*]] = and i64 [[RETVAL_SROA_3_0_INSERT_INSERT]], -4294967296
1153; CHECK-NEXT:    [[RETVAL_SROA_0_0_INSERT_INSERT:%.*]] = or i64 [[RETVAL_SROA_0_0_INSERT_MASK]], [[RETVAL_SROA_0_0_INSERT_EXT]]
1154; CHECK-NEXT:    ret i64 [[RETVAL_SROA_0_0_INSERT_INSERT]]
1155;
1156entry:
1157  %retval = alloca { float, float }, align 4
1158
1159  store i64 0, ptr %retval
1160
1161  %phi.realp = getelementptr inbounds { float, float }, ptr %phi, i32 0, i32 0
1162  %phi.real = load float, ptr %phi.realp
1163  %phi.imagp = getelementptr inbounds { float, float }, ptr %phi, i32 0, i32 1
1164  %phi.imag = load float, ptr %phi.imagp
1165
1166  %real = getelementptr inbounds { float, float }, ptr %retval, i32 0, i32 0
1167  %imag = getelementptr inbounds { float, float }, ptr %retval, i32 0, i32 1
1168  store float %phi.real, ptr %real
1169  store float %phi.imag, ptr %imag
1170
1171  %0 = load i64, ptr %retval, align 1
1172  ret i64 %0
1173}
1174
1175define void @PR14105(ptr %ptr) {
1176; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
1177; sign as negative. We use a volatile memcpy to ensure promotion never actually
1178; occurs.
1179;
1180; CHECK-LABEL: @PR14105(
1181; CHECK-NEXT:  entry:
1182; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca [16 x i8], align 8
1183; CHECK-NEXT:    [[GEP:%.*]] = getelementptr inbounds { [16 x i8] }, ptr [[PTR:%.*]], i64 -1
1184; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr align 8 [[GEP]], ptr align 8 [[A_SROA_0]], i32 16, i1 true)
1185; CHECK-NEXT:    ret void
1186;
1187entry:
1188  %a = alloca { [16 x i8] }, align 8
1189
1190  %gep = getelementptr inbounds { [16 x i8] }, ptr %ptr, i64 -1
1191
1192  call void @llvm.memcpy.p0.p0.i32(ptr align 8 %gep, ptr align 8 %a, i32 16, i1 true)
1193  ret void
1194}
1195
1196define void @PR14105_as1(ptr addrspace(1) %ptr) {
1197; Make sure this the right address space pointer is used for type check.
1198;
1199; CHECK-LABEL: @PR14105_as1(
1200; CHECK-NEXT:  entry:
1201; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca [16 x i8], align 8
1202; CHECK-NEXT:    [[GEP:%.*]] = getelementptr inbounds { [16 x i8] }, ptr addrspace(1) [[PTR:%.*]], i64 -1
1203; CHECK-NEXT:    call void @llvm.memcpy.p1.p0.i32(ptr addrspace(1) align 8 [[GEP]], ptr align 8 [[A_SROA_0]], i32 16, i1 true)
1204; CHECK-NEXT:    ret void
1205;
1206entry:
1207  %a = alloca { [16 x i8] }, align 8
1208  %gep = getelementptr inbounds { [16 x i8] }, ptr addrspace(1) %ptr, i64 -1
1209  call void @llvm.memcpy.p1.p0.i32(ptr addrspace(1) align 8 %gep, ptr align 8 %a, i32 16, i1 true)
1210  ret void
1211}
1212
1213define void @PR14465() {
1214; Ensure that we don't crash when analyzing a alloca larger than the maximum
1215; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
1216;
1217; CHECK-LABEL: @PR14465(
1218; CHECK-NEXT:    [[STACK:%.*]] = alloca [1048576 x i32], align 16
1219; CHECK-NEXT:    call void @llvm.memset.p0.i64(ptr align 16 [[STACK]], i8 -2, i64 4194304, i1 false)
1220; CHECK-NEXT:    ret void
1221;
1222  %stack = alloca [1048576 x i32], align 16
1223  call void @llvm.memset.p0.i64(ptr align 16 %stack, i8 -2, i64 4194304, i1 false)
1224  ret void
1225}
1226
1227define void @PR14548(i1 %x) {
1228; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
1229; pattern caused crashes and invalid output in the PR, and its nature will
1230; trigger a mixture in several permutations as we resolve each alloca
1231; iteratively.
1232; Note that we don't do a particularly good *job* of handling these mixtures,
1233; but the hope is that this is very rare.
1234;
1235; CHECK-LABEL: @PR14548(
1236; CHECK-NEXT:  entry:
1237; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca i8, align 8
1238; CHECK-NEXT:    [[B_SROA_0:%.*]] = alloca i8, align 8
1239; CHECK-NEXT:    store i1 [[X:%.*]], ptr [[B_SROA_0]], align 8
1240; CHECK-NEXT:    [[B_SROA_0_0_B_SROA_0_0_FOO:%.*]] = load i8, ptr [[B_SROA_0]], align 8
1241; CHECK-NEXT:    [[B_SROA_0_0_B_SROA_0_0_COPYLOAD:%.*]] = load i8, ptr [[B_SROA_0]], align 8
1242; CHECK-NEXT:    store i8 [[B_SROA_0_0_B_SROA_0_0_COPYLOAD]], ptr [[A_SROA_0]], align 8
1243; CHECK-NEXT:    [[A_SROA_0_0_A_SROA_0_0_BAR:%.*]] = load i8, ptr [[A_SROA_0]], align 8
1244; CHECK-NEXT:    [[A_SROA_0_0_A_SROA_0_0_BAZ:%.*]] = load i1, ptr [[A_SROA_0]], align 8
1245; CHECK-NEXT:    ret void
1246;
1247entry:
1248  %a = alloca <{ i1 }>, align 8
1249  %b = alloca <{ i1 }>, align 8
1250
1251  store i1 %x, ptr %b, align 8
1252  %foo = load i8, ptr %b, align 1
1253
1254  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %b, i32 1, i1 false) nounwind
1255  %bar = load i8, ptr %a, align 1
1256  %baz = load i1, ptr %a, align 1
1257
1258  ret void
1259}
1260
1261define <3 x i8> @PR14572.1(i32 %x) {
1262; Ensure that a split integer store which is wider than the type size of the
1263; alloca (relying on the alloc size padding) doesn't trigger an assert.
1264;
1265; CHECK-LABEL: @PR14572.1(
1266; CHECK-NEXT:  entry:
1267; CHECK-NEXT:    [[A_0_EXTRACT_TRUNC:%.*]] = trunc i32 [[X:%.*]] to i24
1268; CHECK-NEXT:    [[TMP0:%.*]] = bitcast i24 [[A_0_EXTRACT_TRUNC]] to <3 x i8>
1269; CHECK-NEXT:    [[A_SROA_2_0_EXTRACT_SHIFT:%.*]] = lshr i32 [[X]], 24
1270; CHECK-NEXT:    [[A_SROA_2_0_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_2_0_EXTRACT_SHIFT]] to i8
1271; CHECK-NEXT:    ret <3 x i8> [[TMP0]]
1272;
1273entry:
1274  %a = alloca <3 x i8>, align 4
1275
1276  store i32 %x, ptr %a, align 1
1277  %y = load <3 x i8>, ptr %a, align 4
1278  ret <3 x i8> %y
1279}
1280
1281define i32 @PR14572.2(<3 x i8> %x) {
1282; Ensure that a split integer load which is wider than the type size of the
1283; alloca (relying on the alloc size padding) doesn't trigger an assert.
1284;
1285; CHECK-LABEL: @PR14572.2(
1286; CHECK-NEXT:  entry:
1287; CHECK-NEXT:    [[TMP0:%.*]] = bitcast <3 x i8> [[X:%.*]] to i24
1288; CHECK-NEXT:    [[A_SROA_2_0_INSERT_EXT:%.*]] = zext i8 undef to i32
1289; CHECK-NEXT:    [[A_SROA_2_0_INSERT_SHIFT:%.*]] = shl i32 [[A_SROA_2_0_INSERT_EXT]], 24
1290; CHECK-NEXT:    [[A_SROA_2_0_INSERT_MASK:%.*]] = and i32 undef, 16777215
1291; CHECK-NEXT:    [[A_SROA_2_0_INSERT_INSERT:%.*]] = or i32 [[A_SROA_2_0_INSERT_MASK]], [[A_SROA_2_0_INSERT_SHIFT]]
1292; CHECK-NEXT:    [[A_0_INSERT_EXT:%.*]] = zext i24 [[TMP0]] to i32
1293; CHECK-NEXT:    [[A_0_INSERT_MASK:%.*]] = and i32 [[A_SROA_2_0_INSERT_INSERT]], -16777216
1294; CHECK-NEXT:    [[A_0_INSERT_INSERT:%.*]] = or i32 [[A_0_INSERT_MASK]], [[A_0_INSERT_EXT]]
1295; CHECK-NEXT:    ret i32 [[A_0_INSERT_INSERT]]
1296;
1297entry:
1298  %a = alloca <3 x i8>, align 4
1299
1300  store <3 x i8> %x, ptr %a, align 1
1301  %y = load i32, ptr %a, align 4
1302  ret i32 %y
1303}
1304
1305define i32 @PR14601(i32 %x) {
1306; Don't try to form a promotable integer alloca when there is a variable length
1307; memory intrinsic.
1308;
1309; CHECK-LABEL: @PR14601(
1310; CHECK-NEXT:  entry:
1311; CHECK-NEXT:    [[A:%.*]] = alloca i32, align 4
1312; CHECK-NEXT:    call void @llvm.memset.p0.i32(ptr align 4 [[A]], i8 0, i32 [[X:%.*]], i1 false)
1313; CHECK-NEXT:    [[A_0_V:%.*]] = load i32, ptr [[A]], align 4
1314; CHECK-NEXT:    ret i32 [[A_0_V]]
1315;
1316entry:
1317  %a = alloca i32
1318
1319  call void @llvm.memset.p0.i32(ptr %a, i8 0, i32 %x, i1 false)
1320  %v = load i32, ptr %a
1321  ret i32 %v
1322}
1323
1324define void @PR15674(ptr %data, ptr %src, i32 %size) {
1325; Arrange (via control flow) to have unmerged stores of a particular width to
1326; an alloca where we incrementally store from the end of the array toward the
1327; beginning of the array. Ensure that the final integer store, despite being
1328; convertable to the integer type that we end up promoting this alloca toward,
1329; doesn't get widened to a full alloca store.
1330;
1331; CHECK-LABEL: @PR15674(
1332; CHECK-NEXT:  entry:
1333; CHECK-NEXT:    [[TMP_SROA_0:%.*]] = alloca i32, align 4
1334; CHECK-NEXT:    switch i32 [[SIZE:%.*]], label [[END:%.*]] [
1335; CHECK-NEXT:    i32 4, label [[BB4:%.*]]
1336; CHECK-NEXT:    i32 3, label [[BB3:%.*]]
1337; CHECK-NEXT:    i32 2, label [[BB2:%.*]]
1338; CHECK-NEXT:    i32 1, label [[BB1:%.*]]
1339; CHECK-NEXT:    ]
1340; CHECK:       bb4:
1341; CHECK-NEXT:    [[SRC_GEP3:%.*]] = getelementptr inbounds i8, ptr [[SRC:%.*]], i32 3
1342; CHECK-NEXT:    [[SRC_3:%.*]] = load i8, ptr [[SRC_GEP3]], align 1
1343; CHECK-NEXT:    [[TMP_SROA_0_3_TMP_GEP3_SROA_IDX3:%.*]] = getelementptr inbounds i8, ptr [[TMP_SROA_0]], i64 3
1344; CHECK-NEXT:    store i8 [[SRC_3]], ptr [[TMP_SROA_0_3_TMP_GEP3_SROA_IDX3]], align 1
1345; CHECK-NEXT:    br label [[BB3]]
1346; CHECK:       bb3:
1347; CHECK-NEXT:    [[SRC_GEP2:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i32 2
1348; CHECK-NEXT:    [[SRC_2:%.*]] = load i8, ptr [[SRC_GEP2]], align 1
1349; CHECK-NEXT:    [[TMP_SROA_0_2_TMP_GEP2_SROA_IDX2:%.*]] = getelementptr inbounds i8, ptr [[TMP_SROA_0]], i64 2
1350; CHECK-NEXT:    store i8 [[SRC_2]], ptr [[TMP_SROA_0_2_TMP_GEP2_SROA_IDX2]], align 2
1351; CHECK-NEXT:    br label [[BB2]]
1352; CHECK:       bb2:
1353; CHECK-NEXT:    [[SRC_GEP1:%.*]] = getelementptr inbounds i8, ptr [[SRC]], i32 1
1354; CHECK-NEXT:    [[SRC_1:%.*]] = load i8, ptr [[SRC_GEP1]], align 1
1355; CHECK-NEXT:    [[TMP_SROA_0_1_TMP_GEP1_SROA_IDX1:%.*]] = getelementptr inbounds i8, ptr [[TMP_SROA_0]], i64 1
1356; CHECK-NEXT:    store i8 [[SRC_1]], ptr [[TMP_SROA_0_1_TMP_GEP1_SROA_IDX1]], align 1
1357; CHECK-NEXT:    br label [[BB1]]
1358; CHECK:       bb1:
1359; CHECK-NEXT:    [[SRC_0:%.*]] = load i8, ptr [[SRC]], align 1
1360; CHECK-NEXT:    store i8 [[SRC_0]], ptr [[TMP_SROA_0]], align 4
1361; CHECK-NEXT:    br label [[END]]
1362; CHECK:       end:
1363; CHECK-NEXT:    call void @llvm.memcpy.p0.p0.i32(ptr [[DATA:%.*]], ptr align 4 [[TMP_SROA_0]], i32 [[SIZE]], i1 false)
1364; CHECK-NEXT:    ret void
1365;
1366entry:
1367  %tmp = alloca [4 x i8], align 1
1368
1369  switch i32 %size, label %end [
1370  i32 4, label %bb4
1371  i32 3, label %bb3
1372  i32 2, label %bb2
1373  i32 1, label %bb1
1374  ]
1375
1376bb4:
1377  %src.gep3 = getelementptr inbounds i8, ptr %src, i32 3
1378  %src.3 = load i8, ptr %src.gep3
1379  %tmp.gep3 = getelementptr inbounds [4 x i8], ptr %tmp, i32 0, i32 3
1380  store i8 %src.3, ptr %tmp.gep3
1381
1382  br label %bb3
1383
1384bb3:
1385  %src.gep2 = getelementptr inbounds i8, ptr %src, i32 2
1386  %src.2 = load i8, ptr %src.gep2
1387  %tmp.gep2 = getelementptr inbounds [4 x i8], ptr %tmp, i32 0, i32 2
1388  store i8 %src.2, ptr %tmp.gep2
1389
1390  br label %bb2
1391
1392bb2:
1393  %src.gep1 = getelementptr inbounds i8, ptr %src, i32 1
1394  %src.1 = load i8, ptr %src.gep1
1395  %tmp.gep1 = getelementptr inbounds [4 x i8], ptr %tmp, i32 0, i32 1
1396  store i8 %src.1, ptr %tmp.gep1
1397
1398  br label %bb1
1399
1400bb1:
1401  %src.0 = load i8, ptr %src
1402  store i8 %src.0, ptr %tmp
1403
1404  br label %end
1405
1406end:
1407  call void @llvm.memcpy.p0.p0.i32(ptr %data, ptr %tmp, i32 %size, i1 false)
1408  ret void
1409}
1410
1411define void @PR15805(i1 %a, i1 %b) {
1412; CHECK-PRESERVE-CFG-LABEL: @PR15805(
1413; CHECK-PRESERVE-CFG-NEXT:    [[C:%.*]] = alloca i64, align 8
1414; CHECK-PRESERVE-CFG-NEXT:    [[COND_IN:%.*]] = select i1 [[B:%.*]], ptr [[C]], ptr [[C]]
1415; CHECK-PRESERVE-CFG-NEXT:    [[COND:%.*]] = load i64, ptr [[COND_IN]], align 8
1416; CHECK-PRESERVE-CFG-NEXT:    ret void
1417;
1418; CHECK-MODIFY-CFG-LABEL: @PR15805(
1419; CHECK-MODIFY-CFG-NEXT:    br i1 [[B:%.*]], label [[DOTCONT:%.*]], label [[DOTELSE:%.*]]
1420; CHECK-MODIFY-CFG:       .else:
1421; CHECK-MODIFY-CFG-NEXT:    br label [[DOTCONT]]
1422; CHECK-MODIFY-CFG:       .cont:
1423; CHECK-MODIFY-CFG-NEXT:    [[COND:%.*]] = phi i64 [ undef, [[TMP0:%.*]] ], [ undef, [[DOTELSE]] ]
1424; CHECK-MODIFY-CFG-NEXT:    ret void
1425;
1426  %c = alloca i64, align 8
1427  %p.0.c = select i1 %a, ptr %c, ptr %c
1428  %cond.in = select i1 %b, ptr %p.0.c, ptr %c
1429  %cond = load i64, ptr %cond.in, align 8
1430  ret void
1431}
1432
1433define void @PR15805.1(i1 %a, i1 %b, i1 %c2) {
1434; Same as the normal PR15805, but rigged to place the use before the def inside
1435; of looping unreachable code. This helps ensure that we aren't sensitive to the
1436; order in which the uses of the alloca are visited.
1437;
1438;
1439; CHECK-PRESERVE-CFG-LABEL: @PR15805.1(
1440; CHECK-PRESERVE-CFG-NEXT:    [[C:%.*]] = alloca i64, align 8
1441; CHECK-PRESERVE-CFG-NEXT:    br label [[EXIT:%.*]]
1442; CHECK-PRESERVE-CFG:       loop:
1443; CHECK-PRESERVE-CFG-NEXT:    [[COND_IN:%.*]] = select i1 [[A:%.*]], ptr [[C]], ptr [[C]]
1444; CHECK-PRESERVE-CFG-NEXT:    [[COND:%.*]] = load i64, ptr [[COND_IN]], align 8
1445; CHECK-PRESERVE-CFG-NEXT:    br i1 [[C2:%.*]], label [[LOOP:%.*]], label [[EXIT]]
1446; CHECK-PRESERVE-CFG:       exit:
1447; CHECK-PRESERVE-CFG-NEXT:    ret void
1448;
1449; CHECK-MODIFY-CFG-LABEL: @PR15805.1(
1450; CHECK-MODIFY-CFG-NEXT:    br label [[EXIT:%.*]]
1451; CHECK-MODIFY-CFG:       loop:
1452; CHECK-MODIFY-CFG-NEXT:    [[C_0_LOAD:%.*]] = load i64, ptr poison, align 8
1453; CHECK-MODIFY-CFG-NEXT:    br i1 [[A:%.*]], label [[LOOP_CONT:%.*]], label [[LOOP_ELSE:%.*]]
1454; CHECK-MODIFY-CFG:       loop.else:
1455; CHECK-MODIFY-CFG-NEXT:    [[C_0_LOAD1:%.*]] = load i64, ptr poison, align 8
1456; CHECK-MODIFY-CFG-NEXT:    br label [[LOOP_CONT]]
1457; CHECK-MODIFY-CFG:       loop.cont:
1458; CHECK-MODIFY-CFG-NEXT:    [[COND:%.*]] = phi i64 [ [[C_0_LOAD]], [[LOOP:%.*]] ], [ [[C_0_LOAD1]], [[LOOP_ELSE]] ]
1459; CHECK-MODIFY-CFG-NEXT:    br i1 [[C2:%.*]], label [[LOOP]], label [[EXIT]]
1460; CHECK-MODIFY-CFG:       exit:
1461; CHECK-MODIFY-CFG-NEXT:    ret void
1462;
1463  %c = alloca i64, align 8
1464  br label %exit
1465
1466loop:
1467  %cond.in = select i1 %a, ptr %c, ptr %p.0.c
1468  %p.0.c = select i1 %b, ptr %c, ptr %c
1469  %cond = load i64, ptr %cond.in, align 8
1470  br i1 %c2, label %loop, label %exit
1471
1472exit:
1473  ret void
1474}
1475
1476define void @PR16651.1(ptr %a) {
1477; This test case caused a crash due to the volatile memcpy in combination with
1478; lowering to integer loads and stores of a width other than that of the original
1479; memcpy.
1480;
1481;
1482; CHECK-LABEL: @PR16651.1(
1483; CHECK-NEXT:  entry:
1484; CHECK-NEXT:    [[B_SROA_0:%.*]] = alloca i16, align 4
1485; CHECK-NEXT:    [[B_SROA_1:%.*]] = alloca i8, align 2
1486; CHECK-NEXT:    [[B_SROA_2:%.*]] = alloca i8, align 1
1487; CHECK-NEXT:    [[B_SROA_0_0_COPYLOAD:%.*]] = load volatile i16, ptr [[A:%.*]], align 4
1488; CHECK-NEXT:    store volatile i16 [[B_SROA_0_0_COPYLOAD]], ptr [[B_SROA_0]], align 4
1489; CHECK-NEXT:    [[B_SROA_1_0_A_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A]], i64 2
1490; CHECK-NEXT:    [[B_SROA_1_0_COPYLOAD:%.*]] = load volatile i8, ptr [[B_SROA_1_0_A_SROA_IDX]], align 2
1491; CHECK-NEXT:    store volatile i8 [[B_SROA_1_0_COPYLOAD]], ptr [[B_SROA_1]], align 2
1492; CHECK-NEXT:    [[B_SROA_2_0_A_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[A]], i64 3
1493; CHECK-NEXT:    [[B_SROA_2_0_COPYLOAD:%.*]] = load volatile i8, ptr [[B_SROA_2_0_A_SROA_IDX]], align 1
1494; CHECK-NEXT:    store volatile i8 [[B_SROA_2_0_COPYLOAD]], ptr [[B_SROA_2]], align 1
1495; CHECK-NEXT:    [[B_SROA_1_0_B_SROA_1_2_:%.*]] = load i8, ptr [[B_SROA_1]], align 2
1496; CHECK-NEXT:    unreachable
1497;
1498entry:
1499  %b = alloca i32, align 4
1500  call void @llvm.memcpy.p0.p0.i32(ptr align 4 %b, ptr align 4 %a, i32 4, i1 true)
1501  %b.gep = getelementptr inbounds i8, ptr %b, i32 2
1502  load i8, ptr %b.gep, align 2
1503  unreachable
1504}
1505
1506define void @PR16651.2(<2 x float> %val, i1 %c1) {
1507; This test case caused a crash due to failing to promote given a select that
1508; can't be speculated. It shouldn't be promoted, but we missed that fact when
1509; analyzing whether we could form a vector promotion because that code didn't
1510; bail on select instructions.
1511;
1512;
1513; CHECK-PRESERVE-CFG-LABEL: @PR16651.2(
1514; CHECK-PRESERVE-CFG-NEXT:  entry:
1515; CHECK-PRESERVE-CFG-NEXT:    [[TV1_SROA_0:%.*]] = alloca <2 x float>, align 8
1516; CHECK-PRESERVE-CFG-NEXT:    store <2 x float> [[VAL:%.*]], ptr [[TV1_SROA_0]], align 8
1517; CHECK-PRESERVE-CFG-NEXT:    [[COND105_IN_I_I:%.*]] = select i1 [[C1:%.*]], ptr null, ptr [[TV1_SROA_0]]
1518; CHECK-PRESERVE-CFG-NEXT:    [[COND105_I_I:%.*]] = load float, ptr [[COND105_IN_I_I]], align 8
1519; CHECK-PRESERVE-CFG-NEXT:    ret void
1520;
1521; CHECK-MODIFY-CFG-LABEL: @PR16651.2(
1522; CHECK-MODIFY-CFG-NEXT:  entry:
1523; CHECK-MODIFY-CFG-NEXT:    [[TV1_SROA_0_0_VEC_EXTRACT:%.*]] = extractelement <2 x float> [[VAL:%.*]], i32 0
1524; CHECK-MODIFY-CFG-NEXT:    br i1 [[C1:%.*]], label [[ENTRY_THEN:%.*]], label [[ENTRY_CONT:%.*]]
1525; CHECK-MODIFY-CFG:       entry.then:
1526; CHECK-MODIFY-CFG-NEXT:    [[COND105_I_I_THEN_VAL:%.*]] = load float, ptr null, align 8
1527; CHECK-MODIFY-CFG-NEXT:    br label [[ENTRY_CONT]]
1528; CHECK-MODIFY-CFG:       entry.cont:
1529; CHECK-MODIFY-CFG-NEXT:    [[COND105_I_I:%.*]] = phi float [ [[COND105_I_I_THEN_VAL]], [[ENTRY_THEN]] ], [ [[TV1_SROA_0_0_VEC_EXTRACT]], [[ENTRY:%.*]] ]
1530; CHECK-MODIFY-CFG-NEXT:    ret void
1531;
1532entry:
1533  %tv1 = alloca { <2 x float>, <2 x float> }, align 8
1534  %0 = getelementptr { <2 x float>, <2 x float> }, ptr %tv1, i64 0, i32 1
1535  store <2 x float> %val, ptr %0, align 8
1536  %1 = getelementptr inbounds { <2 x float>, <2 x float> }, ptr %tv1, i64 0, i32 1, i64 0
1537  %cond105.in.i.i = select i1 %c1, ptr null, ptr %1
1538  %cond105.i.i = load float, ptr %cond105.in.i.i, align 8
1539  ret void
1540}
1541
1542define void @test23(i32 %x) {
1543; CHECK-LABEL: @test23(
1544; CHECK-NEXT:  entry:
1545; CHECK-NEXT:    ret void
1546;
1547entry:
1548  %a = alloca i32, align 4
1549  store i32 %x, ptr %a, align 4
1550  %gep1 = getelementptr inbounds i32, ptr %a, i32 1
1551  call void @llvm.memcpy.p0.p0.i32(ptr %gep1, ptr %a, i32 4, i1 false)
1552  ret void
1553}
1554
1555define void @PR18615(ptr %ptr) {
1556; CHECK-LABEL: @PR18615(
1557; CHECK-NEXT:  entry:
1558; CHECK-NEXT:    ret void
1559;
1560entry:
1561  %f = alloca i8
1562  %gep = getelementptr i8, ptr %f, i64 -1
1563  call void @llvm.memcpy.p0.p0.i32(ptr %ptr, ptr %gep, i32 1, i1 false)
1564  ret void
1565}
1566
1567define void @test24(ptr %src, ptr %dst) {
1568; CHECK-LABEL: @test24(
1569; CHECK-NEXT:  entry:
1570; CHECK-NEXT:    [[A:%.*]] = alloca i64, align 16
1571; CHECK-NEXT:    [[A_0_COPYLOAD:%.*]] = load volatile i64, ptr [[SRC:%.*]], align 1, !tbaa [[TBAA0]]
1572; CHECK-NEXT:    store volatile i64 [[A_0_COPYLOAD]], ptr [[A]], align 16, !tbaa [[TBAA0]]
1573; CHECK-NEXT:    [[A_0_COPYLOAD1:%.*]] = load volatile i64, ptr [[A]], align 16, !tbaa [[TBAA3]]
1574; CHECK-NEXT:    store volatile i64 [[A_0_COPYLOAD1]], ptr [[DST:%.*]], align 1, !tbaa [[TBAA3]]
1575; CHECK-NEXT:    ret void
1576;
1577entry:
1578  %a = alloca i64, align 16
1579  call void @llvm.memcpy.p0.p0.i32(ptr %a, ptr %src, i32 8, i1 true), !tbaa !0
1580  call void @llvm.memcpy.p0.p0.i32(ptr %dst, ptr %a, i32 8, i1 true), !tbaa !3
1581  ret void
1582}
1583
1584define float @test25() {
1585; Check that we split up stores in order to promote the smaller SSA values.. These types
1586; of patterns can arise because LLVM maps small memcpy's to integer load and
1587; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
1588; produce, but so might any language frontend), this will in many cases turn into
1589; an integer load and store. SROA needs to be extremely powerful to correctly
1590; handle these cases and form splitable and promotable SSA values.
1591;
1592;
1593; CHECK-LABEL: @test25(
1594; CHECK-NEXT:  entry:
1595; CHECK-NEXT:    [[TMP0:%.*]] = bitcast i32 0 to float
1596; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i32 1065353216 to float
1597; CHECK-NEXT:    [[RET:%.*]] = fadd float [[TMP0]], [[TMP1]]
1598; CHECK-NEXT:    ret float [[RET]]
1599;
1600entry:
1601  %a = alloca i64
1602  %b = alloca i64
1603  %a.gep2 = getelementptr [2 x float], ptr %a, i32 0, i32 1
1604  %b.gep2 = getelementptr [2 x float], ptr %b, i32 0, i32 1
1605  store float 0.0, ptr %a
1606  store float 1.0, ptr %a.gep2
1607  %v = load i64, ptr %a
1608  store i64 %v, ptr %b
1609  %f1 = load float, ptr %b
1610  %f2 = load float, ptr %b.gep2
1611  %ret = fadd float %f1, %f2
1612  ret float %ret
1613}
1614
1615@complex1 = external global [2 x float]
1616@complex2 = external global [2 x float]
1617
1618define void @test26() {
1619; Test a case of splitting up loads and stores against a globals.
1620;
1621;
1622; CHECK-LABEL: @test26(
1623; CHECK-NEXT:  entry:
1624; CHECK-NEXT:    [[V13:%.*]] = load i32, ptr @complex1, align 4
1625; CHECK-NEXT:    [[V14:%.*]] = load i32, ptr getelementptr inbounds (i8, ptr @complex1, i64 4), align 4
1626; CHECK-NEXT:    [[TMP0:%.*]] = bitcast i32 [[V13]] to float
1627; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i32 [[V14]] to float
1628; CHECK-NEXT:    [[SUM:%.*]] = fadd float [[TMP0]], [[TMP1]]
1629; CHECK-NEXT:    [[TMP2:%.*]] = bitcast float [[SUM]] to i32
1630; CHECK-NEXT:    [[TMP3:%.*]] = bitcast float [[SUM]] to i32
1631; CHECK-NEXT:    store i32 [[TMP2]], ptr @complex2, align 4
1632; CHECK-NEXT:    store i32 [[TMP3]], ptr getelementptr inbounds (i8, ptr @complex2, i64 4), align 4
1633; CHECK-NEXT:    ret void
1634;
1635entry:
1636  %a = alloca i64
1637  %a.gep2 = getelementptr [2 x float], ptr %a, i32 0, i32 1
1638  %v1 = load i64, ptr @complex1
1639  store i64 %v1, ptr %a
1640  %f1 = load float, ptr %a
1641  %f2 = load float, ptr %a.gep2
1642  %sum = fadd float %f1, %f2
1643  store float %sum, ptr %a
1644  store float %sum, ptr %a.gep2
1645  %v2 = load i64, ptr %a
1646  store i64 %v2, ptr @complex2
1647  ret void
1648}
1649
1650define float @test27() {
1651; Another, more complex case of splittable i64 loads and stores. This example
1652; is a particularly challenging one because the load and store both point into
1653; the alloca SROA is processing, and they overlap but at an offset.
1654;
1655;
1656; CHECK-LABEL: @test27(
1657; CHECK-NEXT:  entry:
1658; CHECK-NEXT:    [[TMP0:%.*]] = bitcast i32 0 to float
1659; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i32 1065353216 to float
1660; CHECK-NEXT:    [[RET:%.*]] = fadd float [[TMP0]], [[TMP1]]
1661; CHECK-NEXT:    ret float [[RET]]
1662;
1663entry:
1664  %a = alloca [12 x i8]
1665  %gep2 = getelementptr [12 x i8], ptr %a, i32 0, i32 4
1666  %gep3 = getelementptr [12 x i8], ptr %a, i32 0, i32 8
1667  store float 0.0, ptr %a
1668  store float 1.0, ptr %gep2
1669  %v = load i64, ptr %a
1670  store i64 %v, ptr %gep2
1671  %f1 = load float, ptr %gep2
1672  %f2 = load float, ptr %gep3
1673  %ret = fadd float %f1, %f2
1674  ret float %ret
1675}
1676
1677define i32 @PR22093() {
1678; Test that we don't try to pre-split a splittable store of a splittable but
1679; not pre-splittable load over the same alloca. We "handle" this case when the
1680; load is unsplittable but unrelated to this alloca by just generating extra
1681; loads without touching the original, but when the original load was out of
1682; this alloca we need to handle it specially to ensure the splits line up
1683; properly for rewriting.
1684;
1685;
1686; CHECK-LABEL: @PR22093(
1687; CHECK-NEXT:  entry:
1688; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca i16, align 4
1689; CHECK-NEXT:    store volatile i16 42, ptr [[A_SROA_0]], align 4
1690; CHECK-NEXT:    [[A_SROA_0_0_A_SROA_0_0_LOAD:%.*]] = load i16, ptr [[A_SROA_0]], align 4
1691; CHECK-NEXT:    [[A_SROA_3_0_INSERT_EXT:%.*]] = zext i16 undef to i32
1692; CHECK-NEXT:    [[A_SROA_3_0_INSERT_SHIFT:%.*]] = shl i32 [[A_SROA_3_0_INSERT_EXT]], 16
1693; CHECK-NEXT:    [[A_SROA_3_0_INSERT_MASK:%.*]] = and i32 undef, 65535
1694; CHECK-NEXT:    [[A_SROA_3_0_INSERT_INSERT:%.*]] = or i32 [[A_SROA_3_0_INSERT_MASK]], [[A_SROA_3_0_INSERT_SHIFT]]
1695; CHECK-NEXT:    [[A_SROA_0_0_INSERT_EXT:%.*]] = zext i16 [[A_SROA_0_0_A_SROA_0_0_LOAD]] to i32
1696; CHECK-NEXT:    [[A_SROA_0_0_INSERT_MASK:%.*]] = and i32 [[A_SROA_3_0_INSERT_INSERT]], -65536
1697; CHECK-NEXT:    [[A_SROA_0_0_INSERT_INSERT:%.*]] = or i32 [[A_SROA_0_0_INSERT_MASK]], [[A_SROA_0_0_INSERT_EXT]]
1698; CHECK-NEXT:    [[A_SROA_0_0_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_0_0_INSERT_INSERT]] to i16
1699; CHECK-NEXT:    store i16 [[A_SROA_0_0_EXTRACT_TRUNC]], ptr [[A_SROA_0]], align 4
1700; CHECK-NEXT:    [[A_SROA_3_0_EXTRACT_SHIFT:%.*]] = lshr i32 [[A_SROA_0_0_INSERT_INSERT]], 16
1701; CHECK-NEXT:    [[A_SROA_3_0_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_3_0_EXTRACT_SHIFT]] to i16
1702; CHECK-NEXT:    ret i32 [[A_SROA_0_0_INSERT_INSERT]]
1703;
1704entry:
1705  %a = alloca i32
1706  store volatile i16 42, ptr %a
1707  %load = load i32, ptr %a
1708  store i32 %load, ptr %a
1709  ret i32 %load
1710}
1711
1712define void @PR22093.2() {
1713; Another way that we end up being unable to split a particular set of loads
1714; and stores can even have ordering importance. Here we have a load which is
1715; pre-splittable by itself, and the first store is also compatible. But the
1716; second store of the load makes the load unsplittable because of a mismatch of
1717; splits. Because this makes the load unsplittable, we also have to go back and
1718; remove the first store from the presplit candidates as its load won't be
1719; presplit.
1720;
1721;
1722; CHECK-LABEL: @PR22093.2(
1723; CHECK-NEXT:  entry:
1724; CHECK-NEXT:    [[A_SROA_0:%.*]] = alloca i16, align 8
1725; CHECK-NEXT:    [[A_SROA_31:%.*]] = alloca i8, align 4
1726; CHECK-NEXT:    store volatile i16 42, ptr [[A_SROA_0]], align 8
1727; CHECK-NEXT:    [[A_SROA_0_0_A_SROA_0_0_LOAD:%.*]] = load i16, ptr [[A_SROA_0]], align 8
1728; CHECK-NEXT:    [[A_SROA_3_0_INSERT_EXT:%.*]] = zext i16 undef to i32
1729; CHECK-NEXT:    [[A_SROA_3_0_INSERT_SHIFT:%.*]] = shl i32 [[A_SROA_3_0_INSERT_EXT]], 16
1730; CHECK-NEXT:    [[A_SROA_3_0_INSERT_MASK:%.*]] = and i32 undef, 65535
1731; CHECK-NEXT:    [[A_SROA_3_0_INSERT_INSERT:%.*]] = or i32 [[A_SROA_3_0_INSERT_MASK]], [[A_SROA_3_0_INSERT_SHIFT]]
1732; CHECK-NEXT:    [[A_SROA_0_0_INSERT_EXT:%.*]] = zext i16 [[A_SROA_0_0_A_SROA_0_0_LOAD]] to i32
1733; CHECK-NEXT:    [[A_SROA_0_0_INSERT_MASK:%.*]] = and i32 [[A_SROA_3_0_INSERT_INSERT]], -65536
1734; CHECK-NEXT:    [[A_SROA_0_0_INSERT_INSERT:%.*]] = or i32 [[A_SROA_0_0_INSERT_MASK]], [[A_SROA_0_0_INSERT_EXT]]
1735; CHECK-NEXT:    [[A_SROA_0_0_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_0_0_INSERT_INSERT]] to i16
1736; CHECK-NEXT:    store i16 [[A_SROA_0_0_EXTRACT_TRUNC]], ptr [[A_SROA_0]], align 8
1737; CHECK-NEXT:    [[A_SROA_3_0_EXTRACT_SHIFT:%.*]] = lshr i32 [[A_SROA_0_0_INSERT_INSERT]], 16
1738; CHECK-NEXT:    [[A_SROA_3_0_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_3_0_EXTRACT_SHIFT]] to i16
1739; CHECK-NEXT:    store volatile i8 13, ptr [[A_SROA_31]], align 4
1740; CHECK-NEXT:    [[A_SROA_31_4_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_0_0_INSERT_INSERT]] to i8
1741; CHECK-NEXT:    store i8 [[A_SROA_31_4_EXTRACT_TRUNC]], ptr [[A_SROA_31]], align 4
1742; CHECK-NEXT:    [[A_SROA_5_4_EXTRACT_SHIFT:%.*]] = lshr i32 [[A_SROA_0_0_INSERT_INSERT]], 8
1743; CHECK-NEXT:    [[A_SROA_5_4_EXTRACT_TRUNC:%.*]] = trunc i32 [[A_SROA_5_4_EXTRACT_SHIFT]] to i24
1744; CHECK-NEXT:    ret void
1745;
1746entry:
1747  %a = alloca i64
1748  store volatile i16 42, ptr %a
1749  %load = load i32, ptr %a
1750  store i32 %load, ptr %a
1751  %a.gep1 = getelementptr i32, ptr %a, i32 1
1752  store volatile i8 13, ptr %a.gep1
1753  store i32 %load, ptr %a.gep1
1754  ret void
1755}
1756
1757define void @PR23737() {
1758; CHECK-LABEL: @PR23737(
1759; CHECK-NEXT:  entry:
1760; CHECK-NEXT:    [[PTR:%.*]] = alloca i64, align 8
1761; CHECK-NEXT:    store atomic volatile i64 0, ptr [[PTR]] seq_cst, align 8
1762; CHECK-NEXT:    [[PTR_0_LOAD:%.*]] = load atomic volatile i64, ptr [[PTR]] seq_cst, align 8
1763; CHECK-NEXT:    ret void
1764;
1765entry:
1766  %ptr = alloca i64, align 8
1767  store atomic volatile i64 0, ptr %ptr seq_cst, align 8
1768  %load = load atomic volatile i64, ptr %ptr seq_cst, align 8
1769  ret void
1770}
1771
1772define i16 @PR24463() {
1773; Ensure we can handle a very interesting case where there is an integer-based
1774; rewrite of the uses of the alloca, but where one of the integers in that is
1775; a sub-integer that requires extraction *and* extends past the end of the
1776; alloca. SROA can split the alloca to avoid shift or trunc.
1777;
1778;
1779; CHECK-LABEL: @PR24463(
1780; CHECK-NEXT:  entry:
1781; CHECK-NEXT:    [[ALLOCA_SROA_1_2_LOAD_EXT:%.*]] = zext i8 0 to i16
1782; CHECK-NEXT:    ret i16 [[ALLOCA_SROA_1_2_LOAD_EXT]]
1783;
1784entry:
1785  %alloca = alloca [3 x i8]
1786  %gep1 = getelementptr inbounds [3 x i8], ptr %alloca, i64 0, i64 1
1787  store i16 0, ptr %gep1
1788  %gep2 = getelementptr inbounds [3 x i8], ptr %alloca, i64 0, i64 2
1789  %load = load i16, ptr %gep2
1790  ret i16 %load
1791}
1792
1793%struct.STest = type { %struct.SPos, %struct.SPos }
1794%struct.SPos = type { float, float }
1795
1796define void @PR25873(ptr %outData) {
1797; CHECK-LABEL: @PR25873(
1798; CHECK-NEXT:  entry:
1799; CHECK-NEXT:    store i32 1123418112, ptr [[OUTDATA:%.*]], align 4
1800; CHECK-NEXT:    [[OUTDATA_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[OUTDATA]], i64 4
1801; CHECK-NEXT:    store i32 1139015680, ptr [[OUTDATA_SROA_IDX]], align 4
1802; CHECK-NEXT:    [[TMPDATA_SROA_6_0_OUTDATA_SROA_IDX:%.*]] = getelementptr inbounds i8, ptr [[OUTDATA]], i64 8
1803; CHECK-NEXT:    [[TMPDATA_SROA_6_SROA_4_0_INSERT_EXT:%.*]] = zext i32 1139015680 to i64
1804; CHECK-NEXT:    [[TMPDATA_SROA_6_SROA_4_0_INSERT_SHIFT:%.*]] = shl i64 [[TMPDATA_SROA_6_SROA_4_0_INSERT_EXT]], 32
1805; CHECK-NEXT:    [[TMPDATA_SROA_6_SROA_4_0_INSERT_MASK:%.*]] = and i64 undef, 4294967295
1806; CHECK-NEXT:    [[TMPDATA_SROA_6_SROA_4_0_INSERT_INSERT:%.*]] = or i64 [[TMPDATA_SROA_6_SROA_4_0_INSERT_MASK]], [[TMPDATA_SROA_6_SROA_4_0_INSERT_SHIFT]]
1807; CHECK-NEXT:    [[TMPDATA_SROA_6_SROA_0_0_INSERT_EXT:%.*]] = zext i32 1123418112 to i64
1808; CHECK-NEXT:    [[TMPDATA_SROA_6_SROA_0_0_INSERT_MASK:%.*]] = and i64 [[TMPDATA_SROA_6_SROA_4_0_INSERT_INSERT]], -4294967296
1809; CHECK-NEXT:    [[TMPDATA_SROA_6_SROA_0_0_INSERT_INSERT:%.*]] = or i64 [[TMPDATA_SROA_6_SROA_0_0_INSERT_MASK]], [[TMPDATA_SROA_6_SROA_0_0_INSERT_EXT]]
1810; CHECK-NEXT:    store i64 [[TMPDATA_SROA_6_SROA_0_0_INSERT_INSERT]], ptr [[TMPDATA_SROA_6_0_OUTDATA_SROA_IDX]], align 4
1811; CHECK-NEXT:    ret void
1812;
1813entry:
1814  %tmpData = alloca %struct.STest, align 8
1815  call void @llvm.lifetime.start.p0(i64 16, ptr %tmpData)
1816  store float 1.230000e+02, ptr %tmpData, align 8
1817  %y = getelementptr inbounds %struct.STest, ptr %tmpData, i64 0, i32 0, i32 1
1818  store float 4.560000e+02, ptr %y, align 4
1819  %m_posB = getelementptr inbounds %struct.STest, ptr %tmpData, i64 0, i32 1
1820  %0 = load i64, ptr %tmpData, align 8
1821  store i64 %0, ptr %m_posB, align 8
1822  call void @llvm.memcpy.p0.p0.i64(ptr align 4 %outData, ptr align 4 %tmpData, i64 16, i1 false)
1823  call void @llvm.lifetime.end.p0(i64 16, ptr %tmpData)
1824  ret void
1825}
1826
1827declare void @llvm.memcpy.p0.p0.i64(ptr nocapture, ptr nocapture, i64, i1) nounwind
1828
1829define void @PR27999() unnamed_addr {
1830; CHECK-LABEL: @PR27999(
1831; CHECK-NEXT:  entry-block:
1832; CHECK-NEXT:    ret void
1833;
1834entry-block:
1835  %0 = alloca [2 x i64], align 8
1836  call void @llvm.lifetime.start.p0(i64 16, ptr %0)
1837  %1 = getelementptr inbounds [2 x i64], ptr %0, i32 0, i32 1
1838  call void @llvm.lifetime.end.p0(i64 8, ptr %1)
1839  ret void
1840}
1841
1842define void @PR29139() {
1843; CHECK-LABEL: @PR29139(
1844; CHECK-NEXT:  bb1:
1845; CHECK-NEXT:    ret void
1846;
1847bb1:
1848  %e.7.sroa.6.i = alloca i32, align 1
1849  %e.7.sroa.6.0.load81.i = load i32, ptr %e.7.sroa.6.i, align 1
1850  call void @llvm.lifetime.end.p0(i64 2, ptr %e.7.sroa.6.i)
1851  ret void
1852}
1853
1854; PR35657 reports assertion failure with this code
1855define void @PR35657(i64 %v) {
1856; CHECK-LABEL: @PR35657(
1857; CHECK-NEXT:  entry:
1858; CHECK-NEXT:    [[A48_SROA_0_0_EXTRACT_TRUNC:%.*]] = trunc i64 [[V:%.*]] to i16
1859; CHECK-NEXT:    [[A48_SROA_2_0_EXTRACT_SHIFT:%.*]] = lshr i64 [[V]], 16
1860; CHECK-NEXT:    [[A48_SROA_2_0_EXTRACT_TRUNC:%.*]] = trunc i64 [[A48_SROA_2_0_EXTRACT_SHIFT]] to i48
1861; CHECK-NEXT:    call void @callee16(i16 [[A48_SROA_0_0_EXTRACT_TRUNC]])
1862; CHECK-NEXT:    call void @callee48(i48 [[A48_SROA_2_0_EXTRACT_TRUNC]])
1863; CHECK-NEXT:    ret void
1864;
1865entry:
1866  %a48 = alloca i48
1867  store i64 %v, ptr %a48
1868  %b0_15 = load i16, ptr %a48
1869  %a48_offset2 = getelementptr inbounds i8, ptr %a48, i64 2
1870  %b16_63 = load i48, ptr %a48_offset2, align 2
1871  call void @callee16(i16 %b0_15)
1872  call void @callee48(i48 %b16_63)
1873  ret void
1874}
1875
1876declare void @callee16(i16 %a)
1877declare void @callee48(i48 %a)
1878
1879define void @test28(i64 %v) #0 {
1880; SROA should split the first i64 store to avoid additional and/or instructions
1881; when storing into i32 fields
1882;
1883; CHECK-LABEL: @test28(
1884; CHECK-NEXT:  entry:
1885; CHECK-NEXT:    [[T_SROA_0_8_EXTRACT_TRUNC:%.*]] = trunc i64 [[V:%.*]] to i32
1886; CHECK-NEXT:    [[T_SROA_2_8_EXTRACT_SHIFT:%.*]] = lshr i64 [[V]], 32
1887; CHECK-NEXT:    [[T_SROA_2_8_EXTRACT_TRUNC:%.*]] = trunc i64 [[T_SROA_2_8_EXTRACT_SHIFT]] to i32
1888; CHECK-NEXT:    ret void
1889;
1890entry:
1891  %t = alloca { i64, i32, i32 }
1892
1893  %b = getelementptr { i64, i32, i32 }, ptr %t, i32 0, i32 1
1894  store i64 %v, ptr %b
1895
1896  %0 = load i32, ptr %b
1897  %c = getelementptr { i64, i32, i32 }, ptr %t, i32 0, i32 2
1898  store i32 %0, ptr %c
1899  ret void
1900}
1901
1902declare void @llvm.lifetime.start.isVoid.i64.p0(i64, ptr nocapture)
1903declare void @llvm.lifetime.end.isVoid.i64.p0(i64, ptr nocapture)
1904@array = dso_local global [10 x float] zeroinitializer, align 4
1905
1906define void @test29(i32 %num, i32 %tid) {
1907; CHECK-LABEL: @test29(
1908; CHECK-NEXT:  entry:
1909; CHECK-NEXT:    [[CMP1:%.*]] = icmp sgt i32 [[NUM:%.*]], 0
1910; CHECK-NEXT:    br i1 [[CMP1]], label [[BB1:%.*]], label [[BB7:%.*]]
1911; CHECK:       bb1:
1912; CHECK-NEXT:    [[TOBOOL:%.*]] = icmp eq i32 [[TID:%.*]], 0
1913; CHECK-NEXT:    [[CONV_I:%.*]] = zext i32 [[TID]] to i64
1914; CHECK-NEXT:    [[ARRAYIDX5:%.*]] = getelementptr inbounds [10 x float], ptr @array, i64 0, i64 [[CONV_I]]
1915; CHECK-NEXT:    br label [[BB2:%.*]]
1916; CHECK:       bb2:
1917; CHECK-NEXT:    [[I_02:%.*]] = phi i32 [ [[NUM]], [[BB1]] ], [ [[SUB:%.*]], [[BB5:%.*]] ]
1918; CHECK-NEXT:    br i1 [[TOBOOL]], label [[BB3:%.*]], label [[BB4:%.*]]
1919; CHECK:       bb3:
1920; CHECK-NEXT:    br label [[BB5]]
1921; CHECK:       bb4:
1922; CHECK-NEXT:    store i32 undef, ptr [[ARRAYIDX5]], align 4
1923; CHECK-NEXT:    br label [[BB5]]
1924; CHECK:       bb5:
1925; CHECK-NEXT:    [[SUB]] = add i32 [[I_02]], -1
1926; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[SUB]], 0
1927; CHECK-NEXT:    br i1 [[CMP]], label [[BB2]], label [[BB6:%.*]]
1928; CHECK:       bb6:
1929; CHECK-NEXT:    br label [[BB7]]
1930; CHECK:       bb7:
1931; CHECK-NEXT:    ret void
1932;
1933entry:
1934  %ra = alloca [10 x float], align 4
1935  call void @llvm.lifetime.start.isVoid.i64.p0(i64 40, ptr nonnull %ra)
1936
1937  %cmp1 = icmp sgt i32 %num, 0
1938  br i1 %cmp1, label %bb1, label %bb7
1939
1940bb1:
1941  %tobool = icmp eq i32 %tid, 0
1942  %conv.i = zext i32 %tid to i64
1943  %0 = load i32, ptr %ra, align 4
1944  %arrayidx5 = getelementptr inbounds [10 x float], ptr @array, i64 0, i64 %conv.i
1945  br label %bb2
1946
1947bb2:
1948  %i.02 = phi i32 [ %num, %bb1 ], [ %sub, %bb5 ]
1949  br i1 %tobool, label %bb3, label %bb4
1950
1951bb3:
1952  br label %bb5
1953
1954bb4:
1955  store i32 %0, ptr %arrayidx5, align 4
1956  br label %bb5
1957
1958bb5:
1959  %sub = add i32 %i.02, -1
1960  %cmp = icmp sgt i32 %sub, 0
1961  br i1 %cmp, label %bb2, label %bb6
1962
1963bb6:
1964  br label %bb7
1965
1966bb7:
1967  call void @llvm.lifetime.end.isVoid.i64.p0(i64 40, ptr nonnull %ra)
1968  ret void
1969}
1970
1971define i32 @load_atomic_volatile_past_end() {
1972; CHECK-LABEL: @load_atomic_volatile_past_end(
1973; CHECK-NEXT:    [[A:%.*]] = alloca i1, align 1
1974; CHECK-NEXT:    [[A_0_V:%.*]] = load atomic volatile i32, ptr [[A]] seq_cst, align 1
1975; CHECK-NEXT:    ret i32 [[A_0_V]]
1976;
1977  %a = alloca i1, align 1
1978  %v = load atomic volatile i32, ptr %a seq_cst, align 4
1979  ret i32 %v
1980}
1981
1982define i32 @load_volatile_past_end() {
1983; CHECK-LABEL: @load_volatile_past_end(
1984; CHECK-NEXT:    [[A:%.*]] = alloca i1, align 1
1985; CHECK-NEXT:    [[A_0_V:%.*]] = load volatile i32, ptr [[A]], align 1
1986; CHECK-NEXT:    ret i32 [[A_0_V]]
1987;
1988  %a = alloca i1, align 1
1989  %v = load volatile i32, ptr %a, align 4
1990  ret i32 %v
1991}
1992
1993define i32 @load_atomic_past_end() {
1994; CHECK-LABEL: @load_atomic_past_end(
1995; CHECK-NEXT:    [[A_0_LOAD_EXT:%.*]] = zext i1 undef to i32
1996; CHECK-NEXT:    ret i32 [[A_0_LOAD_EXT]]
1997;
1998  %a = alloca i1, align 1
1999  %v = load atomic i32, ptr %a seq_cst, align 4
2000  ret i32 %v
2001}
2002
2003!0 = !{!1, !1, i64 0, i64 200}
2004!1 = !{!2, i64 1, !"type_0"}
2005!2 = !{!"root"}
2006!3 = !{!4, !4, i64 0, i64 1}
2007!4 = !{!2, i64 1, !"type_3"}
2008!5 = !{!6, !6, i64 0, i64 1}
2009!6 = !{!2, i64 1, !"type_5"}
2010!7 = !{!8, !8, i64 0, i64 1}
2011!8 = !{!2, i64 1, !"type_7"}
2012!9 = !{!10, !10, i64 0, i64 1}
2013!10 = !{!2, i64 1, !"type_9"}
2014!11 = !{!12, !12, i64 0, i64 1}
2015!12 = !{!2, i64 1, !"type_11"}
2016!13 = !{!14, !14, i64 0, i64 1}
2017!14 = !{!2, i64 1, !"type_13"}
2018!15 = !{!16, !16, i64 0, i64 1}
2019!16 = !{!2, i64 1, !"type_15"}
2020!17 = !{!18, !18, i64 0, i64 1}
2021!18 = !{!2, i64 1, !"type_17"}
2022!19 = !{!20, !20, i64 0, i64 1}
2023!20 = !{!2, i64 1, !"type_19"}
2024!21 = !{!22, !22, i64 0, i64 1}
2025!22 = !{!2, i64 1, !"type_21"}
2026!23 = !{!24, !24, i64 0, i64 1}
2027!24 = !{!2, i64 1, !"type_23"}
2028!25 = !{!26, !26, i64 0, i64 1}
2029!26 = !{!2, i64 1, !"type_25"}
2030!27 = !{!28, !28, i64 0, i64 1}
2031!28 = !{!2, i64 1, !"type_27"}
2032!29 = !{!30, !30, i64 0, i64 1}
2033!30 = !{!2, i64 1, !"type_29"}
2034!31 = !{!32, !32, i64 0, i64 1}
2035!32 = !{!2, i64 1, !"type_31"}
2036!33 = !{!34, !34, i64 0, i64 1}
2037!34 = !{!2, i64 1, !"type_33"}
2038!35 = !{!36, !36, i64 0, i64 1}
2039!36 = !{!2, i64 1, !"type_35"}
2040!37 = !{!38, !38, i64 0, i64 1}
2041!38 = !{!2, i64 1, !"type_37"}
2042!39 = !{!40, !40, i64 0, i64 1}
2043!40 = !{!2, i64 1, !"type_39"}
2044!41 = !{!42, !42, i64 0, i64 1}
2045!42 = !{!2, i64 1, !"type_41"}
2046!43 = !{!44, !44, i64 0, i64 1}
2047!44 = !{!2, i64 1, !"type_43"}
2048!45 = !{!46, !46, i64 0, i64 1}
2049!46 = !{!2, i64 1, !"type_45"}
2050!47 = !{!48, !48, i64 0, i64 1}
2051!48 = !{!2, i64 1, !"type_47"}
2052!49 = !{!50, !50, i64 0, i64 1}
2053!50 = !{!2, i64 1, !"type_49"}
2054!51 = !{!52, !52, i64 0, i64 1}
2055!52 = !{!2, i64 1, !"type_51"}
2056!53 = !{!54, !54, i64 0, i64 1}
2057!54 = !{!2, i64 1, !"type_53"}
2058!55 = !{!56, !56, i64 0, i64 1}
2059!56 = !{!2, i64 1, !"type_55"}
2060!57 = !{!58, !58, i64 0, i64 1}
2061!58 = !{!2, i64 1, !"type_57"}
2062!59 = !{!60, !60, i64 0, i64 1}
2063!60 = !{!2, i64 1, !"type_59"}
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074