xref: /llvm-project/llvm/test/Transforms/SLPVectorizer/consecutive-access.ll (revision 15ee17c3ce34623261788d7de3c1bdf5860be34e)
1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2; RUN: %if x86-registered-target %{ opt < %s -passes=slp-vectorizer -S -mtriple=x86_64-apple-macosx10.9.0 | FileCheck %s --check-prefixes=CHECK-X86 %}
3; RUN: %if aarch64-registered-target %{ opt < %s -passes=slp-vectorizer -S -mtriple=aarch64-unknown-linux-gnu | FileCheck %s --check-prefixes=CHECK-AARCH64 %}
4
5@A = common global [2000 x double] zeroinitializer, align 16
6@B = common global [2000 x double] zeroinitializer, align 16
7@C = common global [2000 x float] zeroinitializer, align 16
8@D = common global [2000 x float] zeroinitializer, align 16
9
10; Function Attrs: nounwind ssp uwtable
11define void @foo_3double(i32 %u) #0 {
12; CHECK-LABEL: @foo_3double(
13; CHECK-NEXT:  entry:
14; CHECK-NEXT:    [[U_ADDR:%.*]] = alloca i32, align 4
15; CHECK-NEXT:    store i32 [[U:%.*]], ptr [[U_ADDR]], align 4
16; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[U]], 3
17; CHECK-NEXT:    [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
18; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 [[IDXPROM]]
19; CHECK-NEXT:    [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 [[IDXPROM]]
20; CHECK-NEXT:    [[TMP0:%.*]] = load <2 x double>, ptr [[ARRAYIDX]], align 8
21; CHECK-NEXT:    [[TMP1:%.*]] = load <2 x double>, ptr [[ARRAYIDX4]], align 8
22; CHECK-NEXT:    [[TMP2:%.*]] = fadd <2 x double> [[TMP0]], [[TMP1]]
23; CHECK-NEXT:    store <2 x double> [[TMP2]], ptr [[ARRAYIDX]], align 8
24; CHECK-NEXT:    [[ADD24:%.*]] = add nsw i32 [[MUL]], 2
25; CHECK-NEXT:    [[IDXPROM25:%.*]] = sext i32 [[ADD24]] to i64
26; CHECK-NEXT:    [[ARRAYIDX26:%.*]] = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 [[IDXPROM25]]
27; CHECK-NEXT:    [[TMP3:%.*]] = load double, ptr [[ARRAYIDX26]], align 8
28; CHECK-NEXT:    [[ARRAYIDX30:%.*]] = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 [[IDXPROM25]]
29; CHECK-NEXT:    [[TMP4:%.*]] = load double, ptr [[ARRAYIDX30]], align 8
30; CHECK-NEXT:    [[ADD31:%.*]] = fadd double [[TMP3]], [[TMP4]]
31; CHECK-NEXT:    store double [[ADD31]], ptr [[ARRAYIDX26]], align 8
32; CHECK-NEXT:    ret void
33;
34entry:
35  %u.addr = alloca i32, align 4
36  store i32 %u, ptr %u.addr, align 4
37  %mul = mul nsw i32 %u, 3
38  %idxprom = sext i32 %mul to i64
39  %arrayidx = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom
40  %0 = load double, ptr %arrayidx, align 8
41  %arrayidx4 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom
42  %1 = load double, ptr %arrayidx4, align 8
43  %add5 = fadd double %0, %1
44  store double %add5, ptr %arrayidx, align 8
45  %add11 = add nsw i32 %mul, 1
46  %idxprom12 = sext i32 %add11 to i64
47  %arrayidx13 = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom12
48  %2 = load double, ptr %arrayidx13, align 8
49  %arrayidx17 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom12
50  %3 = load double, ptr %arrayidx17, align 8
51  %add18 = fadd double %2, %3
52  store double %add18, ptr %arrayidx13, align 8
53  %add24 = add nsw i32 %mul, 2
54  %idxprom25 = sext i32 %add24 to i64
55  %arrayidx26 = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom25
56  %4 = load double, ptr %arrayidx26, align 8
57  %arrayidx30 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom25
58  %5 = load double, ptr %arrayidx30, align 8
59  %add31 = fadd double %4, %5
60  store double %add31, ptr %arrayidx26, align 8
61  ret void
62}
63
64; SCEV should be able to tell that accesses A[C1 + C2*i], A[C1 + C2*i], ...
65; A[C1 + C2*i] are consecutive, if C2 is a power of 2, and C2 > C1 > 0.
66; Thus, the following code should be vectorized.
67; Function Attrs: nounwind ssp uwtable
68define void @foo_2double(i32 %u) #0 {
69; CHECK-LABEL: @foo_2double(
70; CHECK-NEXT:  entry:
71; CHECK-NEXT:    [[U_ADDR:%.*]] = alloca i32, align 4
72; CHECK-NEXT:    store i32 [[U:%.*]], ptr [[U_ADDR]], align 4
73; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[U]], 2
74; CHECK-NEXT:    [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
75; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 [[IDXPROM]]
76; CHECK-NEXT:    [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 [[IDXPROM]]
77; CHECK-NEXT:    [[TMP0:%.*]] = load <2 x double>, ptr [[ARRAYIDX]], align 8
78; CHECK-NEXT:    [[TMP1:%.*]] = load <2 x double>, ptr [[ARRAYIDX4]], align 8
79; CHECK-NEXT:    [[TMP2:%.*]] = fadd <2 x double> [[TMP0]], [[TMP1]]
80; CHECK-NEXT:    store <2 x double> [[TMP2]], ptr [[ARRAYIDX]], align 8
81; CHECK-NEXT:    ret void
82;
83entry:
84  %u.addr = alloca i32, align 4
85  store i32 %u, ptr %u.addr, align 4
86  %mul = mul nsw i32 %u, 2
87  %idxprom = sext i32 %mul to i64
88  %arrayidx = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom
89  %0 = load double, ptr %arrayidx, align 8
90  %arrayidx4 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom
91  %1 = load double, ptr %arrayidx4, align 8
92  %add5 = fadd double %0, %1
93  store double %add5, ptr %arrayidx, align 8
94  %add11 = add nsw i32 %mul, 1
95  %idxprom12 = sext i32 %add11 to i64
96  %arrayidx13 = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom12
97  %2 = load double, ptr %arrayidx13, align 8
98  %arrayidx17 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom12
99  %3 = load double, ptr %arrayidx17, align 8
100  %add18 = fadd double %2, %3
101  store double %add18, ptr %arrayidx13, align 8
102  ret void
103}
104
105; Similar to the previous test, but with different datatype.
106; Function Attrs: nounwind ssp uwtable
107define void @foo_4float(i32 %u) #0 {
108; CHECK-LABEL: @foo_4float(
109; CHECK-NEXT:  entry:
110; CHECK-NEXT:    [[U_ADDR:%.*]] = alloca i32, align 4
111; CHECK-NEXT:    store i32 [[U:%.*]], ptr [[U_ADDR]], align 4
112; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[U]], 4
113; CHECK-NEXT:    [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
114; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x float], ptr @C, i32 0, i64 [[IDXPROM]]
115; CHECK-NEXT:    [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x float], ptr @D, i32 0, i64 [[IDXPROM]]
116; CHECK-NEXT:    [[TMP0:%.*]] = load <4 x float>, ptr [[ARRAYIDX]], align 4
117; CHECK-NEXT:    [[TMP1:%.*]] = load <4 x float>, ptr [[ARRAYIDX4]], align 4
118; CHECK-NEXT:    [[TMP2:%.*]] = fadd <4 x float> [[TMP0]], [[TMP1]]
119; CHECK-NEXT:    store <4 x float> [[TMP2]], ptr [[ARRAYIDX]], align 4
120; CHECK-NEXT:    ret void
121;
122entry:
123  %u.addr = alloca i32, align 4
124  store i32 %u, ptr %u.addr, align 4
125  %mul = mul nsw i32 %u, 4
126  %idxprom = sext i32 %mul to i64
127  %arrayidx = getelementptr inbounds [2000 x float], ptr @C, i32 0, i64 %idxprom
128  %0 = load float, ptr %arrayidx, align 4
129  %arrayidx4 = getelementptr inbounds [2000 x float], ptr @D, i32 0, i64 %idxprom
130  %1 = load float, ptr %arrayidx4, align 4
131  %add5 = fadd float %0, %1
132  store float %add5, ptr %arrayidx, align 4
133  %add11 = add nsw i32 %mul, 1
134  %idxprom12 = sext i32 %add11 to i64
135  %arrayidx13 = getelementptr inbounds [2000 x float], ptr @C, i32 0, i64 %idxprom12
136  %2 = load float, ptr %arrayidx13, align 4
137  %arrayidx17 = getelementptr inbounds [2000 x float], ptr @D, i32 0, i64 %idxprom12
138  %3 = load float, ptr %arrayidx17, align 4
139  %add18 = fadd float %2, %3
140  store float %add18, ptr %arrayidx13, align 4
141  %add24 = add nsw i32 %mul, 2
142  %idxprom25 = sext i32 %add24 to i64
143  %arrayidx26 = getelementptr inbounds [2000 x float], ptr @C, i32 0, i64 %idxprom25
144  %4 = load float, ptr %arrayidx26, align 4
145  %arrayidx30 = getelementptr inbounds [2000 x float], ptr @D, i32 0, i64 %idxprom25
146  %5 = load float, ptr %arrayidx30, align 4
147  %add31 = fadd float %4, %5
148  store float %add31, ptr %arrayidx26, align 4
149  %add37 = add nsw i32 %mul, 3
150  %idxprom38 = sext i32 %add37 to i64
151  %arrayidx39 = getelementptr inbounds [2000 x float], ptr @C, i32 0, i64 %idxprom38
152  %6 = load float, ptr %arrayidx39, align 4
153  %arrayidx43 = getelementptr inbounds [2000 x float], ptr @D, i32 0, i64 %idxprom38
154  %7 = load float, ptr %arrayidx43, align 4
155  %add44 = fadd float %6, %7
156  store float %add44, ptr %arrayidx39, align 4
157  ret void
158}
159
160; Similar to the previous tests, but now we are dealing with AddRec SCEV.
161; Function Attrs: nounwind ssp uwtable
162define i32 @foo_loop(ptr %A, i32 %n) #0 {
163; CHECK-LABEL: @foo_loop(
164; CHECK-NEXT:  entry:
165; CHECK-NEXT:    [[A_ADDR:%.*]] = alloca ptr, align 8
166; CHECK-NEXT:    [[N_ADDR:%.*]] = alloca i32, align 4
167; CHECK-NEXT:    [[SUM:%.*]] = alloca double, align 8
168; CHECK-NEXT:    [[I:%.*]] = alloca i32, align 4
169; CHECK-NEXT:    store ptr [[A:%.*]], ptr [[A_ADDR]], align 8
170; CHECK-NEXT:    store i32 [[N:%.*]], ptr [[N_ADDR]], align 4
171; CHECK-NEXT:    store double 0.000000e+00, ptr [[SUM]], align 8
172; CHECK-NEXT:    store i32 0, ptr [[I]], align 4
173; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 0, [[N]]
174; CHECK-NEXT:    br i1 [[CMP1]], label [[FOR_BODY_LR_PH:%.*]], label [[FOR_END:%.*]]
175; CHECK:       for.body.lr.ph:
176; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
177; CHECK:       for.body:
178; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ 0, [[FOR_BODY_LR_PH]] ], [ [[INC:%.*]], [[FOR_BODY]] ]
179; CHECK-NEXT:    [[TMP1:%.*]] = phi double [ 0.000000e+00, [[FOR_BODY_LR_PH]] ], [ [[ADD7:%.*]], [[FOR_BODY]] ]
180; CHECK-NEXT:    [[MUL:%.*]] = mul nsw i32 [[TMP0]], 2
181; CHECK-NEXT:    [[IDXPROM:%.*]] = sext i32 [[MUL]] to i64
182; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A]], i64 [[IDXPROM]]
183; CHECK-NEXT:    [[TMP2:%.*]] = load <2 x double>, ptr [[ARRAYIDX]], align 8
184; CHECK-NEXT:    [[TMP3:%.*]] = fmul <2 x double> <double 7.000000e+00, double 7.000000e+00>, [[TMP2]]
185; CHECK-NEXT:    [[TMP4:%.*]] = extractelement <2 x double> [[TMP3]], i32 0
186; CHECK-NEXT:    [[TMP5:%.*]] = extractelement <2 x double> [[TMP3]], i32 1
187; CHECK-NEXT:    [[ADD6:%.*]] = fadd double [[TMP4]], [[TMP5]]
188; CHECK-NEXT:    [[ADD7]] = fadd double [[TMP1]], [[ADD6]]
189; CHECK-NEXT:    store double [[ADD7]], ptr [[SUM]], align 8
190; CHECK-NEXT:    [[INC]] = add nsw i32 [[TMP0]], 1
191; CHECK-NEXT:    store i32 [[INC]], ptr [[I]], align 4
192; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[INC]], [[N]]
193; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_FOR_END_CRIT_EDGE:%.*]]
194; CHECK:       for.cond.for.end_crit_edge:
195; CHECK-NEXT:    [[SPLIT:%.*]] = phi double [ [[ADD7]], [[FOR_BODY]] ]
196; CHECK-NEXT:    br label [[FOR_END]]
197; CHECK:       for.end:
198; CHECK-NEXT:    [[DOTLCSSA:%.*]] = phi double [ [[SPLIT]], [[FOR_COND_FOR_END_CRIT_EDGE]] ], [ 0.000000e+00, [[ENTRY:%.*]] ]
199; CHECK-NEXT:    [[CONV:%.*]] = fptosi double [[DOTLCSSA]] to i32
200; CHECK-NEXT:    ret i32 [[CONV]]
201;
202entry:
203  %A.addr = alloca ptr, align 8
204  %n.addr = alloca i32, align 4
205  %sum = alloca double, align 8
206  %i = alloca i32, align 4
207  store ptr %A, ptr %A.addr, align 8
208  store i32 %n, ptr %n.addr, align 4
209  store double 0.000000e+00, ptr %sum, align 8
210  store i32 0, ptr %i, align 4
211  %cmp1 = icmp slt i32 0, %n
212  br i1 %cmp1, label %for.body.lr.ph, label %for.end
213
214for.body.lr.ph:                                   ; preds = %entry
215  br label %for.body
216
217for.body:                                         ; preds = %for.body.lr.ph, %for.body
218  %0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
219  %1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ]
220  %mul = mul nsw i32 %0, 2
221  %idxprom = sext i32 %mul to i64
222  %arrayidx = getelementptr inbounds double, ptr %A, i64 %idxprom
223  %2 = load double, ptr %arrayidx, align 8
224  %mul1 = fmul double 7.000000e+00, %2
225  %add = add nsw i32 %mul, 1
226  %idxprom3 = sext i32 %add to i64
227  %arrayidx4 = getelementptr inbounds double, ptr %A, i64 %idxprom3
228  %3 = load double, ptr %arrayidx4, align 8
229  %mul5 = fmul double 7.000000e+00, %3
230  %add6 = fadd double %mul1, %mul5
231  %add7 = fadd double %1, %add6
232  store double %add7, ptr %sum, align 8
233  %inc = add nsw i32 %0, 1
234  store i32 %inc, ptr %i, align 4
235  %cmp = icmp slt i32 %inc, %n
236  br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
237
238for.cond.for.end_crit_edge:                       ; preds = %for.body
239  %split = phi double [ %add7, %for.body ]
240  br label %for.end
241
242for.end:                                          ; preds = %for.cond.for.end_crit_edge, %entry
243  %.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ]
244  %conv = fptosi double %.lcssa to i32
245  ret i32 %conv
246}
247
248; Similar to foo_2double but with a non-power-of-2 factor and potential
249; wrapping (both indices wrap or both don't in the same time)
250; Function Attrs: nounwind ssp uwtable
251define void @foo_2double_non_power_of_2(i32 %u) #0 {
252; CHECK-LABEL: @foo_2double_non_power_of_2(
253; CHECK-NEXT:  entry:
254; CHECK-NEXT:    [[U_ADDR:%.*]] = alloca i32, align 4
255; CHECK-NEXT:    store i32 [[U:%.*]], ptr [[U_ADDR]], align 4
256; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[U]], 6
257; CHECK-NEXT:    [[ADD6:%.*]] = add i32 [[MUL]], 6
258; CHECK-NEXT:    [[IDXPROM:%.*]] = sext i32 [[ADD6]] to i64
259; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 [[IDXPROM]]
260; CHECK-NEXT:    [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 [[IDXPROM]]
261; CHECK-NEXT:    [[TMP0:%.*]] = load <2 x double>, ptr [[ARRAYIDX]], align 8
262; CHECK-NEXT:    [[TMP1:%.*]] = load <2 x double>, ptr [[ARRAYIDX4]], align 8
263; CHECK-NEXT:    [[TMP2:%.*]] = fadd <2 x double> [[TMP0]], [[TMP1]]
264; CHECK-NEXT:    store <2 x double> [[TMP2]], ptr [[ARRAYIDX]], align 8
265; CHECK-NEXT:    ret void
266;
267entry:
268  %u.addr = alloca i32, align 4
269  store i32 %u, ptr %u.addr, align 4
270  %mul = mul i32 %u, 6
271  %add6 = add i32 %mul, 6
272  %idxprom = sext i32 %add6 to i64
273  %arrayidx = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom
274  %0 = load double, ptr %arrayidx, align 8
275  %arrayidx4 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom
276  %1 = load double, ptr %arrayidx4, align 8
277  %add5 = fadd double %0, %1
278  store double %add5, ptr %arrayidx, align 8
279  %add7 = add i32 %mul, 7
280  %idxprom12 = sext i32 %add7 to i64
281  %arrayidx13 = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom12
282  %2 = load double, ptr %arrayidx13, align 8
283  %arrayidx17 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom12
284  %3 = load double, ptr %arrayidx17, align 8
285  %add18 = fadd double %2, %3
286  store double %add18, ptr %arrayidx13, align 8
287  ret void
288}
289
290; Similar to foo_2double_non_power_of_2 but with zext's instead of sext's
291; Function Attrs: nounwind ssp uwtable
292define void @foo_2double_non_power_of_2_zext(i32 %u) #0 {
293; CHECK-LABEL: @foo_2double_non_power_of_2_zext(
294; CHECK-NEXT:  entry:
295; CHECK-NEXT:    [[U_ADDR:%.*]] = alloca i32, align 4
296; CHECK-NEXT:    store i32 [[U:%.*]], ptr [[U_ADDR]], align 4
297; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[U]], 6
298; CHECK-NEXT:    [[ADD6:%.*]] = add i32 [[MUL]], 6
299; CHECK-NEXT:    [[IDXPROM:%.*]] = zext i32 [[ADD6]] to i64
300; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 [[IDXPROM]]
301; CHECK-NEXT:    [[ARRAYIDX4:%.*]] = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 [[IDXPROM]]
302; CHECK-NEXT:    [[TMP0:%.*]] = load <2 x double>, ptr [[ARRAYIDX]], align 8
303; CHECK-NEXT:    [[TMP1:%.*]] = load <2 x double>, ptr [[ARRAYIDX4]], align 8
304; CHECK-NEXT:    [[TMP2:%.*]] = fadd <2 x double> [[TMP0]], [[TMP1]]
305; CHECK-NEXT:    store <2 x double> [[TMP2]], ptr [[ARRAYIDX]], align 8
306; CHECK-NEXT:    ret void
307;
308entry:
309  %u.addr = alloca i32, align 4
310  store i32 %u, ptr %u.addr, align 4
311  %mul = mul i32 %u, 6
312  %add6 = add i32 %mul, 6
313  %idxprom = zext i32 %add6 to i64
314  %arrayidx = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom
315  %0 = load double, ptr %arrayidx, align 8
316  %arrayidx4 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom
317  %1 = load double, ptr %arrayidx4, align 8
318  %add5 = fadd double %0, %1
319  store double %add5, ptr %arrayidx, align 8
320  %add7 = add i32 %mul, 7
321  %idxprom12 = zext i32 %add7 to i64
322  %arrayidx13 = getelementptr inbounds [2000 x double], ptr @A, i32 0, i64 %idxprom12
323  %2 = load double, ptr %arrayidx13, align 8
324  %arrayidx17 = getelementptr inbounds [2000 x double], ptr @B, i32 0, i64 %idxprom12
325  %3 = load double, ptr %arrayidx17, align 8
326  %add18 = fadd double %2, %3
327  store double %add18, ptr %arrayidx13, align 8
328  ret void
329}
330
331; Similar to foo_2double_non_power_of_2, but now we are dealing with AddRec SCEV.
332; Alternatively, this is like foo_loop, but with a non-power-of-2 factor and
333; potential wrapping (both indices wrap or both don't in the same time)
334; Function Attrs: nounwind ssp uwtable
335define i32 @foo_loop_non_power_of_2(ptr %A, i32 %n) #0 {
336; CHECK-LABEL: @foo_loop_non_power_of_2(
337; CHECK-NEXT:  entry:
338; CHECK-NEXT:    [[A_ADDR:%.*]] = alloca ptr, align 8
339; CHECK-NEXT:    [[N_ADDR:%.*]] = alloca i32, align 4
340; CHECK-NEXT:    [[SUM:%.*]] = alloca double, align 8
341; CHECK-NEXT:    [[I:%.*]] = alloca i32, align 4
342; CHECK-NEXT:    store ptr [[A:%.*]], ptr [[A_ADDR]], align 8
343; CHECK-NEXT:    store i32 [[N:%.*]], ptr [[N_ADDR]], align 4
344; CHECK-NEXT:    store double 0.000000e+00, ptr [[SUM]], align 8
345; CHECK-NEXT:    store i32 0, ptr [[I]], align 4
346; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 0, [[N]]
347; CHECK-NEXT:    br i1 [[CMP1]], label [[FOR_BODY_LR_PH:%.*]], label [[FOR_END:%.*]]
348; CHECK:       for.body.lr.ph:
349; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
350; CHECK:       for.body:
351; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ 0, [[FOR_BODY_LR_PH]] ], [ [[INC:%.*]], [[FOR_BODY]] ]
352; CHECK-NEXT:    [[TMP1:%.*]] = phi double [ 0.000000e+00, [[FOR_BODY_LR_PH]] ], [ [[ADD7:%.*]], [[FOR_BODY]] ]
353; CHECK-NEXT:    [[MUL:%.*]] = mul i32 [[TMP0]], 12
354; CHECK-NEXT:    [[ADD_5:%.*]] = add i32 [[MUL]], 5
355; CHECK-NEXT:    [[IDXPROM:%.*]] = sext i32 [[ADD_5]] to i64
356; CHECK-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A]], i64 [[IDXPROM]]
357; CHECK-NEXT:    [[TMP2:%.*]] = load <2 x double>, ptr [[ARRAYIDX]], align 8
358; CHECK-NEXT:    [[TMP3:%.*]] = fmul <2 x double> <double 7.000000e+00, double 7.000000e+00>, [[TMP2]]
359; CHECK-NEXT:    [[TMP4:%.*]] = extractelement <2 x double> [[TMP3]], i32 0
360; CHECK-NEXT:    [[TMP5:%.*]] = extractelement <2 x double> [[TMP3]], i32 1
361; CHECK-NEXT:    [[ADD6:%.*]] = fadd double [[TMP4]], [[TMP5]]
362; CHECK-NEXT:    [[ADD7]] = fadd double [[TMP1]], [[ADD6]]
363; CHECK-NEXT:    store double [[ADD7]], ptr [[SUM]], align 8
364; CHECK-NEXT:    [[INC]] = add i32 [[TMP0]], 1
365; CHECK-NEXT:    store i32 [[INC]], ptr [[I]], align 4
366; CHECK-NEXT:    [[CMP:%.*]] = icmp slt i32 [[INC]], [[N]]
367; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_FOR_END_CRIT_EDGE:%.*]]
368; CHECK:       for.cond.for.end_crit_edge:
369; CHECK-NEXT:    [[SPLIT:%.*]] = phi double [ [[ADD7]], [[FOR_BODY]] ]
370; CHECK-NEXT:    br label [[FOR_END]]
371; CHECK:       for.end:
372; CHECK-NEXT:    [[DOTLCSSA:%.*]] = phi double [ [[SPLIT]], [[FOR_COND_FOR_END_CRIT_EDGE]] ], [ 0.000000e+00, [[ENTRY:%.*]] ]
373; CHECK-NEXT:    [[CONV:%.*]] = fptosi double [[DOTLCSSA]] to i32
374; CHECK-NEXT:    ret i32 [[CONV]]
375;
376entry:
377  %A.addr = alloca ptr, align 8
378  %n.addr = alloca i32, align 4
379  %sum = alloca double, align 8
380  %i = alloca i32, align 4
381  store ptr %A, ptr %A.addr, align 8
382  store i32 %n, ptr %n.addr, align 4
383  store double 0.000000e+00, ptr %sum, align 8
384  store i32 0, ptr %i, align 4
385  %cmp1 = icmp slt i32 0, %n
386  br i1 %cmp1, label %for.body.lr.ph, label %for.end
387
388for.body.lr.ph:                                   ; preds = %entry
389  br label %for.body
390
391for.body:                                         ; preds = %for.body.lr.ph, %for.body
392  %0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
393  %1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ]
394  %mul = mul i32 %0, 12
395  %add.5 = add i32 %mul, 5
396  %idxprom = sext i32 %add.5 to i64
397  %arrayidx = getelementptr inbounds double, ptr %A, i64 %idxprom
398  %2 = load double, ptr %arrayidx, align 8
399  %mul1 = fmul double 7.000000e+00, %2
400  %add.6 = add i32 %mul, 6
401  %idxprom3 = sext i32 %add.6 to i64
402  %arrayidx4 = getelementptr inbounds double, ptr %A, i64 %idxprom3
403  %3 = load double, ptr %arrayidx4, align 8
404  %mul5 = fmul double 7.000000e+00, %3
405  %add6 = fadd double %mul1, %mul5
406  %add7 = fadd double %1, %add6
407  store double %add7, ptr %sum, align 8
408  %inc = add i32 %0, 1
409  store i32 %inc, ptr %i, align 4
410  %cmp = icmp slt i32 %inc, %n
411  br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
412
413for.cond.for.end_crit_edge:                       ; preds = %for.body
414  %split = phi double [ %add7, %for.body ]
415  br label %for.end
416
417for.end:                                          ; preds = %for.cond.for.end_crit_edge, %entry
418  %.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ]
419  %conv = fptosi double %.lcssa to i32
420  ret i32 %conv
421}
422
423; This is generated by `clang -std=c11 -Wpedantic -Wall -O3 main.c -S -o - -emit-llvm`
424; with !{!"clang version 7.0.0 (trunk 337339) (llvm/trunk 337344)"} and stripping off
425; the !tbaa metadata nodes to fit the rest of the test file, where `cat main.c` is:
426;
427;  double bar(ptr a, unsigned n) {
428;    double x = 0.0;
429;    double y = 0.0;
430;    for (unsigned i = 0; i < n; i += 2) {
431;      x += a[i];
432;      y += a[i + 1];
433;    }
434;    return x * y;
435;  }
436;
437; The resulting IR is similar to @foo_loop, but with zext's instead of sext's.
438;
439; Make sure we are able to vectorize this from now on:
440;
441define double @bar(ptr nocapture readonly %a, i32 %n) local_unnamed_addr #0 {
442; CHECK-X86-LABEL: @bar(
443; CHECK-X86-NEXT:  entry:
444; CHECK-X86-NEXT:    [[CMP15:%.*]] = icmp eq i32 [[N:%.*]], 0
445; CHECK-X86-NEXT:    br i1 [[CMP15]], label [[FOR_COND_CLEANUP:%.*]], label [[FOR_BODY:%.*]]
446; CHECK-X86:       for.cond.cleanup:
447; CHECK-X86-NEXT:    [[TMP0:%.*]] = phi <2 x double> [ zeroinitializer, [[ENTRY:%.*]] ], [ [[TMP5:%.*]], [[FOR_BODY]] ]
448; CHECK-X86-NEXT:    [[TMP1:%.*]] = extractelement <2 x double> [[TMP0]], i32 0
449; CHECK-X86-NEXT:    [[TMP2:%.*]] = extractelement <2 x double> [[TMP0]], i32 1
450; CHECK-X86-NEXT:    [[MUL:%.*]] = fmul double [[TMP1]], [[TMP2]]
451; CHECK-X86-NEXT:    ret double [[MUL]]
452; CHECK-X86:       for.body:
453; CHECK-X86-NEXT:    [[I_018:%.*]] = phi i32 [ [[ADD5:%.*]], [[FOR_BODY]] ], [ 0, [[ENTRY]] ]
454; CHECK-X86-NEXT:    [[TMP3:%.*]] = phi <2 x double> [ [[TMP5]], [[FOR_BODY]] ], [ zeroinitializer, [[ENTRY]] ]
455; CHECK-X86-NEXT:    [[IDXPROM:%.*]] = zext i32 [[I_018]] to i64
456; CHECK-X86-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[IDXPROM]]
457; CHECK-X86-NEXT:    [[TMP4:%.*]] = load <2 x double>, ptr [[ARRAYIDX]], align 8
458; CHECK-X86-NEXT:    [[TMP5]] = fadd <2 x double> [[TMP3]], [[TMP4]]
459; CHECK-X86-NEXT:    [[ADD5]] = add i32 [[I_018]], 2
460; CHECK-X86-NEXT:    [[CMP:%.*]] = icmp ult i32 [[ADD5]], [[N]]
461; CHECK-X86-NEXT:    br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_CLEANUP]]
462;
463
464; CHECK-AARCH64-LABEL: @bar(
465; CHECK-AARCH64-NEXT:  entry:
466; CHECK-AARCH64-NEXT:    [[CMP15:%.*]] = icmp eq i32 [[N:%.*]], 0
467; CHECK-AARCH64-NEXT:    br i1 [[CMP15]], label [[FOR_COND_CLEANUP:%.*]], label [[FOR_BODY:%.*]]
468; CHECK-AARCH64:       for.cond.cleanup:
469; CHECK-AARCH64-NEXT:    [[X_0_LCSSA:%.*]] = phi double [ 0.000000e+00, [[ENTRY:%.*]] ], [ [[ADD:%.*]], [[FOR_BODY]] ]
470; CHECK-AARCH64-NEXT:    [[Y_0_LCSSA:%.*]] = phi double [ 0.000000e+00, [[ENTRY]] ], [ [[ADD4:%.*]], [[FOR_BODY]] ]
471; CHECK-AARCH64-NEXT:    [[MUL:%.*]] = fmul double [[X_0_LCSSA]], [[Y_0_LCSSA]]
472; CHECK-AARCH64-NEXT:    ret double [[MUL]]
473; CHECK-AARCH64:       for.body:
474; CHECK-AARCH64-NEXT:    [[I_018:%.*]] = phi i32 [ [[ADD5:%.*]], [[FOR_BODY]] ], [ 0, [[ENTRY]] ]
475; CHECK-AARCH64-NEXT:    [[Y_017:%.*]] = phi double [ [[ADD4]], [[FOR_BODY]] ], [ 0.000000e+00, [[ENTRY]] ]
476; CHECK-AARCH64-NEXT:    [[X_016:%.*]] = phi double [ [[ADD]], [[FOR_BODY]] ], [ 0.000000e+00, [[ENTRY]] ]
477; CHECK-AARCH64-NEXT:    [[IDXPROM:%.*]] = zext i32 [[I_018]] to i64
478; CHECK-AARCH64-NEXT:    [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[IDXPROM]]
479; CHECK-AARCH64-NEXT:    [[TMP0:%.*]] = load double, ptr [[ARRAYIDX]], align 8
480; CHECK-AARCH64-NEXT:    [[ADD]] = fadd double [[X_016]], [[TMP0]]
481; CHECK-AARCH64-NEXT:    [[ADD1:%.*]] = or disjoint i32 [[I_018]], 1
482; CHECK-AARCH64-NEXT:    [[IDXPROM2:%.*]] = zext i32 [[ADD1]] to i64
483; CHECK-AARCH64-NEXT:    [[ARRAYIDX3:%.*]] = getelementptr inbounds double, ptr [[A]], i64 [[IDXPROM2]]
484; CHECK-AARCH64-NEXT:    [[TMP1:%.*]] = load double, ptr [[ARRAYIDX3]], align 8
485; CHECK-AARCH64-NEXT:    [[ADD4]] = fadd double [[Y_017]], [[TMP1]]
486; CHECK-AARCH64-NEXT:    [[ADD5]] = add i32 [[I_018]], 2
487; CHECK-AARCH64-NEXT:    [[CMP:%.*]] = icmp ult i32 [[ADD5]], [[N]]
488; CHECK-AARCH64-NEXT:    br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_COND_CLEANUP]]
489;
490
491entry:
492  %cmp15 = icmp eq i32 %n, 0
493  br i1 %cmp15, label %for.cond.cleanup, label %for.body
494
495for.cond.cleanup:                                 ; preds = %for.body, %entry
496  %x.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add, %for.body ]
497  %y.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add4, %for.body ]
498  %mul = fmul double %x.0.lcssa, %y.0.lcssa
499  ret double %mul
500
501for.body:                                         ; preds = %entry, %for.body
502  %i.018 = phi i32 [ %add5, %for.body ], [ 0, %entry ]
503  %y.017 = phi double [ %add4, %for.body ], [ 0.000000e+00, %entry ]
504  %x.016 = phi double [ %add, %for.body ], [ 0.000000e+00, %entry ]
505  %idxprom = zext i32 %i.018 to i64
506  %arrayidx = getelementptr inbounds double, ptr %a, i64 %idxprom
507  %0 = load double, ptr %arrayidx, align 8
508  %add = fadd double %x.016, %0
509  %add1 = or disjoint i32 %i.018, 1
510  %idxprom2 = zext i32 %add1 to i64
511  %arrayidx3 = getelementptr inbounds double, ptr %a, i64 %idxprom2
512  %1 = load double, ptr %arrayidx3, align 8
513  %add4 = fadd double %y.017, %1
514  %add5 = add i32 %i.018, 2
515  %cmp = icmp ult i32 %add5, %n
516  br i1 %cmp, label %for.body, label %for.cond.cleanup
517}
518
519; Globals/constant expressions are not normal constants.
520; They should not be treated as the usual vectorization candidates.
521
522@g1 = external global i32, align 4
523@g2 = external global i32, align 4
524
525define void @PR33958(ptr nocapture %p) {
526; CHECK-LABEL: @PR33958(
527; CHECK-NEXT:    store ptr @g1, ptr [[P:%.*]], align 8
528; CHECK-NEXT:    [[ARRAYIDX1:%.*]] = getelementptr inbounds ptr, ptr [[P]], i64 1
529; CHECK-NEXT:    store ptr @g2, ptr [[ARRAYIDX1]], align 8
530; CHECK-NEXT:    ret void
531;
532  store ptr @g1, ptr %p, align 8
533  %arrayidx1 = getelementptr inbounds ptr, ptr %p, i64 1
534  store ptr @g2, ptr %arrayidx1, align 8
535  ret void
536}
537
538define void @store_constant_expression(ptr %p) {
539; CHECK-LABEL: @store_constant_expression(
540; CHECK-NEXT:    store i64 ptrtoint (ptr @g1 to i64), ptr [[P:%.*]], align 8
541; CHECK-NEXT:    [[ARRAYIDX1:%.*]] = getelementptr inbounds i64, ptr [[P]], i64 1
542; CHECK-NEXT:    store i64 ptrtoint (ptr @g2 to i64), ptr [[ARRAYIDX1]], align 8
543; CHECK-NEXT:    ret void
544;
545  store i64 ptrtoint (ptr @g1 to i64), ptr %p, align 8
546  %arrayidx1 = getelementptr inbounds i64, ptr %p, i64 1
547  store i64 ptrtoint (ptr @g2 to i64), ptr %arrayidx1, align 8
548  ret void
549}
550
551attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "frame-pointer"="all" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
552
553!llvm.ident = !{!0}
554
555!0 = !{!"clang version 3.5.0 "}
556