xref: /llvm-project/llvm/test/Transforms/LoopUnroll/scevunroll.ll (revision ef992b60798b6cd2c50b25351bfc392e319896b7)
1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2; RUN: opt < %s -S -passes='loop(indvars),loop-unroll' -verify-loop-info | FileCheck %s
3;
4; Unit tests for loop unrolling using ScalarEvolution to compute trip counts.
5;
6; Indvars is run first to generate an "old" SCEV result. Some unit
7; tests may check that SCEV is properly invalidated between passes.
8
9; Completely unroll loops without a canonical IV.
10define i32 @sansCanonical(ptr %base) nounwind {
11; CHECK-LABEL: @sansCanonical(
12; CHECK-NEXT:  entry:
13; CHECK-NEXT:    br label [[WHILE_BODY:%.*]]
14; CHECK:       while.body:
15; CHECK-NEXT:    [[ADR:%.*]] = getelementptr inbounds i32, ptr [[BASE:%.*]], i64 9
16; CHECK-NEXT:    [[TMP:%.*]] = load i32, ptr [[ADR]], align 8
17; CHECK-NEXT:    [[ADR_1:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 8
18; CHECK-NEXT:    [[TMP_1:%.*]] = load i32, ptr [[ADR_1]], align 8
19; CHECK-NEXT:    [[SUM_NEXT_1:%.*]] = add i32 [[TMP]], [[TMP_1]]
20; CHECK-NEXT:    [[ADR_2:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 7
21; CHECK-NEXT:    [[TMP_2:%.*]] = load i32, ptr [[ADR_2]], align 8
22; CHECK-NEXT:    [[SUM_NEXT_2:%.*]] = add i32 [[SUM_NEXT_1]], [[TMP_2]]
23; CHECK-NEXT:    [[ADR_3:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 6
24; CHECK-NEXT:    [[TMP_3:%.*]] = load i32, ptr [[ADR_3]], align 8
25; CHECK-NEXT:    [[SUM_NEXT_3:%.*]] = add i32 [[SUM_NEXT_2]], [[TMP_3]]
26; CHECK-NEXT:    [[ADR_4:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 5
27; CHECK-NEXT:    [[TMP_4:%.*]] = load i32, ptr [[ADR_4]], align 8
28; CHECK-NEXT:    [[SUM_NEXT_4:%.*]] = add i32 [[SUM_NEXT_3]], [[TMP_4]]
29; CHECK-NEXT:    [[ADR_5:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 4
30; CHECK-NEXT:    [[TMP_5:%.*]] = load i32, ptr [[ADR_5]], align 8
31; CHECK-NEXT:    [[SUM_NEXT_5:%.*]] = add i32 [[SUM_NEXT_4]], [[TMP_5]]
32; CHECK-NEXT:    [[ADR_6:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 3
33; CHECK-NEXT:    [[TMP_6:%.*]] = load i32, ptr [[ADR_6]], align 8
34; CHECK-NEXT:    [[SUM_NEXT_6:%.*]] = add i32 [[SUM_NEXT_5]], [[TMP_6]]
35; CHECK-NEXT:    [[ADR_7:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 2
36; CHECK-NEXT:    [[TMP_7:%.*]] = load i32, ptr [[ADR_7]], align 8
37; CHECK-NEXT:    [[SUM_NEXT_7:%.*]] = add i32 [[SUM_NEXT_6]], [[TMP_7]]
38; CHECK-NEXT:    [[ADR_8:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 1
39; CHECK-NEXT:    [[TMP_8:%.*]] = load i32, ptr [[ADR_8]], align 8
40; CHECK-NEXT:    [[SUM_NEXT_8:%.*]] = add i32 [[SUM_NEXT_7]], [[TMP_8]]
41; CHECK-NEXT:    ret i32 [[SUM_NEXT_8]]
42;
43entry:
44  br label %while.body
45
46while.body:
47  %iv = phi i64 [ 10, %entry ], [ %iv.next, %while.body ]
48  %sum = phi i32 [ 0, %entry ], [ %sum.next, %while.body ]
49  %iv.next = add i64 %iv, -1
50  %adr = getelementptr inbounds i32, ptr %base, i64 %iv.next
51  %tmp = load i32, ptr %adr, align 8
52  %sum.next = add i32 %sum, %tmp
53  %iv.narrow = trunc i64 %iv.next to i32
54  %cmp.i65 = icmp sgt i32 %iv.narrow, 0
55  br i1 %cmp.i65, label %while.body, label %exit
56
57exit:
58  ret i32 %sum
59}
60
61; SCEV unrolling properly handles loops with multiple exits. In this
62; case, the computed trip count based on a canonical IV is *not* for a
63; latch block.
64define i64 @earlyLoopTest(ptr %base) nounwind {
65; CHECK-LABEL: @earlyLoopTest(
66; CHECK-NEXT:  entry:
67; CHECK-NEXT:    br label [[LOOP:%.*]]
68; CHECK:       loop:
69; CHECK-NEXT:    [[VAL:%.*]] = load i64, ptr [[BASE:%.*]], align 4
70; CHECK-NEXT:    br label [[TAIL:%.*]]
71; CHECK:       tail:
72; CHECK-NEXT:    [[CMP2:%.*]] = icmp ne i64 [[VAL]], 0
73; CHECK-NEXT:    br i1 [[CMP2]], label [[LOOP_1:%.*]], label [[EXIT2:%.*]]
74; CHECK:       loop.1:
75; CHECK-NEXT:    [[ADR_1:%.*]] = getelementptr i64, ptr [[BASE]], i64 1
76; CHECK-NEXT:    [[VAL_1:%.*]] = load i64, ptr [[ADR_1]], align 4
77; CHECK-NEXT:    [[S_NEXT_1:%.*]] = add i64 [[VAL]], [[VAL_1]]
78; CHECK-NEXT:    br label [[TAIL_1:%.*]]
79; CHECK:       tail.1:
80; CHECK-NEXT:    [[CMP2_1:%.*]] = icmp ne i64 [[VAL_1]], 0
81; CHECK-NEXT:    br i1 [[CMP2_1]], label [[LOOP_2:%.*]], label [[EXIT2]]
82; CHECK:       loop.2:
83; CHECK-NEXT:    [[ADR_2:%.*]] = getelementptr i64, ptr [[BASE]], i64 2
84; CHECK-NEXT:    [[VAL_2:%.*]] = load i64, ptr [[ADR_2]], align 4
85; CHECK-NEXT:    [[S_NEXT_2:%.*]] = add i64 [[S_NEXT_1]], [[VAL_2]]
86; CHECK-NEXT:    br label [[TAIL_2:%.*]]
87; CHECK:       tail.2:
88; CHECK-NEXT:    [[CMP2_2:%.*]] = icmp ne i64 [[VAL_2]], 0
89; CHECK-NEXT:    br i1 [[CMP2_2]], label [[LOOP_3:%.*]], label [[EXIT2]]
90; CHECK:       loop.3:
91; CHECK-NEXT:    [[ADR_3:%.*]] = getelementptr i64, ptr [[BASE]], i64 3
92; CHECK-NEXT:    [[VAL_3:%.*]] = load i64, ptr [[ADR_3]], align 4
93; CHECK-NEXT:    [[S_NEXT_3:%.*]] = add i64 [[S_NEXT_2]], [[VAL_3]]
94; CHECK-NEXT:    br i1 false, label [[TAIL_3:%.*]], label [[EXIT1:%.*]]
95; CHECK:       tail.3:
96; CHECK-NEXT:    br label [[EXIT2]]
97; CHECK:       exit1:
98; CHECK-NEXT:    [[S_LCSSA:%.*]] = phi i64 [ [[S_NEXT_2]], [[LOOP_3]] ]
99; CHECK-NEXT:    ret i64 [[S_LCSSA]]
100; CHECK:       exit2:
101; CHECK-NEXT:    [[S_NEXT_LCSSA1:%.*]] = phi i64 [ [[VAL]], [[TAIL]] ], [ [[S_NEXT_1]], [[TAIL_1]] ], [ [[S_NEXT_2]], [[TAIL_2]] ], [ [[S_NEXT_3]], [[TAIL_3]] ]
102; CHECK-NEXT:    ret i64 [[S_NEXT_LCSSA1]]
103;
104entry:
105  br label %loop
106
107loop:
108  %iv = phi i64 [ 0, %entry ], [ %inc, %tail ]
109  %s = phi i64 [ 0, %entry ], [ %s.next, %tail ]
110  %adr = getelementptr i64, ptr %base, i64 %iv
111  %val = load i64, ptr %adr
112  %s.next = add i64 %s, %val
113  %inc = add i64 %iv, 1
114  %cmp = icmp ne i64 %inc, 4
115  br i1 %cmp, label %tail, label %exit1
116
117tail:
118  %cmp2 = icmp ne i64 %val, 0
119  br i1 %cmp2, label %loop, label %exit2
120
121exit1:
122  ret i64 %s
123
124exit2:
125  ret i64 %s.next
126}
127
128; SCEV properly unrolls multi-exit loops.
129define i32 @multiExit(ptr %base) nounwind {
130; CHECK-LABEL: @multiExit(
131; CHECK-NEXT:  entry:
132; CHECK-NEXT:    br label [[L1:%.*]]
133; CHECK:       l1:
134; CHECK-NEXT:    [[VAL:%.*]] = load i32, ptr [[BASE:%.*]], align 4
135; CHECK-NEXT:    br i1 false, label [[L2:%.*]], label [[EXIT1:%.*]]
136; CHECK:       l2:
137; CHECK-NEXT:    ret i32 [[VAL]]
138; CHECK:       exit1:
139; CHECK-NEXT:    ret i32 1
140;
141entry:
142  br label %l1
143l1:
144  %iv1 = phi i32 [ 0, %entry ], [ %inc1, %l2 ]
145  %iv2 = phi i32 [ 0, %entry ], [ %inc2, %l2 ]
146  %inc1 = add i32 %iv1, 1
147  %inc2 = add i32 %iv2, 1
148  %adr = getelementptr i32, ptr %base, i32 %iv1
149  %val = load i32, ptr %adr
150  %cmp1 = icmp slt i32 %iv1, 5
151  br i1 %cmp1, label %l2, label %exit1
152l2:
153  %cmp2 = icmp slt i32 %iv2, 10
154  br i1 %cmp2, label %l1, label %exit2
155exit1:
156  ret i32 1
157exit2:
158  ret i32 %val
159}
160
161
162; SCEV can unroll a multi-exit loops even if the latch block has no
163; known trip count, but an early exit has a known trip count. In this
164; case we must be careful not to optimize the latch branch away.
165define i32 @multiExitIncomplete(ptr %base) nounwind {
166; CHECK-LABEL: @multiExitIncomplete(
167; CHECK-NEXT:  entry:
168; CHECK-NEXT:    br label [[L1:%.*]]
169; CHECK:       l1:
170; CHECK-NEXT:    [[VAL:%.*]] = load i32, ptr [[BASE:%.*]], align 4
171; CHECK-NEXT:    br label [[L2:%.*]]
172; CHECK:       l2:
173; CHECK-NEXT:    br label [[L3:%.*]]
174; CHECK:       l3:
175; CHECK-NEXT:    [[CMP3:%.*]] = icmp ne i32 [[VAL]], 0
176; CHECK-NEXT:    br i1 [[CMP3]], label [[L1_1:%.*]], label [[EXIT3:%.*]]
177; CHECK:       l1.1:
178; CHECK-NEXT:    [[ADR_1:%.*]] = getelementptr i32, ptr [[BASE]], i32 1
179; CHECK-NEXT:    [[VAL_1:%.*]] = load i32, ptr [[ADR_1]], align 4
180; CHECK-NEXT:    br label [[L2_1:%.*]]
181; CHECK:       l2.1:
182; CHECK-NEXT:    br label [[L3_1:%.*]]
183; CHECK:       l3.1:
184; CHECK-NEXT:    [[CMP3_1:%.*]] = icmp ne i32 [[VAL_1]], 0
185; CHECK-NEXT:    br i1 [[CMP3_1]], label [[L1_2:%.*]], label [[EXIT3]]
186; CHECK:       l1.2:
187; CHECK-NEXT:    [[ADR_2:%.*]] = getelementptr i32, ptr [[BASE]], i32 2
188; CHECK-NEXT:    [[VAL_2:%.*]] = load i32, ptr [[ADR_2]], align 4
189; CHECK-NEXT:    br label [[L2_2:%.*]]
190; CHECK:       l2.2:
191; CHECK-NEXT:    br label [[L3_2:%.*]]
192; CHECK:       l3.2:
193; CHECK-NEXT:    [[CMP3_2:%.*]] = icmp ne i32 [[VAL_2]], 0
194; CHECK-NEXT:    br i1 [[CMP3_2]], label [[L1_3:%.*]], label [[EXIT3]]
195; CHECK:       l1.3:
196; CHECK-NEXT:    [[ADR_3:%.*]] = getelementptr i32, ptr [[BASE]], i32 3
197; CHECK-NEXT:    [[VAL_3:%.*]] = load i32, ptr [[ADR_3]], align 4
198; CHECK-NEXT:    br label [[L2_3:%.*]]
199; CHECK:       l2.3:
200; CHECK-NEXT:    br label [[L3_3:%.*]]
201; CHECK:       l3.3:
202; CHECK-NEXT:    [[CMP3_3:%.*]] = icmp ne i32 [[VAL_3]], 0
203; CHECK-NEXT:    br i1 [[CMP3_3]], label [[L1_4:%.*]], label [[EXIT3]]
204; CHECK:       l1.4:
205; CHECK-NEXT:    [[ADR_4:%.*]] = getelementptr i32, ptr [[BASE]], i32 4
206; CHECK-NEXT:    [[VAL_4:%.*]] = load i32, ptr [[ADR_4]], align 4
207; CHECK-NEXT:    br label [[L2_4:%.*]]
208; CHECK:       l2.4:
209; CHECK-NEXT:    br label [[L3_4:%.*]]
210; CHECK:       l3.4:
211; CHECK-NEXT:    [[CMP3_4:%.*]] = icmp ne i32 [[VAL_4]], 0
212; CHECK-NEXT:    br i1 [[CMP3_4]], label [[L1_5:%.*]], label [[EXIT3]]
213; CHECK:       l1.5:
214; CHECK-NEXT:    br i1 false, label [[L2_5:%.*]], label [[EXIT1:%.*]]
215; CHECK:       l2.5:
216; CHECK-NEXT:    br i1 true, label [[L3_5:%.*]], label [[EXIT2:%.*]]
217; CHECK:       l3.5:
218; CHECK-NEXT:    br label [[EXIT3]]
219; CHECK:       exit1:
220; CHECK-NEXT:    ret i32 1
221; CHECK:       exit2:
222; CHECK-NEXT:    ret i32 2
223; CHECK:       exit3:
224; CHECK-NEXT:    ret i32 3
225;
226entry:
227  br label %l1
228l1:
229  %iv1 = phi i32 [ 0, %entry ], [ %inc1, %l3 ]
230  %iv2 = phi i32 [ 0, %entry ], [ %inc2, %l3 ]
231  %inc1 = add i32 %iv1, 1
232  %inc2 = add i32 %iv2, 1
233  %adr = getelementptr i32, ptr %base, i32 %iv1
234  %val = load i32, ptr %adr
235  %cmp1 = icmp slt i32 %iv1, 5
236  br i1 %cmp1, label %l2, label %exit1
237l2:
238  %cmp2 = icmp slt i32 %iv2, 10
239  br i1 %cmp2, label %l3, label %exit2
240l3:
241  %cmp3 = icmp ne i32 %val, 0
242  br i1 %cmp3, label %l1, label %exit3
243
244exit1:
245  ret i32 1
246exit2:
247  ret i32 2
248exit3:
249  ret i32 3
250}
251
252; When loop unroll merges a loop exit with one of its parent loop's
253; exits, SCEV must forget its ExitNotTaken info.
254define void @nestedUnroll() nounwind {
255; CHECK-LABEL: @nestedUnroll(
256; CHECK-NEXT:  entry:
257; CHECK-NEXT:    br label [[FOR_INC:%.*]]
258; CHECK:       for.inc:
259; CHECK-NEXT:    br label [[FOR_BODY38:%.*]]
260; CHECK:       for.body38:
261; CHECK-NEXT:    br label [[FOR_BODY43:%.*]]
262; CHECK:       for.body43:
263; CHECK-NEXT:    br label [[FOR_BODY87:%.*]]
264; CHECK:       for.body87:
265; CHECK-NEXT:    br label [[FOR_BODY87]]
266;
267entry:
268  br label %for.inc
269
270for.inc:
271  br i1 false, label %for.inc, label %for.body38.preheader
272
273for.body38.preheader:
274  br label %for.body38
275
276for.body38:
277  %i.113 = phi i32 [ %inc76, %for.inc74 ], [ 0, %for.body38.preheader ]
278  %mul48 = mul nsw i32 %i.113, 6
279  br label %for.body43
280
281for.body43:
282  %j.011 = phi i32 [ 0, %for.body38 ], [ %inc72, %for.body43 ]
283  %add49 = add nsw i32 %j.011, %mul48
284  %sh_prom50 = zext i32 %add49 to i64
285  %inc72 = add nsw i32 %j.011, 1
286  br i1 false, label %for.body43, label %for.inc74
287
288for.inc74:
289  %inc76 = add nsw i32 %i.113, 1
290  br i1 false, label %for.body38, label %for.body87.preheader
291
292for.body87.preheader:
293  br label %for.body87
294
295for.body87:
296  br label %for.body87
297}
298
299; PR16130: clang produces incorrect code with loop/expression at -O2
300; rdar:14036816 loop-unroll makes assumptions about undefined behavior
301;
302; The loop latch is assumed to exit after the first iteration because
303; of the induction variable's NSW flag. However, the loop latch's
304; equality test is skipped and the loop exits after the second
305; iteration via the early exit. So loop unrolling cannot assume that
306; the loop latch's exit count of zero is an upper bound on the number
307; of iterations.
308define void @nsw_latch(ptr %a) nounwind {
309; CHECK-LABEL: @nsw_latch(
310; CHECK-NEXT:  entry:
311; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
312; CHECK:       for.body:
313; CHECK-NEXT:    br label [[FOR_COND:%.*]]
314; CHECK:       for.cond:
315; CHECK-NEXT:    br i1 false, label [[RETURN:%.*]], label [[FOR_BODY_1:%.*]]
316; CHECK:       for.body.1:
317; CHECK-NEXT:    br i1 false, label [[FOR_COND_1:%.*]], label [[RETURN]]
318; CHECK:       for.cond.1:
319; CHECK-NEXT:    br label [[RETURN]]
320; CHECK:       return:
321; CHECK-NEXT:    [[B_03_LCSSA:%.*]] = phi i32 [ 0, [[FOR_COND]] ], [ 8, [[FOR_BODY_1]] ], [ 0, [[FOR_COND_1]] ]
322; CHECK-NEXT:    [[RETVAL_0:%.*]] = phi i32 [ 0, [[FOR_COND]] ], [ 1, [[FOR_BODY_1]] ], [ 0, [[FOR_COND_1]] ]
323; CHECK-NEXT:    store i32 [[B_03_LCSSA]], ptr [[A:%.*]], align 4
324; CHECK-NEXT:    ret void
325;
326entry:
327  br label %for.body
328
329for.body:                                         ; preds = %for.cond, %entry
330  %b.03 = phi i32 [ 0, %entry ], [ %add, %for.cond ]
331  %tobool = icmp eq i32 %b.03, 0
332  %add = add nsw i32 %b.03, 8
333  br i1 %tobool, label %for.cond, label %return
334
335for.cond:                                         ; preds = %for.body
336  %cmp = icmp eq i32 %add, 13
337  br i1 %cmp, label %return, label %for.body
338
339return:                                           ; preds = %for.body, %for.cond
340  %b.03.lcssa = phi i32 [ %b.03, %for.body ], [ %b.03, %for.cond ]
341  %retval.0 = phi i32 [ 1, %for.body ], [ 0, %for.cond ]
342  store i32 %b.03.lcssa, ptr %a, align 4
343  ret void
344}
345
346; Test case for PR56044. Check that SCEVs for exit phis are properly invalidated.
347define i32 @test_pr56044(ptr %src, i32 %a) {
348; CHECK-LABEL: @test_pr56044(
349; CHECK-NEXT:  entry:
350; CHECK-NEXT:    br label [[LOOP_1_PEEL_BEGIN:%.*]]
351; CHECK:       loop.1.peel.begin:
352; CHECK-NEXT:    br label [[LOOP_1_PEEL:%.*]]
353; CHECK:       loop.1.peel:
354; CHECK-NEXT:    call void @fn(i32 5)
355; CHECK-NEXT:    [[L_PEEL:%.*]] = load i64, ptr [[SRC:%.*]], align 8
356; CHECK-NEXT:    [[ADD_PEEL:%.*]] = add i64 [[L_PEEL]], [[L_PEEL]]
357; CHECK-NEXT:    [[EC_1_PEEL:%.*]] = icmp sgt i32 [[A:%.*]], 4
358; CHECK-NEXT:    br i1 [[EC_1_PEEL]], label [[MID:%.*]], label [[LOOP_1_PEEL_NEXT:%.*]]
359; CHECK:       loop.1.peel.next:
360; CHECK-NEXT:    br label [[LOOP_1_PEEL_NEXT1:%.*]]
361; CHECK:       loop.1.peel.next1:
362; CHECK-NEXT:    br label [[ENTRY_PEEL_NEWPH:%.*]]
363; CHECK:       entry.peel.newph:
364; CHECK-NEXT:    br label [[LOOP_1:%.*]]
365; CHECK:       loop.1:
366; CHECK-NEXT:    call void @fn(i32 18)
367; CHECK-NEXT:    [[L:%.*]] = load i64, ptr [[SRC]], align 8
368; CHECK-NEXT:    [[ADD:%.*]] = add i64 [[L]], [[L]]
369; CHECK-NEXT:    [[EC_1:%.*]] = icmp sgt i32 [[A]], 4
370; CHECK-NEXT:    br i1 [[EC_1]], label [[MID_LOOPEXIT:%.*]], label [[LOOP_1]], !llvm.loop [[LOOP0:![0-9]+]]
371; CHECK:       mid.loopexit:
372; CHECK-NEXT:    [[LCSSA_1_PH:%.*]] = phi i64 [ [[ADD]], [[LOOP_1]] ]
373; CHECK-NEXT:    br label [[MID]]
374; CHECK:       mid:
375; CHECK-NEXT:    [[LCSSA_1:%.*]] = phi i64 [ [[ADD_PEEL]], [[LOOP_1_PEEL]] ], [ [[LCSSA_1_PH]], [[MID_LOOPEXIT]] ]
376; CHECK-NEXT:    [[TRUNC:%.*]] = trunc i64 [[LCSSA_1]] to i32
377; CHECK-NEXT:    [[ADD_2:%.*]] = sub i32 [[A]], [[TRUNC]]
378; CHECK-NEXT:    br label [[LOOP_2_PEEL_BEGIN:%.*]]
379; CHECK:       loop.2.peel.begin:
380; CHECK-NEXT:    br label [[LOOP_2_PEEL:%.*]]
381; CHECK:       loop.2.peel:
382; CHECK-NEXT:    [[IV_2_NEXT_PEEL:%.*]] = add i32 0, [[ADD_2]]
383; CHECK-NEXT:    [[IV_1_NEXT_PEEL:%.*]] = add nuw nsw i32 0, 1
384; CHECK-NEXT:    [[EC_2_PEEL:%.*]] = icmp ult i32 [[IV_1_NEXT_PEEL]], 12345
385; CHECK-NEXT:    br i1 [[EC_2_PEEL]], label [[LOOP_2_PEEL_NEXT:%.*]], label [[EXIT:%.*]]
386; CHECK:       loop.2.peel.next:
387; CHECK-NEXT:    br label [[LOOP_2_PEEL_NEXT2:%.*]]
388; CHECK:       loop.2.peel.next2:
389; CHECK-NEXT:    br label [[MID_PEEL_NEWPH:%.*]]
390; CHECK:       mid.peel.newph:
391; CHECK-NEXT:    br label [[LOOP_2:%.*]]
392; CHECK:       loop.2:
393; CHECK-NEXT:    [[IV_1:%.*]] = phi i32 [ [[IV_1_NEXT_PEEL]], [[MID_PEEL_NEWPH]] ], [ [[IV_1_NEXT:%.*]], [[LOOP_2]] ]
394; CHECK-NEXT:    [[IV_2:%.*]] = phi i32 [ [[IV_2_NEXT_PEEL]], [[MID_PEEL_NEWPH]] ], [ [[IV_2_NEXT:%.*]], [[LOOP_2]] ]
395; CHECK-NEXT:    [[IV_2_NEXT]] = add i32 2, [[IV_2]]
396; CHECK-NEXT:    [[IV_1_NEXT]] = add nuw nsw i32 [[IV_1]], 1
397; CHECK-NEXT:    [[EC_2:%.*]] = icmp ult i32 [[IV_1_NEXT]], 12345
398; CHECK-NEXT:    br i1 [[EC_2]], label [[LOOP_2]], label [[EXIT_LOOPEXIT:%.*]], !llvm.loop [[LOOP2:![0-9]+]]
399; CHECK:       exit.loopexit:
400; CHECK-NEXT:    [[LCSSA_2_PH:%.*]] = phi i32 [ [[IV_2_NEXT]], [[LOOP_2]] ]
401; CHECK-NEXT:    br label [[EXIT]]
402; CHECK:       exit:
403; CHECK-NEXT:    [[LCSSA_2:%.*]] = phi i32 [ [[IV_2_NEXT_PEEL]], [[LOOP_2_PEEL]] ], [ [[LCSSA_2_PH]], [[EXIT_LOOPEXIT]] ]
404; CHECK-NEXT:    ret i32 [[LCSSA_2]]
405;
406entry:
407  br label %loop.1
408
409loop.1:
410  %p.1 = phi i32 [ 5, %entry ], [ 18, %loop.1 ]
411  call void @fn(i32 %p.1)
412  %l = load i64, ptr %src, align 8
413  %add = add i64 %l, %l
414  %ec.1 = icmp sgt i32 %a, 4
415  br i1 %ec.1, label %mid, label %loop.1
416
417mid:
418  %lcssa.1 = phi i64 [ %add, %loop.1 ]
419  %trunc = trunc i64 %lcssa.1 to i32
420  %add.2 = sub i32 %a, %trunc
421  br label %loop.2
422
423loop.2:
424  %iv.1 = phi i32 [ 0, %mid ], [ %iv.1.next, %loop.2 ]
425  %iv.2 = phi i32 [ %add.2, %mid ], [ %iv.2.next, %loop.2 ]
426  %p.2 = phi i32 [ 0, %mid ], [ 2, %loop.2 ]
427  %iv.2.next = add i32 %p.2, %iv.2
428  %iv.1.next = add nuw nsw i32 %iv.1, 1
429  %ec.2 = icmp ult i32 %iv.1.next, 12345
430  br i1 %ec.2, label %loop.2, label %exit
431
432exit:
433  %lcssa.2 = phi i32 [ %iv.2.next, %loop.2 ]
434  ret i32 %lcssa.2
435}
436
437declare void @fn(i32)
438