xref: /llvm-project/llvm/test/Transforms/InstCombine/logical-select-inseltpoison.ll (revision 38fffa630ee80163dc65e759392ad29798905679)
1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2; RUN: opt < %s -passes=instcombine -S | FileCheck %s
3
4
5define i32 @foo(i32 %a, i32 %b, i32 %c, i32 %d) {
6; CHECK-LABEL: @foo(
7; CHECK-NEXT:    [[E_NOT:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
8; CHECK-NEXT:    [[J:%.*]] = select i1 [[E_NOT]], i32 [[C:%.*]], i32 [[D:%.*]]
9; CHECK-NEXT:    ret i32 [[J]]
10;
11  %e = icmp slt i32 %a, %b
12  %f = sext i1 %e to i32
13  %g = and i32 %c, %f
14  %h = xor i32 %f, -1
15  %i = and i32 %d, %h
16  %j = or i32 %g, %i
17  ret i32 %j
18}
19
20define i32 @bar(i32 %a, i32 %b, i32 %c, i32 %d) {
21; CHECK-LABEL: @bar(
22; CHECK-NEXT:    [[E_NOT:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
23; CHECK-NEXT:    [[J:%.*]] = select i1 [[E_NOT]], i32 [[C:%.*]], i32 [[D:%.*]]
24; CHECK-NEXT:    ret i32 [[J]]
25;
26  %e = icmp slt i32 %a, %b
27  %f = sext i1 %e to i32
28  %g = and i32 %c, %f
29  %h = xor i32 %f, -1
30  %i = and i32 %d, %h
31  %j = or i32 %i, %g
32  ret i32 %j
33}
34
35define i32 @goo(i32 %a, i32 %b, i32 %c, i32 %d) {
36; CHECK-LABEL: @goo(
37; CHECK-NEXT:    [[T0_NOT:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
38; CHECK-NEXT:    [[T3:%.*]] = select i1 [[T0_NOT]], i32 [[C:%.*]], i32 [[D:%.*]]
39; CHECK-NEXT:    ret i32 [[T3]]
40;
41  %t0 = icmp slt i32 %a, %b
42  %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
43  %t1 = and i32 %iftmp.0.0, %c
44  %not = xor i32 %iftmp.0.0, -1
45  %t2 = and i32 %not, %d
46  %t3 = or i32 %t1, %t2
47  ret i32 %t3
48}
49
50define i32 @poo(i32 %a, i32 %b, i32 %c, i32 %d) {
51; CHECK-LABEL: @poo(
52; CHECK-NEXT:    [[T0_NOT:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
53; CHECK-NEXT:    [[T3:%.*]] = select i1 [[T0_NOT]], i32 [[C:%.*]], i32 [[D:%.*]]
54; CHECK-NEXT:    ret i32 [[T3]]
55;
56  %t0 = icmp slt i32 %a, %b
57  %iftmp.0.0 = select i1 %t0, i32 -1, i32 0
58  %t1 = and i32 %iftmp.0.0, %c
59  %iftmp = select i1 %t0, i32 0, i32 -1
60  %t2 = and i32 %iftmp, %d
61  %t3 = or i32 %t1, %t2
62  ret i32 %t3
63}
64
65; PR32791 - https://bugs.llvm.org//show_bug.cgi?id=32791
66; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
67
68define i32 @fold_inverted_icmp_preds(i32 %a, i32 %b, i32 %c, i32 %d) {
69; CHECK-LABEL: @fold_inverted_icmp_preds(
70; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
71; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
72; CHECK-NEXT:    [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]]
73; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 0, i32 [[D:%.*]]
74; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
75; CHECK-NEXT:    ret i32 [[OR]]
76;
77  %cmp1 = icmp slt i32 %a, %b
78  %sel1 = select i1 %cmp1, i32 %c, i32 0
79  %cmp2 = icmp sge i32 %a, %b
80  %sel2 = select i1 %cmp2, i32 %d, i32 0
81  %or = or i32 %sel1, %sel2
82  ret i32 %or
83}
84
85; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
86
87define i32 @fold_inverted_icmp_preds_reverse(i32 %a, i32 %b, i32 %c, i32 %d) {
88; CHECK-LABEL: @fold_inverted_icmp_preds_reverse(
89; CHECK-NEXT:    [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
90; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 0, i32 [[C:%.*]]
91; CHECK-NEXT:    [[CMP2_NOT:%.*]] = icmp slt i32 [[A]], [[B]]
92; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2_NOT]], i32 [[D:%.*]], i32 0
93; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
94; CHECK-NEXT:    ret i32 [[OR]]
95;
96  %cmp1 = icmp slt i32 %a, %b
97  %sel1 = select i1 %cmp1, i32 0, i32 %c
98  %cmp2 = icmp sge i32 %a, %b
99  %sel2 = select i1 %cmp2, i32 0, i32 %d
100  %or = or i32 %sel1, %sel2
101  ret i32 %or
102}
103
104; TODO: Should fcmp have the same sort of predicate canonicalization as icmp?
105
106define i32 @fold_inverted_fcmp_preds(float %a, float %b, i32 %c, i32 %d) {
107; CHECK-LABEL: @fold_inverted_fcmp_preds(
108; CHECK-NEXT:    [[CMP1:%.*]] = fcmp olt float [[A:%.*]], [[B:%.*]]
109; CHECK-NEXT:    [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
110; CHECK-NEXT:    [[CMP2:%.*]] = fcmp uge float [[A]], [[B]]
111; CHECK-NEXT:    [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0
112; CHECK-NEXT:    [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
113; CHECK-NEXT:    ret i32 [[OR]]
114;
115  %cmp1 = fcmp olt float %a, %b
116  %sel1 = select i1 %cmp1, i32 %c, i32 0
117  %cmp2 = fcmp uge float %a, %b
118  %sel2 = select i1 %cmp2, i32 %d, i32 0
119  %or = or i32 %sel1, %sel2
120  ret i32 %or
121}
122
123; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
124
125define <2 x i32> @fold_inverted_icmp_vector_preds(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c, <2 x i32> %d) {
126; CHECK-LABEL: @fold_inverted_icmp_vector_preds(
127; CHECK-NEXT:    [[CMP1_NOT:%.*]] = icmp eq <2 x i32> [[A:%.*]], [[B:%.*]]
128; CHECK-NEXT:    [[SEL1:%.*]] = select <2 x i1> [[CMP1_NOT]], <2 x i32> zeroinitializer, <2 x i32> [[C:%.*]]
129; CHECK-NEXT:    [[CMP2:%.*]] = icmp eq <2 x i32> [[A]], [[B]]
130; CHECK-NEXT:    [[SEL2:%.*]] = select <2 x i1> [[CMP2]], <2 x i32> [[D:%.*]], <2 x i32> zeroinitializer
131; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> [[SEL1]], [[SEL2]]
132; CHECK-NEXT:    ret <2 x i32> [[OR]]
133;
134  %cmp1 = icmp ne <2 x i32> %a, %b
135  %sel1 = select <2 x i1> %cmp1, <2 x i32> %c, <2 x i32> <i32 0, i32 0>
136  %cmp2 = icmp eq <2 x i32> %a, %b
137  %sel2 = select <2 x i1> %cmp2, <2 x i32> %d, <2 x i32> <i32 0, i32 0>
138  %or = or <2 x i32> %sel1, %sel2
139  ret <2 x i32> %or
140}
141
142define i32 @par(i32 %a, i32 %b, i32 %c, i32 %d) {
143; CHECK-LABEL: @par(
144; CHECK-NEXT:    [[T0_NOT:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
145; CHECK-NEXT:    [[T3:%.*]] = select i1 [[T0_NOT]], i32 [[C:%.*]], i32 [[D:%.*]]
146; CHECK-NEXT:    ret i32 [[T3]]
147;
148  %t0 = icmp slt i32 %a, %b
149  %iftmp.1.0 = select i1 %t0, i32 -1, i32 0
150  %t1 = and i32 %iftmp.1.0, %c
151  %not = xor i32 %iftmp.1.0, -1
152  %t2 = and i32 %not, %d
153  %t3 = or i32 %t1, %t2
154  ret i32 %t3
155}
156
157; In the following tests (8 commutation variants), verify that a bitcast doesn't get
158; in the way of a select transform. These bitcasts are common in SSE/AVX and possibly
159; other vector code because of canonicalization to i64 elements for vectors.
160
161; The fptosi instructions are included to avoid commutation canonicalization based on
162; operator weight. Using another cast operator ensures that both operands of all logic
163; ops are equally weighted, and this ensures that we're testing all commutation
164; possibilities.
165
166define <2 x i64> @bitcast_select_swap0(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
167; CHECK-LABEL: @bitcast_select_swap0(
168; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
169; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
170; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
171; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
172; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
173; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
174; CHECK-NEXT:    ret <2 x i64> [[OR]]
175;
176  %sia = fptosi <2 x double> %a to <2 x i64>
177  %sib = fptosi <2 x double> %b to <2 x i64>
178  %sext = sext <4 x i1> %cmp to <4 x i32>
179  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
180  %and1 = and <2 x i64> %bc1, %sia
181  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
182  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
183  %and2 = and <2 x i64> %bc2, %sib
184  %or = or <2 x i64> %and1, %and2
185  ret <2 x i64> %or
186}
187
188define <2 x i64> @bitcast_select_swap1(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
189; CHECK-LABEL: @bitcast_select_swap1(
190; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
191; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
192; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
193; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
194; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
195; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
196; CHECK-NEXT:    ret <2 x i64> [[OR]]
197;
198  %sia = fptosi <2 x double> %a to <2 x i64>
199  %sib = fptosi <2 x double> %b to <2 x i64>
200  %sext = sext <4 x i1> %cmp to <4 x i32>
201  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
202  %and1 = and <2 x i64> %bc1, %sia
203  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
204  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
205  %and2 = and <2 x i64> %bc2, %sib
206  %or = or <2 x i64> %and2, %and1
207  ret <2 x i64> %or
208}
209
210define <2 x i64> @bitcast_select_swap2(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
211; CHECK-LABEL: @bitcast_select_swap2(
212; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
213; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
214; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
215; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
216; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
217; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
218; CHECK-NEXT:    ret <2 x i64> [[OR]]
219;
220  %sia = fptosi <2 x double> %a to <2 x i64>
221  %sib = fptosi <2 x double> %b to <2 x i64>
222  %sext = sext <4 x i1> %cmp to <4 x i32>
223  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
224  %and1 = and <2 x i64> %bc1, %sia
225  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
226  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
227  %and2 = and <2 x i64> %sib, %bc2
228  %or = or <2 x i64> %and1, %and2
229  ret <2 x i64> %or
230}
231
232define <2 x i64> @bitcast_select_swap3(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
233; CHECK-LABEL: @bitcast_select_swap3(
234; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
235; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
236; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
237; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
238; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
239; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
240; CHECK-NEXT:    ret <2 x i64> [[OR]]
241;
242  %sia = fptosi <2 x double> %a to <2 x i64>
243  %sib = fptosi <2 x double> %b to <2 x i64>
244  %sext = sext <4 x i1> %cmp to <4 x i32>
245  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
246  %and1 = and <2 x i64> %bc1, %sia
247  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
248  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
249  %and2 = and <2 x i64> %sib, %bc2
250  %or = or <2 x i64> %and2, %and1
251  ret <2 x i64> %or
252}
253
254define <2 x i64> @bitcast_select_swap4(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
255; CHECK-LABEL: @bitcast_select_swap4(
256; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
257; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
258; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
259; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
260; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
261; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
262; CHECK-NEXT:    ret <2 x i64> [[OR]]
263;
264  %sia = fptosi <2 x double> %a to <2 x i64>
265  %sib = fptosi <2 x double> %b to <2 x i64>
266  %sext = sext <4 x i1> %cmp to <4 x i32>
267  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
268  %and1 = and <2 x i64> %sia, %bc1
269  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
270  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
271  %and2 = and <2 x i64> %bc2, %sib
272  %or = or <2 x i64> %and1, %and2
273  ret <2 x i64> %or
274}
275
276define <2 x i64> @bitcast_select_swap5(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
277; CHECK-LABEL: @bitcast_select_swap5(
278; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
279; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
280; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
281; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
282; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
283; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
284; CHECK-NEXT:    ret <2 x i64> [[OR]]
285;
286  %sia = fptosi <2 x double> %a to <2 x i64>
287  %sib = fptosi <2 x double> %b to <2 x i64>
288  %sext = sext <4 x i1> %cmp to <4 x i32>
289  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
290  %and1 = and <2 x i64> %sia, %bc1
291  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
292  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
293  %and2 = and <2 x i64> %bc2, %sib
294  %or = or <2 x i64> %and2, %and1
295  ret <2 x i64> %or
296}
297
298define <2 x i64> @bitcast_select_swap6(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
299; CHECK-LABEL: @bitcast_select_swap6(
300; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
301; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
302; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
303; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
304; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
305; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
306; CHECK-NEXT:    ret <2 x i64> [[OR]]
307;
308  %sia = fptosi <2 x double> %a to <2 x i64>
309  %sib = fptosi <2 x double> %b to <2 x i64>
310  %sext = sext <4 x i1> %cmp to <4 x i32>
311  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
312  %and1 = and <2 x i64> %sia, %bc1
313  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
314  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
315  %and2 = and <2 x i64> %sib, %bc2
316  %or = or <2 x i64> %and1, %and2
317  ret <2 x i64> %or
318}
319
320define <2 x i64> @bitcast_select_swap7(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
321; CHECK-LABEL: @bitcast_select_swap7(
322; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
323; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
324; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
325; CHECK-NEXT:    [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
326; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
327; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
328; CHECK-NEXT:    ret <2 x i64> [[OR]]
329;
330  %sia = fptosi <2 x double> %a to <2 x i64>
331  %sib = fptosi <2 x double> %b to <2 x i64>
332  %sext = sext <4 x i1> %cmp to <4 x i32>
333  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
334  %and1 = and <2 x i64> %sia, %bc1
335  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
336  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
337  %and2 = and <2 x i64> %sib, %bc2
338  %or = or <2 x i64> %and2, %and1
339  ret <2 x i64> %or
340}
341
342define <2 x i64> @bitcast_select_multi_uses(<4 x i1> %cmp, <2 x i64> %a, <2 x i64> %b) {
343; CHECK-LABEL: @bitcast_select_multi_uses(
344; CHECK-NEXT:    [[SEXT:%.*]] = sext <4 x i1> [[CMP:%.*]] to <4 x i32>
345; CHECK-NEXT:    [[BC1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
346; CHECK-NEXT:    [[AND1:%.*]] = and <2 x i64> [[A:%.*]], [[BC1]]
347; CHECK-NEXT:    [[TMP1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
348; CHECK-NEXT:    [[BC2:%.*]] = xor <2 x i64> [[TMP1]], splat (i64 -1)
349; CHECK-NEXT:    [[AND2:%.*]] = and <2 x i64> [[B:%.*]], [[BC2]]
350; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
351; CHECK-NEXT:    [[ADD:%.*]] = add <2 x i64> [[AND2]], [[BC2]]
352; CHECK-NEXT:    [[SUB:%.*]] = sub <2 x i64> [[OR]], [[ADD]]
353; CHECK-NEXT:    ret <2 x i64> [[SUB]]
354;
355  %sext = sext <4 x i1> %cmp to <4 x i32>
356  %bc1 = bitcast <4 x i32> %sext to <2 x i64>
357  %and1 = and <2 x i64> %a, %bc1
358  %neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
359  %bc2 = bitcast <4 x i32> %neg to <2 x i64>
360  %and2 = and <2 x i64> %b, %bc2
361  %or = or <2 x i64> %and2, %and1
362  %add = add <2 x i64> %and2, %bc2
363  %sub = sub <2 x i64> %or, %add
364  ret <2 x i64> %sub
365}
366
367define i1 @bools(i1 %a, i1 %b, i1 %c) {
368; CHECK-LABEL: @bools(
369; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
370; CHECK-NEXT:    ret i1 [[OR]]
371;
372  %not = xor i1 %c, -1
373  %and1 = and i1 %not, %a
374  %and2 = and i1 %c, %b
375  %or = or i1 %and1, %and2
376  ret i1 %or
377}
378
379define i1 @bools_logical(i1 %a, i1 %b, i1 %c) {
380; CHECK-LABEL: @bools_logical(
381; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
382; CHECK-NEXT:    ret i1 [[OR]]
383;
384  %not = xor i1 %c, -1
385  %and1 = select i1 %not, i1 %a, i1 false
386  %and2 = select i1 %c, i1 %b, i1 false
387  %or = select i1 %and1, i1 true, i1 %and2
388  ret i1 %or
389}
390
391; Form a select if we know we can get replace 2 simple logic ops.
392
393define i1 @bools_multi_uses1(i1 %a, i1 %b, i1 %c) {
394; CHECK-LABEL: @bools_multi_uses1(
395; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
396; CHECK-NEXT:    [[AND1:%.*]] = and i1 [[A:%.*]], [[NOT]]
397; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
398; CHECK-NEXT:    [[XOR:%.*]] = xor i1 [[OR]], [[AND1]]
399; CHECK-NEXT:    ret i1 [[XOR]]
400;
401  %not = xor i1 %c, -1
402  %and1 = and i1 %not, %a
403  %and2 = and i1 %c, %b
404  %or = or i1 %and1, %and2
405  %xor = xor i1 %or, %and1
406  ret i1 %xor
407}
408
409define i1 @bools_multi_uses1_logical(i1 %a, i1 %b, i1 %c) {
410; CHECK-LABEL: @bools_multi_uses1_logical(
411; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
412; CHECK-NEXT:    [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false
413; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
414; CHECK-NEXT:    [[XOR:%.*]] = xor i1 [[OR]], [[AND1]]
415; CHECK-NEXT:    ret i1 [[XOR]]
416;
417  %not = xor i1 %c, -1
418  %and1 = select i1 %not, i1 %a, i1 false
419  %and2 = select i1 %c, i1 %b, i1 false
420  %or = select i1 %and1, i1 true, i1 %and2
421  %xor = xor i1 %or, %and1
422  ret i1 %xor
423}
424
425; Don't replace a cheap logic op with a potentially expensive select
426; unless we can also eliminate one of the other original ops.
427
428define i1 @bools_multi_uses2(i1 %a, i1 %b, i1 %c) {
429; CHECK-LABEL: @bools_multi_uses2(
430; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
431; CHECK-NEXT:    ret i1 [[OR]]
432;
433  %not = xor i1 %c, -1
434  %and1 = and i1 %not, %a
435  %and2 = and i1 %c, %b
436  %or = or i1 %and1, %and2
437  %add = add i1 %and1, %and2
438  %and3 = and i1 %or, %add
439  ret i1 %and3
440}
441
442define i1 @bools_multi_uses2_logical(i1 %a, i1 %b, i1 %c) {
443; CHECK-LABEL: @bools_multi_uses2_logical(
444; CHECK-NEXT:    [[NOT:%.*]] = xor i1 [[C:%.*]], true
445; CHECK-NEXT:    [[AND1:%.*]] = select i1 [[NOT]], i1 [[A:%.*]], i1 false
446; CHECK-NEXT:    [[AND2:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 false
447; CHECK-NEXT:    [[OR:%.*]] = select i1 [[C]], i1 [[B]], i1 [[A]]
448; CHECK-NEXT:    [[ADD:%.*]] = xor i1 [[AND1]], [[AND2]]
449; CHECK-NEXT:    [[AND3:%.*]] = select i1 [[OR]], i1 [[ADD]], i1 false
450; CHECK-NEXT:    ret i1 [[AND3]]
451;
452  %not = xor i1 %c, -1
453  %and1 = select i1 %not, i1 %a, i1 false
454  %and2 = select i1 %c, i1 %b, i1 false
455  %or = select i1 %and1, i1 true, i1 %and2
456  %add = add i1 %and1, %and2
457  %and3 = select i1 %or, i1 %add, i1 false
458  ret i1 %and3
459}
460
461define <4 x i1> @vec_of_bools(<4 x i1> %a, <4 x i1> %b, <4 x i1> %c) {
462; CHECK-LABEL: @vec_of_bools(
463; CHECK-NEXT:    [[OR:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[B:%.*]], <4 x i1> [[A:%.*]]
464; CHECK-NEXT:    ret <4 x i1> [[OR]]
465;
466  %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
467  %and1 = and <4 x i1> %not, %a
468  %and2 = and <4 x i1> %b, %c
469  %or = or <4 x i1> %and2, %and1
470  ret <4 x i1> %or
471}
472
473define i4 @vec_of_casted_bools(i4 %a, i4 %b, <4 x i1> %c) {
474; CHECK-LABEL: @vec_of_casted_bools(
475; CHECK-NEXT:    [[TMP1:%.*]] = bitcast i4 [[B:%.*]] to <4 x i1>
476; CHECK-NEXT:    [[TMP2:%.*]] = bitcast i4 [[A:%.*]] to <4 x i1>
477; CHECK-NEXT:    [[TMP3:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[TMP1]], <4 x i1> [[TMP2]]
478; CHECK-NEXT:    [[OR:%.*]] = bitcast <4 x i1> [[TMP3]] to i4
479; CHECK-NEXT:    ret i4 [[OR]]
480;
481  %not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
482  %bc1 = bitcast <4 x i1> %not to i4
483  %bc2 = bitcast <4 x i1> %c to i4
484  %and1 = and i4 %a, %bc1
485  %and2 = and i4 %bc2, %b
486  %or = or i4 %and1, %and2
487  ret i4 %or
488}
489
490; Inverted 'and' constants mean this is a select which is canonicalized to a shuffle.
491
492define <4 x i32> @vec_sel_consts(<4 x i32> %a, <4 x i32> %b) {
493; CHECK-LABEL: @vec_sel_consts(
494; CHECK-NEXT:    [[OR:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]], <4 x i32> <i32 0, i32 5, i32 6, i32 3>
495; CHECK-NEXT:    ret <4 x i32> [[OR]]
496;
497  %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 -1>
498  %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 -1, i32 0>
499  %or = or <4 x i32> %and1, %and2
500  ret <4 x i32> %or
501}
502
503define <3 x i129> @vec_sel_consts_weird(<3 x i129> %a, <3 x i129> %b) {
504; CHECK-LABEL: @vec_sel_consts_weird(
505; CHECK-NEXT:    [[OR:%.*]] = shufflevector <3 x i129> [[A:%.*]], <3 x i129> [[B:%.*]], <3 x i32> <i32 0, i32 4, i32 2>
506; CHECK-NEXT:    ret <3 x i129> [[OR]]
507;
508  %and1 = and <3 x i129> %a, <i129 -1, i129 0, i129 -1>
509  %and2 = and <3 x i129> %b, <i129 0, i129 -1, i129 0>
510  %or = or <3 x i129> %and2, %and1
511  ret <3 x i129> %or
512}
513
514; The mask elements must be inverted for this to be a select.
515
516define <4 x i32> @vec_not_sel_consts(<4 x i32> %a, <4 x i32> %b) {
517; CHECK-LABEL: @vec_not_sel_consts(
518; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 0, i32 0, i32 0>
519; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 -1>
520; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
521; CHECK-NEXT:    ret <4 x i32> [[OR]]
522;
523  %and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 0>
524  %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 -1>
525  %or = or <4 x i32> %and1, %and2
526  ret <4 x i32> %or
527}
528
529define <4 x i32> @vec_not_sel_consts_undef_elts(<4 x i32> %a, <4 x i32> %b) {
530; CHECK-LABEL: @vec_not_sel_consts_undef_elts(
531; CHECK-NEXT:    [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 undef, i32 0, i32 0>
532; CHECK-NEXT:    [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 undef>
533; CHECK-NEXT:    [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
534; CHECK-NEXT:    ret <4 x i32> [[OR]]
535;
536  %and1 = and <4 x i32> %a, <i32 -1, i32 undef, i32 0, i32 0>
537  %and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 undef>
538  %or = or <4 x i32> %and1, %and2
539  ret <4 x i32> %or
540}
541
542; The inverted constants may be operands of xor instructions.
543
544define <4 x i32> @vec_sel_xor(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
545; CHECK-LABEL: @vec_sel_xor(
546; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 false, i1 true, i1 true, i1 true>
547; CHECK-NEXT:    [[OR:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
548; CHECK-NEXT:    ret <4 x i32> [[OR]]
549;
550  %mask = sext <4 x i1> %c to <4 x i32>
551  %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
552  %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
553  %and1 = and <4 x i32> %not_mask_flip1, %a
554  %and2 = and <4 x i32> %mask_flip1, %b
555  %or = or <4 x i32> %and1, %and2
556  ret <4 x i32> %or
557}
558
559; Allow the transform even if the mask values have multiple uses because
560; there's still a net reduction of instructions from removing the and/and/or.
561
562define <4 x i32> @vec_sel_xor_multi_use(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
563; CHECK-LABEL: @vec_sel_xor_multi_use(
564; CHECK-NEXT:    [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 true, i1 false, i1 false, i1 false>
565; CHECK-NEXT:    [[MASK_FLIP1:%.*]] = sext <4 x i1> [[TMP1]] to <4 x i32>
566; CHECK-NEXT:    [[TMP2:%.*]] = xor <4 x i1> [[C]], <i1 false, i1 true, i1 true, i1 true>
567; CHECK-NEXT:    [[OR:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
568; CHECK-NEXT:    [[ADD:%.*]] = add <4 x i32> [[OR]], [[MASK_FLIP1]]
569; CHECK-NEXT:    ret <4 x i32> [[ADD]]
570;
571  %mask = sext <4 x i1> %c to <4 x i32>
572  %mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
573  %not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
574  %and1 = and <4 x i32> %not_mask_flip1, %a
575  %and2 = and <4 x i32> %mask_flip1, %b
576  %or = or <4 x i32> %and1, %and2
577  %add = add <4 x i32> %or, %mask_flip1
578  ret <4 x i32> %add
579}
580
581; The 'ashr' guarantees that we have a bitmask, so this is select with truncated condition.
582
583define i32 @allSignBits(i32 %cond, i32 %tval, i32 %fval) {
584; CHECK-LABEL: @allSignBits(
585; CHECK-NEXT:    [[ISNEG1:%.*]] = icmp slt i32 [[COND:%.*]], 0
586; CHECK-NEXT:    [[A1:%.*]] = select i1 [[ISNEG1]], i32 [[TVAL:%.*]], i32 0
587; CHECK-NEXT:    [[ISNEG:%.*]] = icmp slt i32 [[COND]], 0
588; CHECK-NEXT:    [[A2:%.*]] = select i1 [[ISNEG]], i32 0, i32 [[FVAL:%.*]]
589; CHECK-NEXT:    [[SEL:%.*]] = or i32 [[A1]], [[A2]]
590; CHECK-NEXT:    ret i32 [[SEL]]
591;
592  %bitmask = ashr i32 %cond, 31
593  %not_bitmask = xor i32 %bitmask, -1
594  %a1 = and i32 %tval, %bitmask
595  %a2 = and i32 %not_bitmask, %fval
596  %sel = or i32 %a1, %a2
597  ret i32 %sel
598}
599
600define <4 x i8> @allSignBits_vec(<4 x i8> %cond, <4 x i8> %tval, <4 x i8> %fval) {
601; CHECK-LABEL: @allSignBits_vec(
602; CHECK-NEXT:    [[ISNEG1:%.*]] = icmp slt <4 x i8> [[COND:%.*]], zeroinitializer
603; CHECK-NEXT:    [[A1:%.*]] = select <4 x i1> [[ISNEG1]], <4 x i8> [[TVAL:%.*]], <4 x i8> zeroinitializer
604; CHECK-NEXT:    [[ISNEG:%.*]] = icmp slt <4 x i8> [[COND]], zeroinitializer
605; CHECK-NEXT:    [[A2:%.*]] = select <4 x i1> [[ISNEG]], <4 x i8> zeroinitializer, <4 x i8> [[FVAL:%.*]]
606; CHECK-NEXT:    [[SEL:%.*]] = or <4 x i8> [[A2]], [[A1]]
607; CHECK-NEXT:    ret <4 x i8> [[SEL]]
608;
609  %bitmask = ashr <4 x i8> %cond, <i8 7, i8 7, i8 7, i8 7>
610  %not_bitmask = xor <4 x i8> %bitmask, <i8 -1, i8 -1, i8 -1, i8 -1>
611  %a1 = and <4 x i8> %tval, %bitmask
612  %a2 = and <4 x i8> %fval, %not_bitmask
613  %sel = or <4 x i8> %a2, %a1
614  ret <4 x i8> %sel
615}
616
617; Negative test - make sure that bitcasts from FP do not cause a crash.
618
619define <2 x i64> @fp_bitcast(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
620; CHECK-LABEL: @fp_bitcast(
621; CHECK-NEXT:    [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
622; CHECK-NEXT:    [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
623; CHECK-NEXT:    [[BC1:%.*]] = bitcast <2 x double> [[A]] to <2 x i64>
624; CHECK-NEXT:    [[AND1:%.*]] = and <2 x i64> [[SIA]], [[BC1]]
625; CHECK-NEXT:    [[BC2:%.*]] = bitcast <2 x double> [[B]] to <2 x i64>
626; CHECK-NEXT:    [[AND2:%.*]] = and <2 x i64> [[SIB]], [[BC2]]
627; CHECK-NEXT:    [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
628; CHECK-NEXT:    ret <2 x i64> [[OR]]
629;
630  %sia = fptosi <2 x double> %a to <2 x i64>
631  %sib = fptosi <2 x double> %b to <2 x i64>
632  %bc1 = bitcast <2 x double> %a to <2 x i64>
633  %and1 = and <2 x i64> %sia, %bc1
634  %bc2 = bitcast <2 x double> %b to <2 x i64>
635  %and2 = and <2 x i64> %sib, %bc2
636  %or = or <2 x i64> %and2, %and1
637  ret <2 x i64> %or
638}
639
640define <4 x i32> @computesignbits_through_shuffles(<4 x float> %x, <4 x float> %y, <4 x float> %z) {
641; CHECK-LABEL: @computesignbits_through_shuffles(
642; CHECK-NEXT:    [[CMP:%.*]] = fcmp ole <4 x float> [[X:%.*]], [[Y:%.*]]
643; CHECK-NEXT:    [[SEXT:%.*]] = sext <4 x i1> [[CMP]] to <4 x i32>
644; CHECK-NEXT:    [[S1:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
645; CHECK-NEXT:    [[S2:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
646; CHECK-NEXT:    [[SHUF_OR1:%.*]] = or <4 x i32> [[S1]], [[S2]]
647; CHECK-NEXT:    [[S3:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
648; CHECK-NEXT:    [[S4:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
649; CHECK-NEXT:    [[SHUF_OR2:%.*]] = or <4 x i32> [[S3]], [[S4]]
650; CHECK-NEXT:    [[TMP1:%.*]] = trunc nsw <4 x i32> [[SHUF_OR2]] to <4 x i1>
651; CHECK-NEXT:    [[SEL_V:%.*]] = select <4 x i1> [[TMP1]], <4 x float> [[Z:%.*]], <4 x float> [[X]]
652; CHECK-NEXT:    [[SEL:%.*]] = bitcast <4 x float> [[SEL_V]] to <4 x i32>
653; CHECK-NEXT:    ret <4 x i32> [[SEL]]
654;
655  %cmp = fcmp ole <4 x float> %x, %y
656  %sext = sext <4 x i1> %cmp to <4 x i32>
657  %s1 = shufflevector <4 x i32> %sext, <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
658  %s2 = shufflevector <4 x i32> %sext, <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
659  %shuf_or1 = or <4 x i32> %s1, %s2
660  %s3 = shufflevector <4 x i32> %shuf_or1, <4 x i32> poison, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
661  %s4 = shufflevector <4 x i32> %shuf_or1, <4 x i32> poison, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
662  %shuf_or2 = or <4 x i32> %s3, %s4
663  %not_or2 = xor <4 x i32> %shuf_or2, <i32 -1, i32 -1, i32 -1, i32 -1>
664  %xbc = bitcast <4 x float> %x to <4 x i32>
665  %zbc = bitcast <4 x float> %z to <4 x i32>
666  %and1 = and <4 x i32> %not_or2, %xbc
667  %and2 = and <4 x i32> %shuf_or2, %zbc
668  %sel = or <4 x i32> %and1, %and2
669  ret <4 x i32> %sel
670}
671
672define <4 x i32> @computesignbits_through_two_input_shuffle(<4 x i32> %x, <4 x i32> %y, <4 x i1> %cond1, <4 x i1> %cond2) {
673; CHECK-LABEL: @computesignbits_through_two_input_shuffle(
674; CHECK-NEXT:    [[COND:%.*]] = shufflevector <4 x i1> [[COND1:%.*]], <4 x i1> [[COND2:%.*]], <4 x i32> <i32 0, i32 2, i32 4, i32 6>
675; CHECK-NEXT:    [[SEL:%.*]] = select <4 x i1> [[COND]], <4 x i32> [[Y:%.*]], <4 x i32> [[X:%.*]]
676; CHECK-NEXT:    ret <4 x i32> [[SEL]]
677;
678  %sext1 = sext <4 x i1> %cond1 to <4 x i32>
679  %sext2 = sext <4 x i1> %cond2 to <4 x i32>
680  %cond = shufflevector <4 x i32> %sext1, <4 x i32> %sext2, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
681  %notcond = xor <4 x i32> %cond, <i32 -1, i32 -1, i32 -1, i32 -1>
682  %and1 = and <4 x i32> %notcond, %x
683  %and2 = and <4 x i32> %cond, %y
684  %sel = or <4 x i32> %and1, %and2
685  ret <4 x i32> %sel
686}
687
688