1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py 2; RUN: opt -S -passes=instcombine < %s | FileCheck %s 3; RUN: opt -S -passes=instcombine -use-constant-fp-for-fixed-length-splat < %s | FileCheck %s 4 5; (-0.0 - X) * C => X * -C 6define float @neg_constant(float %x) { 7; CHECK-LABEL: @neg_constant( 8; CHECK-NEXT: [[MUL:%.*]] = fmul ninf float [[X:%.*]], -2.000000e+01 9; CHECK-NEXT: ret float [[MUL]] 10; 11 %sub = fsub float -0.0, %x 12 %mul = fmul ninf float %sub, 2.0e+1 13 ret float %mul 14} 15 16define float @unary_neg_constant(float %x) { 17; CHECK-LABEL: @unary_neg_constant( 18; CHECK-NEXT: [[MUL:%.*]] = fmul ninf float [[X:%.*]], -2.000000e+01 19; CHECK-NEXT: ret float [[MUL]] 20; 21 %sub = fneg float %x 22 %mul = fmul ninf float %sub, 2.0e+1 23 ret float %mul 24} 25 26define <2 x float> @neg_constant_vec(<2 x float> %x) { 27; CHECK-LABEL: @neg_constant_vec( 28; CHECK-NEXT: [[MUL:%.*]] = fmul ninf <2 x float> [[X:%.*]], <float -2.000000e+00, float -3.000000e+00> 29; CHECK-NEXT: ret <2 x float> [[MUL]] 30; 31 %sub = fsub <2 x float> <float -0.0, float -0.0>, %x 32 %mul = fmul ninf <2 x float> %sub, <float 2.0, float 3.0> 33 ret <2 x float> %mul 34} 35 36define <2 x float> @unary_neg_constant_vec(<2 x float> %x) { 37; CHECK-LABEL: @unary_neg_constant_vec( 38; CHECK-NEXT: [[MUL:%.*]] = fmul ninf <2 x float> [[X:%.*]], <float -2.000000e+00, float -3.000000e+00> 39; CHECK-NEXT: ret <2 x float> [[MUL]] 40; 41 %sub = fneg <2 x float> %x 42 %mul = fmul ninf <2 x float> %sub, <float 2.0, float 3.0> 43 ret <2 x float> %mul 44} 45 46define <2 x float> @neg_constant_vec_poison(<2 x float> %x) { 47; CHECK-LABEL: @neg_constant_vec_poison( 48; CHECK-NEXT: [[MUL:%.*]] = fmul ninf <2 x float> [[X:%.*]], <float -2.000000e+00, float -3.000000e+00> 49; CHECK-NEXT: ret <2 x float> [[MUL]] 50; 51 %sub = fsub <2 x float> <float poison, float -0.0>, %x 52 %mul = fmul ninf <2 x float> %sub, <float 2.0, float 3.0> 53 ret <2 x float> %mul 54} 55 56; (0.0 - X) * C => X * -C 57define float @neg_nsz_constant(float %x) { 58; CHECK-LABEL: @neg_nsz_constant( 59; CHECK-NEXT: [[MUL:%.*]] = fmul nnan float [[X:%.*]], -2.000000e+01 60; CHECK-NEXT: ret float [[MUL]] 61; 62 %sub = fsub nsz float 0.0, %x 63 %mul = fmul nnan float %sub, 2.0e+1 64 ret float %mul 65} 66 67define float @unary_neg_nsz_constant(float %x) { 68; CHECK-LABEL: @unary_neg_nsz_constant( 69; CHECK-NEXT: [[MUL:%.*]] = fmul nnan float [[X:%.*]], -2.000000e+01 70; CHECK-NEXT: ret float [[MUL]] 71; 72 %sub = fneg nsz float %x 73 %mul = fmul nnan float %sub, 2.0e+1 74 ret float %mul 75} 76 77; (-0.0 - X) * (-0.0 - Y) => X * Y 78define float @neg_neg(float %x, float %y) { 79; CHECK-LABEL: @neg_neg( 80; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] 81; CHECK-NEXT: ret float [[MUL]] 82; 83 %sub1 = fsub float -0.0, %x 84 %sub2 = fsub float -0.0, %y 85 %mul = fmul arcp float %sub1, %sub2 86 ret float %mul 87} 88 89define float @unary_neg_unary_neg(float %x, float %y) { 90; CHECK-LABEL: @unary_neg_unary_neg( 91; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] 92; CHECK-NEXT: ret float [[MUL]] 93; 94 %sub1 = fneg float %x 95 %sub2 = fneg float %y 96 %mul = fmul arcp float %sub1, %sub2 97 ret float %mul 98} 99 100define float @unary_neg_neg(float %x, float %y) { 101; CHECK-LABEL: @unary_neg_neg( 102; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] 103; CHECK-NEXT: ret float [[MUL]] 104; 105 %sub1 = fneg float %x 106 %sub2 = fsub float -0.0, %y 107 %mul = fmul arcp float %sub1, %sub2 108 ret float %mul 109} 110 111define float @neg_unary_neg(float %x, float %y) { 112; CHECK-LABEL: @neg_unary_neg( 113; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] 114; CHECK-NEXT: ret float [[MUL]] 115; 116 %sub1 = fsub float -0.0, %x 117 %sub2 = fneg float %y 118 %mul = fmul arcp float %sub1, %sub2 119 ret float %mul 120} 121 122define <2 x float> @neg_neg_vec(<2 x float> %x, <2 x float> %y) { 123; CHECK-LABEL: @neg_neg_vec( 124; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] 125; CHECK-NEXT: ret <2 x float> [[MUL]] 126; 127 %sub1 = fsub <2 x float> <float -0.0, float -0.0>, %x 128 %sub2 = fsub <2 x float> <float -0.0, float -0.0>, %y 129 %mul = fmul arcp <2 x float> %sub1, %sub2 130 ret <2 x float> %mul 131} 132 133define <2 x float> @unary_neg_unary_neg_vec(<2 x float> %x, <2 x float> %y) { 134; CHECK-LABEL: @unary_neg_unary_neg_vec( 135; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] 136; CHECK-NEXT: ret <2 x float> [[MUL]] 137; 138 %sub1 = fneg <2 x float> %x 139 %sub2 = fneg <2 x float> %y 140 %mul = fmul arcp <2 x float> %sub1, %sub2 141 ret <2 x float> %mul 142} 143 144define <2 x float> @unary_neg_neg_vec(<2 x float> %x, <2 x float> %y) { 145; CHECK-LABEL: @unary_neg_neg_vec( 146; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] 147; CHECK-NEXT: ret <2 x float> [[MUL]] 148; 149 %sub1 = fneg <2 x float> %x 150 %sub2 = fsub <2 x float> <float -0.0, float -0.0>, %y 151 %mul = fmul arcp <2 x float> %sub1, %sub2 152 ret <2 x float> %mul 153} 154 155define <2 x float> @neg_unary_neg_vec(<2 x float> %x, <2 x float> %y) { 156; CHECK-LABEL: @neg_unary_neg_vec( 157; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] 158; CHECK-NEXT: ret <2 x float> [[MUL]] 159; 160 %sub1 = fsub <2 x float> <float -0.0, float -0.0>, %x 161 %sub2 = fneg <2 x float> %y 162 %mul = fmul arcp <2 x float> %sub1, %sub2 163 ret <2 x float> %mul 164} 165 166define <2 x float> @neg_neg_vec_poison(<2 x float> %x, <2 x float> %y) { 167; CHECK-LABEL: @neg_neg_vec_poison( 168; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] 169; CHECK-NEXT: ret <2 x float> [[MUL]] 170; 171 %sub1 = fsub <2 x float> <float -0.0, float poison>, %x 172 %sub2 = fsub <2 x float> <float poison, float -0.0>, %y 173 %mul = fmul arcp <2 x float> %sub1, %sub2 174 ret <2 x float> %mul 175} 176 177define <2 x float> @unary_neg_neg_vec_poison(<2 x float> %x, <2 x float> %y) { 178; CHECK-LABEL: @unary_neg_neg_vec_poison( 179; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] 180; CHECK-NEXT: ret <2 x float> [[MUL]] 181; 182 %neg = fneg <2 x float> %x 183 %sub = fsub <2 x float> <float poison, float -0.0>, %y 184 %mul = fmul arcp <2 x float> %neg, %sub 185 ret <2 x float> %mul 186} 187 188define <2 x float> @neg_unary_neg_vec_poison(<2 x float> %x, <2 x float> %y) { 189; CHECK-LABEL: @neg_unary_neg_vec_poison( 190; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] 191; CHECK-NEXT: ret <2 x float> [[MUL]] 192; 193 %sub = fsub <2 x float> <float -0.0, float poison>, %x 194 %neg = fneg <2 x float> %y 195 %mul = fmul arcp <2 x float> %sub, %neg 196 ret <2 x float> %mul 197} 198 199; (0.0 - X) * (0.0 - Y) => X * Y 200define float @neg_neg_nsz(float %x, float %y) { 201; CHECK-LABEL: @neg_neg_nsz( 202; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X:%.*]], [[Y:%.*]] 203; CHECK-NEXT: ret float [[MUL]] 204; 205 %sub1 = fsub nsz float 0.0, %x 206 %sub2 = fsub nsz float 0.0, %y 207 %mul = fmul afn float %sub1, %sub2 208 ret float %mul 209} 210 211declare void @use_f32(float) 212 213define float @neg_neg_multi_use(float %x, float %y) { 214; CHECK-LABEL: @neg_neg_multi_use( 215; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] 216; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] 217; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] 218; CHECK-NEXT: call void @use_f32(float [[NX]]) 219; CHECK-NEXT: call void @use_f32(float [[NY]]) 220; CHECK-NEXT: ret float [[MUL]] 221; 222 %nx = fsub float -0.0, %x 223 %ny = fsub float -0.0, %y 224 %mul = fmul afn float %nx, %ny 225 call void @use_f32(float %nx) 226 call void @use_f32(float %ny) 227 ret float %mul 228} 229 230define float @unary_neg_unary_neg_multi_use(float %x, float %y) { 231; CHECK-LABEL: @unary_neg_unary_neg_multi_use( 232; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] 233; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] 234; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] 235; CHECK-NEXT: call void @use_f32(float [[NX]]) 236; CHECK-NEXT: call void @use_f32(float [[NY]]) 237; CHECK-NEXT: ret float [[MUL]] 238; 239 %nx = fneg float %x 240 %ny = fneg float %y 241 %mul = fmul afn float %nx, %ny 242 call void @use_f32(float %nx) 243 call void @use_f32(float %ny) 244 ret float %mul 245} 246 247define float @unary_neg_neg_multi_use(float %x, float %y) { 248; CHECK-LABEL: @unary_neg_neg_multi_use( 249; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] 250; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] 251; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] 252; CHECK-NEXT: call void @use_f32(float [[NX]]) 253; CHECK-NEXT: call void @use_f32(float [[NY]]) 254; CHECK-NEXT: ret float [[MUL]] 255; 256 %nx = fneg float %x 257 %ny = fsub float -0.0, %y 258 %mul = fmul afn float %nx, %ny 259 call void @use_f32(float %nx) 260 call void @use_f32(float %ny) 261 ret float %mul 262} 263 264define float @neg_unary_neg_multi_use(float %x, float %y) { 265; CHECK-LABEL: @neg_unary_neg_multi_use( 266; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] 267; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] 268; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] 269; CHECK-NEXT: call void @use_f32(float [[NX]]) 270; CHECK-NEXT: call void @use_f32(float [[NY]]) 271; CHECK-NEXT: ret float [[MUL]] 272; 273 %nx = fsub float -0.0, %x 274 %ny = fneg float %y 275 %mul = fmul afn float %nx, %ny 276 call void @use_f32(float %nx) 277 call void @use_f32(float %ny) 278 ret float %mul 279} 280 281; (-0.0 - X) * Y 282define float @neg_mul(float %x, float %y) { 283; CHECK-LABEL: @neg_mul( 284; CHECK-NEXT: [[SUB:%.*]] = fneg float [[X:%.*]] 285; CHECK-NEXT: [[MUL:%.*]] = fmul float [[Y:%.*]], [[SUB]] 286; CHECK-NEXT: ret float [[MUL]] 287; 288 %sub = fsub float -0.0, %x 289 %mul = fmul float %sub, %y 290 ret float %mul 291} 292 293define float @unary_neg_mul(float %x, float %y) { 294; CHECK-LABEL: @unary_neg_mul( 295; CHECK-NEXT: [[NEG:%.*]] = fneg float [[X:%.*]] 296; CHECK-NEXT: [[MUL:%.*]] = fmul float [[Y:%.*]], [[NEG]] 297; CHECK-NEXT: ret float [[MUL]] 298; 299 %neg = fneg float %x 300 %mul = fmul float %neg, %y 301 ret float %mul 302} 303 304define <2 x float> @neg_mul_vec(<2 x float> %x, <2 x float> %y) { 305; CHECK-LABEL: @neg_mul_vec( 306; CHECK-NEXT: [[SUB:%.*]] = fneg <2 x float> [[X:%.*]] 307; CHECK-NEXT: [[MUL:%.*]] = fmul <2 x float> [[Y:%.*]], [[SUB]] 308; CHECK-NEXT: ret <2 x float> [[MUL]] 309; 310 %sub = fsub <2 x float> <float -0.0, float -0.0>, %x 311 %mul = fmul <2 x float> %sub, %y 312 ret <2 x float> %mul 313} 314 315define <2 x float> @unary_neg_mul_vec(<2 x float> %x, <2 x float> %y) { 316; CHECK-LABEL: @unary_neg_mul_vec( 317; CHECK-NEXT: [[SUB:%.*]] = fneg <2 x float> [[X:%.*]] 318; CHECK-NEXT: [[MUL:%.*]] = fmul <2 x float> [[Y:%.*]], [[SUB]] 319; CHECK-NEXT: ret <2 x float> [[MUL]] 320; 321 %sub = fneg <2 x float> %x 322 %mul = fmul <2 x float> %sub, %y 323 ret <2 x float> %mul 324} 325 326define <2 x float> @neg_mul_vec_poison(<2 x float> %x, <2 x float> %y) { 327; CHECK-LABEL: @neg_mul_vec_poison( 328; CHECK-NEXT: [[SUB:%.*]] = fneg <2 x float> [[X:%.*]] 329; CHECK-NEXT: [[MUL:%.*]] = fmul <2 x float> [[Y:%.*]], [[SUB]] 330; CHECK-NEXT: ret <2 x float> [[MUL]] 331; 332 %sub = fsub <2 x float> <float poison, float -0.0>, %x 333 %mul = fmul <2 x float> %sub, %y 334 ret <2 x float> %mul 335} 336 337; (0.0 - X) * Y 338define float @neg_sink_nsz(float %x, float %y) { 339; CHECK-LABEL: @neg_sink_nsz( 340; CHECK-NEXT: [[SUB1:%.*]] = fneg nsz float [[X:%.*]] 341; CHECK-NEXT: [[MUL:%.*]] = fmul float [[Y:%.*]], [[SUB1]] 342; CHECK-NEXT: ret float [[MUL]] 343; 344 %sub1 = fsub nsz float 0.0, %x 345 %mul = fmul float %sub1, %y 346 ret float %mul 347} 348 349define float @neg_sink_multi_use(float %x, float %y) { 350; CHECK-LABEL: @neg_sink_multi_use( 351; CHECK-NEXT: [[SUB1:%.*]] = fneg float [[X:%.*]] 352; CHECK-NEXT: [[MUL:%.*]] = fmul float [[Y:%.*]], [[SUB1]] 353; CHECK-NEXT: [[MUL2:%.*]] = fmul float [[MUL]], [[SUB1]] 354; CHECK-NEXT: ret float [[MUL2]] 355; 356 %sub1 = fsub float -0.0, %x 357 %mul = fmul float %sub1, %y 358 %mul2 = fmul float %mul, %sub1 359 ret float %mul2 360} 361 362define float @unary_neg_mul_multi_use(float %x, float %y) { 363; CHECK-LABEL: @unary_neg_mul_multi_use( 364; CHECK-NEXT: [[SUB1:%.*]] = fneg float [[X:%.*]] 365; CHECK-NEXT: [[MUL:%.*]] = fmul float [[Y:%.*]], [[SUB1]] 366; CHECK-NEXT: [[MUL2:%.*]] = fmul float [[MUL]], [[SUB1]] 367; CHECK-NEXT: ret float [[MUL2]] 368; 369 %sub1 = fneg float %x 370 %mul = fmul float %sub1, %y 371 %mul2 = fmul float %mul, %sub1 372 ret float %mul2 373} 374 375; Don't crash when attempting to cast a constant FMul to an instruction. 376define void @test8(ptr %inout, i1 %c1) { 377; CHECK-LABEL: @test8( 378; CHECK-NEXT: entry: 379; CHECK-NEXT: br label [[FOR_COND:%.*]] 380; CHECK: for.cond: 381; CHECK-NEXT: [[LOCAL_VAR_7_0:%.*]] = phi <4 x float> [ splat (float -0.000000e+00), [[ENTRY:%.*]] ], [ [[TMP0:%.*]], [[FOR_BODY:%.*]] ] 382; CHECK-NEXT: br i1 [[C1:%.*]], label [[FOR_BODY]], label [[FOR_END:%.*]] 383; CHECK: for.body: 384; CHECK-NEXT: [[TMP0]] = insertelement <4 x float> [[LOCAL_VAR_7_0]], float 0.000000e+00, i64 2 385; CHECK-NEXT: br label [[FOR_COND]] 386; CHECK: for.end: 387; CHECK-NEXT: ret void 388; 389entry: 390 %0 = load i32, ptr %inout, align 4 391 %conv = uitofp i32 %0 to float 392 %vecinit = insertelement <4 x float> <float 0.000000e+00, float 0.000000e+00, float 0.000000e+00, float poison>, float %conv, i32 3 393 %sub = fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %vecinit 394 %1 = shufflevector <4 x float> %sub, <4 x float> poison, <4 x i32> <i32 1, i32 1, i32 1, i32 1> 395 %mul = fmul <4 x float> zeroinitializer, %1 396 br label %for.cond 397 398for.cond: ; preds = %for.body, %entry 399 %local_var_7.0 = phi <4 x float> [ %mul, %entry ], [ %2, %for.body ] 400 br i1 %c1, label %for.body, label %for.end 401 402for.body: ; preds = %for.cond 403 %2 = insertelement <4 x float> %local_var_7.0, float 0.000000e+00, i32 2 404 br label %for.cond 405 406for.end: ; preds = %for.cond 407 ret void 408} 409 410; X * -1.0 => -0.0 - X 411define float @test9(float %x) { 412; CHECK-LABEL: @test9( 413; CHECK-NEXT: [[MUL:%.*]] = fneg float [[X:%.*]] 414; CHECK-NEXT: ret float [[MUL]] 415; 416 %mul = fmul float %x, -1.0 417 ret float %mul 418} 419 420; PR18532 421define <4 x float> @test10(<4 x float> %x) { 422; CHECK-LABEL: @test10( 423; CHECK-NEXT: [[MUL:%.*]] = fneg arcp afn <4 x float> [[X:%.*]] 424; CHECK-NEXT: ret <4 x float> [[MUL]] 425; 426 %mul = fmul arcp afn <4 x float> %x, <float -1.0, float -1.0, float -1.0, float -1.0> 427 ret <4 x float> %mul 428} 429 430define float @test11(float %x, float %y) { 431; CHECK-LABEL: @test11( 432; CHECK-NEXT: [[B:%.*]] = fadd fast float [[X:%.*]], [[Y:%.*]] 433; CHECK-NEXT: [[C:%.*]] = fadd fast float [[B]], 3.000000e+00 434; CHECK-NEXT: ret float [[C]] 435; 436 %a = fadd fast float %x, 1.0 437 %b = fadd fast float %y, 2.0 438 %c = fadd fast float %a, %b 439 ret float %c 440} 441 442declare double @llvm.sqrt.f64(double) 443 444; With unsafe/fast math, sqrt(X) * sqrt(X) is just X, 445; but make sure another use of the sqrt is intact. 446; Note that the remaining fmul is altered but is not 'fast' 447; itself because it was not marked 'fast' originally. 448; Thus, we have an overall fast result, but no more indication of 449; 'fast'ness in the code. 450define double @sqrt_squared2(double %f) { 451; CHECK-LABEL: @sqrt_squared2( 452; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[F:%.*]]) 453; CHECK-NEXT: [[MUL2:%.*]] = fmul double [[F]], [[SQRT]] 454; CHECK-NEXT: ret double [[MUL2]] 455; 456 %sqrt = call double @llvm.sqrt.f64(double %f) 457 %mul1 = fmul fast double %sqrt, %sqrt 458 %mul2 = fmul double %mul1, %sqrt 459 ret double %mul2 460} 461 462declare float @llvm.fabs.f32(float) nounwind readnone 463 464define float @fabs_squared(float %x) { 465; CHECK-LABEL: @fabs_squared( 466; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], [[X]] 467; CHECK-NEXT: ret float [[MUL]] 468; 469 %x.fabs = call float @llvm.fabs.f32(float %x) 470 %mul = fmul float %x.fabs, %x.fabs 471 ret float %mul 472} 473 474define float @fabs_squared_fast(float %x) { 475; CHECK-LABEL: @fabs_squared_fast( 476; CHECK-NEXT: [[MUL:%.*]] = fmul fast float [[X:%.*]], [[X]] 477; CHECK-NEXT: ret float [[MUL]] 478; 479 %x.fabs = call float @llvm.fabs.f32(float %x) 480 %mul = fmul fast float %x.fabs, %x.fabs 481 ret float %mul 482} 483 484define float @fabs_fabs(float %x, float %y) { 485; CHECK-LABEL: @fabs_fabs( 486; CHECK-NEXT: [[TMP1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] 487; CHECK-NEXT: [[MUL:%.*]] = call float @llvm.fabs.f32(float [[TMP1]]) 488; CHECK-NEXT: ret float [[MUL]] 489; 490 %x.fabs = call float @llvm.fabs.f32(float %x) 491 %y.fabs = call float @llvm.fabs.f32(float %y) 492 %mul = fmul float %x.fabs, %y.fabs 493 ret float %mul 494} 495 496define float @fabs_fabs_extra_use1(float %x, float %y) { 497; CHECK-LABEL: @fabs_fabs_extra_use1( 498; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) 499; CHECK-NEXT: call void @use_f32(float [[X_FABS]]) 500; CHECK-NEXT: [[TMP1:%.*]] = fmul ninf float [[X]], [[Y:%.*]] 501; CHECK-NEXT: [[MUL:%.*]] = call ninf float @llvm.fabs.f32(float [[TMP1]]) 502; CHECK-NEXT: ret float [[MUL]] 503; 504 %x.fabs = call float @llvm.fabs.f32(float %x) 505 call void @use_f32(float %x.fabs) 506 %y.fabs = call float @llvm.fabs.f32(float %y) 507 %mul = fmul ninf float %x.fabs, %y.fabs 508 ret float %mul 509} 510 511define float @fabs_fabs_extra_use2(float %x, float %y) { 512; CHECK-LABEL: @fabs_fabs_extra_use2( 513; CHECK-NEXT: [[Y_FABS:%.*]] = call fast float @llvm.fabs.f32(float [[Y:%.*]]) 514; CHECK-NEXT: call void @use_f32(float [[Y_FABS]]) 515; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc ninf float [[X:%.*]], [[Y]] 516; CHECK-NEXT: [[MUL:%.*]] = call reassoc ninf float @llvm.fabs.f32(float [[TMP1]]) 517; CHECK-NEXT: ret float [[MUL]] 518; 519 %x.fabs = call fast float @llvm.fabs.f32(float %x) 520 %y.fabs = call fast float @llvm.fabs.f32(float %y) 521 call void @use_f32(float %y.fabs) 522 %mul = fmul reassoc ninf float %x.fabs, %y.fabs 523 ret float %mul 524} 525 526; negative test - don't create an extra instruction 527 528define float @fabs_fabs_extra_use3(float %x, float %y) { 529; CHECK-LABEL: @fabs_fabs_extra_use3( 530; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) 531; CHECK-NEXT: call void @use_f32(float [[X_FABS]]) 532; CHECK-NEXT: [[Y_FABS:%.*]] = call float @llvm.fabs.f32(float [[Y:%.*]]) 533; CHECK-NEXT: call void @use_f32(float [[Y_FABS]]) 534; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X_FABS]], [[Y_FABS]] 535; CHECK-NEXT: ret float [[MUL]] 536; 537 %x.fabs = call float @llvm.fabs.f32(float %x) 538 call void @use_f32(float %x.fabs) 539 %y.fabs = call float @llvm.fabs.f32(float %y) 540 call void @use_f32(float %y.fabs) 541 %mul = fmul float %x.fabs, %y.fabs 542 ret float %mul 543} 544 545; (X*Y) * X => (X*X) * Y 546; The transform only requires 'reassoc', but test other FMF in 547; the commuted variants to make sure FMF propagates as expected. 548 549define float @reassoc_common_operand1(float %x, float %y) { 550; CHECK-LABEL: @reassoc_common_operand1( 551; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], [[X]] 552; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc float [[TMP1]], [[Y:%.*]] 553; CHECK-NEXT: ret float [[MUL2]] 554; 555 %mul1 = fmul float %x, %y 556 %mul2 = fmul reassoc float %mul1, %x 557 ret float %mul2 558} 559 560; (Y*X) * X => (X*X) * Y 561 562define float @reassoc_common_operand2(float %x, float %y) { 563; CHECK-LABEL: @reassoc_common_operand2( 564; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], [[X]] 565; CHECK-NEXT: [[MUL2:%.*]] = fmul fast float [[TMP1]], [[Y:%.*]] 566; CHECK-NEXT: ret float [[MUL2]] 567; 568 %mul1 = fmul float %y, %x 569 %mul2 = fmul fast float %mul1, %x 570 ret float %mul2 571} 572 573; X * (X*Y) => (X*X) * Y 574 575define float @reassoc_common_operand3(float %x1, float %y) { 576; CHECK-LABEL: @reassoc_common_operand3( 577; CHECK-NEXT: [[X:%.*]] = fdiv float [[X1:%.*]], 3.000000e+00 578; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan float [[X]], [[X]] 579; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc nnan float [[TMP1]], [[Y:%.*]] 580; CHECK-NEXT: ret float [[MUL2]] 581; 582 %x = fdiv float %x1, 3.0 ; thwart complexity-based canonicalization 583 %mul1 = fmul float %x, %y 584 %mul2 = fmul reassoc nnan float %x, %mul1 585 ret float %mul2 586} 587 588; X * (Y*X) => (X*X) * Y 589 590define float @reassoc_common_operand4(float %x1, float %y) { 591; CHECK-LABEL: @reassoc_common_operand4( 592; CHECK-NEXT: [[X:%.*]] = fdiv float [[X1:%.*]], 3.000000e+00 593; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc ninf float [[X]], [[X]] 594; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc ninf float [[TMP1]], [[Y:%.*]] 595; CHECK-NEXT: ret float [[MUL2]] 596; 597 %x = fdiv float %x1, 3.0 ; thwart complexity-based canonicalization 598 %mul1 = fmul float %y, %x 599 %mul2 = fmul reassoc ninf float %x, %mul1 600 ret float %mul2 601} 602 603; No change if the first fmul has another use. 604 605define float @reassoc_common_operand_multi_use(float %x, float %y) { 606; CHECK-LABEL: @reassoc_common_operand_multi_use( 607; CHECK-NEXT: [[MUL1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] 608; CHECK-NEXT: [[MUL2:%.*]] = fmul fast float [[MUL1]], [[X]] 609; CHECK-NEXT: call void @use_f32(float [[MUL1]]) 610; CHECK-NEXT: ret float [[MUL2]] 611; 612 %mul1 = fmul float %x, %y 613 %mul2 = fmul fast float %mul1, %x 614 call void @use_f32(float %mul1) 615 ret float %mul2 616} 617 618declare float @llvm.log2.f32(float) 619 620; log2(Y * 0.5) * X = log2(Y) * X - X 621 622define float @log2half(float %x, float %y) { 623; CHECK-LABEL: @log2half( 624; CHECK-NEXT: [[TMP1:%.*]] = call fast float @llvm.log2.f32(float [[Y:%.*]]) 625; CHECK-NEXT: [[TMP2:%.*]] = fmul fast float [[TMP1]], [[X:%.*]] 626; CHECK-NEXT: [[MUL:%.*]] = fsub fast float [[TMP2]], [[X]] 627; CHECK-NEXT: ret float [[MUL]] 628; 629 %halfy = fmul float %y, 0.5 630 %log2 = call float @llvm.log2.f32(float %halfy) 631 %mul = fmul fast float %log2, %x 632 ret float %mul 633} 634 635define float @log2half_commute(float %x1, float %y) { 636; CHECK-LABEL: @log2half_commute( 637; CHECK-NEXT: [[X:%.*]] = fmul fast float [[X1:%.*]], 0x3FC24924A0000000 638; CHECK-NEXT: [[TMP1:%.*]] = call fast float @llvm.log2.f32(float [[Y:%.*]]) 639; CHECK-NEXT: [[TMP2:%.*]] = fmul fast float [[TMP1]], [[X]] 640; CHECK-NEXT: [[MUL:%.*]] = fsub fast float [[TMP2]], [[X]] 641; CHECK-NEXT: ret float [[MUL]] 642; 643 %x = fdiv fast float %x1, 7.0 ; thwart complexity-based canonicalization 644 %halfy = fmul fast float %y, 0.5 645 %log2 = call fast float @llvm.log2.f32(float %halfy) 646 %mul = fmul fast float %x, %log2 647 ret float %mul 648} 649 650; C1/X * C2 => (C1*C2) / X 651 652define float @fdiv_constant_numerator_fmul(float %x) { 653; CHECK-LABEL: @fdiv_constant_numerator_fmul( 654; CHECK-NEXT: [[T3:%.*]] = fdiv reassoc float 1.200000e+07, [[X:%.*]] 655; CHECK-NEXT: ret float [[T3]] 656; 657 %t1 = fdiv reassoc float 2.0e+3, %x 658 %t3 = fmul reassoc float %t1, 6.0e+3 659 ret float %t3 660} 661 662; C1/X * C2 => (C1*C2) / X with mixed fast-math flags 663 664define float @fdiv_constant_numerator_fmul_mixed(float %x) { 665; CHECK-LABEL: @fdiv_constant_numerator_fmul_mixed( 666; CHECK-NEXT: [[T3:%.*]] = fdiv reassoc float 1.200000e+07, [[X:%.*]] 667; CHECK-NEXT: ret float [[T3]] 668; 669 %t1 = fdiv reassoc float 2.0e+3, %x 670 %t3 = fmul fast float %t1, 6.0e+3 671 ret float %t3 672} 673 674; C1/X * C2 => (C1*C2) / X with full fast-math flags 675 676define float @fdiv_constant_numerator_fmul_fast(float %x) { 677; CHECK-LABEL: @fdiv_constant_numerator_fmul_fast( 678; CHECK-NEXT: [[T3:%.*]] = fdiv fast float 1.200000e+07, [[X:%.*]] 679; CHECK-NEXT: ret float [[T3]] 680; 681 %t1 = fdiv fast float 2.0e+3, %x 682 %t3 = fmul fast float %t1, 6.0e+3 683 ret float %t3 684} 685 686; C1/X * C2 => (C1*C2) / X with no fast-math flags on the fdiv 687 688define float @fdiv_constant_numerator_fmul_precdiv(float %x) { 689; CHECK-LABEL: @fdiv_constant_numerator_fmul_precdiv( 690; CHECK-NEXT: [[T1:%.*]] = fdiv float 2.000000e+03, [[X:%.*]] 691; CHECK-NEXT: [[T3:%.*]] = fmul reassoc float [[T1]], 6.000000e+03 692; CHECK-NEXT: ret float [[T3]] 693; 694 %t1 = fdiv float 2.0e+3, %x 695 %t3 = fmul reassoc float %t1, 6.0e+3 696 ret float %t3 697} 698 699 700; C1/X * C2 => (C1*C2) / X is disabled if C1/X has multiple uses 701 702@fmul2_external = external global float 703 704define float @fdiv_constant_numerator_fmul_extra_use(float %x) { 705; CHECK-LABEL: @fdiv_constant_numerator_fmul_extra_use( 706; CHECK-NEXT: [[DIV:%.*]] = fdiv fast float 1.000000e+00, [[X:%.*]] 707; CHECK-NEXT: store float [[DIV]], ptr @fmul2_external, align 4 708; CHECK-NEXT: [[MUL:%.*]] = fmul fast float [[DIV]], 2.000000e+00 709; CHECK-NEXT: ret float [[MUL]] 710; 711 %div = fdiv fast float 1.0, %x 712 store float %div, ptr @fmul2_external 713 %mul = fmul fast float %div, 2.0 714 ret float %mul 715} 716 717; X/C1 * C2 => X * (C2/C1) (if C2/C1 is normal FP) 718 719define float @fdiv_constant_denominator_fmul(float %x) { 720; CHECK-LABEL: @fdiv_constant_denominator_fmul( 721; CHECK-NEXT: [[T3:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 722; CHECK-NEXT: ret float [[T3]] 723; 724 %t1 = fdiv reassoc float %x, 2.0e+3 725 %t3 = fmul reassoc float %t1, 6.0e+3 726 ret float %t3 727} 728 729define <4 x float> @fdiv_constant_denominator_fmul_vec(<4 x float> %x) { 730; CHECK-LABEL: @fdiv_constant_denominator_fmul_vec( 731; CHECK-NEXT: [[T3:%.*]] = fmul reassoc <4 x float> [[X:%.*]], <float 3.000000e+00, float 2.000000e+00, float 1.000000e+00, float 1.000000e+00> 732; CHECK-NEXT: ret <4 x float> [[T3]] 733; 734 %t1 = fdiv reassoc <4 x float> %x, <float 2.0e+3, float 3.0e+3, float 2.0e+3, float 1.0e+3> 735 %t3 = fmul reassoc <4 x float> %t1, <float 6.0e+3, float 6.0e+3, float 2.0e+3, float 1.0e+3> 736 ret <4 x float> %t3 737} 738 739; Make sure fmul with constant expression doesn't assert. 740 741define <4 x float> @fdiv_constant_denominator_fmul_vec_constexpr(<4 x float> %x) { 742; CHECK-LABEL: @fdiv_constant_denominator_fmul_vec_constexpr( 743; CHECK-NEXT: [[T3:%.*]] = fmul reassoc <4 x float> [[X:%.*]], <float 3.000000e+00, float 2.000000e+00, float 1.000000e+00, float 1.000000e+00> 744; CHECK-NEXT: ret <4 x float> [[T3]] 745; 746 %constExprMul = bitcast i128 trunc (i160 bitcast (<5 x float> <float 6.0e+3, float 6.0e+3, float 2.0e+3, float 1.0e+3, float poison> to i160) to i128) to <4 x float> 747 %t1 = fdiv reassoc <4 x float> %x, <float 2.0e+3, float 3.0e+3, float 2.0e+3, float 1.0e+3> 748 %t3 = fmul reassoc <4 x float> %t1, %constExprMul 749 ret <4 x float> %t3 750} 751 752; This shows that at least part of instcombine does not check constant 753; values to see if it is creating denorms (0x3800000000000000 is a denorm 754; for 32-bit float), so protecting against denorms in other parts is 755; probably not doing the intended job. 756 757define float @fmul_constant_reassociation(float %x) { 758; CHECK-LABEL: @fmul_constant_reassociation( 759; CHECK-NEXT: [[R:%.*]] = fmul reassoc nsz float [[X:%.*]], 0x3800000000000000 760; CHECK-NEXT: ret float [[R]] 761; 762 %mul_flt_min = fmul reassoc nsz float %x, 0x3810000000000000 763 %r = fmul reassoc nsz float %mul_flt_min, 0.5 764 ret float %r 765} 766 767; Canonicalization "X/C1 * C2 => X * (C2/C1)" still applies if C2/C1 is denormal 768; (otherwise, we should not have allowed the reassociation in the previous test). 769; 0x3810000000000000 == FLT_MIN 770 771define float @fdiv_constant_denominator_fmul_denorm(float %x) { 772; CHECK-LABEL: @fdiv_constant_denominator_fmul_denorm( 773; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[X:%.*]], 0x3760620000000000 774; CHECK-NEXT: ret float [[T3]] 775; 776 %t1 = fdiv fast float %x, 2.0e+3 777 %t3 = fmul fast float %t1, 0x3810000000000000 778 ret float %t3 779} 780 781; X / C1 * C2 => X / (C2/C1) if C1/C2 is abnormal, but C2/C1 is a normal value. 782; TODO: We don't convert the fast fdiv to fmul because that would be multiplication 783; by a denormal, but we could do better when we know that denormals are not a problem. 784 785define float @fdiv_constant_denominator_fmul_denorm_try_harder(float %x) { 786; CHECK-LABEL: @fdiv_constant_denominator_fmul_denorm_try_harder( 787; CHECK-NEXT: [[T3:%.*]] = fdiv reassoc float [[X:%.*]], 0x47E8000000000000 788; CHECK-NEXT: ret float [[T3]] 789; 790 %t1 = fdiv reassoc float %x, 3.0 791 %t3 = fmul reassoc float %t1, 0x3810000000000000 792 ret float %t3 793} 794 795; Negative test: we should not have 2 divisions instead of the 1 we started with. 796 797define float @fdiv_constant_denominator_fmul_denorm_try_harder_extra_use(float %x) { 798; CHECK-LABEL: @fdiv_constant_denominator_fmul_denorm_try_harder_extra_use( 799; CHECK-NEXT: [[T1:%.*]] = fdiv float [[X:%.*]], 3.000000e+00 800; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T1]], 0x3810000000000000 801; CHECK-NEXT: [[R:%.*]] = fadd float [[T1]], [[T3]] 802; CHECK-NEXT: ret float [[R]] 803; 804 %t1 = fdiv float %x, 3.0e+0 805 %t3 = fmul fast float %t1, 0x3810000000000000 806 %r = fadd float %t1, %t3 807 ret float %r 808} 809 810; (X + C1) * C2 --> (X * C2) + C1*C2 811 812define float @fmul_fadd_distribute(float %x) { 813; CHECK-LABEL: @fmul_fadd_distribute( 814; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 815; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[TMP1]], 6.000000e+00 816; CHECK-NEXT: ret float [[T3]] 817; 818 %t2 = fadd reassoc float %x, 2.0 819 %t3 = fmul reassoc float %t2, 3.0 820 ret float %t3 821} 822 823define <2 x float> @fmul_fadd_distribute_vec(<2 x float> %x) { 824; CHECK-LABEL: @fmul_fadd_distribute_vec( 825; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc <2 x float> [[X:%.*]], splat (float 6.000000e+03) 826; CHECK-NEXT: [[T3:%.*]] = fadd reassoc <2 x float> [[TMP1]], splat (float 1.200000e+07) 827; CHECK-NEXT: ret <2 x float> [[T3]] 828; 829 %t1 = fadd reassoc <2 x float> <float 2.0e+3, float 2.0e+3>, %x 830 %t3 = fmul reassoc <2 x float> %t1, <float 6.0e+3, float 6.0e+3> 831 ret <2 x float> %t3 832} 833 834define <vscale x 2 x float> @fmul_fadd_distribute_scalablevec(<vscale x 2 x float> %x) { 835; CHECK-LABEL: @fmul_fadd_distribute_scalablevec( 836; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc <vscale x 2 x float> [[X:%.*]], splat (float 6.000000e+03) 837; CHECK-NEXT: [[T3:%.*]] = fadd reassoc <vscale x 2 x float> [[TMP1]], splat (float 1.200000e+07) 838; CHECK-NEXT: ret <vscale x 2 x float> [[T3]] 839; 840 %t1 = fadd reassoc <vscale x 2 x float> splat (float 2.0e+3), %x 841 %t3 = fmul reassoc <vscale x 2 x float> %t1, splat (float 6.0e+3) 842 843 844 ret <vscale x 2 x float> %t3 845} 846 847; (X - C1) * C2 --> (X * C2) - C1*C2 848 849define float @fmul_fsub_distribute1(float %x) { 850; CHECK-LABEL: @fmul_fsub_distribute1( 851; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 852; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[TMP1]], -6.000000e+00 853; CHECK-NEXT: ret float [[T3]] 854; 855 %t2 = fsub reassoc float %x, 2.0 856 %t3 = fmul reassoc float %t2, 3.0 857 ret float %t3 858} 859 860; (C1 - X) * C2 --> C1*C2 - (X * C2) 861 862define float @fmul_fsub_distribute2(float %x) { 863; CHECK-LABEL: @fmul_fsub_distribute2( 864; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 865; CHECK-NEXT: [[T3:%.*]] = fsub reassoc float 6.000000e+00, [[TMP1]] 866; CHECK-NEXT: ret float [[T3]] 867; 868 %t2 = fsub reassoc float 2.0, %x 869 %t3 = fmul reassoc float %t2, 3.0 870 ret float %t3 871} 872 873; FIXME: This should only need 'reassoc'. 874; ((X*C1) + C2) * C3 => (X * (C1*C3)) + (C2*C3) 875 876define float @fmul_fadd_fmul_distribute(float %x) { 877; CHECK-LABEL: @fmul_fadd_fmul_distribute( 878; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], 3.000000e+01 879; CHECK-NEXT: [[T3:%.*]] = fadd fast float [[TMP1]], 1.000000e+01 880; CHECK-NEXT: ret float [[T3]] 881; 882 %t1 = fmul fast float %x, 6.0 883 %t2 = fadd fast float %t1, 2.0 884 %t3 = fmul fast float %t2, 5.0 885 ret float %t3 886} 887 888define float @fmul_fadd_distribute_extra_use(float %x) { 889; CHECK-LABEL: @fmul_fadd_distribute_extra_use( 890; CHECK-NEXT: [[T1:%.*]] = fmul float [[X:%.*]], 6.000000e+00 891; CHECK-NEXT: [[T2:%.*]] = fadd float [[T1]], 2.000000e+00 892; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T2]], 5.000000e+00 893; CHECK-NEXT: call void @use_f32(float [[T2]]) 894; CHECK-NEXT: ret float [[T3]] 895; 896 %t1 = fmul float %x, 6.0 897 %t2 = fadd float %t1, 2.0 898 %t3 = fmul fast float %t2, 5.0 899 call void @use_f32(float %t2) 900 ret float %t3 901} 902 903; (X/C1 + C2) * C3 => X/(C1/C3) + C2*C3 904; 0x10000000000000 = DBL_MIN 905; TODO: We don't convert the fast fdiv to fmul because that would be multiplication 906; by a denormal, but we could do better when we know that denormals are not a problem. 907 908define double @fmul_fadd_fdiv_distribute2(double %x) { 909; CHECK-LABEL: @fmul_fadd_fdiv_distribute2( 910; CHECK-NEXT: [[TMP1:%.*]] = fdiv reassoc double [[X:%.*]], 0x7FE8000000000000 911; CHECK-NEXT: [[T3:%.*]] = fadd reassoc double [[TMP1]], 0x34000000000000 912; CHECK-NEXT: ret double [[T3]] 913; 914 %t1 = fdiv reassoc double %x, 3.0 915 %t2 = fadd reassoc double %t1, 5.0 916 %t3 = fmul reassoc double %t2, 0x10000000000000 917 ret double %t3 918} 919 920; 5.0e-1 * DBL_MIN yields denormal, so "(f1*3.0 + 5.0e-1) * DBL_MIN" cannot 921; be simplified into f1 * (3.0*DBL_MIN) + (5.0e-1*DBL_MIN) 922 923define double @fmul_fadd_fdiv_distribute3(double %x) { 924; CHECK-LABEL: @fmul_fadd_fdiv_distribute3( 925; CHECK-NEXT: [[TMP1:%.*]] = fdiv reassoc double [[X:%.*]], 0x7FE8000000000000 926; CHECK-NEXT: [[T3:%.*]] = fadd reassoc double [[TMP1]], 0x34000000000000 927; CHECK-NEXT: ret double [[T3]] 928; 929 %t1 = fdiv reassoc double %x, 3.0 930 %t2 = fadd reassoc double %t1, 5.0 931 %t3 = fmul reassoc double %t2, 0x10000000000000 932 ret double %t3 933} 934 935; FIXME: This should only need 'reassoc'. 936; (C2 - (X*C1)) * C3 => (C2*C3) - (X * (C1*C3)) 937 938define float @fmul_fsub_fmul_distribute(float %x) { 939; CHECK-LABEL: @fmul_fsub_fmul_distribute( 940; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], 3.000000e+01 941; CHECK-NEXT: [[T3:%.*]] = fsub fast float 1.000000e+01, [[TMP1]] 942; CHECK-NEXT: ret float [[T3]] 943; 944 %t1 = fmul fast float %x, 6.0 945 %t2 = fsub fast float 2.0, %t1 946 %t3 = fmul fast float %t2, 5.0 947 ret float %t3 948} 949 950define float @fmul_fsub_fmul_distribute_extra_use(float %x) { 951; CHECK-LABEL: @fmul_fsub_fmul_distribute_extra_use( 952; CHECK-NEXT: [[T1:%.*]] = fmul float [[X:%.*]], 6.000000e+00 953; CHECK-NEXT: [[T2:%.*]] = fsub float 2.000000e+00, [[T1]] 954; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T2]], 5.000000e+00 955; CHECK-NEXT: call void @use_f32(float [[T2]]) 956; CHECK-NEXT: ret float [[T3]] 957; 958 %t1 = fmul float %x, 6.0 959 %t2 = fsub float 2.0, %t1 960 %t3 = fmul fast float %t2, 5.0 961 call void @use_f32(float %t2) 962 ret float %t3 963} 964 965; FIXME: This should only need 'reassoc'. 966; ((X*C1) - C2) * C3 => (X * (C1*C3)) - C2*C3 967 968define float @fmul_fsub_fmul_distribute2(float %x) { 969; CHECK-LABEL: @fmul_fsub_fmul_distribute2( 970; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], 3.000000e+01 971; CHECK-NEXT: [[T3:%.*]] = fadd fast float [[TMP1]], -1.000000e+01 972; CHECK-NEXT: ret float [[T3]] 973; 974 %t1 = fmul fast float %x, 6.0 975 %t2 = fsub fast float %t1, 2.0 976 %t3 = fmul fast float %t2, 5.0 977 ret float %t3 978} 979 980define float @fmul_fsub_fmul_distribute2_extra_use(float %x) { 981; CHECK-LABEL: @fmul_fsub_fmul_distribute2_extra_use( 982; CHECK-NEXT: [[T1:%.*]] = fmul float [[X:%.*]], 6.000000e+00 983; CHECK-NEXT: [[T2:%.*]] = fsub float 2.000000e+00, [[T1]] 984; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T2]], 5.000000e+00 985; CHECK-NEXT: call void @use_f32(float [[T2]]) 986; CHECK-NEXT: ret float [[T3]] 987; 988 %t1 = fmul float %x, 6.0 989 %t2 = fsub float 2.0, %t1 990 %t3 = fmul fast float %t2, 5.0 991 call void @use_f32(float %t2) 992 ret float %t3 993} 994 995; "(X*Y) * X => (X*X) * Y" is disabled if "X*Y" has multiple uses 996 997define float @common_factor(float %x, float %y) { 998; CHECK-LABEL: @common_factor( 999; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] 1000; CHECK-NEXT: [[MUL1:%.*]] = fmul fast float [[MUL]], [[X]] 1001; CHECK-NEXT: [[ADD:%.*]] = fadd float [[MUL1]], [[MUL]] 1002; CHECK-NEXT: ret float [[ADD]] 1003; 1004 %mul = fmul float %x, %y 1005 %mul1 = fmul fast float %mul, %x 1006 %add = fadd float %mul1, %mul 1007 ret float %add 1008} 1009 1010define double @fmul_fdiv_factor_squared(double %x, double %y) { 1011; CHECK-LABEL: @fmul_fdiv_factor_squared( 1012; CHECK-NEXT: [[DIV:%.*]] = fdiv fast double [[X:%.*]], [[Y:%.*]] 1013; CHECK-NEXT: [[SQUARED:%.*]] = fmul fast double [[DIV]], [[DIV]] 1014; CHECK-NEXT: ret double [[SQUARED]] 1015; 1016 %div = fdiv fast double %x, %y 1017 %squared = fmul fast double %div, %div 1018 ret double %squared 1019} 1020 1021define double @fmul_fdivs_factor_common_denominator(double %x, double %y, double %z) { 1022; CHECK-LABEL: @fmul_fdivs_factor_common_denominator( 1023; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[Y:%.*]], [[X:%.*]] 1024; CHECK-NEXT: [[TMP2:%.*]] = fmul fast double [[Z:%.*]], [[Z]] 1025; CHECK-NEXT: [[MUL:%.*]] = fdiv fast double [[TMP1]], [[TMP2]] 1026; CHECK-NEXT: ret double [[MUL]] 1027; 1028 %div1 = fdiv fast double %x, %z 1029 %div2 = fdiv fast double %y, %z 1030 %mul = fmul fast double %div1, %div2 1031 ret double %mul 1032} 1033 1034define double @fmul_fdivs_factor(double %x, double %y, double %z, double %w) { 1035; CHECK-LABEL: @fmul_fdivs_factor( 1036; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc double [[Z:%.*]], [[X:%.*]] 1037; CHECK-NEXT: [[TMP2:%.*]] = fdiv reassoc double [[TMP1]], [[W:%.*]] 1038; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc double [[TMP2]], [[Y:%.*]] 1039; CHECK-NEXT: ret double [[MUL]] 1040; 1041 %div1 = fdiv reassoc double %x, %y 1042 %div2 = fdiv reassoc double %z, %w 1043 %mul = fmul reassoc double %div1, %div2 1044 ret double %mul 1045} 1046 1047define double @fmul_fdiv_factor(double %x, double %y, double %z) { 1048; CHECK-LABEL: @fmul_fdiv_factor( 1049; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc double [[X:%.*]], [[Z:%.*]] 1050; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc double [[TMP1]], [[Y:%.*]] 1051; CHECK-NEXT: ret double [[MUL]] 1052; 1053 %div = fdiv reassoc double %x, %y 1054 %mul = fmul reassoc double %div, %z 1055 ret double %mul 1056} 1057 1058define double @fmul_fdiv_factor_constant1(double %x, double %y) { 1059; CHECK-LABEL: @fmul_fdiv_factor_constant1( 1060; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc double [[X:%.*]], 4.200000e+01 1061; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc double [[TMP1]], [[Y:%.*]] 1062; CHECK-NEXT: ret double [[MUL]] 1063; 1064 %div = fdiv reassoc double %x, %y 1065 %mul = fmul reassoc double %div, 42.0 1066 ret double %mul 1067} 1068 1069define <2 x float> @fmul_fdiv_factor_constant2(<2 x float> %x, <2 x float> %y) { 1070; CHECK-LABEL: @fmul_fdiv_factor_constant2( 1071; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc <2 x float> [[X:%.*]], [[Y:%.*]] 1072; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc <2 x float> [[TMP1]], <float 4.200000e+01, float 1.200000e+01> 1073; CHECK-NEXT: ret <2 x float> [[MUL]] 1074; 1075 %div = fdiv reassoc <2 x float> %x, <float 42.0, float 12.0> 1076 %mul = fmul reassoc <2 x float> %div, %y 1077 ret <2 x float> %mul 1078} 1079 1080define float @fmul_fdiv_factor_extra_use(float %x, float %y) { 1081; CHECK-LABEL: @fmul_fdiv_factor_extra_use( 1082; CHECK-NEXT: [[DIV:%.*]] = fdiv float [[X:%.*]], 4.200000e+01 1083; CHECK-NEXT: call void @use_f32(float [[DIV]]) 1084; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc float [[DIV]], [[Y:%.*]] 1085; CHECK-NEXT: ret float [[MUL]] 1086; 1087 %div = fdiv float %x, 42.0 1088 call void @use_f32(float %div) 1089 %mul = fmul reassoc float %div, %y 1090 ret float %mul 1091} 1092 1093define void @fmul_loop_invariant_fdiv(ptr %a, float %x) { 1094; CHECK-LABEL: @fmul_loop_invariant_fdiv( 1095; CHECK-NEXT: entry: 1096; CHECK-NEXT: br label [[FOR_BODY:%.*]] 1097; CHECK: for.cond.cleanup: 1098; CHECK-NEXT: ret void 1099; CHECK: for.body: 1100; CHECK-NEXT: [[I_08:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[FOR_BODY]] ] 1101; CHECK-NEXT: [[IDXPROM:%.*]] = zext nneg i32 [[I_08]] to i64 1102; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds nuw float, ptr [[A:%.*]], i64 [[IDXPROM]] 1103; CHECK-NEXT: [[F:%.*]] = load float, ptr [[ARRAYIDX]], align 4 1104; CHECK-NEXT: [[M:%.*]] = fdiv fast float [[F]], [[X:%.*]] 1105; CHECK-NEXT: store float [[M]], ptr [[ARRAYIDX]], align 4 1106; CHECK-NEXT: [[INC]] = add nuw nsw i32 [[I_08]], 1 1107; CHECK-NEXT: [[CMP_NOT:%.*]] = icmp eq i32 [[INC]], 1024 1108; CHECK-NEXT: br i1 [[CMP_NOT]], label [[FOR_COND_CLEANUP:%.*]], label [[FOR_BODY]] 1109; 1110entry: 1111 %d = fdiv fast float 1.0, %x 1112 br label %for.body 1113 1114for.cond.cleanup: 1115 ret void 1116 1117for.body: 1118 %i.08 = phi i32 [ 0, %entry ], [ %inc, %for.body ] 1119 %idxprom = zext i32 %i.08 to i64 1120 %arrayidx = getelementptr inbounds float, ptr %a, i64 %idxprom 1121 %f = load float, ptr %arrayidx, align 4 1122 %m = fmul fast float %f, %d 1123 store float %m, ptr %arrayidx, align 4 1124 %inc = add nuw nsw i32 %i.08, 1 1125 %cmp.not = icmp eq i32 %inc, 1024 1126 br i1 %cmp.not, label %for.cond.cleanup, label %for.body 1127} 1128 1129; Avoid infinite looping by moving negation out of a constant expression. 1130 1131@g = external global {[2 x ptr]}, align 1 1132 1133define double @fmul_negated_constant_expression(double %x) { 1134; CHECK-LABEL: @fmul_negated_constant_expression( 1135; CHECK-NEXT: [[FSUB:%.*]] = fneg double bitcast (i64 ptrtoint (ptr getelementptr inbounds nuw (i8, ptr @g, i64 16) to i64) to double) 1136; CHECK-NEXT: [[R:%.*]] = fmul double [[X:%.*]], [[FSUB]] 1137; CHECK-NEXT: ret double [[R]] 1138; 1139 %fsub = fsub double -0.000000e+00, bitcast (i64 ptrtoint (ptr getelementptr inbounds ({ [2 x ptr] }, ptr @g, i64 0, i32 0, i64 2) to i64) to double) 1140 %r = fmul double %x, %fsub 1141 ret double %r 1142} 1143 1144define float @negate_if_true(float %x, i1 %cond) { 1145; CHECK-LABEL: @negate_if_true( 1146; CHECK-NEXT: [[TMP1:%.*]] = fneg float [[X:%.*]] 1147; CHECK-NEXT: [[R:%.*]] = select i1 [[COND:%.*]], float [[TMP1]], float [[X]] 1148; CHECK-NEXT: ret float [[R]] 1149; 1150 %sel = select i1 %cond, float -1.0, float 1.0 1151 %r = fmul float %sel, %x 1152 ret float %r 1153} 1154 1155define float @negate_if_false(float %x, i1 %cond) { 1156; CHECK-LABEL: @negate_if_false( 1157; CHECK-NEXT: [[TMP1:%.*]] = fneg arcp float [[X:%.*]] 1158; CHECK-NEXT: [[R:%.*]] = select arcp i1 [[COND:%.*]], float [[X]], float [[TMP1]] 1159; CHECK-NEXT: ret float [[R]] 1160; 1161 %sel = select i1 %cond, float 1.0, float -1.0 1162 %r = fmul arcp float %sel, %x 1163 ret float %r 1164} 1165 1166define <2 x double> @negate_if_true_commute(<2 x double> %px, i1 %cond) { 1167; CHECK-LABEL: @negate_if_true_commute( 1168; CHECK-NEXT: [[X:%.*]] = fdiv <2 x double> splat (double 4.200000e+01), [[PX:%.*]] 1169; CHECK-NEXT: [[TMP1:%.*]] = fneg ninf <2 x double> [[X]] 1170; CHECK-NEXT: [[R:%.*]] = select ninf i1 [[COND:%.*]], <2 x double> [[TMP1]], <2 x double> [[X]] 1171; CHECK-NEXT: ret <2 x double> [[R]] 1172; 1173 %x = fdiv <2 x double> <double 42.0, double 42.0>, %px ; thwart complexity-based canonicalization 1174 %sel = select i1 %cond, <2 x double> <double -1.0, double -1.0>, <2 x double> <double 1.0, double 1.0> 1175 %r = fmul ninf <2 x double> %x, %sel 1176 ret <2 x double> %r 1177} 1178 1179define <2 x double> @negate_if_false_commute(<2 x double> %px, <2 x i1> %cond) { 1180; CHECK-LABEL: @negate_if_false_commute( 1181; CHECK-NEXT: [[X:%.*]] = fdiv <2 x double> <double 4.200000e+01, double 5.100000e+00>, [[PX:%.*]] 1182; CHECK-NEXT: [[TMP1:%.*]] = fneg <2 x double> [[X]] 1183; CHECK-NEXT: [[R:%.*]] = select <2 x i1> [[COND:%.*]], <2 x double> [[X]], <2 x double> [[TMP1]] 1184; CHECK-NEXT: ret <2 x double> [[R]] 1185; 1186 %x = fdiv <2 x double> <double 42.0, double 5.1>, %px ; thwart complexity-based canonicalization 1187 %sel = select <2 x i1> %cond, <2 x double> <double 1.0, double 1.0>, <2 x double> <double -1.0, double -1.0> 1188 %r = fmul <2 x double> %x, %sel 1189 ret <2 x double> %r 1190} 1191 1192; Negative test 1193 1194define float @negate_if_true_extra_use(float %x, i1 %cond) { 1195; CHECK-LABEL: @negate_if_true_extra_use( 1196; CHECK-NEXT: [[SEL:%.*]] = select i1 [[COND:%.*]], float -1.000000e+00, float 1.000000e+00 1197; CHECK-NEXT: call void @use_f32(float [[SEL]]) 1198; CHECK-NEXT: [[R:%.*]] = fmul float [[SEL]], [[X:%.*]] 1199; CHECK-NEXT: ret float [[R]] 1200; 1201 %sel = select i1 %cond, float -1.0, float 1.0 1202 call void @use_f32(float %sel) 1203 %r = fmul float %sel, %x 1204 ret float %r 1205} 1206 1207; Negative test 1208 1209define <2 x double> @negate_if_true_wrong_constant(<2 x double> %px, i1 %cond) { 1210; CHECK-LABEL: @negate_if_true_wrong_constant( 1211; CHECK-NEXT: [[X:%.*]] = fdiv <2 x double> splat (double 4.200000e+01), [[PX:%.*]] 1212; CHECK-NEXT: [[SEL:%.*]] = select i1 [[COND:%.*]], <2 x double> <double -1.000000e+00, double 0.000000e+00>, <2 x double> splat (double 1.000000e+00) 1213; CHECK-NEXT: [[R:%.*]] = fmul <2 x double> [[X]], [[SEL]] 1214; CHECK-NEXT: ret <2 x double> [[R]] 1215; 1216 %x = fdiv <2 x double> <double 42.0, double 42.0>, %px ; thwart complexity-based canonicalization 1217 %sel = select i1 %cond, <2 x double> <double -1.0, double 0.0>, <2 x double> <double 1.0, double 1.0> 1218 %r = fmul <2 x double> %x, %sel 1219 ret <2 x double> %r 1220} 1221 1222; X *fast (C ? 1.0 : 0.0) -> C ? X : 0.0 1223define float @fmul_select(float %x, i1 %c) { 1224; CHECK-LABEL: @fmul_select( 1225; CHECK-NEXT: [[MUL:%.*]] = select fast i1 [[C:%.*]], float [[X:%.*]], float 0.000000e+00 1226; CHECK-NEXT: ret float [[MUL]] 1227; 1228 %sel = select i1 %c, float 1.0, float 0.0 1229 %mul = fmul fast float %sel, %x 1230 ret float %mul 1231} 1232 1233; X *fast (C ? 1.0 : 0.0) -> C ? X : 0.0 1234define <2 x float> @fmul_select_vec(<2 x float> %x, i1 %c) { 1235; CHECK-LABEL: @fmul_select_vec( 1236; CHECK-NEXT: [[MUL:%.*]] = select fast i1 [[C:%.*]], <2 x float> [[X:%.*]], <2 x float> zeroinitializer 1237; CHECK-NEXT: ret <2 x float> [[MUL]] 1238; 1239 %sel = select i1 %c, <2 x float> <float 1.0, float 1.0>, <2 x float> zeroinitializer 1240 %mul = fmul fast <2 x float> %sel, %x 1241 ret <2 x float> %mul 1242} 1243 1244; Without fast math flags we can't optimize X * (C ? 1.0 : 0.0) -> C ? X : 0.0 1245define float @fmul_select_strict(float %x, i1 %c) { 1246; CHECK-LABEL: @fmul_select_strict( 1247; CHECK-NEXT: [[SEL:%.*]] = select i1 [[C:%.*]], float 1.000000e+00, float 0.000000e+00 1248; CHECK-NEXT: [[MUL:%.*]] = fmul float [[SEL]], [[X:%.*]] 1249; CHECK-NEXT: ret float [[MUL]] 1250; 1251 %sel = select i1 %c, float 1.0, float 0.0 1252 %mul = fmul float %sel, %x 1253 ret float %mul 1254} 1255 1256; sqrt(X) *fast (C ? sqrt(X) : 1.0) -> C ? X : sqrt(X) 1257define double @fmul_sqrt_select(double %x, i1 %c) { 1258; CHECK-LABEL: @fmul_sqrt_select( 1259; CHECK-NEXT: [[SQR:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]]) 1260; CHECK-NEXT: [[MUL:%.*]] = select fast i1 [[C:%.*]], double [[X]], double [[SQR]] 1261; CHECK-NEXT: ret double [[MUL]] 1262; 1263 %sqr = call double @llvm.sqrt.f64(double %x) 1264 %sel = select i1 %c, double %sqr, double 1.0 1265 %mul = fmul fast double %sqr, %sel 1266 ret double %mul 1267} 1268 1269; fastmath => z * splat(0) = splat(0), even for scalable vectors 1270define <vscale x 2 x float> @mul_scalable_splat_zero(<vscale x 2 x float> %z) { 1271; CHECK-LABEL: @mul_scalable_splat_zero( 1272; CHECK-NEXT: ret <vscale x 2 x float> zeroinitializer 1273; 1274 %shuf = shufflevector <vscale x 2 x float> insertelement (<vscale x 2 x float> poison, float 0.0, i32 0), <vscale x 2 x float> poison, <vscale x 2 x i32> zeroinitializer 1275 %t3 = fmul fast <vscale x 2 x float> %shuf, %z 1276 ret <vscale x 2 x float> %t3 1277} 1278 1279define half @mul_zero_nnan(half %x) { 1280; CHECK-LABEL: @mul_zero_nnan( 1281; CHECK-NEXT: [[R:%.*]] = call nnan half @llvm.copysign.f16(half 0xH0000, half [[X:%.*]]) 1282; CHECK-NEXT: ret half [[R]] 1283; 1284 %r = fmul nnan half %x, 0.0 1285 ret half %r 1286} 1287 1288; poison propagates through vector elements 1289 1290define <2 x float> @mul_zero_nnan_vec_poison(<2 x float> %x) { 1291; CHECK-LABEL: @mul_zero_nnan_vec_poison( 1292; CHECK-NEXT: [[R:%.*]] = call nnan <2 x float> @llvm.copysign.v2f32(<2 x float> <float 0.000000e+00, float poison>, <2 x float> [[X:%.*]]) 1293; CHECK-NEXT: ret <2 x float> [[R]] 1294; 1295 %r = fmul nnan <2 x float> %x, <float 0.0, float poison> 1296 ret <2 x float> %r 1297} 1298 1299; negative test - must have nnan 1300 1301define half @mul_zero(half %x) { 1302; CHECK-LABEL: @mul_zero( 1303; CHECK-NEXT: [[R:%.*]] = fmul ninf nsz half [[X:%.*]], 0xH0000 1304; CHECK-NEXT: ret half [[R]] 1305; 1306 %r = fmul ninf nsz half %x, 0.0 1307 ret half %r 1308} 1309 1310define half @mul_negzero_nnan(half %x) { 1311; CHECK-LABEL: @mul_negzero_nnan( 1312; CHECK-NEXT: [[TMP1:%.*]] = fneg nnan half [[X:%.*]] 1313; CHECK-NEXT: [[R:%.*]] = call nnan half @llvm.copysign.f16(half 0xH0000, half [[TMP1]]) 1314; CHECK-NEXT: ret half [[R]] 1315; 1316 %r = fmul nnan half %x, -0.0 1317 ret half %r 1318} 1319 1320define float @mul_pos_zero_nnan_ninf(float nofpclass(inf nan) %a) { 1321; CHECK-LABEL: @mul_pos_zero_nnan_ninf( 1322; CHECK-NEXT: entry: 1323; CHECK-NEXT: [[RET:%.*]] = call float @llvm.copysign.f32(float 0.000000e+00, float [[A:%.*]]) 1324; CHECK-NEXT: ret float [[RET]] 1325; 1326entry: 1327 %ret = fmul float %a, 0.000000e+00 1328 ret float %ret 1329} 1330 1331define float @mul_pos_zero_nnan(float nofpclass(nan) %a) { 1332; CHECK-LABEL: @mul_pos_zero_nnan( 1333; CHECK-NEXT: entry: 1334; CHECK-NEXT: [[RET:%.*]] = fmul float [[A:%.*]], 0.000000e+00 1335; CHECK-NEXT: ret float [[RET]] 1336; 1337entry: 1338 %ret = fmul float %a, 0.000000e+00 1339 ret float %ret 1340} 1341 1342define float @mul_pos_zero_nnan_ninf_fmf(float nofpclass(nan) %a) { 1343; CHECK-LABEL: @mul_pos_zero_nnan_ninf_fmf( 1344; CHECK-NEXT: entry: 1345; CHECK-NEXT: [[RET:%.*]] = call ninf float @llvm.copysign.f32(float 0.000000e+00, float [[A:%.*]]) 1346; CHECK-NEXT: ret float [[RET]] 1347; 1348entry: 1349 %ret = fmul ninf float %a, 0.000000e+00 1350 ret float %ret 1351} 1352 1353define float @mul_neg_zero_nnan_ninf(float nofpclass(inf nan) %a) { 1354; CHECK-LABEL: @mul_neg_zero_nnan_ninf( 1355; CHECK-NEXT: entry: 1356; CHECK-NEXT: [[TMP0:%.*]] = fneg float [[A:%.*]] 1357; CHECK-NEXT: [[RET:%.*]] = call float @llvm.copysign.f32(float 0.000000e+00, float [[TMP0]]) 1358; CHECK-NEXT: ret float [[RET]] 1359; 1360entry: 1361 %ret = fmul float %a, -0.000000e+00 1362 ret float %ret 1363} 1364 1365define float @mul_neg_zero_nnan_fmf(float %a) { 1366; CHECK-LABEL: @mul_neg_zero_nnan_fmf( 1367; CHECK-NEXT: entry: 1368; CHECK-NEXT: [[TMP0:%.*]] = fneg nnan float [[A:%.*]] 1369; CHECK-NEXT: [[RET:%.*]] = call nnan float @llvm.copysign.f32(float 0.000000e+00, float [[TMP0]]) 1370; CHECK-NEXT: ret float [[RET]] 1371; 1372entry: 1373 %ret = fmul nnan float %a, -0.000000e+00 1374 ret float %ret 1375} 1376 1377define float @mul_neg_zero_nnan_ninf_fmf(float nofpclass(inf nan) %a) { 1378; CHECK-LABEL: @mul_neg_zero_nnan_ninf_fmf( 1379; CHECK-NEXT: entry: 1380; CHECK-NEXT: [[TMP0:%.*]] = fneg nnan ninf float [[A:%.*]] 1381; CHECK-NEXT: [[RET:%.*]] = call nnan ninf float @llvm.copysign.f32(float 0.000000e+00, float [[TMP0]]) 1382; CHECK-NEXT: ret float [[RET]] 1383; 1384entry: 1385 %ret = fmul nnan ninf float %a, -0.000000e+00 1386 ret float %ret 1387} 1388 1389define <3 x float> @mul_neg_zero_nnan_ninf_vec(<3 x float> nofpclass(inf nan) %a) { 1390; CHECK-LABEL: @mul_neg_zero_nnan_ninf_vec( 1391; CHECK-NEXT: entry: 1392; CHECK-NEXT: [[TMP0:%.*]] = fneg <3 x float> [[A:%.*]] 1393; CHECK-NEXT: [[RET:%.*]] = call <3 x float> @llvm.copysign.v3f32(<3 x float> <float -0.000000e+00, float poison, float poison>, <3 x float> [[TMP0]]) 1394; CHECK-NEXT: ret <3 x float> [[RET]] 1395; 1396entry: 1397 %ret = fmul <3 x float> %a, <float -0.0, float poison, float poison> 1398 ret <3 x float> %ret 1399} 1400 1401define <3 x float> @mul_mixed_zero_nnan_ninf_vec(<3 x float> nofpclass(inf nan) %a) { 1402; CHECK-LABEL: @mul_mixed_zero_nnan_ninf_vec( 1403; CHECK-NEXT: entry: 1404; CHECK-NEXT: [[RET:%.*]] = fmul <3 x float> [[A:%.*]], <float -0.000000e+00, float 0.000000e+00, float poison> 1405; CHECK-NEXT: ret <3 x float> [[RET]] 1406; 1407entry: 1408 %ret = fmul <3 x float> %a, <float -0.0, float 0.0, float poison> 1409 ret <3 x float> %ret 1410} 1411