1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the construction of a VPlan-based Hierarchical CFG 11 /// (H-CFG) for an incoming IR. This construction comprises the following 12 /// components and steps: 13 // 14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that 15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top 16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks 17 /// in the plain CFG. 18 /// NOTE: At this point, there is a direct correspondence between all the 19 /// VPBasicBlocks created for the initial plain CFG and the incoming 20 /// BasicBlocks. However, this might change in the future. 21 /// 22 //===----------------------------------------------------------------------===// 23 24 #include "VPlanHCFGBuilder.h" 25 #include "LoopVectorizationPlanner.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 28 #define DEBUG_TYPE "loop-vectorize" 29 30 using namespace llvm; 31 32 namespace { 33 // Class that is used to build the plain CFG for the incoming IR. 34 class PlainCFGBuilder { 35 private: 36 // The outermost loop of the input loop nest considered for vectorization. 37 Loop *TheLoop; 38 39 // Loop Info analysis. 40 LoopInfo *LI; 41 42 // Vectorization plan that we are working on. 43 VPlan &Plan; 44 45 // Builder of the VPlan instruction-level representation. 46 VPBuilder VPIRBuilder; 47 48 // NOTE: The following maps are intentionally destroyed after the plain CFG 49 // construction because subsequent VPlan-to-VPlan transformation may 50 // invalidate them. 51 // Map incoming BasicBlocks to their newly-created VPBasicBlocks. 52 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; 53 // Map incoming Value definitions to their newly-created VPValues. 54 DenseMap<Value *, VPValue *> IRDef2VPValue; 55 56 // Hold phi node's that need to be fixed once the plain CFG has been built. 57 SmallVector<PHINode *, 8> PhisToFix; 58 59 /// Maps loops in the original IR to their corresponding region. 60 DenseMap<Loop *, VPRegionBlock *> Loop2Region; 61 62 // Utility functions. 63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); 64 void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB); 65 void fixPhiNodes(); 66 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); 67 #ifndef NDEBUG 68 bool isExternalDef(Value *Val); 69 #endif 70 VPValue *getOrCreateVPOperand(Value *IRVal); 71 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); 72 73 public: 74 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) 75 : TheLoop(Lp), LI(LI), Plan(P) {} 76 77 /// Build plain CFG for TheLoop and connects it to Plan's entry. 78 void buildPlainCFG(); 79 }; 80 } // anonymous namespace 81 82 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB 83 // must have no predecessors. 84 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { 85 auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * { 86 auto *SinglePred = BB->getSinglePredecessor(); 87 Loop *LoopForBB = LI->getLoopFor(BB); 88 if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB) 89 return nullptr; 90 // The input IR must be in loop-simplify form, ensuring a single predecessor 91 // for exit blocks. 92 assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() && 93 "SinglePred must be the only loop latch"); 94 return SinglePred; 95 }; 96 if (auto *LatchBB = GetLatchOfExit(BB)) { 97 auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent(); 98 assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) && 99 "successor must already be set for PredRegion; it must have VPBB " 100 "as single successor"); 101 VPBB->setPredecessors({PredRegion}); 102 return; 103 } 104 // Collect VPBB predecessors. 105 SmallVector<VPBlockBase *, 2> VPBBPreds; 106 for (BasicBlock *Pred : predecessors(BB)) 107 VPBBPreds.push_back(getOrCreateVPBB(Pred)); 108 VPBB->setPredecessors(VPBBPreds); 109 } 110 111 static bool isHeaderBB(BasicBlock *BB, Loop *L) { 112 return L && BB == L->getHeader(); 113 } 114 115 void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region, 116 BasicBlock *BB) { 117 // BB is a loop header block. Connect the region to the loop preheader. 118 Loop *LoopOfBB = LI->getLoopFor(BB); 119 Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())}); 120 } 121 122 // Add operands to VPInstructions representing phi nodes from the input IR. 123 void PlainCFGBuilder::fixPhiNodes() { 124 for (auto *Phi : PhisToFix) { 125 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); 126 VPValue *VPVal = IRDef2VPValue[Phi]; 127 assert(isa<VPWidenPHIRecipe>(VPVal) && 128 "Expected WidenPHIRecipe for phi node."); 129 auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal); 130 assert(VPPhi->getNumOperands() == 0 && 131 "Expected VPInstruction with no operands."); 132 133 Loop *L = LI->getLoopFor(Phi->getParent()); 134 if (isHeaderBB(Phi->getParent(), L)) { 135 // For header phis, make sure the incoming value from the loop 136 // predecessor is the first operand of the recipe. 137 assert(Phi->getNumOperands() == 2); 138 BasicBlock *LoopPred = L->getLoopPredecessor(); 139 VPPhi->addIncoming( 140 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)), 141 BB2VPBB[LoopPred]); 142 BasicBlock *LoopLatch = L->getLoopLatch(); 143 VPPhi->addIncoming( 144 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)), 145 BB2VPBB[LoopLatch]); 146 continue; 147 } 148 149 for (unsigned I = 0; I != Phi->getNumOperands(); ++I) 150 VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)), 151 BB2VPBB[Phi->getIncomingBlock(I)]); 152 } 153 } 154 155 static bool isHeaderVPBB(VPBasicBlock *VPBB) { 156 return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB; 157 } 158 159 /// Return true of \p L loop is contained within \p OuterLoop. 160 static bool doesContainLoop(const Loop *L, const Loop *OuterLoop) { 161 if (L->getLoopDepth() < OuterLoop->getLoopDepth()) 162 return false; 163 const Loop *P = L; 164 while (P) { 165 if (P == OuterLoop) 166 return true; 167 P = P->getParentLoop(); 168 } 169 return false; 170 } 171 172 // Create a new empty VPBasicBlock for an incoming BasicBlock in the region 173 // corresponding to the containing loop or retrieve an existing one if it was 174 // already created. If no region exists yet for the loop containing \p BB, a new 175 // one is created. 176 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { 177 if (auto *VPBB = BB2VPBB.lookup(BB)) { 178 // Retrieve existing VPBB. 179 return VPBB; 180 } 181 182 // Create new VPBB. 183 StringRef Name = isHeaderBB(BB, TheLoop) ? "vector.body" : BB->getName(); 184 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n"); 185 VPBasicBlock *VPBB = Plan.createVPBasicBlock(Name); 186 BB2VPBB[BB] = VPBB; 187 188 // Get or create a region for the loop containing BB. 189 Loop *LoopOfBB = LI->getLoopFor(BB); 190 if (!LoopOfBB || !doesContainLoop(LoopOfBB, TheLoop)) 191 return VPBB; 192 193 auto *RegionOfVPBB = Loop2Region.lookup(LoopOfBB); 194 if (!isHeaderBB(BB, LoopOfBB)) { 195 assert(RegionOfVPBB && 196 "Region should have been created by visiting header earlier"); 197 VPBB->setParent(RegionOfVPBB); 198 return VPBB; 199 } 200 201 assert(!RegionOfVPBB && 202 "First visit of a header basic block expects to register its region."); 203 // Handle a header - take care of its Region. 204 if (LoopOfBB == TheLoop) { 205 RegionOfVPBB = Plan.getVectorLoopRegion(); 206 } else { 207 RegionOfVPBB = Plan.createVPRegionBlock(Name.str(), false /*isReplicator*/); 208 RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]); 209 } 210 RegionOfVPBB->setEntry(VPBB); 211 Loop2Region[LoopOfBB] = RegionOfVPBB; 212 return VPBB; 213 } 214 215 #ifndef NDEBUG 216 // Return true if \p Val is considered an external definition. An external 217 // definition is either: 218 // 1. A Value that is not an Instruction. This will be refined in the future. 219 // 2. An Instruction that is outside of the CFG snippet represented in VPlan, 220 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) 221 // outermost loop exits. 222 bool PlainCFGBuilder::isExternalDef(Value *Val) { 223 // All the Values that are not Instructions are considered external 224 // definitions for now. 225 Instruction *Inst = dyn_cast<Instruction>(Val); 226 if (!Inst) 227 return true; 228 229 BasicBlock *InstParent = Inst->getParent(); 230 assert(InstParent && "Expected instruction parent."); 231 232 // Check whether Instruction definition is in loop PH. 233 BasicBlock *PH = TheLoop->getLoopPreheader(); 234 assert(PH && "Expected loop pre-header."); 235 236 if (InstParent == PH) 237 // Instruction definition is in outermost loop PH. 238 return false; 239 240 // Check whether Instruction definition is in the loop exit. 241 BasicBlock *Exit = TheLoop->getUniqueExitBlock(); 242 assert(Exit && "Expected loop with single exit."); 243 if (InstParent == Exit) { 244 // Instruction definition is in outermost loop exit. 245 return false; 246 } 247 248 // Check whether Instruction definition is in loop body. 249 return !TheLoop->contains(Inst); 250 } 251 #endif 252 253 // Create a new VPValue or retrieve an existing one for the Instruction's 254 // operand \p IRVal. This function must only be used to create/retrieve VPValues 255 // for *Instruction's operands* and not to create regular VPInstruction's. For 256 // the latter, please, look at 'createVPInstructionsForVPBB'. 257 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { 258 auto VPValIt = IRDef2VPValue.find(IRVal); 259 if (VPValIt != IRDef2VPValue.end()) 260 // Operand has an associated VPInstruction or VPValue that was previously 261 // created. 262 return VPValIt->second; 263 264 // Operand doesn't have a previously created VPInstruction/VPValue. This 265 // means that operand is: 266 // A) a definition external to VPlan, 267 // B) any other Value without specific representation in VPlan. 268 // For now, we use VPValue to represent A and B and classify both as external 269 // definitions. We may introduce specific VPValue subclasses for them in the 270 // future. 271 assert(isExternalDef(IRVal) && "Expected external definition as operand."); 272 273 // A and B: Create VPValue and add it to the pool of external definitions and 274 // to the Value->VPValue map. 275 VPValue *NewVPVal = Plan.getOrAddLiveIn(IRVal); 276 IRDef2VPValue[IRVal] = NewVPVal; 277 return NewVPVal; 278 } 279 280 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock 281 // counterpart. This function must be invoked in RPO so that the operands of a 282 // VPInstruction in \p BB have been visited before (except for Phi nodes). 283 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, 284 BasicBlock *BB) { 285 VPIRBuilder.setInsertPoint(VPBB); 286 for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) { 287 Instruction *Inst = &InstRef; 288 289 // There shouldn't be any VPValue for Inst at this point. Otherwise, we 290 // visited Inst when we shouldn't, breaking the RPO traversal order. 291 assert(!IRDef2VPValue.count(Inst) && 292 "Instruction shouldn't have been visited."); 293 294 if (auto *Br = dyn_cast<BranchInst>(Inst)) { 295 if (TheLoop->getLoopLatch() == BB || 296 any_of(successors(BB), 297 [this](BasicBlock *Succ) { return !TheLoop->contains(Succ); })) 298 continue; 299 300 // Conditional branch instruction are represented using BranchOnCond 301 // recipes. 302 if (Br->isConditional()) { 303 VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); 304 VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst); 305 } 306 307 // Skip the rest of the Instruction processing for Branch instructions. 308 continue; 309 } 310 311 VPValue *NewVPV; 312 if (auto *Phi = dyn_cast<PHINode>(Inst)) { 313 // Phi node's operands may have not been visited at this point. We create 314 // an empty VPInstruction that we will fix once the whole plain CFG has 315 // been built. 316 NewVPV = new VPWidenPHIRecipe(Phi, nullptr, Phi->getDebugLoc()); 317 VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV)); 318 PhisToFix.push_back(Phi); 319 } else { 320 // Translate LLVM-IR operands into VPValue operands and set them in the 321 // new VPInstruction. 322 SmallVector<VPValue *, 4> VPOperands; 323 for (Value *Op : Inst->operands()) 324 VPOperands.push_back(getOrCreateVPOperand(Op)); 325 326 // Build VPInstruction for any arbitrary Instruction without specific 327 // representation in VPlan. 328 NewVPV = cast<VPInstruction>( 329 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); 330 } 331 332 IRDef2VPValue[Inst] = NewVPV; 333 } 334 } 335 336 // Main interface to build the plain CFG. 337 void PlainCFGBuilder::buildPlainCFG() { 338 // 0. Reuse the top-level region, vector-preheader and exit VPBBs from the 339 // skeleton. These were created directly rather than via getOrCreateVPBB(), 340 // revisit them now to update BB2VPBB. Note that header/entry and 341 // latch/exiting VPBB's of top-level region have yet to be created. 342 VPRegionBlock *TheRegion = Plan.getVectorLoopRegion(); 343 BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); 344 assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && 345 "Unexpected loop preheader"); 346 auto *VectorPreheaderVPBB = 347 cast<VPBasicBlock>(TheRegion->getSinglePredecessor()); 348 // ThePreheaderBB conceptually corresponds to both Plan.getPreheader() (which 349 // wraps the original preheader BB) and Plan.getEntry() (which represents the 350 // new vector preheader); here we're interested in setting BB2VPBB to the 351 // latter. 352 BB2VPBB[ThePreheaderBB] = VectorPreheaderVPBB; 353 Loop2Region[LI->getLoopFor(TheLoop->getHeader())] = TheRegion; 354 BasicBlock *ExitBB = TheLoop->getUniqueExitBlock(); 355 if (!ExitBB) { 356 // If there is no unique exit block, we must exit via the latch. This exit 357 // is mapped to the middle block in the input plan. 358 BasicBlock *Latch = TheLoop->getLoopLatch(); 359 auto *Br = cast<BranchInst>(Latch->getTerminator()); 360 if (TheLoop->contains(Br->getSuccessor(0))) { 361 assert(!TheLoop->contains(Br->getSuccessor(1)) && 362 "latch must exit the loop"); 363 ExitBB = Br->getSuccessor(1); 364 } else { 365 assert(!TheLoop->contains(Br->getSuccessor(0)) && 366 "latch must exit the loop"); 367 ExitBB = Br->getSuccessor(0); 368 } 369 } 370 assert(ExitBB && "Must have a unique exit block or also exit via the latch."); 371 BB2VPBB[ExitBB] = cast<VPBasicBlock>(TheRegion->getSingleSuccessor()); 372 373 // The existing vector region's entry and exiting VPBBs correspond to the loop 374 // header and latch. 375 VPBasicBlock *VectorHeaderVPBB = TheRegion->getEntryBasicBlock(); 376 VPBasicBlock *VectorLatchVPBB = TheRegion->getExitingBasicBlock(); 377 BB2VPBB[TheLoop->getHeader()] = VectorHeaderVPBB; 378 VectorHeaderVPBB->clearSuccessors(); 379 380 // 1. Scan the body of the loop in a topological order to visit each basic 381 // block after having visited its predecessor basic blocks. Create a VPBB for 382 // each BB and link it to its successor and predecessor VPBBs. Note that 383 // predecessors must be set in the same order as they are in the incomming IR. 384 // Otherwise, there might be problems with existing phi nodes and algorithm 385 // based on predecessors traversal. 386 387 // Loop PH needs to be explicitly visited since it's not taken into account by 388 // LoopBlocksDFS. 389 for (auto &I : *ThePreheaderBB) { 390 if (I.getType()->isVoidTy()) 391 continue; 392 IRDef2VPValue[&I] = Plan.getOrAddLiveIn(&I); 393 } 394 395 LoopBlocksRPO RPO(TheLoop); 396 RPO.perform(LI); 397 398 for (BasicBlock *BB : RPO) { 399 // Create or retrieve the VPBasicBlock for this BB and create its 400 // VPInstructions. 401 VPBasicBlock *VPBB = getOrCreateVPBB(BB); 402 VPRegionBlock *Region = VPBB->getParent(); 403 createVPInstructionsForVPBB(VPBB, BB); 404 Loop *LoopForBB = LI->getLoopFor(BB); 405 // Set VPBB predecessors in the same order as they are in the incoming BB. 406 if (!isHeaderBB(BB, LoopForBB)) { 407 setVPBBPredsFromBB(VPBB, BB); 408 } else { 409 // BB is a loop header, set the predecessor for the region, except for the 410 // top region, whose predecessor was set when creating VPlan's skeleton. 411 assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree"); 412 if (TheRegion != Region) 413 setRegionPredsFromBB(Region, BB); 414 } 415 416 if (TheLoop->getLoopLatch() == BB) { 417 VPBB->setOneSuccessor(VectorLatchVPBB); 418 VectorLatchVPBB->clearPredecessors(); 419 VectorLatchVPBB->setPredecessors({VPBB}); 420 continue; 421 } 422 423 // Set VPBB successors. We create empty VPBBs for successors if they don't 424 // exist already. Recipes will be created when the successor is visited 425 // during the RPO traversal. 426 auto *BI = cast<BranchInst>(BB->getTerminator()); 427 unsigned NumSuccs = succ_size(BB); 428 if (NumSuccs == 1) { 429 auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor()); 430 VPBB->setOneSuccessor(isHeaderVPBB(Successor) 431 ? Successor->getParent() 432 : static_cast<VPBlockBase *>(Successor)); 433 continue; 434 } 435 assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && 436 "block must have conditional branch with 2 successors"); 437 // Look up the branch condition to get the corresponding VPValue 438 // representing the condition bit in VPlan (which may be in another VPBB). 439 assert(IRDef2VPValue.contains(BI->getCondition()) && 440 "Missing condition bit in IRDef2VPValue!"); 441 442 BasicBlock *IRSucc0 = BI->getSuccessor(0); 443 BasicBlock *IRSucc1 = BI->getSuccessor(1); 444 VPBasicBlock *Successor0 = getOrCreateVPBB(IRSucc0); 445 VPBasicBlock *Successor1 = getOrCreateVPBB(IRSucc1); 446 if (BB == LoopForBB->getLoopLatch()) { 447 // For a latch we need to set the successor of the region rather than that 448 // of VPBB and it should be set to the exit, i.e., non-header successor, 449 // except for the top region, whose successor was set when creating 450 // VPlan's skeleton. 451 assert(TheRegion != Region && 452 "Latch of the top region should have been handled earlier"); 453 Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1 454 : Successor0); 455 Region->setExiting(VPBB); 456 continue; 457 } 458 459 // Don't connect any blocks outside the current loop except the latch for 460 // now. The latch is handled above. 461 if (LoopForBB) { 462 if (!LoopForBB->contains(IRSucc0)) { 463 VPBB->setOneSuccessor(Successor1); 464 continue; 465 } 466 if (!LoopForBB->contains(IRSucc1)) { 467 VPBB->setOneSuccessor(Successor0); 468 continue; 469 } 470 } 471 472 VPBB->setTwoSuccessors(Successor0, Successor1); 473 } 474 475 // 2. The whole CFG has been built at this point so all the input Values must 476 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding 477 // VPlan operands. 478 fixPhiNodes(); 479 } 480 481 void VPlanHCFGBuilder::buildPlainCFG() { 482 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); 483 PCFGBuilder.buildPlainCFG(); 484 } 485 486 // Public interface to build a H-CFG. 487 void VPlanHCFGBuilder::buildHierarchicalCFG() { 488 // Build Top Region enclosing the plain CFG. 489 buildPlainCFG(); 490 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); 491 492 // Compute plain CFG dom tree for VPLInfo. 493 VPDomTree.recalculate(Plan); 494 LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; 495 VPDomTree.print(dbgs())); 496 } 497