xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision 2b55ef187cb6029eed43d7f4c0a3640c32691b31)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanPatternMatch.h"
23 #include "VPlanTransforms.h"
24 #include "VPlanUtils.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GraphWriter.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopVersioning.h"
46 #include <cassert>
47 #include <string>
48 
49 using namespace llvm;
50 using namespace llvm::VPlanPatternMatch;
51 
52 namespace llvm {
53 extern cl::opt<bool> EnableVPlanNativePath;
54 }
55 
56 extern cl::opt<unsigned> ForceTargetInstructionCost;
57 
58 static cl::opt<bool> PrintVPlansInDotFormat(
59     "vplan-print-in-dot-format", cl::Hidden,
60     cl::desc("Use dot format instead of plain text when dumping VPlans"));
61 
62 #define DEBUG_TYPE "loop-vectorize"
63 
64 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
65 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
66   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
67   VPSlotTracker SlotTracker(
68       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
69   V.print(OS, SlotTracker);
70   return OS;
71 }
72 #endif
73 
74 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
75                                 const ElementCount &VF) const {
76   switch (LaneKind) {
77   case VPLane::Kind::ScalableLast:
78     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
79     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
80                              Builder.getInt32(VF.getKnownMinValue() - Lane));
81   case VPLane::Kind::First:
82     return Builder.getInt32(Lane);
83   }
84   llvm_unreachable("Unknown lane kind");
85 }
86 
87 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
88     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
89   if (Def)
90     Def->addDefinedValue(this);
91 }
92 
93 VPValue::~VPValue() {
94   assert(Users.empty() && "trying to delete a VPValue with remaining users");
95   if (Def)
96     Def->removeDefinedValue(this);
97 }
98 
99 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
100 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
101   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
102     R->print(OS, "", SlotTracker);
103   else
104     printAsOperand(OS, SlotTracker);
105 }
106 
107 void VPValue::dump() const {
108   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
109   VPSlotTracker SlotTracker(
110       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111   print(dbgs(), SlotTracker);
112   dbgs() << "\n";
113 }
114 
115 void VPDef::dump() const {
116   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
117   VPSlotTracker SlotTracker(
118       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
119   print(dbgs(), "", SlotTracker);
120   dbgs() << "\n";
121 }
122 #endif
123 
124 VPRecipeBase *VPValue::getDefiningRecipe() {
125   return cast_or_null<VPRecipeBase>(Def);
126 }
127 
128 const VPRecipeBase *VPValue::getDefiningRecipe() const {
129   return cast_or_null<VPRecipeBase>(Def);
130 }
131 
132 // Get the top-most entry block of \p Start. This is the entry block of the
133 // containing VPlan. This function is templated to support both const and non-const blocks
134 template <typename T> static T *getPlanEntry(T *Start) {
135   T *Next = Start;
136   T *Current = Start;
137   while ((Next = Next->getParent()))
138     Current = Next;
139 
140   SmallSetVector<T *, 8> WorkList;
141   WorkList.insert(Current);
142 
143   for (unsigned i = 0; i < WorkList.size(); i++) {
144     T *Current = WorkList[i];
145     if (Current->getNumPredecessors() == 0)
146       return Current;
147     auto &Predecessors = Current->getPredecessors();
148     WorkList.insert(Predecessors.begin(), Predecessors.end());
149   }
150 
151   llvm_unreachable("VPlan without any entry node without predecessors");
152 }
153 
154 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
155 
156 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
157 
158 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
159 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
160   const VPBlockBase *Block = this;
161   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
162     Block = Region->getEntry();
163   return cast<VPBasicBlock>(Block);
164 }
165 
166 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
167   VPBlockBase *Block = this;
168   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
169     Block = Region->getEntry();
170   return cast<VPBasicBlock>(Block);
171 }
172 
173 void VPBlockBase::setPlan(VPlan *ParentPlan) {
174   assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
175   Plan = ParentPlan;
176 }
177 
178 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
179 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
180   const VPBlockBase *Block = this;
181   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
182     Block = Region->getExiting();
183   return cast<VPBasicBlock>(Block);
184 }
185 
186 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
187   VPBlockBase *Block = this;
188   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
189     Block = Region->getExiting();
190   return cast<VPBasicBlock>(Block);
191 }
192 
193 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
194   if (!Successors.empty() || !Parent)
195     return this;
196   assert(Parent->getExiting() == this &&
197          "Block w/o successors not the exiting block of its parent.");
198   return Parent->getEnclosingBlockWithSuccessors();
199 }
200 
201 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
202   if (!Predecessors.empty() || !Parent)
203     return this;
204   assert(Parent->getEntry() == this &&
205          "Block w/o predecessors not the entry of its parent.");
206   return Parent->getEnclosingBlockWithPredecessors();
207 }
208 
209 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
210   iterator It = begin();
211   while (It != end() && It->isPhi())
212     It++;
213   return It;
214 }
215 
216 VPTransformState::VPTransformState(const TargetTransformInfo *TTI,
217                                    ElementCount VF, unsigned UF, LoopInfo *LI,
218                                    DominatorTree *DT, IRBuilderBase &Builder,
219                                    InnerLoopVectorizer *ILV, VPlan *Plan,
220                                    Loop *CurrentParentLoop, Type *CanonicalIVTy)
221     : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
222       CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
223       TypeAnalysis(CanonicalIVTy) {}
224 
225 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
226   if (Def->isLiveIn())
227     return Def->getLiveInIRValue();
228 
229   if (hasScalarValue(Def, Lane))
230     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
231 
232   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
233       hasScalarValue(Def, VPLane::getFirstLane())) {
234     return Data.VPV2Scalars[Def][0];
235   }
236 
237   assert(hasVectorValue(Def));
238   auto *VecPart = Data.VPV2Vector[Def];
239   if (!VecPart->getType()->isVectorTy()) {
240     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
241     return VecPart;
242   }
243   // TODO: Cache created scalar values.
244   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
245   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
246   // set(Def, Extract, Instance);
247   return Extract;
248 }
249 
250 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
251   if (NeedsScalar) {
252     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
253             !vputils::onlyFirstLaneUsed(Def) ||
254             (hasScalarValue(Def, VPLane(0)) &&
255              Data.VPV2Scalars[Def].size() == 1)) &&
256            "Trying to access a single scalar per part but has multiple scalars "
257            "per part.");
258     return get(Def, VPLane(0));
259   }
260 
261   // If Values have been set for this Def return the one relevant for \p Part.
262   if (hasVectorValue(Def))
263     return Data.VPV2Vector[Def];
264 
265   auto GetBroadcastInstrs = [this, Def](Value *V) {
266     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
267     if (VF.isScalar())
268       return V;
269     // Place the code for broadcasting invariant variables in the new preheader.
270     IRBuilder<>::InsertPointGuard Guard(Builder);
271     if (SafeToHoist) {
272       BasicBlock *LoopVectorPreHeader =
273           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
274       if (LoopVectorPreHeader)
275         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
276     }
277 
278     // Place the code for broadcasting invariant variables in the new preheader.
279     // Broadcast the scalar into all locations in the vector.
280     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
281 
282     return Shuf;
283   };
284 
285   if (!hasScalarValue(Def, {0})) {
286     assert(Def->isLiveIn() && "expected a live-in");
287     Value *IRV = Def->getLiveInIRValue();
288     Value *B = GetBroadcastInstrs(IRV);
289     set(Def, B);
290     return B;
291   }
292 
293   Value *ScalarValue = get(Def, VPLane(0));
294   // If we aren't vectorizing, we can just copy the scalar map values over
295   // to the vector map.
296   if (VF.isScalar()) {
297     set(Def, ScalarValue);
298     return ScalarValue;
299   }
300 
301   bool IsUniform = vputils::isUniformAfterVectorization(Def);
302 
303   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
304   // Check if there is a scalar value for the selected lane.
305   if (!hasScalarValue(Def, LastLane)) {
306     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
307     // VPExpandSCEVRecipes can also be uniform.
308     assert((isa<VPWidenIntOrFpInductionRecipe, VPScalarIVStepsRecipe,
309                 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
310            "unexpected recipe found to be invariant");
311     IsUniform = true;
312     LastLane = 0;
313   }
314 
315   auto *LastInst = cast<Instruction>(get(Def, LastLane));
316   // Set the insert point after the last scalarized instruction or after the
317   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
318   // will directly follow the scalar definitions.
319   auto OldIP = Builder.saveIP();
320   auto NewIP = isa<PHINode>(LastInst)
321                    ? LastInst->getParent()->getFirstNonPHIIt()
322                    : std::next(BasicBlock::iterator(LastInst));
323   Builder.SetInsertPoint(&*NewIP);
324 
325   // However, if we are vectorizing, we need to construct the vector values.
326   // If the value is known to be uniform after vectorization, we can just
327   // broadcast the scalar value corresponding to lane zero. Otherwise, we
328   // construct the vector values using insertelement instructions. Since the
329   // resulting vectors are stored in State, we will only generate the
330   // insertelements once.
331   Value *VectorValue = nullptr;
332   if (IsUniform) {
333     VectorValue = GetBroadcastInstrs(ScalarValue);
334     set(Def, VectorValue);
335   } else {
336     // Initialize packing with insertelements to start from undef.
337     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
338     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
339     set(Def, Undef);
340     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
341       packScalarIntoVectorValue(Def, Lane);
342     VectorValue = get(Def);
343   }
344   Builder.restoreIP(OldIP);
345   return VectorValue;
346 }
347 
348 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
349   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
350   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
351 }
352 
353 void VPTransformState::addNewMetadata(Instruction *To,
354                                       const Instruction *Orig) {
355   // If the loop was versioned with memchecks, add the corresponding no-alias
356   // metadata.
357   if (LVer && isa<LoadInst, StoreInst>(Orig))
358     LVer->annotateInstWithNoAlias(To, Orig);
359 }
360 
361 void VPTransformState::addMetadata(Value *To, Instruction *From) {
362   // No source instruction to transfer metadata from?
363   if (!From)
364     return;
365 
366   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
367     propagateMetadata(ToI, From);
368     addNewMetadata(ToI, From);
369   }
370 }
371 
372 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
373   const DILocation *DIL = DL;
374   // When a FSDiscriminator is enabled, we don't need to add the multiply
375   // factors to the discriminators.
376   if (DIL &&
377       Builder.GetInsertBlock()
378           ->getParent()
379           ->shouldEmitDebugInfoForProfiling() &&
380       !EnableFSDiscriminator) {
381     // FIXME: For scalable vectors, assume vscale=1.
382     unsigned UF = Plan->getUF();
383     auto NewDIL =
384         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
385     if (NewDIL)
386       Builder.SetCurrentDebugLocation(*NewDIL);
387     else
388       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
389                         << DIL->getFilename() << " Line: " << DIL->getLine());
390   } else
391     Builder.SetCurrentDebugLocation(DIL);
392 }
393 
394 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
395                                                  const VPLane &Lane) {
396   Value *ScalarInst = get(Def, Lane);
397   Value *VectorValue = get(Def);
398   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
399                                             Lane.getAsRuntimeExpr(Builder, VF));
400   set(Def, VectorValue);
401 }
402 
403 BasicBlock *
404 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
405   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
406   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
407   BasicBlock *PrevBB = CFG.PrevBB;
408   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
409                                          PrevBB->getParent(), CFG.ExitBB);
410   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
411 
412   return NewBB;
413 }
414 
415 void VPBasicBlock::connectToPredecessors(VPTransformState::CFGState &CFG) {
416   BasicBlock *NewBB = CFG.VPBB2IRBB[this];
417   // Hook up the new basic block to its predecessors.
418   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
419     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
420     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
421     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
422 
423     assert(PredBB && "Predecessor basic-block not found building successor.");
424     auto *PredBBTerminator = PredBB->getTerminator();
425     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
426 
427     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
428     if (isa<UnreachableInst>(PredBBTerminator)) {
429       assert(PredVPSuccessors.size() == 1 &&
430              "Predecessor ending w/o branch must have single successor.");
431       DebugLoc DL = PredBBTerminator->getDebugLoc();
432       PredBBTerminator->eraseFromParent();
433       auto *Br = BranchInst::Create(NewBB, PredBB);
434       Br->setDebugLoc(DL);
435     } else if (TermBr && !TermBr->isConditional()) {
436       TermBr->setSuccessor(0, NewBB);
437     } else {
438       // Set each forward successor here when it is created, excluding
439       // backedges. A backward successor is set when the branch is created.
440       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
441       assert((TermBr && (!TermBr->getSuccessor(idx) ||
442                          (isa<VPIRBasicBlock>(this) &&
443                           TermBr->getSuccessor(idx) == NewBB))) &&
444              "Trying to reset an existing successor block.");
445       TermBr->setSuccessor(idx, NewBB);
446     }
447     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
448   }
449 }
450 
451 void VPIRBasicBlock::execute(VPTransformState *State) {
452   assert(getHierarchicalSuccessors().size() <= 2 &&
453          "VPIRBasicBlock can have at most two successors at the moment!");
454   State->Builder.SetInsertPoint(IRBB->getTerminator());
455   State->CFG.PrevBB = IRBB;
456   State->CFG.VPBB2IRBB[this] = IRBB;
457   executeRecipes(State, IRBB);
458   // Create a branch instruction to terminate IRBB if one was not created yet
459   // and is needed.
460   if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
461     auto *Br = State->Builder.CreateBr(IRBB);
462     Br->setOperand(0, nullptr);
463     IRBB->getTerminator()->eraseFromParent();
464   } else {
465     assert(
466         (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
467         "other blocks must be terminated by a branch");
468   }
469 
470   connectToPredecessors(State->CFG);
471 }
472 
473 VPIRBasicBlock *VPIRBasicBlock::clone() {
474   auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
475   for (VPRecipeBase &R : Recipes)
476     NewBlock->appendRecipe(R.clone());
477   return NewBlock;
478 }
479 
480 void VPBasicBlock::execute(VPTransformState *State) {
481   bool Replica = bool(State->Lane);
482   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
483 
484   auto IsReplicateRegion = [](VPBlockBase *BB) {
485     auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
486     return R && R->isReplicator();
487   };
488 
489   // 1. Create an IR basic block.
490   if ((Replica && this == getParent()->getEntry()) ||
491       IsReplicateRegion(getSingleHierarchicalPredecessor())) {
492     // Reuse the previous basic block if the current VPBB is either
493     //  * the entry to a replicate region, or
494     //  * the exit of a replicate region.
495     State->CFG.VPBB2IRBB[this] = NewBB;
496   } else {
497     NewBB = createEmptyBasicBlock(State->CFG);
498 
499     State->Builder.SetInsertPoint(NewBB);
500     // Temporarily terminate with unreachable until CFG is rewired.
501     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
502     // Register NewBB in its loop. In innermost loops its the same for all
503     // BB's.
504     if (State->CurrentParentLoop)
505       State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI);
506     State->Builder.SetInsertPoint(Terminator);
507 
508     State->CFG.PrevBB = NewBB;
509     State->CFG.VPBB2IRBB[this] = NewBB;
510     connectToPredecessors(State->CFG);
511   }
512 
513   // 2. Fill the IR basic block with IR instructions.
514   executeRecipes(State, NewBB);
515 }
516 
517 VPBasicBlock *VPBasicBlock::clone() {
518   auto *NewBlock = getPlan()->createVPBasicBlock(getName());
519   for (VPRecipeBase &R : *this)
520     NewBlock->appendRecipe(R.clone());
521   return NewBlock;
522 }
523 
524 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
525   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
526                     << " in BB:" << BB->getName() << '\n');
527 
528   State->CFG.PrevVPBB = this;
529 
530   for (VPRecipeBase &Recipe : Recipes)
531     Recipe.execute(*State);
532 
533   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
534 }
535 
536 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
537   assert((SplitAt == end() || SplitAt->getParent() == this) &&
538          "can only split at a position in the same block");
539 
540   SmallVector<VPBlockBase *, 2> Succs(successors());
541   // Create new empty block after the block to split.
542   auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
543   VPBlockUtils::insertBlockAfter(SplitBlock, this);
544 
545   // Finally, move the recipes starting at SplitAt to new block.
546   for (VPRecipeBase &ToMove :
547        make_early_inc_range(make_range(SplitAt, this->end())))
548     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
549 
550   return SplitBlock;
551 }
552 
553 /// Return the enclosing loop region for region \p P. The templated version is
554 /// used to support both const and non-const block arguments.
555 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
556   if (P && P->isReplicator()) {
557     P = P->getParent();
558     // Multiple loop regions can be nested, but replicate regions can only be
559     // nested inside a loop region or must be outside any other region.
560     assert((!P || !cast<VPRegionBlock>(P)->isReplicator()) &&
561            "unexpected nested replicate regions");
562   }
563   return P;
564 }
565 
566 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
567   return getEnclosingLoopRegionForRegion(getParent());
568 }
569 
570 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
571   return getEnclosingLoopRegionForRegion(getParent());
572 }
573 
574 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
575   if (VPBB->empty()) {
576     assert(
577         VPBB->getNumSuccessors() < 2 &&
578         "block with multiple successors doesn't have a recipe as terminator");
579     return false;
580   }
581 
582   const VPRecipeBase *R = &VPBB->back();
583   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
584                       match(R, m_BranchOnCond(m_VPValue())) ||
585                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
586   (void)IsCondBranch;
587 
588   if (VPBB->getNumSuccessors() >= 2 ||
589       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
590     assert(IsCondBranch && "block with multiple successors not terminated by "
591                            "conditional branch recipe");
592 
593     return true;
594   }
595 
596   assert(
597       !IsCondBranch &&
598       "block with 0 or 1 successors terminated by conditional branch recipe");
599   return false;
600 }
601 
602 VPRecipeBase *VPBasicBlock::getTerminator() {
603   if (hasConditionalTerminator(this))
604     return &back();
605   return nullptr;
606 }
607 
608 const VPRecipeBase *VPBasicBlock::getTerminator() const {
609   if (hasConditionalTerminator(this))
610     return &back();
611   return nullptr;
612 }
613 
614 bool VPBasicBlock::isExiting() const {
615   return getParent() && getParent()->getExitingBasicBlock() == this;
616 }
617 
618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
620   if (getSuccessors().empty()) {
621     O << Indent << "No successors\n";
622   } else {
623     O << Indent << "Successor(s): ";
624     ListSeparator LS;
625     for (auto *Succ : getSuccessors())
626       O << LS << Succ->getName();
627     O << '\n';
628   }
629 }
630 
631 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
632                          VPSlotTracker &SlotTracker) const {
633   O << Indent << getName() << ":\n";
634 
635   auto RecipeIndent = Indent + "  ";
636   for (const VPRecipeBase &Recipe : *this) {
637     Recipe.print(O, RecipeIndent, SlotTracker);
638     O << '\n';
639   }
640 
641   printSuccessors(O, Indent);
642 }
643 #endif
644 
645 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
646 
647 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
648 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
649 // Remapping of operands must be done separately. Returns a pair with the new
650 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
651 // region, return nullptr for the exiting block.
652 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
653   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
654   VPBlockBase *Exiting = nullptr;
655   bool InRegion = Entry->getParent();
656   // First, clone blocks reachable from Entry.
657   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
658     VPBlockBase *NewBB = BB->clone();
659     Old2NewVPBlocks[BB] = NewBB;
660     if (InRegion && BB->getNumSuccessors() == 0) {
661       assert(!Exiting && "Multiple exiting blocks?");
662       Exiting = BB;
663     }
664   }
665   assert((!InRegion || Exiting) && "regions must have a single exiting block");
666 
667   // Second, update the predecessors & successors of the cloned blocks.
668   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
670     SmallVector<VPBlockBase *> NewPreds;
671     for (VPBlockBase *Pred : BB->getPredecessors()) {
672       NewPreds.push_back(Old2NewVPBlocks[Pred]);
673     }
674     NewBB->setPredecessors(NewPreds);
675     SmallVector<VPBlockBase *> NewSuccs;
676     for (VPBlockBase *Succ : BB->successors()) {
677       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
678     }
679     NewBB->setSuccessors(NewSuccs);
680   }
681 
682 #if !defined(NDEBUG)
683   // Verify that the order of predecessors and successors matches in the cloned
684   // version.
685   for (const auto &[OldBB, NewBB] :
686        zip(vp_depth_first_shallow(Entry),
687            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
688     for (const auto &[OldPred, NewPred] :
689          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
690       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
691 
692     for (const auto &[OldSucc, NewSucc] :
693          zip(OldBB->successors(), NewBB->successors()))
694       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
695   }
696 #endif
697 
698   return std::make_pair(Old2NewVPBlocks[Entry],
699                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
700 }
701 
702 VPRegionBlock *VPRegionBlock::clone() {
703   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
704   auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
705                                                    getName(), isReplicator());
706   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
707     Block->setParent(NewRegion);
708   return NewRegion;
709 }
710 
711 void VPRegionBlock::execute(VPTransformState *State) {
712   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
713       RPOT(Entry);
714 
715   if (!isReplicator()) {
716     // Create and register the new vector loop.
717     Loop *PrevLoop = State->CurrentParentLoop;
718     State->CurrentParentLoop = State->LI->AllocateLoop();
719     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
720     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
721 
722     // Insert the new loop into the loop nest and register the new basic blocks
723     // before calling any utilities such as SCEV that require valid LoopInfo.
724     if (ParentLoop)
725       ParentLoop->addChildLoop(State->CurrentParentLoop);
726     else
727       State->LI->addTopLevelLoop(State->CurrentParentLoop);
728 
729     // Visit the VPBlocks connected to "this", starting from it.
730     for (VPBlockBase *Block : RPOT) {
731       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
732       Block->execute(State);
733     }
734 
735     State->CurrentParentLoop = PrevLoop;
736     return;
737   }
738 
739   assert(!State->Lane && "Replicating a Region with non-null instance.");
740 
741   // Enter replicating mode.
742   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
743   State->Lane = VPLane(0);
744   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
745        ++Lane) {
746     State->Lane = VPLane(Lane, VPLane::Kind::First);
747     // Visit the VPBlocks connected to \p this, starting from it.
748     for (VPBlockBase *Block : RPOT) {
749       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
750       Block->execute(State);
751     }
752   }
753 
754   // Exit replicating mode.
755   State->Lane.reset();
756 }
757 
758 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
759   InstructionCost Cost = 0;
760   for (VPRecipeBase &R : Recipes)
761     Cost += R.cost(VF, Ctx);
762   return Cost;
763 }
764 
765 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
766   if (!isReplicator()) {
767     InstructionCost Cost = 0;
768     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
769       Cost += Block->cost(VF, Ctx);
770     InstructionCost BackedgeCost =
771         ForceTargetInstructionCost.getNumOccurrences()
772             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
773             : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
774     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
775                       << ": vector loop backedge\n");
776     Cost += BackedgeCost;
777     return Cost;
778   }
779 
780   // Compute the cost of a replicate region. Replicating isn't supported for
781   // scalable vectors, return an invalid cost for them.
782   // TODO: Discard scalable VPlans with replicate recipes earlier after
783   // construction.
784   if (VF.isScalable())
785     return InstructionCost::getInvalid();
786 
787   // First compute the cost of the conditionally executed recipes, followed by
788   // account for the branching cost, except if the mask is a header mask or
789   // uniform condition.
790   using namespace llvm::VPlanPatternMatch;
791   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
792   InstructionCost ThenCost = Then->cost(VF, Ctx);
793 
794   // For the scalar case, we may not always execute the original predicated
795   // block, Thus, scale the block's cost by the probability of executing it.
796   if (VF.isScalar())
797     return ThenCost / getReciprocalPredBlockProb();
798 
799   return ThenCost;
800 }
801 
802 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
803 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
804                           VPSlotTracker &SlotTracker) const {
805   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
806   auto NewIndent = Indent + "  ";
807   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
808     O << '\n';
809     BlockBase->print(O, NewIndent, SlotTracker);
810   }
811   O << Indent << "}\n";
812 
813   printSuccessors(O, Indent);
814 }
815 #endif
816 
817 VPlan::VPlan(Loop *L) {
818   setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
819   ScalarHeader = createVPIRBasicBlock(L->getHeader());
820 }
821 
822 VPlan::~VPlan() {
823   VPValue DummyValue;
824 
825   for (auto *VPB : CreatedBlocks) {
826     if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
827       // Replace all operands of recipes and all VPValues defined in VPBB with
828       // DummyValue so the block can be deleted.
829       for (VPRecipeBase &R : *VPBB) {
830         for (auto *Def : R.definedValues())
831           Def->replaceAllUsesWith(&DummyValue);
832 
833         for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
834           R.setOperand(I, &DummyValue);
835       }
836     }
837     delete VPB;
838   }
839   for (VPValue *VPV : VPLiveInsToFree)
840     delete VPV;
841   if (BackedgeTakenCount)
842     delete BackedgeTakenCount;
843 }
844 
845 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
846                                    PredicatedScalarEvolution &PSE,
847                                    bool RequiresScalarEpilogueCheck,
848                                    bool TailFolded, Loop *TheLoop) {
849   auto Plan = std::make_unique<VPlan>(TheLoop);
850   VPBlockBase *ScalarHeader = Plan->getScalarHeader();
851 
852   // Connect entry only to vector preheader initially. Entry will also be
853   // connected to the scalar preheader later, during skeleton creation when
854   // runtime guards are added as needed. Note that when executing the VPlan for
855   // an epilogue vector loop, the original entry block here will be replaced by
856   // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
857   // generating code for the main vector loop.
858   VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph");
859   VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
860 
861   // Create SCEV and VPValue for the trip count.
862   // We use the symbolic max backedge-taken-count, which works also when
863   // vectorizing loops with uncountable early exits.
864   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
865   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
866          "Invalid loop count");
867   ScalarEvolution &SE = *PSE.getSE();
868   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
869                                                        InductionTy, TheLoop);
870   Plan->TripCount =
871       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
872 
873   // Create VPRegionBlock, with empty header and latch blocks, to be filled
874   // during processing later.
875   VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body");
876   VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch");
877   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
878   auto *TopRegion = Plan->createVPRegionBlock(
879       HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/);
880 
881   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
882   VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block");
883   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
884 
885   VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph");
886   VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
887   if (!RequiresScalarEpilogueCheck) {
888     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
889     return Plan;
890   }
891 
892   // If needed, add a check in the middle block to see if we have completed
893   // all of the iterations in the first vector loop.  Three cases:
894   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
895   //    Thus if tail is to be folded, we know we don't need to run the
896   //    remainder and we can set the condition to true.
897   // 2) If we require a scalar epilogue, there is no conditional branch as
898   //    we unconditionally branch to the scalar preheader.  Do nothing.
899   // 3) Otherwise, construct a runtime check.
900   BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
901   auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock);
902   // The connection order corresponds to the operands of the conditional branch.
903   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
904   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
905 
906   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
907   // Here we use the same DebugLoc as the scalar loop latch terminator instead
908   // of the corresponding compare because they may have ended up with
909   // different line numbers and we want to avoid awkward line stepping while
910   // debugging. Eg. if the compare has got a line number inside the loop.
911   VPBuilder Builder(MiddleVPBB);
912   VPValue *Cmp =
913       TailFolded
914           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
915                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
916           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
917                                &Plan->getVectorTripCount(),
918                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
919   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
920                        ScalarLatchTerm->getDebugLoc());
921   return Plan;
922 }
923 
924 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
925                              VPTransformState &State) {
926   Type *TCTy = TripCountV->getType();
927   // Check if the backedge taken count is needed, and if so build it.
928   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
929     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
930     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
931                                    "trip.count.minus.1");
932     BackedgeTakenCount->setUnderlyingValue(TCMO);
933   }
934 
935   VectorTripCount.setUnderlyingValue(VectorTripCountV);
936 
937   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
938   // FIXME: Model VF * UF computation completely in VPlan.
939   assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) &&
940          "VFxUF expected to always have users");
941   unsigned UF = getUF();
942   if (VF.getNumUsers()) {
943     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
944     VF.setUnderlyingValue(RuntimeVF);
945     VFxUF.setUnderlyingValue(
946         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
947                : RuntimeVF);
948   } else {
949     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
950   }
951 }
952 
953 /// Generate the code inside the preheader and body of the vectorized loop.
954 /// Assumes a single pre-header basic-block was created for this. Introduce
955 /// additional basic-blocks as needed, and fill them all.
956 void VPlan::execute(VPTransformState *State) {
957   // Initialize CFG state.
958   State->CFG.PrevVPBB = nullptr;
959   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
960 
961   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
962   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
963   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
964   State->CFG.DTU.applyUpdates(
965       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
966 
967   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
968                     << ", UF=" << getUF() << '\n');
969   setName("Final VPlan");
970   LLVM_DEBUG(dump());
971 
972   // Disconnect the middle block from its single successor (the scalar loop
973   // header) in both the CFG and DT. The branch will be recreated during VPlan
974   // execution.
975   BasicBlock *MiddleBB = State->CFG.ExitBB;
976   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
977   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
978   BrInst->insertBefore(MiddleBB->getTerminator()->getIterator());
979   MiddleBB->getTerminator()->eraseFromParent();
980   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
981   // Disconnect scalar preheader and scalar header, as the dominator tree edge
982   // will be updated as part of VPlan execution. This allows keeping the DTU
983   // logic generic during VPlan execution.
984   State->CFG.DTU.applyUpdates(
985       {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
986 
987   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
988       Entry);
989   // Generate code for the VPlan, in parts of the vector skeleton, loop body and
990   // successor blocks including the middle, exit and scalar preheader blocks.
991   for (VPBlockBase *Block : RPOT)
992     Block->execute(State);
993 
994   State->CFG.DTU.flush();
995 
996   auto *LoopRegion = getVectorLoopRegion();
997   if (!LoopRegion)
998     return;
999 
1000   VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
1001   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1002 
1003   // Fix the latch value of canonical, reduction and first-order recurrences
1004   // phis in the vector loop.
1005   VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
1006   for (VPRecipeBase &R : Header->phis()) {
1007     // Skip phi-like recipes that generate their backedege values themselves.
1008     if (isa<VPWidenPHIRecipe>(&R))
1009       continue;
1010 
1011     if (isa<VPWidenInductionRecipe>(&R)) {
1012       PHINode *Phi = nullptr;
1013       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1014         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1015       } else {
1016         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1017         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1018                "recipe generating only scalars should have been replaced");
1019         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1020         Phi = cast<PHINode>(GEP->getPointerOperand());
1021       }
1022 
1023       Phi->setIncomingBlock(1, VectorLatchBB);
1024 
1025       // Move the last step to the end of the latch block. This ensures
1026       // consistent placement of all induction updates.
1027       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1028       Inc->moveBefore(std::prev(VectorLatchBB->getTerminator()->getIterator()));
1029 
1030       // Use the steps for the last part as backedge value for the induction.
1031       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1032         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1033       continue;
1034     }
1035 
1036     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1037     bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1038                        (isa<VPReductionPHIRecipe>(PhiR) &&
1039                         cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1040     Value *Phi = State->get(PhiR, NeedsScalar);
1041     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1042     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1043   }
1044 }
1045 
1046 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1047   // For now only return the cost of the vector loop region, ignoring any other
1048   // blocks, like the preheader or middle blocks.
1049   return getVectorLoopRegion()->cost(VF, Ctx);
1050 }
1051 
1052 VPRegionBlock *VPlan::getVectorLoopRegion() {
1053   // TODO: Cache if possible.
1054   for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1055     if (auto *R = dyn_cast<VPRegionBlock>(B))
1056       return R->isReplicator() ? nullptr : R;
1057   return nullptr;
1058 }
1059 
1060 const VPRegionBlock *VPlan::getVectorLoopRegion() const {
1061   for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1062     if (auto *R = dyn_cast<VPRegionBlock>(B))
1063       return R->isReplicator() ? nullptr : R;
1064   return nullptr;
1065 }
1066 
1067 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1068 void VPlan::printLiveIns(raw_ostream &O) const {
1069   VPSlotTracker SlotTracker(this);
1070 
1071   if (VF.getNumUsers() > 0) {
1072     O << "\nLive-in ";
1073     VF.printAsOperand(O, SlotTracker);
1074     O << " = VF";
1075   }
1076 
1077   if (VFxUF.getNumUsers() > 0) {
1078     O << "\nLive-in ";
1079     VFxUF.printAsOperand(O, SlotTracker);
1080     O << " = VF * UF";
1081   }
1082 
1083   if (VectorTripCount.getNumUsers() > 0) {
1084     O << "\nLive-in ";
1085     VectorTripCount.printAsOperand(O, SlotTracker);
1086     O << " = vector-trip-count";
1087   }
1088 
1089   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1090     O << "\nLive-in ";
1091     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1092     O << " = backedge-taken count";
1093   }
1094 
1095   O << "\n";
1096   if (TripCount->isLiveIn())
1097     O << "Live-in ";
1098   TripCount->printAsOperand(O, SlotTracker);
1099   O << " = original trip-count";
1100   O << "\n";
1101 }
1102 
1103 LLVM_DUMP_METHOD
1104 void VPlan::print(raw_ostream &O) const {
1105   VPSlotTracker SlotTracker(this);
1106 
1107   O << "VPlan '" << getName() << "' {";
1108 
1109   printLiveIns(O);
1110 
1111   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<const VPBlockBase *>>
1112       RPOT(getEntry());
1113   for (const VPBlockBase *Block : RPOT) {
1114     O << '\n';
1115     Block->print(O, "", SlotTracker);
1116   }
1117 
1118   O << "}\n";
1119 }
1120 
1121 std::string VPlan::getName() const {
1122   std::string Out;
1123   raw_string_ostream RSO(Out);
1124   RSO << Name << " for ";
1125   if (!VFs.empty()) {
1126     RSO << "VF={" << VFs[0];
1127     for (ElementCount VF : drop_begin(VFs))
1128       RSO << "," << VF;
1129     RSO << "},";
1130   }
1131 
1132   if (UFs.empty()) {
1133     RSO << "UF>=1";
1134   } else {
1135     RSO << "UF={" << UFs[0];
1136     for (unsigned UF : drop_begin(UFs))
1137       RSO << "," << UF;
1138     RSO << "}";
1139   }
1140 
1141   return Out;
1142 }
1143 
1144 LLVM_DUMP_METHOD
1145 void VPlan::printDOT(raw_ostream &O) const {
1146   VPlanPrinter Printer(O, *this);
1147   Printer.dump();
1148 }
1149 
1150 LLVM_DUMP_METHOD
1151 void VPlan::dump() const { print(dbgs()); }
1152 #endif
1153 
1154 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1155                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1156   // Update the operands of all cloned recipes starting at NewEntry. This
1157   // traverses all reachable blocks. This is done in two steps, to handle cycles
1158   // in PHI recipes.
1159   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1160       OldDeepRPOT(Entry);
1161   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1162       NewDeepRPOT(NewEntry);
1163   // First, collect all mappings from old to new VPValues defined by cloned
1164   // recipes.
1165   for (const auto &[OldBB, NewBB] :
1166        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1167            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1168     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1169            "blocks must have the same number of recipes");
1170     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1171       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1172              "recipes must have the same number of operands");
1173       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1174              "recipes must define the same number of operands");
1175       for (const auto &[OldV, NewV] :
1176            zip(OldR.definedValues(), NewR.definedValues()))
1177         Old2NewVPValues[OldV] = NewV;
1178     }
1179   }
1180 
1181   // Update all operands to use cloned VPValues.
1182   for (VPBasicBlock *NewBB :
1183        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1184     for (VPRecipeBase &NewR : *NewBB)
1185       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1186         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1187         NewR.setOperand(I, NewOp);
1188       }
1189   }
1190 }
1191 
1192 VPlan *VPlan::duplicate() {
1193   unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1194   // Clone blocks.
1195   const auto &[NewEntry, __] = cloneFrom(Entry);
1196 
1197   BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1198   VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1199       vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1200         auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1201         return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1202       }));
1203   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1204   auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1205   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1206   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1207     Old2NewVPValues[OldLiveIn] =
1208         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1209   }
1210   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1211   Old2NewVPValues[&VF] = &NewPlan->VF;
1212   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1213   if (BackedgeTakenCount) {
1214     NewPlan->BackedgeTakenCount = new VPValue();
1215     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1216   }
1217   assert(TripCount && "trip count must be set");
1218   if (TripCount->isLiveIn())
1219     Old2NewVPValues[TripCount] =
1220         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1221   // else NewTripCount will be created and inserted into Old2NewVPValues when
1222   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1223 
1224   remapOperands(Entry, NewEntry, Old2NewVPValues);
1225 
1226   // Initialize remaining fields of cloned VPlan.
1227   NewPlan->VFs = VFs;
1228   NewPlan->UFs = UFs;
1229   // TODO: Adjust names.
1230   NewPlan->Name = Name;
1231   assert(Old2NewVPValues.contains(TripCount) &&
1232          "TripCount must have been added to Old2NewVPValues");
1233   NewPlan->TripCount = Old2NewVPValues[TripCount];
1234 
1235   // Transfer all cloned blocks (the second half of all current blocks) from
1236   // current to new VPlan.
1237   unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1238   for (unsigned I :
1239        seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1240     NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1241   CreatedBlocks.truncate(NumBlocksBeforeCloning);
1242 
1243   return NewPlan;
1244 }
1245 
1246 VPIRBasicBlock *VPlan::createEmptyVPIRBasicBlock(BasicBlock *IRBB) {
1247   auto *VPIRBB = new VPIRBasicBlock(IRBB);
1248   CreatedBlocks.push_back(VPIRBB);
1249   return VPIRBB;
1250 }
1251 
1252 VPIRBasicBlock *VPlan::createVPIRBasicBlock(BasicBlock *IRBB) {
1253   auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1254   for (Instruction &I :
1255        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1256     VPIRBB->appendRecipe(new VPIRInstruction(I));
1257   return VPIRBB;
1258 }
1259 
1260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1261 
1262 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1263   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1264          Twine(getOrCreateBID(Block));
1265 }
1266 
1267 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1268   const std::string &Name = Block->getName();
1269   if (!Name.empty())
1270     return Name;
1271   return "VPB" + Twine(getOrCreateBID(Block));
1272 }
1273 
1274 void VPlanPrinter::dump() {
1275   Depth = 1;
1276   bumpIndent(0);
1277   OS << "digraph VPlan {\n";
1278   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1279   if (!Plan.getName().empty())
1280     OS << "\\n" << DOT::EscapeString(Plan.getName());
1281 
1282   {
1283     // Print live-ins.
1284   std::string Str;
1285   raw_string_ostream SS(Str);
1286   Plan.printLiveIns(SS);
1287   SmallVector<StringRef, 0> Lines;
1288   StringRef(Str).rtrim('\n').split(Lines, "\n");
1289   for (auto Line : Lines)
1290     OS << DOT::EscapeString(Line.str()) << "\\n";
1291   }
1292 
1293   OS << "\"]\n";
1294   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1295   OS << "edge [fontname=Courier, fontsize=30]\n";
1296   OS << "compound=true\n";
1297 
1298   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1299     dumpBlock(Block);
1300 
1301   OS << "}\n";
1302 }
1303 
1304 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1305   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1306     dumpBasicBlock(BasicBlock);
1307   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1308     dumpRegion(Region);
1309   else
1310     llvm_unreachable("Unsupported kind of VPBlock.");
1311 }
1312 
1313 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1314                             bool Hidden, const Twine &Label) {
1315   // Due to "dot" we print an edge between two regions as an edge between the
1316   // exiting basic block and the entry basic of the respective regions.
1317   const VPBlockBase *Tail = From->getExitingBasicBlock();
1318   const VPBlockBase *Head = To->getEntryBasicBlock();
1319   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1320   OS << " [ label=\"" << Label << '\"';
1321   if (Tail != From)
1322     OS << " ltail=" << getUID(From);
1323   if (Head != To)
1324     OS << " lhead=" << getUID(To);
1325   if (Hidden)
1326     OS << "; splines=none";
1327   OS << "]\n";
1328 }
1329 
1330 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1331   auto &Successors = Block->getSuccessors();
1332   if (Successors.size() == 1)
1333     drawEdge(Block, Successors.front(), false, "");
1334   else if (Successors.size() == 2) {
1335     drawEdge(Block, Successors.front(), false, "T");
1336     drawEdge(Block, Successors.back(), false, "F");
1337   } else {
1338     unsigned SuccessorNumber = 0;
1339     for (auto *Successor : Successors)
1340       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1341   }
1342 }
1343 
1344 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1345   // Implement dot-formatted dump by performing plain-text dump into the
1346   // temporary storage followed by some post-processing.
1347   OS << Indent << getUID(BasicBlock) << " [label =\n";
1348   bumpIndent(1);
1349   std::string Str;
1350   raw_string_ostream SS(Str);
1351   // Use no indentation as we need to wrap the lines into quotes ourselves.
1352   BasicBlock->print(SS, "", SlotTracker);
1353 
1354   // We need to process each line of the output separately, so split
1355   // single-string plain-text dump.
1356   SmallVector<StringRef, 0> Lines;
1357   StringRef(Str).rtrim('\n').split(Lines, "\n");
1358 
1359   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1360     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1361   };
1362 
1363   // Don't need the "+" after the last line.
1364   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1365     EmitLine(Line, " +\n");
1366   EmitLine(Lines.back(), "\n");
1367 
1368   bumpIndent(-1);
1369   OS << Indent << "]\n";
1370 
1371   dumpEdges(BasicBlock);
1372 }
1373 
1374 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1375   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1376   bumpIndent(1);
1377   OS << Indent << "fontname=Courier\n"
1378      << Indent << "label=\""
1379      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1380      << DOT::EscapeString(Region->getName()) << "\"\n";
1381   // Dump the blocks of the region.
1382   assert(Region->getEntry() && "Region contains no inner blocks.");
1383   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1384     dumpBlock(Block);
1385   bumpIndent(-1);
1386   OS << Indent << "}\n";
1387   dumpEdges(Region);
1388 }
1389 
1390 void VPlanIngredient::print(raw_ostream &O) const {
1391   if (auto *Inst = dyn_cast<Instruction>(V)) {
1392     if (!Inst->getType()->isVoidTy()) {
1393       Inst->printAsOperand(O, false);
1394       O << " = ";
1395     }
1396     O << Inst->getOpcodeName() << " ";
1397     unsigned E = Inst->getNumOperands();
1398     if (E > 0) {
1399       Inst->getOperand(0)->printAsOperand(O, false);
1400       for (unsigned I = 1; I < E; ++I)
1401         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1402     }
1403   } else // !Inst
1404     V->printAsOperand(O, false);
1405 }
1406 
1407 #endif
1408 
1409 /// Returns true if there is a vector loop region and \p VPV is defined in a
1410 /// loop region.
1411 static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1412   const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1413   return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1414                   DefR->getParent()->getEnclosingLoopRegion());
1415 }
1416 
1417 bool VPValue::isDefinedOutsideLoopRegions() const {
1418   return !isDefinedInsideLoopRegions(this);
1419 }
1420 void VPValue::replaceAllUsesWith(VPValue *New) {
1421   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1422 }
1423 
1424 void VPValue::replaceUsesWithIf(
1425     VPValue *New,
1426     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1427   // Note that this early exit is required for correctness; the implementation
1428   // below relies on the number of users for this VPValue to decrease, which
1429   // isn't the case if this == New.
1430   if (this == New)
1431     return;
1432 
1433   for (unsigned J = 0; J < getNumUsers();) {
1434     VPUser *User = Users[J];
1435     bool RemovedUser = false;
1436     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1437       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1438         continue;
1439 
1440       RemovedUser = true;
1441       User->setOperand(I, New);
1442     }
1443     // If a user got removed after updating the current user, the next user to
1444     // update will be moved to the current position, so we only need to
1445     // increment the index if the number of users did not change.
1446     if (!RemovedUser)
1447       J++;
1448   }
1449 }
1450 
1451 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1452 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1453   OS << Tracker.getOrCreateName(this);
1454 }
1455 
1456 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1457   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1458     Op->printAsOperand(O, SlotTracker);
1459   });
1460 }
1461 #endif
1462 
1463 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1464                                           Old2NewTy &Old2New,
1465                                           InterleavedAccessInfo &IAI) {
1466   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1467       RPOT(Region->getEntry());
1468   for (VPBlockBase *Base : RPOT) {
1469     visitBlock(Base, Old2New, IAI);
1470   }
1471 }
1472 
1473 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1474                                          InterleavedAccessInfo &IAI) {
1475   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1476     for (VPRecipeBase &VPI : *VPBB) {
1477       if (isa<VPWidenPHIRecipe>(&VPI))
1478         continue;
1479       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1480       auto *VPInst = cast<VPInstruction>(&VPI);
1481 
1482       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1483       if (!Inst)
1484         continue;
1485       auto *IG = IAI.getInterleaveGroup(Inst);
1486       if (!IG)
1487         continue;
1488 
1489       auto NewIGIter = Old2New.find(IG);
1490       if (NewIGIter == Old2New.end())
1491         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1492             IG->getFactor(), IG->isReverse(), IG->getAlign());
1493 
1494       if (Inst == IG->getInsertPos())
1495         Old2New[IG]->setInsertPos(VPInst);
1496 
1497       InterleaveGroupMap[VPInst] = Old2New[IG];
1498       InterleaveGroupMap[VPInst]->insertMember(
1499           VPInst, IG->getIndex(Inst),
1500           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1501                                 : IG->getFactor()));
1502     }
1503   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1504     visitRegion(Region, Old2New, IAI);
1505   else
1506     llvm_unreachable("Unsupported kind of VPBlock.");
1507 }
1508 
1509 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1510                                                  InterleavedAccessInfo &IAI) {
1511   Old2NewTy Old2New;
1512   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1513 }
1514 
1515 void VPSlotTracker::assignName(const VPValue *V) {
1516   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1517   auto *UV = V->getUnderlyingValue();
1518   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1519   if (!UV && !(VPI && !VPI->getName().empty())) {
1520     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1521     NextSlot++;
1522     return;
1523   }
1524 
1525   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1526   // appending ".Number" to the name if there are multiple uses.
1527   std::string Name;
1528   if (UV) {
1529     raw_string_ostream S(Name);
1530     UV->printAsOperand(S, false);
1531   } else
1532     Name = VPI->getName();
1533 
1534   assert(!Name.empty() && "Name cannot be empty.");
1535   StringRef Prefix = UV ? "ir<" : "vp<%";
1536   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1537 
1538   // First assign the base name for V.
1539   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1540   // Integer or FP constants with different types will result in he same string
1541   // due to stripping types.
1542   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1543     return;
1544 
1545   // If it is already used by C > 0 other VPValues, increase the version counter
1546   // C and use it for V.
1547   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1548   if (!UseInserted) {
1549     C->second++;
1550     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1551   }
1552 }
1553 
1554 void VPSlotTracker::assignNames(const VPlan &Plan) {
1555   if (Plan.VF.getNumUsers() > 0)
1556     assignName(&Plan.VF);
1557   if (Plan.VFxUF.getNumUsers() > 0)
1558     assignName(&Plan.VFxUF);
1559   assignName(&Plan.VectorTripCount);
1560   if (Plan.BackedgeTakenCount)
1561     assignName(Plan.BackedgeTakenCount);
1562   for (VPValue *LI : Plan.VPLiveInsToFree)
1563     assignName(LI);
1564 
1565   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1566       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1567   for (const VPBasicBlock *VPBB :
1568        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1569     assignNames(VPBB);
1570 }
1571 
1572 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1573   for (const VPRecipeBase &Recipe : *VPBB)
1574     for (VPValue *Def : Recipe.definedValues())
1575       assignName(Def);
1576 }
1577 
1578 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1579   std::string Name = VPValue2Name.lookup(V);
1580   if (!Name.empty())
1581     return Name;
1582 
1583   // If no name was assigned, no VPlan was provided when creating the slot
1584   // tracker or it is not reachable from the provided VPlan. This can happen,
1585   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1586   // in a debugger.
1587   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1588   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1589   // here.
1590   const VPRecipeBase *DefR = V->getDefiningRecipe();
1591   (void)DefR;
1592   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1593          "VPValue defined by a recipe in a VPlan?");
1594 
1595   // Use the underlying value's name, if there is one.
1596   if (auto *UV = V->getUnderlyingValue()) {
1597     std::string Name;
1598     raw_string_ostream S(Name);
1599     UV->printAsOperand(S, false);
1600     return (Twine("ir<") + Name + ">").str();
1601   }
1602 
1603   return "<badref>";
1604 }
1605 
1606 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1607     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1608   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1609   bool PredicateAtRangeStart = Predicate(Range.Start);
1610 
1611   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1612     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1613       Range.End = TmpVF;
1614       break;
1615     }
1616 
1617   return PredicateAtRangeStart;
1618 }
1619 
1620 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1621 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1622 /// of VF's starting at a given VF and extending it as much as possible. Each
1623 /// vectorization decision can potentially shorten this sub-range during
1624 /// buildVPlan().
1625 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1626                                            ElementCount MaxVF) {
1627   auto MaxVFTimes2 = MaxVF * 2;
1628   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1629     VFRange SubRange = {VF, MaxVFTimes2};
1630     auto Plan = buildVPlan(SubRange);
1631     VPlanTransforms::optimize(*Plan);
1632     // Update the name of the latch of the top-level vector loop region region
1633     // after optimizations which includes block folding.
1634     Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch");
1635     VPlans.push_back(std::move(Plan));
1636     VF = SubRange.End;
1637   }
1638 }
1639 
1640 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1641   assert(count_if(VPlans,
1642                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1643              1 &&
1644          "Multiple VPlans for VF.");
1645 
1646   for (const VPlanPtr &Plan : VPlans) {
1647     if (Plan->hasVF(VF))
1648       return *Plan.get();
1649   }
1650   llvm_unreachable("No plan found!");
1651 }
1652 
1653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1654 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1655   if (VPlans.empty()) {
1656     O << "LV: No VPlans built.\n";
1657     return;
1658   }
1659   for (const auto &Plan : VPlans)
1660     if (PrintVPlansInDotFormat)
1661       Plan->printDOT(O);
1662     else
1663       Plan->print(O);
1664 }
1665 #endif
1666 
1667 TargetTransformInfo::OperandValueInfo
1668 VPCostContext::getOperandInfo(VPValue *V) const {
1669   if (!V->isLiveIn())
1670     return {};
1671 
1672   return TTI::getOperandInfo(V->getLiveInIRValue());
1673 }
1674