xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp (revision 4a2ebd6661cf1c929c280e863e4299164800413e)
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Transforms/Utils/SizeOpts.h"
29 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
30 
31 using namespace llvm;
32 using namespace PatternMatch;
33 
34 #define LV_NAME "loop-vectorize"
35 #define DEBUG_TYPE LV_NAME
36 
37 static cl::opt<bool>
38     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
39                        cl::desc("Enable if-conversion during vectorization."));
40 
41 static cl::opt<bool>
42 AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
43                        cl::desc("Enable recognition of non-constant strided "
44                                 "pointer induction variables."));
45 
46 namespace llvm {
47 cl::opt<bool>
48     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
49                          cl::desc("Allow enabling loop hints to reorder "
50                                   "FP operations during vectorization."));
51 } // namespace llvm
52 
53 // TODO: Move size-based thresholds out of legality checking, make cost based
54 // decisions instead of hard thresholds.
55 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
56     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
57     cl::desc("The maximum number of SCEV checks allowed."));
58 
59 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
60     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
61     cl::desc("The maximum number of SCEV checks allowed with a "
62              "vectorize(enable) pragma"));
63 
64 static cl::opt<LoopVectorizeHints::ScalableForceKind>
65     ForceScalableVectorization(
66         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
67         cl::Hidden,
68         cl::desc("Control whether the compiler can use scalable vectors to "
69                  "vectorize a loop"),
70         cl::values(
71             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
72                        "Scalable vectorization is disabled."),
73             clEnumValN(
74                 LoopVectorizeHints::SK_PreferScalable, "preferred",
75                 "Scalable vectorization is available and favored when the "
76                 "cost is inconclusive."),
77             clEnumValN(
78                 LoopVectorizeHints::SK_PreferScalable, "on",
79                 "Scalable vectorization is available and favored when the "
80                 "cost is inconclusive.")));
81 
82 static cl::opt<bool> EnableHistogramVectorization(
83     "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
84     cl::desc("Enables autovectorization of some loops containing histograms"));
85 
86 /// Maximum vectorization interleave count.
87 static const unsigned MaxInterleaveFactor = 16;
88 
89 namespace llvm {
90 
91 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
92   switch (Kind) {
93   case HK_WIDTH:
94     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
95   case HK_INTERLEAVE:
96     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
97   case HK_FORCE:
98     return (Val <= 1);
99   case HK_ISVECTORIZED:
100   case HK_PREDICATE:
101   case HK_SCALABLE:
102     return (Val == 0 || Val == 1);
103   }
104   return false;
105 }
106 
107 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
108                                        bool InterleaveOnlyWhenForced,
109                                        OptimizationRemarkEmitter &ORE,
110                                        const TargetTransformInfo *TTI)
111     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
112       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
113       Force("vectorize.enable", FK_Undefined, HK_FORCE),
114       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
115       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
116       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
117       TheLoop(L), ORE(ORE) {
118   // Populate values with existing loop metadata.
119   getHintsFromMetadata();
120 
121   // force-vector-interleave overrides DisableInterleaving.
122   if (VectorizerParams::isInterleaveForced())
123     Interleave.Value = VectorizerParams::VectorizationInterleave;
124 
125   // If the metadata doesn't explicitly specify whether to enable scalable
126   // vectorization, then decide based on the following criteria (increasing
127   // level of priority):
128   //  - Target default
129   //  - Metadata width
130   //  - Force option (always overrides)
131   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
132     if (TTI)
133       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
134                                                           : SK_FixedWidthOnly;
135 
136     if (Width.Value)
137       // If the width is set, but the metadata says nothing about the scalable
138       // property, then assume it concerns only a fixed-width UserVF.
139       // If width is not set, the flag takes precedence.
140       Scalable.Value = SK_FixedWidthOnly;
141   }
142 
143   // If the flag is set to force any use of scalable vectors, override the loop
144   // hints.
145   if (ForceScalableVectorization.getValue() !=
146       LoopVectorizeHints::SK_Unspecified)
147     Scalable.Value = ForceScalableVectorization.getValue();
148 
149   // Scalable vectorization is disabled if no preference is specified.
150   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
151     Scalable.Value = SK_FixedWidthOnly;
152 
153   if (IsVectorized.Value != 1)
154     // If the vectorization width and interleaving count are both 1 then
155     // consider the loop to have been already vectorized because there's
156     // nothing more that we can do.
157     IsVectorized.Value =
158         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
159   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
160              << "LV: Interleaving disabled by the pass manager\n");
161 }
162 
163 void LoopVectorizeHints::setAlreadyVectorized() {
164   LLVMContext &Context = TheLoop->getHeader()->getContext();
165 
166   MDNode *IsVectorizedMD = MDNode::get(
167       Context,
168       {MDString::get(Context, "llvm.loop.isvectorized"),
169        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
170   MDNode *LoopID = TheLoop->getLoopID();
171   MDNode *NewLoopID =
172       makePostTransformationMetadata(Context, LoopID,
173                                      {Twine(Prefix(), "vectorize.").str(),
174                                       Twine(Prefix(), "interleave.").str()},
175                                      {IsVectorizedMD});
176   TheLoop->setLoopID(NewLoopID);
177 
178   // Update internal cache.
179   IsVectorized.Value = 1;
180 }
181 
182 bool LoopVectorizeHints::allowVectorization(
183     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
184   if (getForce() == LoopVectorizeHints::FK_Disabled) {
185     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
186     emitRemarkWithHints();
187     return false;
188   }
189 
190   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
191     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
192     emitRemarkWithHints();
193     return false;
194   }
195 
196   if (getIsVectorized() == 1) {
197     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
198     // FIXME: Add interleave.disable metadata. This will allow
199     // vectorize.disable to be used without disabling the pass and errors
200     // to differentiate between disabled vectorization and a width of 1.
201     ORE.emit([&]() {
202       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
203                                         "AllDisabled", L->getStartLoc(),
204                                         L->getHeader())
205              << "loop not vectorized: vectorization and interleaving are "
206                 "explicitly disabled, or the loop has already been "
207                 "vectorized";
208     });
209     return false;
210   }
211 
212   return true;
213 }
214 
215 void LoopVectorizeHints::emitRemarkWithHints() const {
216   using namespace ore;
217 
218   ORE.emit([&]() {
219     if (Force.Value == LoopVectorizeHints::FK_Disabled)
220       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
221                                       TheLoop->getStartLoc(),
222                                       TheLoop->getHeader())
223              << "loop not vectorized: vectorization is explicitly disabled";
224 
225     OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
226                                TheLoop->getHeader());
227     R << "loop not vectorized";
228     if (Force.Value == LoopVectorizeHints::FK_Enabled) {
229       R << " (Force=" << NV("Force", true);
230       if (Width.Value != 0)
231         R << ", Vector Width=" << NV("VectorWidth", getWidth());
232       if (getInterleave() != 0)
233         R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
234       R << ")";
235     }
236     return R;
237   });
238 }
239 
240 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
241   if (getWidth() == ElementCount::getFixed(1))
242     return LV_NAME;
243   if (getForce() == LoopVectorizeHints::FK_Disabled)
244     return LV_NAME;
245   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
246     return LV_NAME;
247   return OptimizationRemarkAnalysis::AlwaysPrint;
248 }
249 
250 bool LoopVectorizeHints::allowReordering() const {
251   // Allow the vectorizer to change the order of operations if enabling
252   // loop hints are provided
253   ElementCount EC = getWidth();
254   return HintsAllowReordering &&
255          (getForce() == LoopVectorizeHints::FK_Enabled ||
256           EC.getKnownMinValue() > 1);
257 }
258 
259 void LoopVectorizeHints::getHintsFromMetadata() {
260   MDNode *LoopID = TheLoop->getLoopID();
261   if (!LoopID)
262     return;
263 
264   // First operand should refer to the loop id itself.
265   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
266   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
267 
268   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
269     const MDString *S = nullptr;
270     SmallVector<Metadata *, 4> Args;
271 
272     // The expected hint is either a MDString or a MDNode with the first
273     // operand a MDString.
274     if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
275       if (!MD || MD->getNumOperands() == 0)
276         continue;
277       S = dyn_cast<MDString>(MD->getOperand(0));
278       for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
279         Args.push_back(MD->getOperand(Idx));
280     } else {
281       S = dyn_cast<MDString>(MDO);
282       assert(Args.size() == 0 && "too many arguments for MDString");
283     }
284 
285     if (!S)
286       continue;
287 
288     // Check if the hint starts with the loop metadata prefix.
289     StringRef Name = S->getString();
290     if (Args.size() == 1)
291       setHint(Name, Args[0]);
292   }
293 }
294 
295 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
296   if (!Name.starts_with(Prefix()))
297     return;
298   Name = Name.substr(Prefix().size(), StringRef::npos);
299 
300   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
301   if (!C)
302     return;
303   unsigned Val = C->getZExtValue();
304 
305   Hint *Hints[] = {&Width,        &Interleave, &Force,
306                    &IsVectorized, &Predicate,  &Scalable};
307   for (auto *H : Hints) {
308     if (Name == H->Name) {
309       if (H->validate(Val))
310         H->Value = Val;
311       else
312         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
313       break;
314     }
315   }
316 }
317 
318 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
319 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
320 // executing the inner loop will execute the same iterations). This check is
321 // very constrained for now but it will be relaxed in the future. \p Lp is
322 // considered uniform if it meets all the following conditions:
323 //   1) it has a canonical IV (starting from 0 and with stride 1),
324 //   2) its latch terminator is a conditional branch and,
325 //   3) its latch condition is a compare instruction whose operands are the
326 //      canonical IV and an OuterLp invariant.
327 // This check doesn't take into account the uniformity of other conditions not
328 // related to the loop latch because they don't affect the loop uniformity.
329 //
330 // NOTE: We decided to keep all these checks and its associated documentation
331 // together so that we can easily have a picture of the current supported loop
332 // nests. However, some of the current checks don't depend on \p OuterLp and
333 // would be redundantly executed for each \p Lp if we invoked this function for
334 // different candidate outer loops. This is not the case for now because we
335 // don't currently have the infrastructure to evaluate multiple candidate outer
336 // loops and \p OuterLp will be a fixed parameter while we only support explicit
337 // outer loop vectorization. It's also very likely that these checks go away
338 // before introducing the aforementioned infrastructure. However, if this is not
339 // the case, we should move the \p OuterLp independent checks to a separate
340 // function that is only executed once for each \p Lp.
341 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
342   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
343 
344   // If Lp is the outer loop, it's uniform by definition.
345   if (Lp == OuterLp)
346     return true;
347   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
348 
349   // 1.
350   PHINode *IV = Lp->getCanonicalInductionVariable();
351   if (!IV) {
352     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
353     return false;
354   }
355 
356   // 2.
357   BasicBlock *Latch = Lp->getLoopLatch();
358   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
359   if (!LatchBr || LatchBr->isUnconditional()) {
360     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
361     return false;
362   }
363 
364   // 3.
365   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
366   if (!LatchCmp) {
367     LLVM_DEBUG(
368         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
369     return false;
370   }
371 
372   Value *CondOp0 = LatchCmp->getOperand(0);
373   Value *CondOp1 = LatchCmp->getOperand(1);
374   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
375   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
376       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
377     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
378     return false;
379   }
380 
381   return true;
382 }
383 
384 // Return true if \p Lp and all its nested loops are uniform with regard to \p
385 // OuterLp.
386 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
387   if (!isUniformLoop(Lp, OuterLp))
388     return false;
389 
390   // Check if nested loops are uniform.
391   for (Loop *SubLp : *Lp)
392     if (!isUniformLoopNest(SubLp, OuterLp))
393       return false;
394 
395   return true;
396 }
397 
398 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
399   if (Ty->isPointerTy())
400     return DL.getIntPtrType(Ty);
401 
402   // It is possible that char's or short's overflow when we ask for the loop's
403   // trip count, work around this by changing the type size.
404   if (Ty->getScalarSizeInBits() < 32)
405     return Type::getInt32Ty(Ty->getContext());
406 
407   return Ty;
408 }
409 
410 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
411   Ty0 = convertPointerToIntegerType(DL, Ty0);
412   Ty1 = convertPointerToIntegerType(DL, Ty1);
413   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
414     return Ty0;
415   return Ty1;
416 }
417 
418 /// Check that the instruction has outside loop users and is not an
419 /// identified reduction variable.
420 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
421                                SmallPtrSetImpl<Value *> &AllowedExit) {
422   // Reductions, Inductions and non-header phis are allowed to have exit users. All
423   // other instructions must not have external users.
424   if (!AllowedExit.count(Inst))
425     // Check that all of the users of the loop are inside the BB.
426     for (User *U : Inst->users()) {
427       Instruction *UI = cast<Instruction>(U);
428       // This user may be a reduction exit value.
429       if (!TheLoop->contains(UI)) {
430         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
431         return true;
432       }
433     }
434   return false;
435 }
436 
437 /// Returns true if A and B have same pointer operands or same SCEVs addresses
438 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
439                                StoreInst *B) {
440   // Compare store
441   if (A == B)
442     return true;
443 
444   // Otherwise Compare pointers
445   Value *APtr = A->getPointerOperand();
446   Value *BPtr = B->getPointerOperand();
447   if (APtr == BPtr)
448     return true;
449 
450   // Otherwise compare address SCEVs
451   return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
452 }
453 
454 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
455                                                 Value *Ptr) const {
456   // FIXME: Currently, the set of symbolic strides is sometimes queried before
457   // it's collected.  This happens from canVectorizeWithIfConvert, when the
458   // pointer is checked to reference consecutive elements suitable for a
459   // masked access.
460   const auto &Strides =
461     LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
462 
463   bool CanAddPredicate = !llvm::shouldOptimizeForSize(
464       TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
466                             CanAddPredicate, false).value_or(0);
467   if (Stride == 1 || Stride == -1)
468     return Stride;
469   return 0;
470 }
471 
472 bool LoopVectorizationLegality::isInvariant(Value *V) const {
473   return LAI->isInvariant(V);
474 }
475 
476 namespace {
477 /// A rewriter to build the SCEVs for each of the VF lanes in the expected
478 /// vectorized loop, which can then be compared to detect their uniformity. This
479 /// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
480 /// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
481 /// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
482 /// uniformity.
483 class SCEVAddRecForUniformityRewriter
484     : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
485   /// Multiplier to be applied to the step of AddRecs in TheLoop.
486   unsigned StepMultiplier;
487 
488   /// Offset to be added to the AddRecs in TheLoop.
489   unsigned Offset;
490 
491   /// Loop for which to rewrite AddRecsFor.
492   Loop *TheLoop;
493 
494   /// Is any sub-expressions not analyzable w.r.t. uniformity?
495   bool CannotAnalyze = false;
496 
497   bool canAnalyze() const { return !CannotAnalyze; }
498 
499 public:
500   SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
501                                   unsigned Offset, Loop *TheLoop)
502       : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
503         TheLoop(TheLoop) {}
504 
505   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
506     assert(Expr->getLoop() == TheLoop &&
507            "addrec outside of TheLoop must be invariant and should have been "
508            "handled earlier");
509     // Build a new AddRec by multiplying the step by StepMultiplier and
510     // incrementing the start by Offset * step.
511     Type *Ty = Expr->getType();
512     const SCEV *Step = Expr->getStepRecurrence(SE);
513     if (!SE.isLoopInvariant(Step, TheLoop)) {
514       CannotAnalyze = true;
515       return Expr;
516     }
517     const SCEV *NewStep =
518         SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
519     const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
520     const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
521     return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
522   }
523 
524   const SCEV *visit(const SCEV *S) {
525     if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
526       return S;
527     return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
528   }
529 
530   const SCEV *visitUnknown(const SCEVUnknown *S) {
531     if (SE.isLoopInvariant(S, TheLoop))
532       return S;
533     // The value could vary across iterations.
534     CannotAnalyze = true;
535     return S;
536   }
537 
538   const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
539     // Could not analyze the expression.
540     CannotAnalyze = true;
541     return S;
542   }
543 
544   static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
545                              unsigned StepMultiplier, unsigned Offset,
546                              Loop *TheLoop) {
547     /// Bail out if the expression does not contain an UDiv expression.
548     /// Uniform values which are not loop invariant require operations to strip
549     /// out the lowest bits. For now just look for UDivs and use it to avoid
550     /// re-writing UDIV-free expressions for other lanes to limit compile time.
551     if (!SCEVExprContains(S,
552                           [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
553       return SE.getCouldNotCompute();
554 
555     SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
556                                              TheLoop);
557     const SCEV *Result = Rewriter.visit(S);
558 
559     if (Rewriter.canAnalyze())
560       return Result;
561     return SE.getCouldNotCompute();
562   }
563 };
564 
565 } // namespace
566 
567 bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
568   if (isInvariant(V))
569     return true;
570   if (VF.isScalable())
571     return false;
572   if (VF.isScalar())
573     return true;
574 
575   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
576   // never considered uniform.
577   auto *SE = PSE.getSE();
578   if (!SE->isSCEVable(V->getType()))
579     return false;
580   const SCEV *S = SE->getSCEV(V);
581 
582   // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
583   // lane 0 matches the expressions for all other lanes.
584   unsigned FixedVF = VF.getKnownMinValue();
585   const SCEV *FirstLaneExpr =
586       SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
587   if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
588     return false;
589 
590   // Make sure the expressions for lanes FixedVF-1..1 match the expression for
591   // lane 0. We check lanes in reverse order for compile-time, as frequently
592   // checking the last lane is sufficient to rule out uniformity.
593   return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
594     const SCEV *IthLaneExpr =
595         SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
596     return FirstLaneExpr == IthLaneExpr;
597   });
598 }
599 
600 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
601                                                ElementCount VF) const {
602   Value *Ptr = getLoadStorePointerOperand(&I);
603   if (!Ptr)
604     return false;
605   // Note: There's nothing inherent which prevents predicated loads and
606   // stores from being uniform.  The current lowering simply doesn't handle
607   // it; in particular, the cost model distinguishes scatter/gather from
608   // scalar w/predication, and we currently rely on the scalar path.
609   return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
610 }
611 
612 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
613   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
614   // Store the result and return it at the end instead of exiting early, in case
615   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
616   bool Result = true;
617   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
618 
619   for (BasicBlock *BB : TheLoop->blocks()) {
620     // Check whether the BB terminator is a BranchInst. Any other terminator is
621     // not supported yet.
622     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
623     if (!Br) {
624       reportVectorizationFailure("Unsupported basic block terminator",
625           "loop control flow is not understood by vectorizer",
626           "CFGNotUnderstood", ORE, TheLoop);
627       if (DoExtraAnalysis)
628         Result = false;
629       else
630         return false;
631     }
632 
633     // Check whether the BranchInst is a supported one. Only unconditional
634     // branches, conditional branches with an outer loop invariant condition or
635     // backedges are supported.
636     // FIXME: We skip these checks when VPlan predication is enabled as we
637     // want to allow divergent branches. This whole check will be removed
638     // once VPlan predication is on by default.
639     if (Br && Br->isConditional() &&
640         !TheLoop->isLoopInvariant(Br->getCondition()) &&
641         !LI->isLoopHeader(Br->getSuccessor(0)) &&
642         !LI->isLoopHeader(Br->getSuccessor(1))) {
643       reportVectorizationFailure("Unsupported conditional branch",
644           "loop control flow is not understood by vectorizer",
645           "CFGNotUnderstood", ORE, TheLoop);
646       if (DoExtraAnalysis)
647         Result = false;
648       else
649         return false;
650     }
651   }
652 
653   // Check whether inner loops are uniform. At this point, we only support
654   // simple outer loops scenarios with uniform nested loops.
655   if (!isUniformLoopNest(TheLoop /*loop nest*/,
656                          TheLoop /*context outer loop*/)) {
657     reportVectorizationFailure("Outer loop contains divergent loops",
658         "loop control flow is not understood by vectorizer",
659         "CFGNotUnderstood", ORE, TheLoop);
660     if (DoExtraAnalysis)
661       Result = false;
662     else
663       return false;
664   }
665 
666   // Check whether we are able to set up outer loop induction.
667   if (!setupOuterLoopInductions()) {
668     reportVectorizationFailure("Unsupported outer loop Phi(s)",
669                                "UnsupportedPhi", ORE, TheLoop);
670     if (DoExtraAnalysis)
671       Result = false;
672     else
673       return false;
674   }
675 
676   return Result;
677 }
678 
679 void LoopVectorizationLegality::addInductionPhi(
680     PHINode *Phi, const InductionDescriptor &ID,
681     SmallPtrSetImpl<Value *> &AllowedExit) {
682   Inductions[Phi] = ID;
683 
684   // In case this induction also comes with casts that we know we can ignore
685   // in the vectorized loop body, record them here. All casts could be recorded
686   // here for ignoring, but suffices to record only the first (as it is the
687   // only one that may bw used outside the cast sequence).
688   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
689   if (!Casts.empty())
690     InductionCastsToIgnore.insert(*Casts.begin());
691 
692   Type *PhiTy = Phi->getType();
693   const DataLayout &DL = Phi->getDataLayout();
694 
695   // Get the widest type.
696   if (!PhiTy->isFloatingPointTy()) {
697     if (!WidestIndTy)
698       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
699     else
700       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
701   }
702 
703   // Int inductions are special because we only allow one IV.
704   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
705       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
706       isa<Constant>(ID.getStartValue()) &&
707       cast<Constant>(ID.getStartValue())->isNullValue()) {
708 
709     // Use the phi node with the widest type as induction. Use the last
710     // one if there are multiple (no good reason for doing this other
711     // than it is expedient). We've checked that it begins at zero and
712     // steps by one, so this is a canonical induction variable.
713     if (!PrimaryInduction || PhiTy == WidestIndTy)
714       PrimaryInduction = Phi;
715   }
716 
717   // Both the PHI node itself, and the "post-increment" value feeding
718   // back into the PHI node may have external users.
719   // We can allow those uses, except if the SCEVs we have for them rely
720   // on predicates that only hold within the loop, since allowing the exit
721   // currently means re-using this SCEV outside the loop (see PR33706 for more
722   // details).
723   if (PSE.getPredicate().isAlwaysTrue()) {
724     AllowedExit.insert(Phi);
725     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
726   }
727 
728   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
729 }
730 
731 bool LoopVectorizationLegality::setupOuterLoopInductions() {
732   BasicBlock *Header = TheLoop->getHeader();
733 
734   // Returns true if a given Phi is a supported induction.
735   auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
736     InductionDescriptor ID;
737     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
738         ID.getKind() == InductionDescriptor::IK_IntInduction) {
739       addInductionPhi(&Phi, ID, AllowedExit);
740       return true;
741     }
742     // Bail out for any Phi in the outer loop header that is not a supported
743     // induction.
744     LLVM_DEBUG(
745         dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
746     return false;
747   };
748 
749   return llvm::all_of(Header->phis(), IsSupportedPhi);
750 }
751 
752 /// Checks if a function is scalarizable according to the TLI, in
753 /// the sense that it should be vectorized and then expanded in
754 /// multiple scalar calls. This is represented in the
755 /// TLI via mappings that do not specify a vector name, as in the
756 /// following example:
757 ///
758 ///    const VecDesc VecIntrinsics[] = {
759 ///      {"llvm.phx.abs.i32", "", 4}
760 ///    };
761 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
762   const StringRef ScalarName = CI.getCalledFunction()->getName();
763   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
764   // Check that all known VFs are not associated to a vector
765   // function, i.e. the vector name is emty.
766   if (Scalarize) {
767     ElementCount WidestFixedVF, WidestScalableVF;
768     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
769     for (ElementCount VF = ElementCount::getFixed(2);
770          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
771       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
772     for (ElementCount VF = ElementCount::getScalable(1);
773          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
774       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
775     assert((WidestScalableVF.isZero() || !Scalarize) &&
776            "Caller may decide to scalarize a variant using a scalable VF");
777   }
778   return Scalarize;
779 }
780 
781 /// Returns true if the call return type `Ty` can be widened by the loop
782 /// vectorizer.
783 static bool canWidenCallReturnType(Type *Ty) {
784   auto *StructTy = dyn_cast<StructType>(Ty);
785   // TODO: Remove the homogeneous types restriction. This is just an initial
786   // simplification. When we want to support things like the overflow intrinsics
787   // we will have to lift this restriction.
788   if (StructTy && !StructTy->containsHomogeneousTypes())
789     return false;
790   return canVectorizeTy(StructTy);
791 }
792 
793 bool LoopVectorizationLegality::canVectorizeInstrs() {
794   BasicBlock *Header = TheLoop->getHeader();
795 
796   // For each block in the loop.
797   for (BasicBlock *BB : TheLoop->blocks()) {
798     // Scan the instructions in the block and look for hazards.
799     for (Instruction &I : *BB) {
800       if (auto *Phi = dyn_cast<PHINode>(&I)) {
801         Type *PhiTy = Phi->getType();
802         // Check that this PHI type is allowed.
803         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
804             !PhiTy->isPointerTy()) {
805           reportVectorizationFailure("Found a non-int non-pointer PHI",
806                                      "loop control flow is not understood by vectorizer",
807                                      "CFGNotUnderstood", ORE, TheLoop);
808           return false;
809         }
810 
811         // If this PHINode is not in the header block, then we know that we
812         // can convert it to select during if-conversion. No need to check if
813         // the PHIs in this block are induction or reduction variables.
814         if (BB != Header) {
815           // Non-header phi nodes that have outside uses can be vectorized. Add
816           // them to the list of allowed exits.
817           // Unsafe cyclic dependencies with header phis are identified during
818           // legalization for reduction, induction and fixed order
819           // recurrences.
820           AllowedExit.insert(&I);
821           continue;
822         }
823 
824         // We only allow if-converted PHIs with exactly two incoming values.
825         if (Phi->getNumIncomingValues() != 2) {
826           reportVectorizationFailure("Found an invalid PHI",
827               "loop control flow is not understood by vectorizer",
828               "CFGNotUnderstood", ORE, TheLoop, Phi);
829           return false;
830         }
831 
832         RecurrenceDescriptor RedDes;
833         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
834                                                  DT, PSE.getSE())) {
835           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
836           AllowedExit.insert(RedDes.getLoopExitInstr());
837           Reductions[Phi] = RedDes;
838           continue;
839         }
840 
841         // We prevent matching non-constant strided pointer IVS to preserve
842         // historical vectorizer behavior after a generalization of the
843         // IVDescriptor code.  The intent is to remove this check, but we
844         // have to fix issues around code quality for such loops first.
845         auto IsDisallowedStridedPointerInduction =
846             [](const InductionDescriptor &ID) {
847               if (AllowStridedPointerIVs)
848                 return false;
849               return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
850                      ID.getConstIntStepValue() == nullptr;
851             };
852 
853         // TODO: Instead of recording the AllowedExit, it would be good to
854         // record the complementary set: NotAllowedExit. These include (but may
855         // not be limited to):
856         // 1. Reduction phis as they represent the one-before-last value, which
857         // is not available when vectorized
858         // 2. Induction phis and increment when SCEV predicates cannot be used
859         // outside the loop - see addInductionPhi
860         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
861         // outside the loop - see call to hasOutsideLoopUser in the non-phi
862         // handling below
863         // 4. FixedOrderRecurrence phis that can possibly be handled by
864         // extraction.
865         // By recording these, we can then reason about ways to vectorize each
866         // of these NotAllowedExit.
867         InductionDescriptor ID;
868         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
869             !IsDisallowedStridedPointerInduction(ID)) {
870           addInductionPhi(Phi, ID, AllowedExit);
871           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
872           continue;
873         }
874 
875         if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
876           AllowedExit.insert(Phi);
877           FixedOrderRecurrences.insert(Phi);
878           continue;
879         }
880 
881         // As a last resort, coerce the PHI to a AddRec expression
882         // and re-try classifying it a an induction PHI.
883         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
884             !IsDisallowedStridedPointerInduction(ID)) {
885           addInductionPhi(Phi, ID, AllowedExit);
886           continue;
887         }
888 
889         reportVectorizationFailure("Found an unidentified PHI",
890             "value that could not be identified as "
891             "reduction is used outside the loop",
892             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
893         return false;
894       } // end of PHI handling
895 
896       // We handle calls that:
897       //   * Are debug info intrinsics.
898       //   * Have a mapping to an IR intrinsic.
899       //   * Have a vector version available.
900       auto *CI = dyn_cast<CallInst>(&I);
901 
902       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
903           !isa<DbgInfoIntrinsic>(CI) &&
904           !(CI->getCalledFunction() && TLI &&
905             (!VFDatabase::getMappings(*CI).empty() ||
906              isTLIScalarize(*TLI, *CI)))) {
907         // If the call is a recognized math libary call, it is likely that
908         // we can vectorize it given loosened floating-point constraints.
909         LibFunc Func;
910         bool IsMathLibCall =
911             TLI && CI->getCalledFunction() &&
912             CI->getType()->isFloatingPointTy() &&
913             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
914             TLI->hasOptimizedCodeGen(Func);
915 
916         if (IsMathLibCall) {
917           // TODO: Ideally, we should not use clang-specific language here,
918           // but it's hard to provide meaningful yet generic advice.
919           // Also, should this be guarded by allowExtraAnalysis() and/or be part
920           // of the returned info from isFunctionVectorizable()?
921           reportVectorizationFailure(
922               "Found a non-intrinsic callsite",
923               "library call cannot be vectorized. "
924               "Try compiling with -fno-math-errno, -ffast-math, "
925               "or similar flags",
926               "CantVectorizeLibcall", ORE, TheLoop, CI);
927         } else {
928           reportVectorizationFailure("Found a non-intrinsic callsite",
929                                      "call instruction cannot be vectorized",
930                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
931         }
932         return false;
933       }
934 
935       // Some intrinsics have scalar arguments and should be same in order for
936       // them to be vectorized (i.e. loop invariant).
937       if (CI) {
938         auto *SE = PSE.getSE();
939         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
940         for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
941           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx, TTI)) {
942             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)),
943                                      TheLoop)) {
944               reportVectorizationFailure("Found unvectorizable intrinsic",
945                   "intrinsic instruction cannot be vectorized",
946                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
947               return false;
948             }
949           }
950       }
951 
952       // If we found a vectorized variant of a function, note that so LV can
953       // make better decisions about maximum VF.
954       if (CI && !VFDatabase::getMappings(*CI).empty())
955         VecCallVariantsFound = true;
956 
957       auto CanWidenInstructionTy = [this](Instruction const &Inst) {
958         Type *InstTy = Inst.getType();
959         if (!isa<StructType>(InstTy))
960           return canVectorizeTy(InstTy);
961 
962         // For now, we only recognize struct values returned from calls where
963         // all users are extractvalue as vectorizable. All element types of the
964         // struct must be types that can be widened.
965         if (isa<CallInst>(Inst) && canWidenCallReturnType(InstTy) &&
966             all_of(Inst.users(), IsaPred<ExtractValueInst>)) {
967           // TODO: Remove the `StructVecCallFound` flag once vectorizing calls
968           // with struct returns is supported.
969           StructVecCallFound = true;
970           return true;
971         }
972 
973         return false;
974       };
975 
976       // Check that the instruction return type is vectorizable.
977       // We can't vectorize casts from vector type to scalar type.
978       // Also, we can't vectorize extractelement instructions.
979       if (!CanWidenInstructionTy(I) ||
980           (isa<CastInst>(I) &&
981            !VectorType::isValidElementType(I.getOperand(0)->getType())) ||
982           isa<ExtractElementInst>(I)) {
983         reportVectorizationFailure("Found unvectorizable type",
984             "instruction return type cannot be vectorized",
985             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
986         return false;
987       }
988 
989       // Check that the stored type is vectorizable.
990       if (auto *ST = dyn_cast<StoreInst>(&I)) {
991         Type *T = ST->getValueOperand()->getType();
992         if (!VectorType::isValidElementType(T)) {
993           reportVectorizationFailure("Store instruction cannot be vectorized",
994                                      "CantVectorizeStore", ORE, TheLoop, ST);
995           return false;
996         }
997 
998         // For nontemporal stores, check that a nontemporal vector version is
999         // supported on the target.
1000         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
1001           // Arbitrarily try a vector of 2 elements.
1002           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
1003           assert(VecTy && "did not find vectorized version of stored type");
1004           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
1005             reportVectorizationFailure(
1006                 "nontemporal store instruction cannot be vectorized",
1007                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
1008             return false;
1009           }
1010         }
1011 
1012       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
1013         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
1014           // For nontemporal loads, check that a nontemporal vector version is
1015           // supported on the target (arbitrarily try a vector of 2 elements).
1016           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
1017           assert(VecTy && "did not find vectorized version of load type");
1018           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
1019             reportVectorizationFailure(
1020                 "nontemporal load instruction cannot be vectorized",
1021                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
1022             return false;
1023           }
1024         }
1025 
1026         // FP instructions can allow unsafe algebra, thus vectorizable by
1027         // non-IEEE-754 compliant SIMD units.
1028         // This applies to floating-point math operations and calls, not memory
1029         // operations, shuffles, or casts, as they don't change precision or
1030         // semantics.
1031       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1032                  !I.isFast()) {
1033         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1034         Hints->setPotentiallyUnsafe();
1035       }
1036 
1037       // Reduction instructions are allowed to have exit users.
1038       // All other instructions must not have external users.
1039       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1040         // We can safely vectorize loops where instructions within the loop are
1041         // used outside the loop only if the SCEV predicates within the loop is
1042         // same as outside the loop. Allowing the exit means reusing the SCEV
1043         // outside the loop.
1044         if (PSE.getPredicate().isAlwaysTrue()) {
1045           AllowedExit.insert(&I);
1046           continue;
1047         }
1048         reportVectorizationFailure("Value cannot be used outside the loop",
1049                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1050         return false;
1051       }
1052     } // next instr.
1053   }
1054 
1055   if (!PrimaryInduction) {
1056     if (Inductions.empty()) {
1057       reportVectorizationFailure("Did not find one integer induction var",
1058           "loop induction variable could not be identified",
1059           "NoInductionVariable", ORE, TheLoop);
1060       return false;
1061     }
1062     if (!WidestIndTy) {
1063       reportVectorizationFailure("Did not find one integer induction var",
1064           "integer loop induction variable could not be identified",
1065           "NoIntegerInductionVariable", ORE, TheLoop);
1066       return false;
1067     }
1068     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1069   }
1070 
1071   // Now we know the widest induction type, check if our found induction
1072   // is the same size. If it's not, unset it here and InnerLoopVectorizer
1073   // will create another.
1074   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1075     PrimaryInduction = nullptr;
1076 
1077   return true;
1078 }
1079 
1080 /// Find histogram operations that match high-level code in loops:
1081 /// \code
1082 /// buckets[indices[i]]+=step;
1083 /// \endcode
1084 ///
1085 /// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
1086 /// array the computed histogram. It uses a BinOp to sum all counts, storing
1087 /// them using a loop-variant index Load from the 'indices' input array.
1088 ///
1089 /// On successful matches it updates the STATISTIC 'HistogramsDetected',
1090 /// regardless of hardware support. When there is support, it additionally
1091 /// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
1092 /// used to update histogram in \p HistogramPtrs.
1093 static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
1094                           const PredicatedScalarEvolution &PSE,
1095                           SmallVectorImpl<HistogramInfo> &Histograms) {
1096 
1097   // Store value must come from a Binary Operation.
1098   Instruction *HPtrInstr = nullptr;
1099   BinaryOperator *HBinOp = nullptr;
1100   if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
1101     return false;
1102 
1103   // BinOp must be an Add or a Sub modifying the bucket value by a
1104   // loop invariant amount.
1105   // FIXME: We assume the loop invariant term is on the RHS.
1106   //        Fine for an immediate/constant, but maybe not a generic value?
1107   Value *HIncVal = nullptr;
1108   if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
1109       !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
1110     return false;
1111 
1112   // Make sure the increment value is loop invariant.
1113   if (!TheLoop->isLoopInvariant(HIncVal))
1114     return false;
1115 
1116   // The address to store is calculated through a GEP Instruction.
1117   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr);
1118   if (!GEP)
1119     return false;
1120 
1121   // Restrict address calculation to constant indices except for the last term.
1122   Value *HIdx = nullptr;
1123   for (Value *Index : GEP->indices()) {
1124     if (HIdx)
1125       return false;
1126     if (!isa<ConstantInt>(Index))
1127       HIdx = Index;
1128   }
1129 
1130   if (!HIdx)
1131     return false;
1132 
1133   // Check that the index is calculated by loading from another array. Ignore
1134   // any extensions.
1135   // FIXME: Support indices from other sources than a linear load from memory?
1136   //        We're currently trying to match an operation looping over an array
1137   //        of indices, but there could be additional levels of indirection
1138   //        in place, or possibly some additional calculation to form the index
1139   //        from the loaded data.
1140   Value *VPtrVal;
1141   if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
1142     return false;
1143 
1144   // Make sure the index address varies in this loop, not an outer loop.
1145   const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
1146   if (!AR || AR->getLoop() != TheLoop)
1147     return false;
1148 
1149   // Ensure we'll have the same mask by checking that all parts of the histogram
1150   // (gather load, update, scatter store) are in the same block.
1151   LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
1152   BasicBlock *LdBB = IndexedLoad->getParent();
1153   if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
1154     return false;
1155 
1156   LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
1157 
1158   // Store the operations that make up the histogram.
1159   Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
1160   return true;
1161 }
1162 
1163 bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
1164   // For now, we only support an IndirectUnsafe dependency that calculates
1165   // a histogram
1166   if (!EnableHistogramVectorization)
1167     return false;
1168 
1169   // Find a single IndirectUnsafe dependency.
1170   const MemoryDepChecker::Dependence *IUDep = nullptr;
1171   const MemoryDepChecker &DepChecker = LAI->getDepChecker();
1172   const auto *Deps = DepChecker.getDependences();
1173   // If there were too many dependences, LAA abandons recording them. We can't
1174   // proceed safely if we don't know what the dependences are.
1175   if (!Deps)
1176     return false;
1177 
1178   for (const MemoryDepChecker::Dependence &Dep : *Deps) {
1179     // Ignore dependencies that are either known to be safe or can be
1180     // checked at runtime.
1181     if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) !=
1182         MemoryDepChecker::VectorizationSafetyStatus::Unsafe)
1183       continue;
1184 
1185     // We're only interested in IndirectUnsafe dependencies here, where the
1186     // address might come from a load from memory. We also only want to handle
1187     // one such dependency, at least for now.
1188     if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
1189       return false;
1190 
1191     IUDep = &Dep;
1192   }
1193   if (!IUDep)
1194     return false;
1195 
1196   // For now only normal loads and stores are supported.
1197   LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
1198   StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
1199 
1200   if (!LI || !SI)
1201     return false;
1202 
1203   LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
1204   return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
1205 }
1206 
1207 bool LoopVectorizationLegality::canVectorizeMemory() {
1208   LAI = &LAIs.getInfo(*TheLoop);
1209   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1210   if (LAR) {
1211     ORE->emit([&]() {
1212       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1213                                         "loop not vectorized: ", *LAR);
1214     });
1215   }
1216 
1217   if (!LAI->canVectorizeMemory())
1218     return canVectorizeIndirectUnsafeDependences();
1219 
1220   if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
1221     reportVectorizationFailure("We don't allow storing to uniform addresses",
1222                                "write to a loop invariant address could not "
1223                                "be vectorized",
1224                                "CantVectorizeStoreToLoopInvariantAddress", ORE,
1225                                TheLoop);
1226     return false;
1227   }
1228 
1229   // We can vectorize stores to invariant address when final reduction value is
1230   // guaranteed to be stored at the end of the loop. Also, if decision to
1231   // vectorize loop is made, runtime checks are added so as to make sure that
1232   // invariant address won't alias with any other objects.
1233   if (!LAI->getStoresToInvariantAddresses().empty()) {
1234     // For each invariant address, check if last stored value is unconditional
1235     // and the address is not calculated inside the loop.
1236     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1237       if (!isInvariantStoreOfReduction(SI))
1238         continue;
1239 
1240       if (blockNeedsPredication(SI->getParent())) {
1241         reportVectorizationFailure(
1242             "We don't allow storing to uniform addresses",
1243             "write of conditional recurring variant value to a loop "
1244             "invariant address could not be vectorized",
1245             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1246         return false;
1247       }
1248 
1249       // Invariant address should be defined outside of loop. LICM pass usually
1250       // makes sure it happens, but in rare cases it does not, we do not want
1251       // to overcomplicate vectorization to support this case.
1252       if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1253         if (TheLoop->contains(Ptr)) {
1254           reportVectorizationFailure(
1255               "Invariant address is calculated inside the loop",
1256               "write to a loop invariant address could not "
1257               "be vectorized",
1258               "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1259           return false;
1260         }
1261       }
1262     }
1263 
1264     if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
1265       // For each invariant address, check its last stored value is the result
1266       // of one of our reductions.
1267       //
1268       // We do not check if dependence with loads exists because that is already
1269       // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1270       ScalarEvolution *SE = PSE.getSE();
1271       SmallVector<StoreInst *, 4> UnhandledStores;
1272       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1273         if (isInvariantStoreOfReduction(SI)) {
1274           // Earlier stores to this address are effectively deadcode.
1275           // With opaque pointers it is possible for one pointer to be used with
1276           // different sizes of stored values:
1277           //    store i32 0, ptr %x
1278           //    store i8 0, ptr %x
1279           // The latest store doesn't complitely overwrite the first one in the
1280           // example. That is why we have to make sure that types of stored
1281           // values are same.
1282           // TODO: Check that bitwidth of unhandled store is smaller then the
1283           // one that overwrites it and add a test.
1284           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1285             return storeToSameAddress(SE, SI, I) &&
1286                    I->getValueOperand()->getType() ==
1287                        SI->getValueOperand()->getType();
1288           });
1289           continue;
1290         }
1291         UnhandledStores.push_back(SI);
1292       }
1293 
1294       bool IsOK = UnhandledStores.empty();
1295       // TODO: we should also validate against InvariantMemSets.
1296       if (!IsOK) {
1297         reportVectorizationFailure(
1298             "We don't allow storing to uniform addresses",
1299             "write to a loop invariant address could not "
1300             "be vectorized",
1301             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1302         return false;
1303       }
1304     }
1305   }
1306 
1307   PSE.addPredicate(LAI->getPSE().getPredicate());
1308   return true;
1309 }
1310 
1311 bool LoopVectorizationLegality::canVectorizeFPMath(
1312     bool EnableStrictReductions) {
1313 
1314   // First check if there is any ExactFP math or if we allow reassociations
1315   if (!Requirements->getExactFPInst() || Hints->allowReordering())
1316     return true;
1317 
1318   // If the above is false, we have ExactFPMath & do not allow reordering.
1319   // If the EnableStrictReductions flag is set, first check if we have any
1320   // Exact FP induction vars, which we cannot vectorize.
1321   if (!EnableStrictReductions ||
1322       any_of(getInductionVars(), [&](auto &Induction) -> bool {
1323         InductionDescriptor IndDesc = Induction.second;
1324         return IndDesc.getExactFPMathInst();
1325       }))
1326     return false;
1327 
1328   // We can now only vectorize if all reductions with Exact FP math also
1329   // have the isOrdered flag set, which indicates that we can move the
1330   // reduction operations in-loop.
1331   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1332     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1333     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1334   }));
1335 }
1336 
1337 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1338   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1339     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1340     return RdxDesc.IntermediateStore == SI;
1341   });
1342 }
1343 
1344 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1345   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1346     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1347     if (!RdxDesc.IntermediateStore)
1348       return false;
1349 
1350     ScalarEvolution *SE = PSE.getSE();
1351     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1352     return V == InvariantAddress ||
1353            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1354   });
1355 }
1356 
1357 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1358   Value *In0 = const_cast<Value *>(V);
1359   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1360   if (!PN)
1361     return false;
1362 
1363   return Inductions.count(PN);
1364 }
1365 
1366 const InductionDescriptor *
1367 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1368   if (!isInductionPhi(Phi))
1369     return nullptr;
1370   auto &ID = getInductionVars().find(Phi)->second;
1371   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1372       ID.getKind() == InductionDescriptor::IK_FpInduction)
1373     return &ID;
1374   return nullptr;
1375 }
1376 
1377 const InductionDescriptor *
1378 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1379   if (!isInductionPhi(Phi))
1380     return nullptr;
1381   auto &ID = getInductionVars().find(Phi)->second;
1382   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1383     return &ID;
1384   return nullptr;
1385 }
1386 
1387 bool LoopVectorizationLegality::isCastedInductionVariable(
1388     const Value *V) const {
1389   auto *Inst = dyn_cast<Instruction>(V);
1390   return (Inst && InductionCastsToIgnore.count(Inst));
1391 }
1392 
1393 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1394   return isInductionPhi(V) || isCastedInductionVariable(V);
1395 }
1396 
1397 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1398     const PHINode *Phi) const {
1399   return FixedOrderRecurrences.count(Phi);
1400 }
1401 
1402 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1403   // When vectorizing early exits, create predicates for the latch block only.
1404   // The early exiting block must be a direct predecessor of the latch at the
1405   // moment.
1406   BasicBlock *Latch = TheLoop->getLoopLatch();
1407   if (hasUncountableEarlyExit()) {
1408     assert(
1409         is_contained(predecessors(Latch), getUncountableEarlyExitingBlock()) &&
1410         "Uncountable exiting block must be a direct predecessor of latch");
1411     return BB == Latch;
1412   }
1413   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1414 }
1415 
1416 bool LoopVectorizationLegality::blockCanBePredicated(
1417     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1418     SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1419   for (Instruction &I : *BB) {
1420     // We can predicate blocks with calls to assume, as long as we drop them in
1421     // case we flatten the CFG via predication.
1422     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1423       MaskedOp.insert(&I);
1424       continue;
1425     }
1426 
1427     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1428     // TODO: there might be cases that it should block the vectorization. Let's
1429     // ignore those for now.
1430     if (isa<NoAliasScopeDeclInst>(&I))
1431       continue;
1432 
1433     // We can allow masked calls if there's at least one vector variant, even
1434     // if we end up scalarizing due to the cost model calculations.
1435     // TODO: Allow other calls if they have appropriate attributes... readonly
1436     // and argmemonly?
1437     if (CallInst *CI = dyn_cast<CallInst>(&I))
1438       if (VFDatabase::hasMaskedVariant(*CI)) {
1439         MaskedOp.insert(CI);
1440         continue;
1441       }
1442 
1443     // Loads are handled via masking (or speculated if safe to do so.)
1444     if (auto *LI = dyn_cast<LoadInst>(&I)) {
1445       if (!SafePtrs.count(LI->getPointerOperand()))
1446         MaskedOp.insert(LI);
1447       continue;
1448     }
1449 
1450     // Predicated store requires some form of masking:
1451     // 1) masked store HW instruction,
1452     // 2) emulation via load-blend-store (only if safe and legal to do so,
1453     //    be aware on the race conditions), or
1454     // 3) element-by-element predicate check and scalar store.
1455     if (auto *SI = dyn_cast<StoreInst>(&I)) {
1456       MaskedOp.insert(SI);
1457       continue;
1458     }
1459 
1460     if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1461       return false;
1462   }
1463 
1464   return true;
1465 }
1466 
1467 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1468   if (!EnableIfConversion) {
1469     reportVectorizationFailure("If-conversion is disabled",
1470                                "IfConversionDisabled", ORE, TheLoop);
1471     return false;
1472   }
1473 
1474   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1475 
1476   // A list of pointers which are known to be dereferenceable within scope of
1477   // the loop body for each iteration of the loop which executes.  That is,
1478   // the memory pointed to can be dereferenced (with the access size implied by
1479   // the value's type) unconditionally within the loop header without
1480   // introducing a new fault.
1481   SmallPtrSet<Value *, 8> SafePointers;
1482 
1483   // Collect safe addresses.
1484   for (BasicBlock *BB : TheLoop->blocks()) {
1485     if (!blockNeedsPredication(BB)) {
1486       for (Instruction &I : *BB)
1487         if (auto *Ptr = getLoadStorePointerOperand(&I))
1488           SafePointers.insert(Ptr);
1489       continue;
1490     }
1491 
1492     // For a block which requires predication, a address may be safe to access
1493     // in the loop w/o predication if we can prove dereferenceability facts
1494     // sufficient to ensure it'll never fault within the loop. For the moment,
1495     // we restrict this to loads; stores are more complicated due to
1496     // concurrency restrictions.
1497     ScalarEvolution &SE = *PSE.getSE();
1498     SmallVector<const SCEVPredicate *, 4> Predicates;
1499     for (Instruction &I : *BB) {
1500       LoadInst *LI = dyn_cast<LoadInst>(&I);
1501       // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so
1502       // that it will consider loops that need guarding by SCEV checks. The
1503       // vectoriser will generate these checks if we decide to vectorise.
1504       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1505           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC,
1506                                             &Predicates))
1507         SafePointers.insert(LI->getPointerOperand());
1508       Predicates.clear();
1509     }
1510   }
1511 
1512   // Collect the blocks that need predication.
1513   for (BasicBlock *BB : TheLoop->blocks()) {
1514     // We support only branches and switch statements as terminators inside the
1515     // loop.
1516     if (isa<SwitchInst>(BB->getTerminator())) {
1517       if (TheLoop->isLoopExiting(BB)) {
1518         reportVectorizationFailure("Loop contains an unsupported switch",
1519                                    "LoopContainsUnsupportedSwitch", ORE,
1520                                    TheLoop, BB->getTerminator());
1521         return false;
1522       }
1523     } else if (!isa<BranchInst>(BB->getTerminator())) {
1524       reportVectorizationFailure("Loop contains an unsupported terminator",
1525                                  "LoopContainsUnsupportedTerminator", ORE,
1526                                  TheLoop, BB->getTerminator());
1527       return false;
1528     }
1529 
1530     // We must be able to predicate all blocks that need to be predicated.
1531     if (blockNeedsPredication(BB) &&
1532         !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1533       reportVectorizationFailure(
1534           "Control flow cannot be substituted for a select", "NoCFGForSelect",
1535           ORE, TheLoop, BB->getTerminator());
1536       return false;
1537     }
1538   }
1539 
1540   // We can if-convert this loop.
1541   return true;
1542 }
1543 
1544 // Helper function to canVectorizeLoopNestCFG.
1545 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1546                                                     bool UseVPlanNativePath) {
1547   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1548          "VPlan-native path is not enabled.");
1549 
1550   // TODO: ORE should be improved to show more accurate information when an
1551   // outer loop can't be vectorized because a nested loop is not understood or
1552   // legal. Something like: "outer_loop_location: loop not vectorized:
1553   // (inner_loop_location) loop control flow is not understood by vectorizer".
1554 
1555   // Store the result and return it at the end instead of exiting early, in case
1556   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1557   bool Result = true;
1558   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1559 
1560   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1561   // be canonicalized.
1562   if (!Lp->getLoopPreheader()) {
1563     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1564         "loop control flow is not understood by vectorizer",
1565         "CFGNotUnderstood", ORE, TheLoop);
1566     if (DoExtraAnalysis)
1567       Result = false;
1568     else
1569       return false;
1570   }
1571 
1572   // We must have a single backedge.
1573   if (Lp->getNumBackEdges() != 1) {
1574     reportVectorizationFailure("The loop must have a single backedge",
1575         "loop control flow is not understood by vectorizer",
1576         "CFGNotUnderstood", ORE, TheLoop);
1577     if (DoExtraAnalysis)
1578       Result = false;
1579     else
1580       return false;
1581   }
1582 
1583   return Result;
1584 }
1585 
1586 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1587     Loop *Lp, bool UseVPlanNativePath) {
1588   // Store the result and return it at the end instead of exiting early, in case
1589   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1590   bool Result = true;
1591   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1592   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1593     if (DoExtraAnalysis)
1594       Result = false;
1595     else
1596       return false;
1597   }
1598 
1599   // Recursively check whether the loop control flow of nested loops is
1600   // understood.
1601   for (Loop *SubLp : *Lp)
1602     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1603       if (DoExtraAnalysis)
1604         Result = false;
1605       else
1606         return false;
1607     }
1608 
1609   return Result;
1610 }
1611 
1612 bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() {
1613   BasicBlock *LatchBB = TheLoop->getLoopLatch();
1614   if (!LatchBB) {
1615     reportVectorizationFailure("Loop does not have a latch",
1616                                "Cannot vectorize early exit loop",
1617                                "NoLatchEarlyExit", ORE, TheLoop);
1618     return false;
1619   }
1620 
1621   if (Reductions.size() || FixedOrderRecurrences.size()) {
1622     reportVectorizationFailure(
1623         "Found reductions or recurrences in early-exit loop",
1624         "Cannot vectorize early exit loop with reductions or recurrences",
1625         "RecurrencesInEarlyExitLoop", ORE, TheLoop);
1626     return false;
1627   }
1628 
1629   SmallVector<BasicBlock *, 8> ExitingBlocks;
1630   TheLoop->getExitingBlocks(ExitingBlocks);
1631 
1632   // Keep a record of all the exiting blocks.
1633   SmallVector<const SCEVPredicate *, 4> Predicates;
1634   std::optional<std::pair<BasicBlock *, BasicBlock *>> SingleUncountableEdge;
1635   for (BasicBlock *BB : ExitingBlocks) {
1636     const SCEV *EC =
1637         PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates);
1638     if (isa<SCEVCouldNotCompute>(EC)) {
1639       SmallVector<BasicBlock *, 2> Succs(successors(BB));
1640       if (Succs.size() != 2) {
1641         reportVectorizationFailure(
1642             "Early exiting block does not have exactly two successors",
1643             "Incorrect number of successors from early exiting block",
1644             "EarlyExitTooManySuccessors", ORE, TheLoop);
1645         return false;
1646       }
1647 
1648       BasicBlock *ExitBlock;
1649       if (!TheLoop->contains(Succs[0]))
1650         ExitBlock = Succs[0];
1651       else {
1652         assert(!TheLoop->contains(Succs[1]));
1653         ExitBlock = Succs[1];
1654       }
1655 
1656       if (SingleUncountableEdge) {
1657         reportVectorizationFailure(
1658             "Loop has too many uncountable exits",
1659             "Cannot vectorize early exit loop with more than one early exit",
1660             "TooManyUncountableEarlyExits", ORE, TheLoop);
1661         return false;
1662       }
1663 
1664       SingleUncountableEdge = {BB, ExitBlock};
1665     } else
1666       CountableExitingBlocks.push_back(BB);
1667   }
1668   // We can safely ignore the predicates here because when vectorizing the loop
1669   // the PredicatatedScalarEvolution class will keep track of all predicates
1670   // for each exiting block anyway. This happens when calling
1671   // PSE.getSymbolicMaxBackedgeTakenCount() below.
1672   Predicates.clear();
1673 
1674   if (!SingleUncountableEdge) {
1675     LLVM_DEBUG(dbgs() << "LV: Cound not find any uncountable exits");
1676     return false;
1677   }
1678 
1679   // The only supported early exit loops so far are ones where the early
1680   // exiting block is a unique predecessor of the latch block.
1681   BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor();
1682   if (LatchPredBB != SingleUncountableEdge->first) {
1683     reportVectorizationFailure("Early exit is not the latch predecessor",
1684                                "Cannot vectorize early exit loop",
1685                                "EarlyExitNotLatchPredecessor", ORE, TheLoop);
1686     return false;
1687   }
1688 
1689   // The latch block must have a countable exit.
1690   if (isa<SCEVCouldNotCompute>(
1691           PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) {
1692     reportVectorizationFailure(
1693         "Cannot determine exact exit count for latch block",
1694         "Cannot vectorize early exit loop",
1695         "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop);
1696     return false;
1697   }
1698   assert(llvm::is_contained(CountableExitingBlocks, LatchBB) &&
1699          "Latch block not found in list of countable exits!");
1700 
1701   // Check to see if there are instructions that could potentially generate
1702   // exceptions or have side-effects.
1703   auto IsSafeOperation = [](Instruction *I) -> bool {
1704     switch (I->getOpcode()) {
1705     case Instruction::Load:
1706     case Instruction::Store:
1707     case Instruction::PHI:
1708     case Instruction::Br:
1709       // These are checked separately.
1710       return true;
1711     default:
1712       return isSafeToSpeculativelyExecute(I);
1713     }
1714   };
1715 
1716   for (auto *BB : TheLoop->blocks())
1717     for (auto &I : *BB) {
1718       if (I.mayWriteToMemory()) {
1719         // We don't support writes to memory.
1720         reportVectorizationFailure(
1721             "Writes to memory unsupported in early exit loops",
1722             "Cannot vectorize early exit loop with writes to memory",
1723             "WritesInEarlyExitLoop", ORE, TheLoop);
1724         return false;
1725       } else if (!IsSafeOperation(&I)) {
1726         reportVectorizationFailure("Early exit loop contains operations that "
1727                                    "cannot be speculatively executed",
1728                                    "UnsafeOperationsEarlyExitLoop", ORE,
1729                                    TheLoop);
1730         return false;
1731       }
1732     }
1733 
1734   // The vectoriser cannot handle loads that occur after the early exit block.
1735   assert(LatchBB->getUniquePredecessor() == SingleUncountableEdge->first &&
1736          "Expected latch predecessor to be the early exiting block");
1737 
1738   // TODO: Handle loops that may fault.
1739   Predicates.clear();
1740   if (!isDereferenceableReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC,
1741                                      &Predicates)) {
1742     reportVectorizationFailure(
1743         "Loop may fault",
1744         "Cannot vectorize potentially faulting early exit loop",
1745         "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop);
1746     return false;
1747   }
1748 
1749   [[maybe_unused]] const SCEV *SymbolicMaxBTC =
1750       PSE.getSymbolicMaxBackedgeTakenCount();
1751   // Since we have an exact exit count for the latch and the early exit
1752   // dominates the latch, then this should guarantee a computed SCEV value.
1753   assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) &&
1754          "Failed to get symbolic expression for backedge taken count");
1755   LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max "
1756                        "backedge taken count: "
1757                     << *SymbolicMaxBTC << '\n');
1758   UncountableEdge = SingleUncountableEdge;
1759   return true;
1760 }
1761 
1762 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1763   // Store the result and return it at the end instead of exiting early, in case
1764   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1765   bool Result = true;
1766 
1767   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1768   // Check whether the loop-related control flow in the loop nest is expected by
1769   // vectorizer.
1770   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1771     if (DoExtraAnalysis) {
1772       LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest");
1773       Result = false;
1774     } else {
1775       return false;
1776     }
1777   }
1778 
1779   // We need to have a loop header.
1780   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1781                     << '\n');
1782 
1783   // Specific checks for outer loops. We skip the remaining legal checks at this
1784   // point because they don't support outer loops.
1785   if (!TheLoop->isInnermost()) {
1786     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1787 
1788     if (!canVectorizeOuterLoop()) {
1789       reportVectorizationFailure("Unsupported outer loop",
1790                                  "UnsupportedOuterLoop", ORE, TheLoop);
1791       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1792       // outer loops.
1793       return false;
1794     }
1795 
1796     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1797     return Result;
1798   }
1799 
1800   assert(TheLoop->isInnermost() && "Inner loop expected.");
1801   // Check if we can if-convert non-single-bb loops.
1802   unsigned NumBlocks = TheLoop->getNumBlocks();
1803   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1804     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1805     if (DoExtraAnalysis)
1806       Result = false;
1807     else
1808       return false;
1809   }
1810 
1811   // Check if we can vectorize the instructions and CFG in this loop.
1812   if (!canVectorizeInstrs()) {
1813     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1814     if (DoExtraAnalysis)
1815       Result = false;
1816     else
1817       return false;
1818   }
1819 
1820   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
1821     if (TheLoop->getExitingBlock()) {
1822       reportVectorizationFailure("Cannot vectorize uncountable loop",
1823                                  "UnsupportedUncountableLoop", ORE, TheLoop);
1824       if (DoExtraAnalysis)
1825         Result = false;
1826       else
1827         return false;
1828     } else {
1829       if (!isVectorizableEarlyExitLoop()) {
1830         UncountableEdge = std::nullopt;
1831         if (DoExtraAnalysis)
1832           Result = false;
1833         else
1834           return false;
1835       }
1836     }
1837   }
1838 
1839   // Go over each instruction and look at memory deps.
1840   if (!canVectorizeMemory()) {
1841     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1842     if (DoExtraAnalysis)
1843       Result = false;
1844     else
1845       return false;
1846   }
1847 
1848   if (Result) {
1849     LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1850                       << (LAI->getRuntimePointerChecking()->Need
1851                               ? " (with a runtime bound check)"
1852                               : "")
1853                       << "!\n");
1854   }
1855 
1856   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1857   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1858     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1859 
1860   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1861     LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable "
1862                          "due to SCEVThreshold");
1863     reportVectorizationFailure("Too many SCEV checks needed",
1864         "Too many SCEV assumptions need to be made and checked at runtime",
1865         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1866     if (DoExtraAnalysis)
1867       Result = false;
1868     else
1869       return false;
1870   }
1871 
1872   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1873   // we can vectorize, and at this point we don't have any other mem analysis
1874   // which may limit our maximum vectorization factor, so just return true with
1875   // no restrictions.
1876   return Result;
1877 }
1878 
1879 bool LoopVectorizationLegality::canFoldTailByMasking() const {
1880 
1881   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1882 
1883   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1884 
1885   for (const auto &Reduction : getReductionVars())
1886     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1887 
1888   // TODO: handle non-reduction outside users when tail is folded by masking.
1889   for (auto *AE : AllowedExit) {
1890     // Check that all users of allowed exit values are inside the loop or
1891     // are the live-out of a reduction.
1892     if (ReductionLiveOuts.count(AE))
1893       continue;
1894     for (User *U : AE->users()) {
1895       Instruction *UI = cast<Instruction>(U);
1896       if (TheLoop->contains(UI))
1897         continue;
1898       LLVM_DEBUG(
1899           dbgs()
1900           << "LV: Cannot fold tail by masking, loop has an outside user for "
1901           << *UI << "\n");
1902       return false;
1903     }
1904   }
1905 
1906   for (const auto &Entry : getInductionVars()) {
1907     PHINode *OrigPhi = Entry.first;
1908     for (User *U : OrigPhi->users()) {
1909       auto *UI = cast<Instruction>(U);
1910       if (!TheLoop->contains(UI)) {
1911         LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
1912                              "outside user for "
1913                           << *UI << "\n");
1914         return false;
1915       }
1916     }
1917   }
1918 
1919   // The list of pointers that we can safely read and write to remains empty.
1920   SmallPtrSet<Value *, 8> SafePointers;
1921 
1922   // Check all blocks for predication, including those that ordinarily do not
1923   // need predication such as the header block.
1924   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1925   for (BasicBlock *BB : TheLoop->blocks()) {
1926     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
1927       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
1928       return false;
1929     }
1930   }
1931 
1932   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1933 
1934   return true;
1935 }
1936 
1937 void LoopVectorizationLegality::prepareToFoldTailByMasking() {
1938   // The list of pointers that we can safely read and write to remains empty.
1939   SmallPtrSet<Value *, 8> SafePointers;
1940 
1941   // Mark all blocks for predication, including those that ordinarily do not
1942   // need predication such as the header block.
1943   for (BasicBlock *BB : TheLoop->blocks()) {
1944     [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
1945     assert(R && "Must be able to predicate block when tail-folding.");
1946   }
1947 }
1948 
1949 } // namespace llvm
1950