1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/NoFolder.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/IR/ValueHandle.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/KnownBits.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <set> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace PatternMatch; 93 94 #define DEBUG_TYPE "simplifycfg" 95 96 cl::opt<bool> llvm::RequireAndPreserveDomTree( 97 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 98 99 cl::desc( 100 "Temporary development switch used to gradually uplift SimplifyCFG " 101 "into preserving DomTree,")); 102 103 // Chosen as 2 so as to be cheap, but still to have enough power to fold 104 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 105 // To catch this, we need to fold a compare and a select, hence '2' being the 106 // minimum reasonable default. 107 static cl::opt<unsigned> PHINodeFoldingThreshold( 108 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 109 cl::desc( 110 "Control the amount of phi node folding to perform (default = 2)")); 111 112 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 113 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 114 cl::desc("Control the maximal total instruction cost that we are willing " 115 "to speculatively execute to fold a 2-entry PHI node into a " 116 "select (default = 4)")); 117 118 static cl::opt<bool> 119 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 120 cl::desc("Hoist common instructions up to the parent block")); 121 122 static cl::opt<bool> HoistLoadsStoresWithCondFaulting( 123 "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden, 124 cl::init(true), 125 cl::desc("Hoist loads/stores if the target supports " 126 "conditional faulting")); 127 128 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold( 129 "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6), 130 cl::desc("Control the maximal conditional load/store that we are willing " 131 "to speculatively execute to eliminate conditional branch " 132 "(default = 6)")); 133 134 static cl::opt<unsigned> 135 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, 136 cl::init(20), 137 cl::desc("Allow reordering across at most this many " 138 "instructions when hoisting")); 139 140 static cl::opt<bool> 141 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 142 cl::desc("Sink common instructions down to the end block")); 143 144 static cl::opt<bool> HoistCondStores( 145 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 146 cl::desc("Hoist conditional stores if an unconditional store precedes")); 147 148 static cl::opt<bool> MergeCondStores( 149 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 150 cl::desc("Hoist conditional stores even if an unconditional store does not " 151 "precede - hoist multiple conditional stores into a single " 152 "predicated store")); 153 154 static cl::opt<bool> MergeCondStoresAggressively( 155 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 156 cl::desc("When merging conditional stores, do so even if the resultant " 157 "basic blocks are unlikely to be if-converted as a result")); 158 159 static cl::opt<bool> SpeculateOneExpensiveInst( 160 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 161 cl::desc("Allow exactly one expensive instruction to be speculatively " 162 "executed")); 163 164 static cl::opt<unsigned> MaxSpeculationDepth( 165 "max-speculation-depth", cl::Hidden, cl::init(10), 166 cl::desc("Limit maximum recursion depth when calculating costs of " 167 "speculatively executed instructions")); 168 169 static cl::opt<int> 170 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 171 cl::init(10), 172 cl::desc("Max size of a block which is still considered " 173 "small enough to thread through")); 174 175 // Two is chosen to allow one negation and a logical combine. 176 static cl::opt<unsigned> 177 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 178 cl::init(2), 179 cl::desc("Maximum cost of combining conditions when " 180 "folding branches")); 181 182 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 183 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 184 cl::init(2), 185 cl::desc("Multiplier to apply to threshold when determining whether or not " 186 "to fold branch to common destination when vector operations are " 187 "present")); 188 189 static cl::opt<bool> EnableMergeCompatibleInvokes( 190 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 191 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 192 193 static cl::opt<unsigned> MaxSwitchCasesPerResult( 194 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 195 cl::desc("Limit cases to analyze when converting a switch to select")); 196 197 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 198 STATISTIC(NumLinearMaps, 199 "Number of switch instructions turned into linear mapping"); 200 STATISTIC(NumLookupTables, 201 "Number of switch instructions turned into lookup tables"); 202 STATISTIC( 203 NumLookupTablesHoles, 204 "Number of switch instructions turned into lookup tables (holes checked)"); 205 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 206 STATISTIC(NumFoldValueComparisonIntoPredecessors, 207 "Number of value comparisons folded into predecessor basic blocks"); 208 STATISTIC(NumFoldBranchToCommonDest, 209 "Number of branches folded into predecessor basic block"); 210 STATISTIC( 211 NumHoistCommonCode, 212 "Number of common instruction 'blocks' hoisted up to the begin block"); 213 STATISTIC(NumHoistCommonInstrs, 214 "Number of common instructions hoisted up to the begin block"); 215 STATISTIC(NumSinkCommonCode, 216 "Number of common instruction 'blocks' sunk down to the end block"); 217 STATISTIC(NumSinkCommonInstrs, 218 "Number of common instructions sunk down to the end block"); 219 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 220 STATISTIC(NumInvokes, 221 "Number of invokes with empty resume blocks simplified into calls"); 222 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 223 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 224 225 namespace { 226 227 // The first field contains the value that the switch produces when a certain 228 // case group is selected, and the second field is a vector containing the 229 // cases composing the case group. 230 using SwitchCaseResultVectorTy = 231 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 232 233 // The first field contains the phi node that generates a result of the switch 234 // and the second field contains the value generated for a certain case in the 235 // switch for that PHI. 236 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 237 238 /// ValueEqualityComparisonCase - Represents a case of a switch. 239 struct ValueEqualityComparisonCase { 240 ConstantInt *Value; 241 BasicBlock *Dest; 242 243 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 244 : Value(Value), Dest(Dest) {} 245 246 bool operator<(ValueEqualityComparisonCase RHS) const { 247 // Comparing pointers is ok as we only rely on the order for uniquing. 248 return Value < RHS.Value; 249 } 250 251 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 252 }; 253 254 class SimplifyCFGOpt { 255 const TargetTransformInfo &TTI; 256 DomTreeUpdater *DTU; 257 const DataLayout &DL; 258 ArrayRef<WeakVH> LoopHeaders; 259 const SimplifyCFGOptions &Options; 260 bool Resimplify; 261 262 Value *isValueEqualityComparison(Instruction *TI); 263 BasicBlock *getValueEqualityComparisonCases( 264 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 265 bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 266 BasicBlock *Pred, 267 IRBuilder<> &Builder); 268 bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 269 Instruction *PTI, 270 IRBuilder<> &Builder); 271 bool foldValueComparisonIntoPredecessors(Instruction *TI, 272 IRBuilder<> &Builder); 273 274 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 275 bool simplifySingleResume(ResumeInst *RI); 276 bool simplifyCommonResume(ResumeInst *RI); 277 bool simplifyCleanupReturn(CleanupReturnInst *RI); 278 bool simplifyUnreachable(UnreachableInst *UI); 279 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 280 bool simplifyDuplicateSwitchArms(SwitchInst *SI, DomTreeUpdater *DTU); 281 bool simplifyIndirectBr(IndirectBrInst *IBI); 282 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 283 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 284 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 285 286 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 287 IRBuilder<> &Builder); 288 289 bool hoistCommonCodeFromSuccessors(Instruction *TI, bool AllInstsEqOnly); 290 bool hoistSuccIdenticalTerminatorToSwitchOrIf( 291 Instruction *TI, Instruction *I1, 292 SmallVectorImpl<Instruction *> &OtherSuccTIs); 293 bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB); 294 bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 295 BasicBlock *TrueBB, BasicBlock *FalseBB, 296 uint32_t TrueWeight, uint32_t FalseWeight); 297 bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 298 const DataLayout &DL); 299 bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 300 bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 301 bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 302 303 public: 304 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 305 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 306 const SimplifyCFGOptions &Opts) 307 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 308 assert((!DTU || !DTU->hasPostDomTree()) && 309 "SimplifyCFG is not yet capable of maintaining validity of a " 310 "PostDomTree, so don't ask for it."); 311 } 312 313 bool simplifyOnce(BasicBlock *BB); 314 bool run(BasicBlock *BB); 315 316 // Helper to set Resimplify and return change indication. 317 bool requestResimplify() { 318 Resimplify = true; 319 return true; 320 } 321 }; 322 323 } // end anonymous namespace 324 325 /// Return true if all the PHI nodes in the basic block \p BB 326 /// receive compatible (identical) incoming values when coming from 327 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 328 /// 329 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 330 /// is provided, and *both* of the values are present in the set, 331 /// then they are considered equal. 332 static bool incomingValuesAreCompatible( 333 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 334 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 335 assert(IncomingBlocks.size() == 2 && 336 "Only for a pair of incoming blocks at the time!"); 337 338 // FIXME: it is okay if one of the incoming values is an `undef` value, 339 // iff the other incoming value is guaranteed to be a non-poison value. 340 // FIXME: it is okay if one of the incoming values is a `poison` value. 341 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 342 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 343 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 344 if (IV0 == IV1) 345 return true; 346 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 347 EquivalenceSet->contains(IV1)) 348 return true; 349 return false; 350 }); 351 } 352 353 /// Return true if it is safe to merge these two 354 /// terminator instructions together. 355 static bool 356 safeToMergeTerminators(Instruction *SI1, Instruction *SI2, 357 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 358 if (SI1 == SI2) 359 return false; // Can't merge with self! 360 361 // It is not safe to merge these two switch instructions if they have a common 362 // successor, and if that successor has a PHI node, and if *that* PHI node has 363 // conflicting incoming values from the two switch blocks. 364 BasicBlock *SI1BB = SI1->getParent(); 365 BasicBlock *SI2BB = SI2->getParent(); 366 367 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 368 bool Fail = false; 369 for (BasicBlock *Succ : successors(SI2BB)) { 370 if (!SI1Succs.count(Succ)) 371 continue; 372 if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 373 continue; 374 Fail = true; 375 if (FailBlocks) 376 FailBlocks->insert(Succ); 377 else 378 break; 379 } 380 381 return !Fail; 382 } 383 384 /// Update PHI nodes in Succ to indicate that there will now be entries in it 385 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 386 /// will be the same as those coming in from ExistPred, an existing predecessor 387 /// of Succ. 388 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 389 BasicBlock *ExistPred, 390 MemorySSAUpdater *MSSAU = nullptr) { 391 for (PHINode &PN : Succ->phis()) 392 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 393 if (MSSAU) 394 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 395 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 396 } 397 398 /// Compute an abstract "cost" of speculating the given instruction, 399 /// which is assumed to be safe to speculate. TCC_Free means cheap, 400 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 401 /// expensive. 402 static InstructionCost computeSpeculationCost(const User *I, 403 const TargetTransformInfo &TTI) { 404 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); 405 } 406 407 /// If we have a merge point of an "if condition" as accepted above, 408 /// return true if the specified value dominates the block. We don't handle 409 /// the true generality of domination here, just a special case which works 410 /// well enough for us. 411 /// 412 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 413 /// see if V (which must be an instruction) and its recursive operands 414 /// that do not dominate BB have a combined cost lower than Budget and 415 /// are non-trapping. If both are true, the instruction is inserted into the 416 /// set and true is returned. 417 /// 418 /// The cost for most non-trapping instructions is defined as 1 except for 419 /// Select whose cost is 2. 420 /// 421 /// After this function returns, Cost is increased by the cost of 422 /// V plus its non-dominating operands. If that cost is greater than 423 /// Budget, false is returned and Cost is undefined. 424 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt, 425 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 426 InstructionCost &Cost, InstructionCost Budget, 427 const TargetTransformInfo &TTI, 428 AssumptionCache *AC, unsigned Depth = 0) { 429 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 430 // so limit the recursion depth. 431 // TODO: While this recursion limit does prevent pathological behavior, it 432 // would be better to track visited instructions to avoid cycles. 433 if (Depth == MaxSpeculationDepth) 434 return false; 435 436 Instruction *I = dyn_cast<Instruction>(V); 437 if (!I) { 438 // Non-instructions dominate all instructions and can be executed 439 // unconditionally. 440 return true; 441 } 442 BasicBlock *PBB = I->getParent(); 443 444 // We don't want to allow weird loops that might have the "if condition" in 445 // the bottom of this block. 446 if (PBB == BB) 447 return false; 448 449 // If this instruction is defined in a block that contains an unconditional 450 // branch to BB, then it must be in the 'conditional' part of the "if 451 // statement". If not, it definitely dominates the region. 452 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 453 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 454 return true; 455 456 // If we have seen this instruction before, don't count it again. 457 if (AggressiveInsts.count(I)) 458 return true; 459 460 // Okay, it looks like the instruction IS in the "condition". Check to 461 // see if it's a cheap instruction to unconditionally compute, and if it 462 // only uses stuff defined outside of the condition. If so, hoist it out. 463 if (!isSafeToSpeculativelyExecute(I, InsertPt, AC)) 464 return false; 465 466 Cost += computeSpeculationCost(I, TTI); 467 468 // Allow exactly one instruction to be speculated regardless of its cost 469 // (as long as it is safe to do so). 470 // This is intended to flatten the CFG even if the instruction is a division 471 // or other expensive operation. The speculation of an expensive instruction 472 // is expected to be undone in CodeGenPrepare if the speculation has not 473 // enabled further IR optimizations. 474 if (Cost > Budget && 475 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 476 !Cost.isValid())) 477 return false; 478 479 // Okay, we can only really hoist these out if their operands do 480 // not take us over the cost threshold. 481 for (Use &Op : I->operands()) 482 if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget, 483 TTI, AC, Depth + 1)) 484 return false; 485 // Okay, it's safe to do this! Remember this instruction. 486 AggressiveInsts.insert(I); 487 return true; 488 } 489 490 /// Extract ConstantInt from value, looking through IntToPtr 491 /// and PointerNullValue. Return NULL if value is not a constant int. 492 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) { 493 // Normal constant int. 494 ConstantInt *CI = dyn_cast<ConstantInt>(V); 495 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || 496 DL.isNonIntegralPointerType(V->getType())) 497 return CI; 498 499 // This is some kind of pointer constant. Turn it into a pointer-sized 500 // ConstantInt if possible. 501 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 502 503 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 504 if (isa<ConstantPointerNull>(V)) 505 return ConstantInt::get(PtrTy, 0); 506 507 // IntToPtr const int. 508 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 509 if (CE->getOpcode() == Instruction::IntToPtr) 510 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 511 // The constant is very likely to have the right type already. 512 if (CI->getType() == PtrTy) 513 return CI; 514 else 515 return cast<ConstantInt>( 516 ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL)); 517 } 518 return nullptr; 519 } 520 521 namespace { 522 523 /// Given a chain of or (||) or and (&&) comparison of a value against a 524 /// constant, this will try to recover the information required for a switch 525 /// structure. 526 /// It will depth-first traverse the chain of comparison, seeking for patterns 527 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 528 /// representing the different cases for the switch. 529 /// Note that if the chain is composed of '||' it will build the set of elements 530 /// that matches the comparisons (i.e. any of this value validate the chain) 531 /// while for a chain of '&&' it will build the set elements that make the test 532 /// fail. 533 struct ConstantComparesGatherer { 534 const DataLayout &DL; 535 536 /// Value found for the switch comparison 537 Value *CompValue = nullptr; 538 539 /// Extra clause to be checked before the switch 540 Value *Extra = nullptr; 541 542 /// Set of integers to match in switch 543 SmallVector<ConstantInt *, 8> Vals; 544 545 /// Number of comparisons matched in the and/or chain 546 unsigned UsedICmps = 0; 547 548 /// Construct and compute the result for the comparison instruction Cond 549 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 550 gather(Cond); 551 } 552 553 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 554 ConstantComparesGatherer & 555 operator=(const ConstantComparesGatherer &) = delete; 556 557 private: 558 /// Try to set the current value used for the comparison, it succeeds only if 559 /// it wasn't set before or if the new value is the same as the old one 560 bool setValueOnce(Value *NewVal) { 561 if (CompValue && CompValue != NewVal) 562 return false; 563 CompValue = NewVal; 564 return (CompValue != nullptr); 565 } 566 567 /// Try to match Instruction "I" as a comparison against a constant and 568 /// populates the array Vals with the set of values that match (or do not 569 /// match depending on isEQ). 570 /// Return false on failure. On success, the Value the comparison matched 571 /// against is placed in CompValue. 572 /// If CompValue is already set, the function is expected to fail if a match 573 /// is found but the value compared to is different. 574 bool matchInstruction(Instruction *I, bool isEQ) { 575 // If this is an icmp against a constant, handle this as one of the cases. 576 ICmpInst *ICI; 577 ConstantInt *C; 578 if (!((ICI = dyn_cast<ICmpInst>(I)) && 579 (C = getConstantInt(I->getOperand(1), DL)))) { 580 return false; 581 } 582 583 Value *RHSVal; 584 const APInt *RHSC; 585 586 // Pattern match a special case 587 // (x & ~2^z) == y --> x == y || x == y|2^z 588 // This undoes a transformation done by instcombine to fuse 2 compares. 589 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 590 // It's a little bit hard to see why the following transformations are 591 // correct. Here is a CVC3 program to verify them for 64-bit values: 592 593 /* 594 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 595 x : BITVECTOR(64); 596 y : BITVECTOR(64); 597 z : BITVECTOR(64); 598 mask : BITVECTOR(64) = BVSHL(ONE, z); 599 QUERY( (y & ~mask = y) => 600 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 601 ); 602 QUERY( (y | mask = y) => 603 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 604 ); 605 */ 606 607 // Please note that each pattern must be a dual implication (<--> or 608 // iff). One directional implication can create spurious matches. If the 609 // implication is only one-way, an unsatisfiable condition on the left 610 // side can imply a satisfiable condition on the right side. Dual 611 // implication ensures that satisfiable conditions are transformed to 612 // other satisfiable conditions and unsatisfiable conditions are 613 // transformed to other unsatisfiable conditions. 614 615 // Here is a concrete example of a unsatisfiable condition on the left 616 // implying a satisfiable condition on the right: 617 // 618 // mask = (1 << z) 619 // (x & ~mask) == y --> (x == y || x == (y | mask)) 620 // 621 // Substituting y = 3, z = 0 yields: 622 // (x & -2) == 3 --> (x == 3 || x == 2) 623 624 // Pattern match a special case: 625 /* 626 QUERY( (y & ~mask = y) => 627 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 628 ); 629 */ 630 if (match(ICI->getOperand(0), 631 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 632 APInt Mask = ~*RHSC; 633 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 634 // If we already have a value for the switch, it has to match! 635 if (!setValueOnce(RHSVal)) 636 return false; 637 638 Vals.push_back(C); 639 Vals.push_back( 640 ConstantInt::get(C->getContext(), 641 C->getValue() | Mask)); 642 UsedICmps++; 643 return true; 644 } 645 } 646 647 // Pattern match a special case: 648 /* 649 QUERY( (y | mask = y) => 650 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 651 ); 652 */ 653 if (match(ICI->getOperand(0), 654 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 655 APInt Mask = *RHSC; 656 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 657 // If we already have a value for the switch, it has to match! 658 if (!setValueOnce(RHSVal)) 659 return false; 660 661 Vals.push_back(C); 662 Vals.push_back(ConstantInt::get(C->getContext(), 663 C->getValue() & ~Mask)); 664 UsedICmps++; 665 return true; 666 } 667 } 668 669 // If we already have a value for the switch, it has to match! 670 if (!setValueOnce(ICI->getOperand(0))) 671 return false; 672 673 UsedICmps++; 674 Vals.push_back(C); 675 return ICI->getOperand(0); 676 } 677 678 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 679 ConstantRange Span = 680 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 681 682 // Shift the range if the compare is fed by an add. This is the range 683 // compare idiom as emitted by instcombine. 684 Value *CandidateVal = I->getOperand(0); 685 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 686 Span = Span.subtract(*RHSC); 687 CandidateVal = RHSVal; 688 } 689 690 // If this is an and/!= check, then we are looking to build the set of 691 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 692 // x != 0 && x != 1. 693 if (!isEQ) 694 Span = Span.inverse(); 695 696 // If there are a ton of values, we don't want to make a ginormous switch. 697 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 698 return false; 699 } 700 701 // If we already have a value for the switch, it has to match! 702 if (!setValueOnce(CandidateVal)) 703 return false; 704 705 // Add all values from the range to the set 706 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 707 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 708 709 UsedICmps++; 710 return true; 711 } 712 713 /// Given a potentially 'or'd or 'and'd together collection of icmp 714 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 715 /// the value being compared, and stick the list constants into the Vals 716 /// vector. 717 /// One "Extra" case is allowed to differ from the other. 718 void gather(Value *V) { 719 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 720 721 // Keep a stack (SmallVector for efficiency) for depth-first traversal 722 SmallVector<Value *, 8> DFT; 723 SmallPtrSet<Value *, 8> Visited; 724 725 // Initialize 726 Visited.insert(V); 727 DFT.push_back(V); 728 729 while (!DFT.empty()) { 730 V = DFT.pop_back_val(); 731 732 if (Instruction *I = dyn_cast<Instruction>(V)) { 733 // If it is a || (or && depending on isEQ), process the operands. 734 Value *Op0, *Op1; 735 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 736 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 737 if (Visited.insert(Op1).second) 738 DFT.push_back(Op1); 739 if (Visited.insert(Op0).second) 740 DFT.push_back(Op0); 741 742 continue; 743 } 744 745 // Try to match the current instruction 746 if (matchInstruction(I, isEQ)) 747 // Match succeed, continue the loop 748 continue; 749 } 750 751 // One element of the sequence of || (or &&) could not be match as a 752 // comparison against the same value as the others. 753 // We allow only one "Extra" case to be checked before the switch 754 if (!Extra) { 755 Extra = V; 756 continue; 757 } 758 // Failed to parse a proper sequence, abort now 759 CompValue = nullptr; 760 break; 761 } 762 } 763 }; 764 765 } // end anonymous namespace 766 767 static void eraseTerminatorAndDCECond(Instruction *TI, 768 MemorySSAUpdater *MSSAU = nullptr) { 769 Instruction *Cond = nullptr; 770 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 771 Cond = dyn_cast<Instruction>(SI->getCondition()); 772 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 773 if (BI->isConditional()) 774 Cond = dyn_cast<Instruction>(BI->getCondition()); 775 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 776 Cond = dyn_cast<Instruction>(IBI->getAddress()); 777 } 778 779 TI->eraseFromParent(); 780 if (Cond) 781 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 782 } 783 784 /// Return true if the specified terminator checks 785 /// to see if a value is equal to constant integer value. 786 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 787 Value *CV = nullptr; 788 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 789 // Do not permit merging of large switch instructions into their 790 // predecessors unless there is only one predecessor. 791 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 792 CV = SI->getCondition(); 793 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 794 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 795 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 796 if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL)) 797 CV = ICI->getOperand(0); 798 } 799 800 // Unwrap any lossless ptrtoint cast. 801 if (CV) { 802 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 803 Value *Ptr = PTII->getPointerOperand(); 804 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 805 CV = Ptr; 806 } 807 } 808 return CV; 809 } 810 811 /// Given a value comparison instruction, 812 /// decode all of the 'cases' that it represents and return the 'default' block. 813 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases( 814 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 815 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 816 Cases.reserve(SI->getNumCases()); 817 for (auto Case : SI->cases()) 818 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 819 Case.getCaseSuccessor())); 820 return SI->getDefaultDest(); 821 } 822 823 BranchInst *BI = cast<BranchInst>(TI); 824 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 825 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 826 Cases.push_back(ValueEqualityComparisonCase( 827 getConstantInt(ICI->getOperand(1), DL), Succ)); 828 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 829 } 830 831 /// Given a vector of bb/value pairs, remove any entries 832 /// in the list that match the specified block. 833 static void 834 eliminateBlockCases(BasicBlock *BB, 835 std::vector<ValueEqualityComparisonCase> &Cases) { 836 llvm::erase(Cases, BB); 837 } 838 839 /// Return true if there are any keys in C1 that exist in C2 as well. 840 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 841 std::vector<ValueEqualityComparisonCase> &C2) { 842 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 843 844 // Make V1 be smaller than V2. 845 if (V1->size() > V2->size()) 846 std::swap(V1, V2); 847 848 if (V1->empty()) 849 return false; 850 if (V1->size() == 1) { 851 // Just scan V2. 852 ConstantInt *TheVal = (*V1)[0].Value; 853 for (const ValueEqualityComparisonCase &VECC : *V2) 854 if (TheVal == VECC.Value) 855 return true; 856 } 857 858 // Otherwise, just sort both lists and compare element by element. 859 array_pod_sort(V1->begin(), V1->end()); 860 array_pod_sort(V2->begin(), V2->end()); 861 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 862 while (i1 != e1 && i2 != e2) { 863 if ((*V1)[i1].Value == (*V2)[i2].Value) 864 return true; 865 if ((*V1)[i1].Value < (*V2)[i2].Value) 866 ++i1; 867 else 868 ++i2; 869 } 870 return false; 871 } 872 873 // Set branch weights on SwitchInst. This sets the metadata if there is at 874 // least one non-zero weight. 875 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights, 876 bool IsExpected) { 877 // Check that there is at least one non-zero weight. Otherwise, pass 878 // nullptr to setMetadata which will erase the existing metadata. 879 MDNode *N = nullptr; 880 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 881 N = MDBuilder(SI->getParent()->getContext()) 882 .createBranchWeights(Weights, IsExpected); 883 SI->setMetadata(LLVMContext::MD_prof, N); 884 } 885 886 // Similar to the above, but for branch and select instructions that take 887 // exactly 2 weights. 888 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 889 uint32_t FalseWeight, bool IsExpected) { 890 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 891 // Check that there is at least one non-zero weight. Otherwise, pass 892 // nullptr to setMetadata which will erase the existing metadata. 893 MDNode *N = nullptr; 894 if (TrueWeight || FalseWeight) 895 N = MDBuilder(I->getParent()->getContext()) 896 .createBranchWeights(TrueWeight, FalseWeight, IsExpected); 897 I->setMetadata(LLVMContext::MD_prof, N); 898 } 899 900 /// If TI is known to be a terminator instruction and its block is known to 901 /// only have a single predecessor block, check to see if that predecessor is 902 /// also a value comparison with the same value, and if that comparison 903 /// determines the outcome of this comparison. If so, simplify TI. This does a 904 /// very limited form of jump threading. 905 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor( 906 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 907 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 908 if (!PredVal) 909 return false; // Not a value comparison in predecessor. 910 911 Value *ThisVal = isValueEqualityComparison(TI); 912 assert(ThisVal && "This isn't a value comparison!!"); 913 if (ThisVal != PredVal) 914 return false; // Different predicates. 915 916 // TODO: Preserve branch weight metadata, similarly to how 917 // foldValueComparisonIntoPredecessors preserves it. 918 919 // Find out information about when control will move from Pred to TI's block. 920 std::vector<ValueEqualityComparisonCase> PredCases; 921 BasicBlock *PredDef = 922 getValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 923 eliminateBlockCases(PredDef, PredCases); // Remove default from cases. 924 925 // Find information about how control leaves this block. 926 std::vector<ValueEqualityComparisonCase> ThisCases; 927 BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases); 928 eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 929 930 // If TI's block is the default block from Pred's comparison, potentially 931 // simplify TI based on this knowledge. 932 if (PredDef == TI->getParent()) { 933 // If we are here, we know that the value is none of those cases listed in 934 // PredCases. If there are any cases in ThisCases that are in PredCases, we 935 // can simplify TI. 936 if (!valuesOverlap(PredCases, ThisCases)) 937 return false; 938 939 if (isa<BranchInst>(TI)) { 940 // Okay, one of the successors of this condbr is dead. Convert it to a 941 // uncond br. 942 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 943 // Insert the new branch. 944 Instruction *NI = Builder.CreateBr(ThisDef); 945 (void)NI; 946 947 // Remove PHI node entries for the dead edge. 948 ThisCases[0].Dest->removePredecessor(PredDef); 949 950 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 951 << "Through successor TI: " << *TI << "Leaving: " << *NI 952 << "\n"); 953 954 eraseTerminatorAndDCECond(TI); 955 956 if (DTU) 957 DTU->applyUpdates( 958 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 959 960 return true; 961 } 962 963 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 964 // Okay, TI has cases that are statically dead, prune them away. 965 SmallPtrSet<Constant *, 16> DeadCases; 966 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 967 DeadCases.insert(PredCases[i].Value); 968 969 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 970 << "Through successor TI: " << *TI); 971 972 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 973 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 974 --i; 975 auto *Successor = i->getCaseSuccessor(); 976 if (DTU) 977 ++NumPerSuccessorCases[Successor]; 978 if (DeadCases.count(i->getCaseValue())) { 979 Successor->removePredecessor(PredDef); 980 SI.removeCase(i); 981 if (DTU) 982 --NumPerSuccessorCases[Successor]; 983 } 984 } 985 986 if (DTU) { 987 std::vector<DominatorTree::UpdateType> Updates; 988 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 989 if (I.second == 0) 990 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 991 DTU->applyUpdates(Updates); 992 } 993 994 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 995 return true; 996 } 997 998 // Otherwise, TI's block must correspond to some matched value. Find out 999 // which value (or set of values) this is. 1000 ConstantInt *TIV = nullptr; 1001 BasicBlock *TIBB = TI->getParent(); 1002 for (const auto &[Value, Dest] : PredCases) 1003 if (Dest == TIBB) { 1004 if (TIV) 1005 return false; // Cannot handle multiple values coming to this block. 1006 TIV = Value; 1007 } 1008 assert(TIV && "No edge from pred to succ?"); 1009 1010 // Okay, we found the one constant that our value can be if we get into TI's 1011 // BB. Find out which successor will unconditionally be branched to. 1012 BasicBlock *TheRealDest = nullptr; 1013 for (const auto &[Value, Dest] : ThisCases) 1014 if (Value == TIV) { 1015 TheRealDest = Dest; 1016 break; 1017 } 1018 1019 // If not handled by any explicit cases, it is handled by the default case. 1020 if (!TheRealDest) 1021 TheRealDest = ThisDef; 1022 1023 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1024 1025 // Remove PHI node entries for dead edges. 1026 BasicBlock *CheckEdge = TheRealDest; 1027 for (BasicBlock *Succ : successors(TIBB)) 1028 if (Succ != CheckEdge) { 1029 if (Succ != TheRealDest) 1030 RemovedSuccs.insert(Succ); 1031 Succ->removePredecessor(TIBB); 1032 } else 1033 CheckEdge = nullptr; 1034 1035 // Insert the new branch. 1036 Instruction *NI = Builder.CreateBr(TheRealDest); 1037 (void)NI; 1038 1039 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1040 << "Through successor TI: " << *TI << "Leaving: " << *NI 1041 << "\n"); 1042 1043 eraseTerminatorAndDCECond(TI); 1044 if (DTU) { 1045 SmallVector<DominatorTree::UpdateType, 2> Updates; 1046 Updates.reserve(RemovedSuccs.size()); 1047 for (auto *RemovedSucc : RemovedSuccs) 1048 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1049 DTU->applyUpdates(Updates); 1050 } 1051 return true; 1052 } 1053 1054 namespace { 1055 1056 /// This class implements a stable ordering of constant 1057 /// integers that does not depend on their address. This is important for 1058 /// applications that sort ConstantInt's to ensure uniqueness. 1059 struct ConstantIntOrdering { 1060 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1061 return LHS->getValue().ult(RHS->getValue()); 1062 } 1063 }; 1064 1065 } // end anonymous namespace 1066 1067 static int constantIntSortPredicate(ConstantInt *const *P1, 1068 ConstantInt *const *P2) { 1069 const ConstantInt *LHS = *P1; 1070 const ConstantInt *RHS = *P2; 1071 if (LHS == RHS) 1072 return 0; 1073 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1074 } 1075 1076 /// Get Weights of a given terminator, the default weight is at the front 1077 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1078 /// metadata. 1079 static void getBranchWeights(Instruction *TI, 1080 SmallVectorImpl<uint64_t> &Weights) { 1081 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1082 assert(MD && "Invalid branch-weight metadata"); 1083 extractFromBranchWeightMD64(MD, Weights); 1084 1085 // If TI is a conditional eq, the default case is the false case, 1086 // and the corresponding branch-weight data is at index 2. We swap the 1087 // default weight to be the first entry. 1088 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1089 assert(Weights.size() == 2); 1090 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1091 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1092 std::swap(Weights.front(), Weights.back()); 1093 } 1094 } 1095 1096 /// Keep halving the weights until all can fit in uint32_t. 1097 static void fitWeights(MutableArrayRef<uint64_t> Weights) { 1098 uint64_t Max = *llvm::max_element(Weights); 1099 if (Max > UINT_MAX) { 1100 unsigned Offset = 32 - llvm::countl_zero(Max); 1101 for (uint64_t &I : Weights) 1102 I >>= Offset; 1103 } 1104 } 1105 1106 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1107 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1108 Instruction *PTI = PredBlock->getTerminator(); 1109 1110 // If we have bonus instructions, clone them into the predecessor block. 1111 // Note that there may be multiple predecessor blocks, so we cannot move 1112 // bonus instructions to a predecessor block. 1113 for (Instruction &BonusInst : *BB) { 1114 if (BonusInst.isTerminator()) 1115 continue; 1116 1117 Instruction *NewBonusInst = BonusInst.clone(); 1118 1119 if (!isa<DbgInfoIntrinsic>(BonusInst) && 1120 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1121 // Unless the instruction has the same !dbg location as the original 1122 // branch, drop it. When we fold the bonus instructions we want to make 1123 // sure we reset their debug locations in order to avoid stepping on 1124 // dead code caused by folding dead branches. 1125 NewBonusInst->setDebugLoc(DebugLoc()); 1126 } 1127 1128 RemapInstruction(NewBonusInst, VMap, 1129 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1130 1131 // If we speculated an instruction, we need to drop any metadata that may 1132 // result in undefined behavior, as the metadata might have been valid 1133 // only given the branch precondition. 1134 // Similarly strip attributes on call parameters that may cause UB in 1135 // location the call is moved to. 1136 NewBonusInst->dropUBImplyingAttrsAndMetadata(); 1137 1138 NewBonusInst->insertInto(PredBlock, PTI->getIterator()); 1139 auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst); 1140 RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap, 1141 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1142 1143 if (isa<DbgInfoIntrinsic>(BonusInst)) 1144 continue; 1145 1146 NewBonusInst->takeName(&BonusInst); 1147 BonusInst.setName(NewBonusInst->getName() + ".old"); 1148 VMap[&BonusInst] = NewBonusInst; 1149 1150 // Update (liveout) uses of bonus instructions, 1151 // now that the bonus instruction has been cloned into predecessor. 1152 // Note that we expect to be in a block-closed SSA form for this to work! 1153 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1154 auto *UI = cast<Instruction>(U.getUser()); 1155 auto *PN = dyn_cast<PHINode>(UI); 1156 if (!PN) { 1157 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1158 "If the user is not a PHI node, then it should be in the same " 1159 "block as, and come after, the original bonus instruction."); 1160 continue; // Keep using the original bonus instruction. 1161 } 1162 // Is this the block-closed SSA form PHI node? 1163 if (PN->getIncomingBlock(U) == BB) 1164 continue; // Great, keep using the original bonus instruction. 1165 // The only other alternative is an "use" when coming from 1166 // the predecessor block - here we should refer to the cloned bonus instr. 1167 assert(PN->getIncomingBlock(U) == PredBlock && 1168 "Not in block-closed SSA form?"); 1169 U.set(NewBonusInst); 1170 } 1171 } 1172 } 1173 1174 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding( 1175 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1176 BasicBlock *BB = TI->getParent(); 1177 BasicBlock *Pred = PTI->getParent(); 1178 1179 SmallVector<DominatorTree::UpdateType, 32> Updates; 1180 1181 // Figure out which 'cases' to copy from SI to PSI. 1182 std::vector<ValueEqualityComparisonCase> BBCases; 1183 BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases); 1184 1185 std::vector<ValueEqualityComparisonCase> PredCases; 1186 BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases); 1187 1188 // Based on whether the default edge from PTI goes to BB or not, fill in 1189 // PredCases and PredDefault with the new switch cases we would like to 1190 // build. 1191 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1192 1193 // Update the branch weight metadata along the way 1194 SmallVector<uint64_t, 8> Weights; 1195 bool PredHasWeights = hasBranchWeightMD(*PTI); 1196 bool SuccHasWeights = hasBranchWeightMD(*TI); 1197 1198 if (PredHasWeights) { 1199 getBranchWeights(PTI, Weights); 1200 // branch-weight metadata is inconsistent here. 1201 if (Weights.size() != 1 + PredCases.size()) 1202 PredHasWeights = SuccHasWeights = false; 1203 } else if (SuccHasWeights) 1204 // If there are no predecessor weights but there are successor weights, 1205 // populate Weights with 1, which will later be scaled to the sum of 1206 // successor's weights 1207 Weights.assign(1 + PredCases.size(), 1); 1208 1209 SmallVector<uint64_t, 8> SuccWeights; 1210 if (SuccHasWeights) { 1211 getBranchWeights(TI, SuccWeights); 1212 // branch-weight metadata is inconsistent here. 1213 if (SuccWeights.size() != 1 + BBCases.size()) 1214 PredHasWeights = SuccHasWeights = false; 1215 } else if (PredHasWeights) 1216 SuccWeights.assign(1 + BBCases.size(), 1); 1217 1218 if (PredDefault == BB) { 1219 // If this is the default destination from PTI, only the edges in TI 1220 // that don't occur in PTI, or that branch to BB will be activated. 1221 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1222 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1223 if (PredCases[i].Dest != BB) 1224 PTIHandled.insert(PredCases[i].Value); 1225 else { 1226 // The default destination is BB, we don't need explicit targets. 1227 std::swap(PredCases[i], PredCases.back()); 1228 1229 if (PredHasWeights || SuccHasWeights) { 1230 // Increase weight for the default case. 1231 Weights[0] += Weights[i + 1]; 1232 std::swap(Weights[i + 1], Weights.back()); 1233 Weights.pop_back(); 1234 } 1235 1236 PredCases.pop_back(); 1237 --i; 1238 --e; 1239 } 1240 1241 // Reconstruct the new switch statement we will be building. 1242 if (PredDefault != BBDefault) { 1243 PredDefault->removePredecessor(Pred); 1244 if (DTU && PredDefault != BB) 1245 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1246 PredDefault = BBDefault; 1247 ++NewSuccessors[BBDefault]; 1248 } 1249 1250 unsigned CasesFromPred = Weights.size(); 1251 uint64_t ValidTotalSuccWeight = 0; 1252 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1253 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1254 PredCases.push_back(BBCases[i]); 1255 ++NewSuccessors[BBCases[i].Dest]; 1256 if (SuccHasWeights || PredHasWeights) { 1257 // The default weight is at index 0, so weight for the ith case 1258 // should be at index i+1. Scale the cases from successor by 1259 // PredDefaultWeight (Weights[0]). 1260 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1261 ValidTotalSuccWeight += SuccWeights[i + 1]; 1262 } 1263 } 1264 1265 if (SuccHasWeights || PredHasWeights) { 1266 ValidTotalSuccWeight += SuccWeights[0]; 1267 // Scale the cases from predecessor by ValidTotalSuccWeight. 1268 for (unsigned i = 1; i < CasesFromPred; ++i) 1269 Weights[i] *= ValidTotalSuccWeight; 1270 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1271 Weights[0] *= SuccWeights[0]; 1272 } 1273 } else { 1274 // If this is not the default destination from PSI, only the edges 1275 // in SI that occur in PSI with a destination of BB will be 1276 // activated. 1277 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1278 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1279 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1280 if (PredCases[i].Dest == BB) { 1281 PTIHandled.insert(PredCases[i].Value); 1282 1283 if (PredHasWeights || SuccHasWeights) { 1284 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1285 std::swap(Weights[i + 1], Weights.back()); 1286 Weights.pop_back(); 1287 } 1288 1289 std::swap(PredCases[i], PredCases.back()); 1290 PredCases.pop_back(); 1291 --i; 1292 --e; 1293 } 1294 1295 // Okay, now we know which constants were sent to BB from the 1296 // predecessor. Figure out where they will all go now. 1297 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1298 if (PTIHandled.count(BBCases[i].Value)) { 1299 // If this is one we are capable of getting... 1300 if (PredHasWeights || SuccHasWeights) 1301 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1302 PredCases.push_back(BBCases[i]); 1303 ++NewSuccessors[BBCases[i].Dest]; 1304 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1305 } 1306 1307 // If there are any constants vectored to BB that TI doesn't handle, 1308 // they must go to the default destination of TI. 1309 for (ConstantInt *I : PTIHandled) { 1310 if (PredHasWeights || SuccHasWeights) 1311 Weights.push_back(WeightsForHandled[I]); 1312 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1313 ++NewSuccessors[BBDefault]; 1314 } 1315 } 1316 1317 // Okay, at this point, we know which new successor Pred will get. Make 1318 // sure we update the number of entries in the PHI nodes for these 1319 // successors. 1320 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1321 if (DTU) { 1322 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1323 Updates.reserve(Updates.size() + NewSuccessors.size()); 1324 } 1325 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1326 NewSuccessors) { 1327 for (auto I : seq(NewSuccessor.second)) { 1328 (void)I; 1329 addPredecessorToBlock(NewSuccessor.first, Pred, BB); 1330 } 1331 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1332 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1333 } 1334 1335 Builder.SetInsertPoint(PTI); 1336 // Convert pointer to int before we switch. 1337 if (CV->getType()->isPointerTy()) { 1338 CV = 1339 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1340 } 1341 1342 // Now that the successors are updated, create the new Switch instruction. 1343 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1344 NewSI->setDebugLoc(PTI->getDebugLoc()); 1345 for (ValueEqualityComparisonCase &V : PredCases) 1346 NewSI->addCase(V.Value, V.Dest); 1347 1348 if (PredHasWeights || SuccHasWeights) { 1349 // Halve the weights if any of them cannot fit in an uint32_t 1350 fitWeights(Weights); 1351 1352 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1353 1354 setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false); 1355 } 1356 1357 eraseTerminatorAndDCECond(PTI); 1358 1359 // Okay, last check. If BB is still a successor of PSI, then we must 1360 // have an infinite loop case. If so, add an infinitely looping block 1361 // to handle the case to preserve the behavior of the code. 1362 BasicBlock *InfLoopBlock = nullptr; 1363 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1364 if (NewSI->getSuccessor(i) == BB) { 1365 if (!InfLoopBlock) { 1366 // Insert it at the end of the function, because it's either code, 1367 // or it won't matter if it's hot. :) 1368 InfLoopBlock = 1369 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1370 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1371 if (DTU) 1372 Updates.push_back( 1373 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1374 } 1375 NewSI->setSuccessor(i, InfLoopBlock); 1376 } 1377 1378 if (DTU) { 1379 if (InfLoopBlock) 1380 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1381 1382 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1383 1384 DTU->applyUpdates(Updates); 1385 } 1386 1387 ++NumFoldValueComparisonIntoPredecessors; 1388 return true; 1389 } 1390 1391 /// The specified terminator is a value equality comparison instruction 1392 /// (either a switch or a branch on "X == c"). 1393 /// See if any of the predecessors of the terminator block are value comparisons 1394 /// on the same value. If so, and if safe to do so, fold them together. 1395 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI, 1396 IRBuilder<> &Builder) { 1397 BasicBlock *BB = TI->getParent(); 1398 Value *CV = isValueEqualityComparison(TI); // CondVal 1399 assert(CV && "Not a comparison?"); 1400 1401 bool Changed = false; 1402 1403 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1404 while (!Preds.empty()) { 1405 BasicBlock *Pred = Preds.pop_back_val(); 1406 Instruction *PTI = Pred->getTerminator(); 1407 1408 // Don't try to fold into itself. 1409 if (Pred == BB) 1410 continue; 1411 1412 // See if the predecessor is a comparison with the same value. 1413 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1414 if (PCV != CV) 1415 continue; 1416 1417 SmallSetVector<BasicBlock *, 4> FailBlocks; 1418 if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) { 1419 for (auto *Succ : FailBlocks) { 1420 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1421 return false; 1422 } 1423 } 1424 1425 performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1426 Changed = true; 1427 } 1428 return Changed; 1429 } 1430 1431 // If we would need to insert a select that uses the value of this invoke 1432 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would 1433 // need to do this), we can't hoist the invoke, as there is nowhere to put the 1434 // select in this case. 1435 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1436 Instruction *I1, Instruction *I2) { 1437 for (BasicBlock *Succ : successors(BB1)) { 1438 for (const PHINode &PN : Succ->phis()) { 1439 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1440 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1441 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1442 return false; 1443 } 1444 } 1445 } 1446 return true; 1447 } 1448 1449 // Get interesting characteristics of instructions that 1450 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of 1451 // instructions can be reordered across. 1452 enum SkipFlags { 1453 SkipReadMem = 1, 1454 SkipSideEffect = 2, 1455 SkipImplicitControlFlow = 4 1456 }; 1457 1458 static unsigned skippedInstrFlags(Instruction *I) { 1459 unsigned Flags = 0; 1460 if (I->mayReadFromMemory()) 1461 Flags |= SkipReadMem; 1462 // We can't arbitrarily move around allocas, e.g. moving allocas (especially 1463 // inalloca) across stacksave/stackrestore boundaries. 1464 if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) 1465 Flags |= SkipSideEffect; 1466 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 1467 Flags |= SkipImplicitControlFlow; 1468 return Flags; 1469 } 1470 1471 // Returns true if it is safe to reorder an instruction across preceding 1472 // instructions in a basic block. 1473 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { 1474 // Don't reorder a store over a load. 1475 if ((Flags & SkipReadMem) && I->mayWriteToMemory()) 1476 return false; 1477 1478 // If we have seen an instruction with side effects, it's unsafe to reorder an 1479 // instruction which reads memory or itself has side effects. 1480 if ((Flags & SkipSideEffect) && 1481 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I))) 1482 return false; 1483 1484 // Reordering across an instruction which does not necessarily transfer 1485 // control to the next instruction is speculation. 1486 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) 1487 return false; 1488 1489 // Hoisting of llvm.deoptimize is only legal together with the next return 1490 // instruction, which this pass is not always able to do. 1491 if (auto *CB = dyn_cast<CallBase>(I)) 1492 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) 1493 return false; 1494 1495 // It's also unsafe/illegal to hoist an instruction above its instruction 1496 // operands 1497 BasicBlock *BB = I->getParent(); 1498 for (Value *Op : I->operands()) { 1499 if (auto *J = dyn_cast<Instruction>(Op)) 1500 if (J->getParent() == BB) 1501 return false; 1502 } 1503 1504 return true; 1505 } 1506 1507 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1508 1509 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical 1510 /// instructions \p I1 and \p I2 can and should be hoisted. 1511 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2, 1512 const TargetTransformInfo &TTI) { 1513 // If we're going to hoist a call, make sure that the two instructions 1514 // we're commoning/hoisting are both marked with musttail, or neither of 1515 // them is marked as such. Otherwise, we might end up in a situation where 1516 // we hoist from a block where the terminator is a `ret` to a block where 1517 // the terminator is a `br`, and `musttail` calls expect to be followed by 1518 // a return. 1519 auto *C1 = dyn_cast<CallInst>(I1); 1520 auto *C2 = dyn_cast<CallInst>(I2); 1521 if (C1 && C2) 1522 if (C1->isMustTailCall() != C2->isMustTailCall()) 1523 return false; 1524 1525 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1526 return false; 1527 1528 // If any of the two call sites has nomerge or convergent attribute, stop 1529 // hoisting. 1530 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1531 if (CB1->cannotMerge() || CB1->isConvergent()) 1532 return false; 1533 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1534 if (CB2->cannotMerge() || CB2->isConvergent()) 1535 return false; 1536 1537 return true; 1538 } 1539 1540 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical 1541 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in 1542 /// hoistCommonCodeFromSuccessors. e.g. The input: 1543 /// I1 DVRs: { x, z }, 1544 /// OtherInsts: { I2 DVRs: { x, y, z } } 1545 /// would result in hoisting only DbgVariableRecord x. 1546 static void hoistLockstepIdenticalDbgVariableRecords( 1547 Instruction *TI, Instruction *I1, 1548 SmallVectorImpl<Instruction *> &OtherInsts) { 1549 if (!I1->hasDbgRecords()) 1550 return; 1551 using CurrentAndEndIt = 1552 std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>; 1553 // Vector of {Current, End} iterators. 1554 SmallVector<CurrentAndEndIt> Itrs; 1555 Itrs.reserve(OtherInsts.size() + 1); 1556 // Helper lambdas for lock-step checks: 1557 // Return true if this Current == End. 1558 auto atEnd = [](const CurrentAndEndIt &Pair) { 1559 return Pair.first == Pair.second; 1560 }; 1561 // Return true if all Current are identical. 1562 auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) { 1563 return all_of(make_first_range(ArrayRef(Itrs).drop_front()), 1564 [&](DbgRecord::self_iterator I) { 1565 return Itrs[0].first->isIdenticalToWhenDefined(*I); 1566 }); 1567 }; 1568 1569 // Collect the iterators. 1570 Itrs.push_back( 1571 {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()}); 1572 for (Instruction *Other : OtherInsts) { 1573 if (!Other->hasDbgRecords()) 1574 return; 1575 Itrs.push_back( 1576 {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()}); 1577 } 1578 1579 // Iterate in lock-step until any of the DbgRecord lists are exausted. If 1580 // the lock-step DbgRecord are identical, hoist all of them to TI. 1581 // This replicates the dbg.* intrinsic behaviour in 1582 // hoistCommonCodeFromSuccessors. 1583 while (none_of(Itrs, atEnd)) { 1584 bool HoistDVRs = allIdentical(Itrs); 1585 for (CurrentAndEndIt &Pair : Itrs) { 1586 // Increment Current iterator now as we may be about to move the 1587 // DbgRecord. 1588 DbgRecord &DR = *Pair.first++; 1589 if (HoistDVRs) { 1590 DR.removeFromParent(); 1591 TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator()); 1592 } 1593 } 1594 } 1595 } 1596 1597 static bool areIdenticalUpToCommutativity(const Instruction *I1, 1598 const Instruction *I2) { 1599 if (I1->isIdenticalToWhenDefined(I2, /*IntersectAttrs=*/true)) 1600 return true; 1601 1602 if (auto *Cmp1 = dyn_cast<CmpInst>(I1)) 1603 if (auto *Cmp2 = dyn_cast<CmpInst>(I2)) 1604 return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() && 1605 Cmp1->getOperand(0) == Cmp2->getOperand(1) && 1606 Cmp1->getOperand(1) == Cmp2->getOperand(0); 1607 1608 if (I1->isCommutative() && I1->isSameOperationAs(I2)) { 1609 return I1->getOperand(0) == I2->getOperand(1) && 1610 I1->getOperand(1) == I2->getOperand(0) && 1611 equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2)); 1612 } 1613 1614 return false; 1615 } 1616 1617 /// If the target supports conditional faulting, 1618 /// we look for the following pattern: 1619 /// \code 1620 /// BB: 1621 /// ... 1622 /// %cond = icmp ult %x, %y 1623 /// br i1 %cond, label %TrueBB, label %FalseBB 1624 /// FalseBB: 1625 /// store i32 1, ptr %q, align 4 1626 /// ... 1627 /// TrueBB: 1628 /// %maskedloadstore = load i32, ptr %b, align 4 1629 /// store i32 %maskedloadstore, ptr %p, align 4 1630 /// ... 1631 /// \endcode 1632 /// 1633 /// and transform it into: 1634 /// 1635 /// \code 1636 /// BB: 1637 /// ... 1638 /// %cond = icmp ult %x, %y 1639 /// %maskedloadstore = cload i32, ptr %b, %cond 1640 /// cstore i32 %maskedloadstore, ptr %p, %cond 1641 /// cstore i32 1, ptr %q, ~%cond 1642 /// br i1 %cond, label %TrueBB, label %FalseBB 1643 /// FalseBB: 1644 /// ... 1645 /// TrueBB: 1646 /// ... 1647 /// \endcode 1648 /// 1649 /// where cload/cstore are represented by llvm.masked.load/store intrinsics, 1650 /// e.g. 1651 /// 1652 /// \code 1653 /// %vcond = bitcast i1 %cond to <1 x i1> 1654 /// %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0 1655 /// (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison) 1656 /// %maskedloadstore = bitcast <1 x i32> %v0 to i32 1657 /// call void @llvm.masked.store.v1i32.p0 1658 /// (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond) 1659 /// %cond.not = xor i1 %cond, true 1660 /// %vcond.not = bitcast i1 %cond.not to <1 x i> 1661 /// call void @llvm.masked.store.v1i32.p0 1662 /// (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not) 1663 /// \endcode 1664 /// 1665 /// So we need to turn hoisted load/store into cload/cstore. 1666 /// 1667 /// \param BI The branch instruction. 1668 /// \param SpeculatedConditionalLoadsStores The load/store instructions that 1669 /// will be speculated. 1670 /// \param Invert indicates if speculates FalseBB. Only used in triangle CFG. 1671 static void hoistConditionalLoadsStores( 1672 BranchInst *BI, 1673 SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores, 1674 std::optional<bool> Invert) { 1675 auto &Context = BI->getParent()->getContext(); 1676 auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1); 1677 auto *Cond = BI->getOperand(0); 1678 // Construct the condition if needed. 1679 BasicBlock *BB = BI->getParent(); 1680 IRBuilder<> Builder( 1681 Invert.has_value() ? SpeculatedConditionalLoadsStores.back() : BI); 1682 Value *Mask = nullptr; 1683 Value *MaskFalse = nullptr; 1684 Value *MaskTrue = nullptr; 1685 if (Invert.has_value()) { 1686 Mask = Builder.CreateBitCast( 1687 *Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond, 1688 VCondTy); 1689 } else { 1690 MaskFalse = Builder.CreateBitCast( 1691 Builder.CreateXor(Cond, ConstantInt::getTrue(Context)), VCondTy); 1692 MaskTrue = Builder.CreateBitCast(Cond, VCondTy); 1693 } 1694 auto PeekThroughBitcasts = [](Value *V) { 1695 while (auto *BitCast = dyn_cast<BitCastInst>(V)) 1696 V = BitCast->getOperand(0); 1697 return V; 1698 }; 1699 for (auto *I : SpeculatedConditionalLoadsStores) { 1700 IRBuilder<> Builder(Invert.has_value() ? I : BI); 1701 if (!Invert.has_value()) 1702 Mask = I->getParent() == BI->getSuccessor(0) ? MaskTrue : MaskFalse; 1703 // We currently assume conditional faulting load/store is supported for 1704 // scalar types only when creating new instructions. This can be easily 1705 // extended for vector types in the future. 1706 assert(!getLoadStoreType(I)->isVectorTy() && "not implemented"); 1707 auto *Op0 = I->getOperand(0); 1708 CallInst *MaskedLoadStore = nullptr; 1709 if (auto *LI = dyn_cast<LoadInst>(I)) { 1710 // Handle Load. 1711 auto *Ty = I->getType(); 1712 PHINode *PN = nullptr; 1713 Value *PassThru = nullptr; 1714 if (Invert.has_value()) 1715 for (User *U : I->users()) 1716 if ((PN = dyn_cast<PHINode>(U))) { 1717 PassThru = Builder.CreateBitCast( 1718 PeekThroughBitcasts(PN->getIncomingValueForBlock(BB)), 1719 FixedVectorType::get(Ty, 1)); 1720 break; 1721 } 1722 MaskedLoadStore = Builder.CreateMaskedLoad( 1723 FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru); 1724 Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty); 1725 if (PN) 1726 PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore); 1727 I->replaceAllUsesWith(NewLoadStore); 1728 } else { 1729 // Handle Store. 1730 auto *StoredVal = Builder.CreateBitCast( 1731 PeekThroughBitcasts(Op0), FixedVectorType::get(Op0->getType(), 1)); 1732 MaskedLoadStore = Builder.CreateMaskedStore( 1733 StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask); 1734 } 1735 // For non-debug metadata, only !annotation, !range, !nonnull and !align are 1736 // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata). 1737 // 1738 // !nonnull, !align : Not support pointer type, no need to keep. 1739 // !range: Load type is changed from scalar to vector, but the metadata on 1740 // vector specifies a per-element range, so the semantics stay the 1741 // same. Keep it. 1742 // !annotation: Not impact semantics. Keep it. 1743 if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1744 MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges)); 1745 I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation}); 1746 // FIXME: DIAssignID is not supported for masked store yet. 1747 // (Verifier::visitDIAssignIDMetadata) 1748 at::deleteAssignmentMarkers(I); 1749 I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) { 1750 return Node->getMetadataID() == Metadata::DIAssignIDKind; 1751 }); 1752 MaskedLoadStore->copyMetadata(*I); 1753 I->eraseFromParent(); 1754 } 1755 } 1756 1757 static bool isSafeCheapLoadStore(const Instruction *I, 1758 const TargetTransformInfo &TTI) { 1759 // Not handle volatile or atomic. 1760 if (auto *L = dyn_cast<LoadInst>(I)) { 1761 if (!L->isSimple()) 1762 return false; 1763 } else if (auto *S = dyn_cast<StoreInst>(I)) { 1764 if (!S->isSimple()) 1765 return false; 1766 } else 1767 return false; 1768 1769 // llvm.masked.load/store use i32 for alignment while load/store use i64. 1770 // That's why we have the alignment limitation. 1771 // FIXME: Update the prototype of the intrinsics? 1772 return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) && 1773 getLoadStoreAlignment(I) < Value::MaximumAlignment; 1774 } 1775 1776 namespace { 1777 1778 // LockstepReverseIterator - Iterates through instructions 1779 // in a set of blocks in reverse order from the first non-terminator. 1780 // For example (assume all blocks have size n): 1781 // LockstepReverseIterator I([B1, B2, B3]); 1782 // *I-- = [B1[n], B2[n], B3[n]]; 1783 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1784 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1785 // ... 1786 class LockstepReverseIterator { 1787 ArrayRef<BasicBlock *> Blocks; 1788 SmallVector<Instruction *, 4> Insts; 1789 bool Fail; 1790 1791 public: 1792 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 1793 reset(); 1794 } 1795 1796 void reset() { 1797 Fail = false; 1798 Insts.clear(); 1799 for (auto *BB : Blocks) { 1800 Instruction *Inst = BB->getTerminator(); 1801 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1802 Inst = Inst->getPrevNode(); 1803 if (!Inst) { 1804 // Block wasn't big enough. 1805 Fail = true; 1806 return; 1807 } 1808 Insts.push_back(Inst); 1809 } 1810 } 1811 1812 bool isValid() const { return !Fail; } 1813 1814 void operator--() { 1815 if (Fail) 1816 return; 1817 for (auto *&Inst : Insts) { 1818 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1819 Inst = Inst->getPrevNode(); 1820 // Already at beginning of block. 1821 if (!Inst) { 1822 Fail = true; 1823 return; 1824 } 1825 } 1826 } 1827 1828 void operator++() { 1829 if (Fail) 1830 return; 1831 for (auto *&Inst : Insts) { 1832 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1833 Inst = Inst->getNextNode(); 1834 // Already at end of block. 1835 if (!Inst) { 1836 Fail = true; 1837 return; 1838 } 1839 } 1840 } 1841 1842 ArrayRef<Instruction *> operator*() const { return Insts; } 1843 }; 1844 1845 } // end anonymous namespace 1846 1847 /// Hoist any common code in the successor blocks up into the block. This 1848 /// function guarantees that BB dominates all successors. If AllInstsEqOnly is 1849 /// given, only perform hoisting in case all successors blocks contain matching 1850 /// instructions only. In that case, all instructions can be hoisted and the 1851 /// original branch will be replaced and selects for PHIs are added. 1852 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI, 1853 bool AllInstsEqOnly) { 1854 // This does very trivial matching, with limited scanning, to find identical 1855 // instructions in the two blocks. In particular, we don't want to get into 1856 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As 1857 // such, we currently just scan for obviously identical instructions in an 1858 // identical order, possibly separated by the same number of non-identical 1859 // instructions. 1860 BasicBlock *BB = TI->getParent(); 1861 unsigned int SuccSize = succ_size(BB); 1862 if (SuccSize < 2) 1863 return false; 1864 1865 // If either of the blocks has it's address taken, then we can't do this fold, 1866 // because the code we'd hoist would no longer run when we jump into the block 1867 // by it's address. 1868 for (auto *Succ : successors(BB)) 1869 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor()) 1870 return false; 1871 1872 // The second of pair is a SkipFlags bitmask. 1873 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>; 1874 SmallVector<SuccIterPair, 8> SuccIterPairs; 1875 for (auto *Succ : successors(BB)) { 1876 BasicBlock::iterator SuccItr = Succ->begin(); 1877 if (isa<PHINode>(*SuccItr)) 1878 return false; 1879 SuccIterPairs.push_back(SuccIterPair(SuccItr, 0)); 1880 } 1881 1882 if (AllInstsEqOnly) { 1883 // Check if all instructions in the successor blocks match. This allows 1884 // hoisting all instructions and removing the blocks we are hoisting from, 1885 // so does not add any new instructions. 1886 SmallVector<BasicBlock *> Succs = to_vector(successors(BB)); 1887 // Check if sizes and terminators of all successors match. 1888 bool AllSame = none_of(Succs, [&Succs](BasicBlock *Succ) { 1889 Instruction *Term0 = Succs[0]->getTerminator(); 1890 Instruction *Term = Succ->getTerminator(); 1891 return !Term->isSameOperationAs(Term0) || 1892 !equal(Term->operands(), Term0->operands()) || 1893 Succs[0]->size() != Succ->size(); 1894 }); 1895 if (!AllSame) 1896 return false; 1897 if (AllSame) { 1898 LockstepReverseIterator LRI(Succs); 1899 while (LRI.isValid()) { 1900 Instruction *I0 = (*LRI)[0]; 1901 if (any_of(*LRI, [I0](Instruction *I) { 1902 return !areIdenticalUpToCommutativity(I0, I); 1903 })) { 1904 return false; 1905 } 1906 --LRI; 1907 } 1908 } 1909 // Now we know that all instructions in all successors can be hoisted. Let 1910 // the loop below handle the hoisting. 1911 } 1912 1913 // Count how many instructions were not hoisted so far. There's a limit on how 1914 // many instructions we skip, serving as a compilation time control as well as 1915 // preventing excessive increase of life ranges. 1916 unsigned NumSkipped = 0; 1917 // If we find an unreachable instruction at the beginning of a basic block, we 1918 // can still hoist instructions from the rest of the basic blocks. 1919 if (SuccIterPairs.size() > 2) { 1920 erase_if(SuccIterPairs, 1921 [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); }); 1922 if (SuccIterPairs.size() < 2) 1923 return false; 1924 } 1925 1926 bool Changed = false; 1927 1928 for (;;) { 1929 auto *SuccIterPairBegin = SuccIterPairs.begin(); 1930 auto &BB1ItrPair = *SuccIterPairBegin++; 1931 auto OtherSuccIterPairRange = 1932 iterator_range(SuccIterPairBegin, SuccIterPairs.end()); 1933 auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange); 1934 1935 Instruction *I1 = &*BB1ItrPair.first; 1936 1937 // Skip debug info if it is not identical. 1938 bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) { 1939 Instruction *I2 = &*Iter; 1940 return I1->isIdenticalToWhenDefined(I2); 1941 }); 1942 if (!AllDbgInstsAreIdentical) { 1943 while (isa<DbgInfoIntrinsic>(I1)) 1944 I1 = &*++BB1ItrPair.first; 1945 for (auto &SuccIter : OtherSuccIterRange) { 1946 Instruction *I2 = &*SuccIter; 1947 while (isa<DbgInfoIntrinsic>(I2)) 1948 I2 = &*++SuccIter; 1949 } 1950 } 1951 1952 bool AllInstsAreIdentical = true; 1953 bool HasTerminator = I1->isTerminator(); 1954 for (auto &SuccIter : OtherSuccIterRange) { 1955 Instruction *I2 = &*SuccIter; 1956 HasTerminator |= I2->isTerminator(); 1957 if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) || 1958 MMRAMetadata(*I1) != MMRAMetadata(*I2))) 1959 AllInstsAreIdentical = false; 1960 } 1961 1962 SmallVector<Instruction *, 8> OtherInsts; 1963 for (auto &SuccIter : OtherSuccIterRange) 1964 OtherInsts.push_back(&*SuccIter); 1965 1966 // If we are hoisting the terminator instruction, don't move one (making a 1967 // broken BB), instead clone it, and remove BI. 1968 if (HasTerminator) { 1969 // Even if BB, which contains only one unreachable instruction, is ignored 1970 // at the beginning of the loop, we can hoist the terminator instruction. 1971 // If any instructions remain in the block, we cannot hoist terminators. 1972 if (NumSkipped || !AllInstsAreIdentical) { 1973 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1974 return Changed; 1975 } 1976 1977 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) || 1978 Changed; 1979 } 1980 1981 if (AllInstsAreIdentical) { 1982 unsigned SkipFlagsBB1 = BB1ItrPair.second; 1983 AllInstsAreIdentical = 1984 isSafeToHoistInstr(I1, SkipFlagsBB1) && 1985 all_of(OtherSuccIterPairRange, [=](const auto &Pair) { 1986 Instruction *I2 = &*Pair.first; 1987 unsigned SkipFlagsBB2 = Pair.second; 1988 // Even if the instructions are identical, it may not 1989 // be safe to hoist them if we have skipped over 1990 // instructions with side effects or their operands 1991 // weren't hoisted. 1992 return isSafeToHoistInstr(I2, SkipFlagsBB2) && 1993 shouldHoistCommonInstructions(I1, I2, TTI); 1994 }); 1995 } 1996 1997 if (AllInstsAreIdentical) { 1998 BB1ItrPair.first++; 1999 if (isa<DbgInfoIntrinsic>(I1)) { 2000 // The debug location is an integral part of a debug info intrinsic 2001 // and can't be separated from it or replaced. Instead of attempting 2002 // to merge locations, simply hoist both copies of the intrinsic. 2003 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 2004 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 2005 // and leave any that were not hoisted behind (by calling moveBefore 2006 // rather than moveBeforePreserving). 2007 I1->moveBefore(TI->getIterator()); 2008 for (auto &SuccIter : OtherSuccIterRange) { 2009 auto *I2 = &*SuccIter++; 2010 assert(isa<DbgInfoIntrinsic>(I2)); 2011 I2->moveBefore(TI->getIterator()); 2012 } 2013 } else { 2014 // For a normal instruction, we just move one to right before the 2015 // branch, then replace all uses of the other with the first. Finally, 2016 // we remove the now redundant second instruction. 2017 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 2018 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 2019 // and leave any that were not hoisted behind (by calling moveBefore 2020 // rather than moveBeforePreserving). 2021 I1->moveBefore(TI->getIterator()); 2022 for (auto &SuccIter : OtherSuccIterRange) { 2023 Instruction *I2 = &*SuccIter++; 2024 assert(I2 != I1); 2025 if (!I2->use_empty()) 2026 I2->replaceAllUsesWith(I1); 2027 I1->andIRFlags(I2); 2028 if (auto *CB = dyn_cast<CallBase>(I1)) { 2029 bool Success = CB->tryIntersectAttributes(cast<CallBase>(I2)); 2030 assert(Success && "We should not be trying to hoist callbases " 2031 "with non-intersectable attributes"); 2032 // For NDEBUG Compile. 2033 (void)Success; 2034 } 2035 2036 combineMetadataForCSE(I1, I2, true); 2037 // I1 and I2 are being combined into a single instruction. Its debug 2038 // location is the merged locations of the original instructions. 2039 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 2040 I2->eraseFromParent(); 2041 } 2042 } 2043 if (!Changed) 2044 NumHoistCommonCode += SuccIterPairs.size(); 2045 Changed = true; 2046 NumHoistCommonInstrs += SuccIterPairs.size(); 2047 } else { 2048 if (NumSkipped >= HoistCommonSkipLimit) { 2049 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 2050 return Changed; 2051 } 2052 // We are about to skip over a pair of non-identical instructions. Record 2053 // if any have characteristics that would prevent reordering instructions 2054 // across them. 2055 for (auto &SuccIterPair : SuccIterPairs) { 2056 Instruction *I = &*SuccIterPair.first++; 2057 SuccIterPair.second |= skippedInstrFlags(I); 2058 } 2059 ++NumSkipped; 2060 } 2061 } 2062 } 2063 2064 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf( 2065 Instruction *TI, Instruction *I1, 2066 SmallVectorImpl<Instruction *> &OtherSuccTIs) { 2067 2068 auto *BI = dyn_cast<BranchInst>(TI); 2069 2070 bool Changed = false; 2071 BasicBlock *TIParent = TI->getParent(); 2072 BasicBlock *BB1 = I1->getParent(); 2073 2074 // Use only for an if statement. 2075 auto *I2 = *OtherSuccTIs.begin(); 2076 auto *BB2 = I2->getParent(); 2077 if (BI) { 2078 assert(OtherSuccTIs.size() == 1); 2079 assert(BI->getSuccessor(0) == I1->getParent()); 2080 assert(BI->getSuccessor(1) == I2->getParent()); 2081 } 2082 2083 // In the case of an if statement, we try to hoist an invoke. 2084 // FIXME: Can we define a safety predicate for CallBr? 2085 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll 2086 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit? 2087 if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 2088 return false; 2089 2090 // TODO: callbr hoisting currently disabled pending further study. 2091 if (isa<CallBrInst>(I1)) 2092 return false; 2093 2094 for (BasicBlock *Succ : successors(BB1)) { 2095 for (PHINode &PN : Succ->phis()) { 2096 Value *BB1V = PN.getIncomingValueForBlock(BB1); 2097 for (Instruction *OtherSuccTI : OtherSuccTIs) { 2098 Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent()); 2099 if (BB1V == BB2V) 2100 continue; 2101 2102 // In the case of an if statement, check for 2103 // passingValueIsAlwaysUndefined here because we would rather eliminate 2104 // undefined control flow then converting it to a select. 2105 if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) || 2106 passingValueIsAlwaysUndefined(BB2V, &PN)) 2107 return false; 2108 } 2109 } 2110 } 2111 2112 // Hoist DbgVariableRecords attached to the terminator to match dbg.* 2113 // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors. 2114 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs); 2115 // Clone the terminator and hoist it into the pred, without any debug info. 2116 Instruction *NT = I1->clone(); 2117 NT->insertInto(TIParent, TI->getIterator()); 2118 if (!NT->getType()->isVoidTy()) { 2119 I1->replaceAllUsesWith(NT); 2120 for (Instruction *OtherSuccTI : OtherSuccTIs) 2121 OtherSuccTI->replaceAllUsesWith(NT); 2122 NT->takeName(I1); 2123 } 2124 Changed = true; 2125 NumHoistCommonInstrs += OtherSuccTIs.size() + 1; 2126 2127 // Ensure terminator gets a debug location, even an unknown one, in case 2128 // it involves inlinable calls. 2129 SmallVector<DILocation *, 4> Locs; 2130 Locs.push_back(I1->getDebugLoc()); 2131 for (auto *OtherSuccTI : OtherSuccTIs) 2132 Locs.push_back(OtherSuccTI->getDebugLoc()); 2133 NT->setDebugLoc(DILocation::getMergedLocations(Locs)); 2134 2135 // PHIs created below will adopt NT's merged DebugLoc. 2136 IRBuilder<NoFolder> Builder(NT); 2137 2138 // In the case of an if statement, hoisting one of the terminators from our 2139 // successor is a great thing. Unfortunately, the successors of the if/else 2140 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2 2141 // must agree for all PHI nodes, so we insert select instruction to compute 2142 // the final result. 2143 if (BI) { 2144 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 2145 for (BasicBlock *Succ : successors(BB1)) { 2146 for (PHINode &PN : Succ->phis()) { 2147 Value *BB1V = PN.getIncomingValueForBlock(BB1); 2148 Value *BB2V = PN.getIncomingValueForBlock(BB2); 2149 if (BB1V == BB2V) 2150 continue; 2151 2152 // These values do not agree. Insert a select instruction before NT 2153 // that determines the right value. 2154 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 2155 if (!SI) { 2156 // Propagate fast-math-flags from phi node to its replacement select. 2157 SI = cast<SelectInst>(Builder.CreateSelectFMF( 2158 BI->getCondition(), BB1V, BB2V, 2159 isa<FPMathOperator>(PN) ? &PN : nullptr, 2160 BB1V->getName() + "." + BB2V->getName(), BI)); 2161 } 2162 2163 // Make the PHI node use the select for all incoming values for BB1/BB2 2164 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2165 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 2166 PN.setIncomingValue(i, SI); 2167 } 2168 } 2169 } 2170 2171 SmallVector<DominatorTree::UpdateType, 4> Updates; 2172 2173 // Update any PHI nodes in our new successors. 2174 for (BasicBlock *Succ : successors(BB1)) { 2175 addPredecessorToBlock(Succ, TIParent, BB1); 2176 if (DTU) 2177 Updates.push_back({DominatorTree::Insert, TIParent, Succ}); 2178 } 2179 2180 if (DTU) 2181 for (BasicBlock *Succ : successors(TI)) 2182 Updates.push_back({DominatorTree::Delete, TIParent, Succ}); 2183 2184 eraseTerminatorAndDCECond(TI); 2185 if (DTU) 2186 DTU->applyUpdates(Updates); 2187 return Changed; 2188 } 2189 2190 // Check lifetime markers. 2191 static bool isLifeTimeMarker(const Instruction *I) { 2192 if (auto II = dyn_cast<IntrinsicInst>(I)) { 2193 switch (II->getIntrinsicID()) { 2194 default: 2195 break; 2196 case Intrinsic::lifetime_start: 2197 case Intrinsic::lifetime_end: 2198 return true; 2199 } 2200 } 2201 return false; 2202 } 2203 2204 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 2205 // into variables. 2206 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 2207 int OpIdx) { 2208 // Divide/Remainder by constant is typically much cheaper than by variable. 2209 if (I->isIntDivRem()) 2210 return OpIdx != 1; 2211 return !isa<IntrinsicInst>(I); 2212 } 2213 2214 // All instructions in Insts belong to different blocks that all unconditionally 2215 // branch to a common successor. Analyze each instruction and return true if it 2216 // would be possible to sink them into their successor, creating one common 2217 // instruction instead. For every value that would be required to be provided by 2218 // PHI node (because an operand varies in each input block), add to PHIOperands. 2219 static bool canSinkInstructions( 2220 ArrayRef<Instruction *> Insts, 2221 DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) { 2222 // Prune out obviously bad instructions to move. Each instruction must have 2223 // the same number of uses, and we check later that the uses are consistent. 2224 std::optional<unsigned> NumUses; 2225 for (auto *I : Insts) { 2226 // These instructions may change or break semantics if moved. 2227 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 2228 I->getType()->isTokenTy()) 2229 return false; 2230 2231 // Do not try to sink an instruction in an infinite loop - it can cause 2232 // this algorithm to infinite loop. 2233 if (I->getParent()->getSingleSuccessor() == I->getParent()) 2234 return false; 2235 2236 // Conservatively return false if I is an inline-asm instruction. Sinking 2237 // and merging inline-asm instructions can potentially create arguments 2238 // that cannot satisfy the inline-asm constraints. 2239 // If the instruction has nomerge or convergent attribute, return false. 2240 if (const auto *C = dyn_cast<CallBase>(I)) 2241 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 2242 return false; 2243 2244 if (!NumUses) 2245 NumUses = I->getNumUses(); 2246 else if (NumUses != I->getNumUses()) 2247 return false; 2248 } 2249 2250 const Instruction *I0 = Insts.front(); 2251 const auto I0MMRA = MMRAMetadata(*I0); 2252 for (auto *I : Insts) { 2253 if (!I->isSameOperationAs(I0, Instruction::CompareUsingIntersectedAttrs)) 2254 return false; 2255 2256 // swifterror pointers can only be used by a load or store; sinking a load 2257 // or store would require introducing a select for the pointer operand, 2258 // which isn't allowed for swifterror pointers. 2259 if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError()) 2260 return false; 2261 if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError()) 2262 return false; 2263 2264 // Treat MMRAs conservatively. This pass can be quite aggressive and 2265 // could drop a lot of MMRAs otherwise. 2266 if (MMRAMetadata(*I) != I0MMRA) 2267 return false; 2268 } 2269 2270 // Uses must be consistent: If I0 is used in a phi node in the sink target, 2271 // then the other phi operands must match the instructions from Insts. This 2272 // also has to hold true for any phi nodes that would be created as a result 2273 // of sinking. Both of these cases are represented by PhiOperands. 2274 for (const Use &U : I0->uses()) { 2275 auto It = PHIOperands.find(&U); 2276 if (It == PHIOperands.end()) 2277 // There may be uses in other blocks when sinking into a loop header. 2278 return false; 2279 if (!equal(Insts, It->second)) 2280 return false; 2281 } 2282 2283 // For calls to be sinkable, they must all be indirect, or have same callee. 2284 // I.e. if we have two direct calls to different callees, we don't want to 2285 // turn that into an indirect call. Likewise, if we have an indirect call, 2286 // and a direct call, we don't actually want to have a single indirect call. 2287 if (isa<CallBase>(I0)) { 2288 auto IsIndirectCall = [](const Instruction *I) { 2289 return cast<CallBase>(I)->isIndirectCall(); 2290 }; 2291 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 2292 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 2293 if (HaveIndirectCalls) { 2294 if (!AllCallsAreIndirect) 2295 return false; 2296 } else { 2297 // All callees must be identical. 2298 Value *Callee = nullptr; 2299 for (const Instruction *I : Insts) { 2300 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 2301 if (!Callee) 2302 Callee = CurrCallee; 2303 else if (Callee != CurrCallee) 2304 return false; 2305 } 2306 } 2307 } 2308 2309 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 2310 Value *Op = I0->getOperand(OI); 2311 if (Op->getType()->isTokenTy()) 2312 // Don't touch any operand of token type. 2313 return false; 2314 2315 auto SameAsI0 = [&I0, OI](const Instruction *I) { 2316 assert(I->getNumOperands() == I0->getNumOperands()); 2317 return I->getOperand(OI) == I0->getOperand(OI); 2318 }; 2319 if (!all_of(Insts, SameAsI0)) { 2320 // SROA can't speculate lifetime markers of selects/phis, and the 2321 // backend may handle such lifetimes incorrectly as well (#104776). 2322 // Don't sink lifetimes if it would introduce a phi on the pointer 2323 // argument. 2324 if (isLifeTimeMarker(I0) && OI == 1 && 2325 any_of(Insts, [](const Instruction *I) { 2326 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 2327 })) 2328 return false; 2329 2330 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 2331 !canReplaceOperandWithVariable(I0, OI)) 2332 // We can't create a PHI from this GEP. 2333 return false; 2334 auto &Ops = PHIOperands[&I0->getOperandUse(OI)]; 2335 for (auto *I : Insts) 2336 Ops.push_back(I->getOperand(OI)); 2337 } 2338 } 2339 return true; 2340 } 2341 2342 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 2343 // instruction of every block in Blocks to their common successor, commoning 2344 // into one instruction. 2345 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 2346 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 2347 2348 // canSinkInstructions returning true guarantees that every block has at 2349 // least one non-terminator instruction. 2350 SmallVector<Instruction*,4> Insts; 2351 for (auto *BB : Blocks) { 2352 Instruction *I = BB->getTerminator(); 2353 do { 2354 I = I->getPrevNode(); 2355 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 2356 if (!isa<DbgInfoIntrinsic>(I)) 2357 Insts.push_back(I); 2358 } 2359 2360 // We don't need to do any more checking here; canSinkInstructions should 2361 // have done it all for us. 2362 SmallVector<Value*, 4> NewOperands; 2363 Instruction *I0 = Insts.front(); 2364 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 2365 // This check is different to that in canSinkInstructions. There, we 2366 // cared about the global view once simplifycfg (and instcombine) have 2367 // completed - it takes into account PHIs that become trivially 2368 // simplifiable. However here we need a more local view; if an operand 2369 // differs we create a PHI and rely on instcombine to clean up the very 2370 // small mess we may make. 2371 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 2372 return I->getOperand(O) != I0->getOperand(O); 2373 }); 2374 if (!NeedPHI) { 2375 NewOperands.push_back(I0->getOperand(O)); 2376 continue; 2377 } 2378 2379 // Create a new PHI in the successor block and populate it. 2380 auto *Op = I0->getOperand(O); 2381 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 2382 auto *PN = 2383 PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink"); 2384 PN->insertBefore(BBEnd->begin()); 2385 for (auto *I : Insts) 2386 PN->addIncoming(I->getOperand(O), I->getParent()); 2387 NewOperands.push_back(PN); 2388 } 2389 2390 // Arbitrarily use I0 as the new "common" instruction; remap its operands 2391 // and move it to the start of the successor block. 2392 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 2393 I0->getOperandUse(O).set(NewOperands[O]); 2394 2395 I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt()); 2396 2397 // Update metadata and IR flags, and merge debug locations. 2398 for (auto *I : Insts) 2399 if (I != I0) { 2400 // The debug location for the "common" instruction is the merged locations 2401 // of all the commoned instructions. We start with the original location 2402 // of the "common" instruction and iteratively merge each location in the 2403 // loop below. 2404 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 2405 // However, as N-way merge for CallInst is rare, so we use simplified API 2406 // instead of using complex API for N-way merge. 2407 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 2408 combineMetadataForCSE(I0, I, true); 2409 I0->andIRFlags(I); 2410 if (auto *CB = dyn_cast<CallBase>(I0)) { 2411 bool Success = CB->tryIntersectAttributes(cast<CallBase>(I)); 2412 assert(Success && "We should not be trying to sink callbases " 2413 "with non-intersectable attributes"); 2414 // For NDEBUG Compile. 2415 (void)Success; 2416 } 2417 } 2418 2419 for (User *U : make_early_inc_range(I0->users())) { 2420 // canSinkLastInstruction checked that all instructions are only used by 2421 // phi nodes in a way that allows replacing the phi node with the common 2422 // instruction. 2423 auto *PN = cast<PHINode>(U); 2424 PN->replaceAllUsesWith(I0); 2425 PN->eraseFromParent(); 2426 } 2427 2428 // Finally nuke all instructions apart from the common instruction. 2429 for (auto *I : Insts) { 2430 if (I == I0) 2431 continue; 2432 // The remaining uses are debug users, replace those with the common inst. 2433 // In most (all?) cases this just introduces a use-before-def. 2434 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); 2435 I->replaceAllUsesWith(I0); 2436 I->eraseFromParent(); 2437 } 2438 } 2439 2440 /// Check whether BB's predecessors end with unconditional branches. If it is 2441 /// true, sink any common code from the predecessors to BB. 2442 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB, 2443 DomTreeUpdater *DTU) { 2444 // We support two situations: 2445 // (1) all incoming arcs are unconditional 2446 // (2) there are non-unconditional incoming arcs 2447 // 2448 // (2) is very common in switch defaults and 2449 // else-if patterns; 2450 // 2451 // if (a) f(1); 2452 // else if (b) f(2); 2453 // 2454 // produces: 2455 // 2456 // [if] 2457 // / \ 2458 // [f(1)] [if] 2459 // | | \ 2460 // | | | 2461 // | [f(2)]| 2462 // \ | / 2463 // [ end ] 2464 // 2465 // [end] has two unconditional predecessor arcs and one conditional. The 2466 // conditional refers to the implicit empty 'else' arc. This conditional 2467 // arc can also be caused by an empty default block in a switch. 2468 // 2469 // In this case, we attempt to sink code from all *unconditional* arcs. 2470 // If we can sink instructions from these arcs (determined during the scan 2471 // phase below) we insert a common successor for all unconditional arcs and 2472 // connect that to [end], to enable sinking: 2473 // 2474 // [if] 2475 // / \ 2476 // [x(1)] [if] 2477 // | | \ 2478 // | | \ 2479 // | [x(2)] | 2480 // \ / | 2481 // [sink.split] | 2482 // \ / 2483 // [ end ] 2484 // 2485 SmallVector<BasicBlock*,4> UnconditionalPreds; 2486 bool HaveNonUnconditionalPredecessors = false; 2487 for (auto *PredBB : predecessors(BB)) { 2488 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2489 if (PredBr && PredBr->isUnconditional()) 2490 UnconditionalPreds.push_back(PredBB); 2491 else 2492 HaveNonUnconditionalPredecessors = true; 2493 } 2494 if (UnconditionalPreds.size() < 2) 2495 return false; 2496 2497 // We take a two-step approach to tail sinking. First we scan from the end of 2498 // each block upwards in lockstep. If the n'th instruction from the end of each 2499 // block can be sunk, those instructions are added to ValuesToSink and we 2500 // carry on. If we can sink an instruction but need to PHI-merge some operands 2501 // (because they're not identical in each instruction) we add these to 2502 // PHIOperands. 2503 // We prepopulate PHIOperands with the phis that already exist in BB. 2504 DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands; 2505 for (PHINode &PN : BB->phis()) { 2506 SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals; 2507 for (const Use &U : PN.incoming_values()) 2508 IncomingVals.insert({PN.getIncomingBlock(U), &U}); 2509 auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]]; 2510 for (BasicBlock *Pred : UnconditionalPreds) 2511 Ops.push_back(*IncomingVals[Pred]); 2512 } 2513 2514 int ScanIdx = 0; 2515 SmallPtrSet<Value*,4> InstructionsToSink; 2516 LockstepReverseIterator LRI(UnconditionalPreds); 2517 while (LRI.isValid() && 2518 canSinkInstructions(*LRI, PHIOperands)) { 2519 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2520 << "\n"); 2521 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2522 ++ScanIdx; 2523 --LRI; 2524 } 2525 2526 // If no instructions can be sunk, early-return. 2527 if (ScanIdx == 0) 2528 return false; 2529 2530 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2531 2532 if (!followedByDeoptOrUnreachable) { 2533 // Check whether this is the pointer operand of a load/store. 2534 auto IsMemOperand = [](Use &U) { 2535 auto *I = cast<Instruction>(U.getUser()); 2536 if (isa<LoadInst>(I)) 2537 return U.getOperandNo() == LoadInst::getPointerOperandIndex(); 2538 if (isa<StoreInst>(I)) 2539 return U.getOperandNo() == StoreInst::getPointerOperandIndex(); 2540 return false; 2541 }; 2542 2543 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2544 // actually sink before encountering instruction that is unprofitable to 2545 // sink? 2546 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2547 unsigned NumPHIInsts = 0; 2548 for (Use &U : (*LRI)[0]->operands()) { 2549 auto It = PHIOperands.find(&U); 2550 if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) { 2551 return InstructionsToSink.contains(V); 2552 })) { 2553 ++NumPHIInsts; 2554 // Do not separate a load/store from the gep producing the address. 2555 // The gep can likely be folded into the load/store as an addressing 2556 // mode. Additionally, a load of a gep is easier to analyze than a 2557 // load of a phi. 2558 if (IsMemOperand(U) && 2559 any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); })) 2560 return false; 2561 // FIXME: this check is overly optimistic. We may end up not sinking 2562 // said instruction, due to the very same profitability check. 2563 // See @creating_too_many_phis in sink-common-code.ll. 2564 } 2565 } 2566 LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n"); 2567 return NumPHIInsts <= 1; 2568 }; 2569 2570 // We've determined that we are going to sink last ScanIdx instructions, 2571 // and recorded them in InstructionsToSink. Now, some instructions may be 2572 // unprofitable to sink. But that determination depends on the instructions 2573 // that we are going to sink. 2574 2575 // First, forward scan: find the first instruction unprofitable to sink, 2576 // recording all the ones that are profitable to sink. 2577 // FIXME: would it be better, after we detect that not all are profitable. 2578 // to either record the profitable ones, or erase the unprofitable ones? 2579 // Maybe we need to choose (at runtime) the one that will touch least 2580 // instrs? 2581 LRI.reset(); 2582 int Idx = 0; 2583 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2584 while (Idx < ScanIdx) { 2585 if (!ProfitableToSinkInstruction(LRI)) { 2586 // Too many PHIs would be created. 2587 LLVM_DEBUG( 2588 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2589 break; 2590 } 2591 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2592 --LRI; 2593 ++Idx; 2594 } 2595 2596 // If no instructions can be sunk, early-return. 2597 if (Idx == 0) 2598 return false; 2599 2600 // Did we determine that (only) some instructions are unprofitable to sink? 2601 if (Idx < ScanIdx) { 2602 // Okay, some instructions are unprofitable. 2603 ScanIdx = Idx; 2604 InstructionsToSink = InstructionsProfitableToSink; 2605 2606 // But, that may make other instructions unprofitable, too. 2607 // So, do a backward scan, do any earlier instructions become 2608 // unprofitable? 2609 assert( 2610 !ProfitableToSinkInstruction(LRI) && 2611 "We already know that the last instruction is unprofitable to sink"); 2612 ++LRI; 2613 --Idx; 2614 while (Idx >= 0) { 2615 // If we detect that an instruction becomes unprofitable to sink, 2616 // all earlier instructions won't be sunk either, 2617 // so preemptively keep InstructionsProfitableToSink in sync. 2618 // FIXME: is this the most performant approach? 2619 for (auto *I : *LRI) 2620 InstructionsProfitableToSink.erase(I); 2621 if (!ProfitableToSinkInstruction(LRI)) { 2622 // Everything starting with this instruction won't be sunk. 2623 ScanIdx = Idx; 2624 InstructionsToSink = InstructionsProfitableToSink; 2625 } 2626 ++LRI; 2627 --Idx; 2628 } 2629 } 2630 2631 // If no instructions can be sunk, early-return. 2632 if (ScanIdx == 0) 2633 return false; 2634 } 2635 2636 bool Changed = false; 2637 2638 if (HaveNonUnconditionalPredecessors) { 2639 if (!followedByDeoptOrUnreachable) { 2640 // It is always legal to sink common instructions from unconditional 2641 // predecessors. However, if not all predecessors are unconditional, 2642 // this transformation might be pessimizing. So as a rule of thumb, 2643 // don't do it unless we'd sink at least one non-speculatable instruction. 2644 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2645 LRI.reset(); 2646 int Idx = 0; 2647 bool Profitable = false; 2648 while (Idx < ScanIdx) { 2649 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2650 Profitable = true; 2651 break; 2652 } 2653 --LRI; 2654 ++Idx; 2655 } 2656 if (!Profitable) 2657 return false; 2658 } 2659 2660 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2661 // We have a conditional edge and we're going to sink some instructions. 2662 // Insert a new block postdominating all blocks we're going to sink from. 2663 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2664 // Edges couldn't be split. 2665 return false; 2666 Changed = true; 2667 } 2668 2669 // Now that we've analyzed all potential sinking candidates, perform the 2670 // actual sink. We iteratively sink the last non-terminator of the source 2671 // blocks into their common successor unless doing so would require too 2672 // many PHI instructions to be generated (currently only one PHI is allowed 2673 // per sunk instruction). 2674 // 2675 // We can use InstructionsToSink to discount values needing PHI-merging that will 2676 // actually be sunk in a later iteration. This allows us to be more 2677 // aggressive in what we sink. This does allow a false positive where we 2678 // sink presuming a later value will also be sunk, but stop half way through 2679 // and never actually sink it which means we produce more PHIs than intended. 2680 // This is unlikely in practice though. 2681 int SinkIdx = 0; 2682 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2683 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2684 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2685 << "\n"); 2686 2687 // Because we've sunk every instruction in turn, the current instruction to 2688 // sink is always at index 0. 2689 LRI.reset(); 2690 2691 sinkLastInstruction(UnconditionalPreds); 2692 NumSinkCommonInstrs++; 2693 Changed = true; 2694 } 2695 if (SinkIdx != 0) 2696 ++NumSinkCommonCode; 2697 return Changed; 2698 } 2699 2700 namespace { 2701 2702 struct CompatibleSets { 2703 using SetTy = SmallVector<InvokeInst *, 2>; 2704 2705 SmallVector<SetTy, 1> Sets; 2706 2707 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2708 2709 SetTy &getCompatibleSet(InvokeInst *II); 2710 2711 void insert(InvokeInst *II); 2712 }; 2713 2714 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2715 // Perform a linear scan over all the existing sets, see if the new `invoke` 2716 // is compatible with any particular set. Since we know that all the `invokes` 2717 // within a set are compatible, only check the first `invoke` in each set. 2718 // WARNING: at worst, this has quadratic complexity. 2719 for (CompatibleSets::SetTy &Set : Sets) { 2720 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2721 return Set; 2722 } 2723 2724 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2725 return Sets.emplace_back(); 2726 } 2727 2728 void CompatibleSets::insert(InvokeInst *II) { 2729 getCompatibleSet(II).emplace_back(II); 2730 } 2731 2732 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2733 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2734 2735 // Can we theoretically merge these `invoke`s? 2736 auto IsIllegalToMerge = [](InvokeInst *II) { 2737 return II->cannotMerge() || II->isInlineAsm(); 2738 }; 2739 if (any_of(Invokes, IsIllegalToMerge)) 2740 return false; 2741 2742 // Either both `invoke`s must be direct, 2743 // or both `invoke`s must be indirect. 2744 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2745 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2746 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2747 if (HaveIndirectCalls) { 2748 if (!AllCallsAreIndirect) 2749 return false; 2750 } else { 2751 // All callees must be identical. 2752 Value *Callee = nullptr; 2753 for (InvokeInst *II : Invokes) { 2754 Value *CurrCallee = II->getCalledOperand(); 2755 assert(CurrCallee && "There is always a called operand."); 2756 if (!Callee) 2757 Callee = CurrCallee; 2758 else if (Callee != CurrCallee) 2759 return false; 2760 } 2761 } 2762 2763 // Either both `invoke`s must not have a normal destination, 2764 // or both `invoke`s must have a normal destination, 2765 auto HasNormalDest = [](InvokeInst *II) { 2766 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2767 }; 2768 if (any_of(Invokes, HasNormalDest)) { 2769 // Do not merge `invoke` that does not have a normal destination with one 2770 // that does have a normal destination, even though doing so would be legal. 2771 if (!all_of(Invokes, HasNormalDest)) 2772 return false; 2773 2774 // All normal destinations must be identical. 2775 BasicBlock *NormalBB = nullptr; 2776 for (InvokeInst *II : Invokes) { 2777 BasicBlock *CurrNormalBB = II->getNormalDest(); 2778 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2779 if (!NormalBB) 2780 NormalBB = CurrNormalBB; 2781 else if (NormalBB != CurrNormalBB) 2782 return false; 2783 } 2784 2785 // In the normal destination, the incoming values for these two `invoke`s 2786 // must be compatible. 2787 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2788 if (!incomingValuesAreCompatible( 2789 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2790 &EquivalenceSet)) 2791 return false; 2792 } 2793 2794 #ifndef NDEBUG 2795 // All unwind destinations must be identical. 2796 // We know that because we have started from said unwind destination. 2797 BasicBlock *UnwindBB = nullptr; 2798 for (InvokeInst *II : Invokes) { 2799 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2800 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2801 if (!UnwindBB) 2802 UnwindBB = CurrUnwindBB; 2803 else 2804 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2805 } 2806 #endif 2807 2808 // In the unwind destination, the incoming values for these two `invoke`s 2809 // must be compatible. 2810 if (!incomingValuesAreCompatible( 2811 Invokes.front()->getUnwindDest(), 2812 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2813 return false; 2814 2815 // Ignoring arguments, these `invoke`s must be identical, 2816 // including operand bundles. 2817 const InvokeInst *II0 = Invokes.front(); 2818 for (auto *II : Invokes.drop_front()) 2819 if (!II->isSameOperationAs(II0, Instruction::CompareUsingIntersectedAttrs)) 2820 return false; 2821 2822 // Can we theoretically form the data operands for the merged `invoke`? 2823 auto IsIllegalToMergeArguments = [](auto Ops) { 2824 Use &U0 = std::get<0>(Ops); 2825 Use &U1 = std::get<1>(Ops); 2826 if (U0 == U1) 2827 return false; 2828 return U0->getType()->isTokenTy() || 2829 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), 2830 U0.getOperandNo()); 2831 }; 2832 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2833 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2834 IsIllegalToMergeArguments)) 2835 return false; 2836 2837 return true; 2838 } 2839 2840 } // namespace 2841 2842 // Merge all invokes in the provided set, all of which are compatible 2843 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2844 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2845 DomTreeUpdater *DTU) { 2846 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2847 2848 SmallVector<DominatorTree::UpdateType, 8> Updates; 2849 if (DTU) 2850 Updates.reserve(2 + 3 * Invokes.size()); 2851 2852 bool HasNormalDest = 2853 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2854 2855 // Clone one of the invokes into a new basic block. 2856 // Since they are all compatible, it doesn't matter which invoke is cloned. 2857 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2858 InvokeInst *II0 = Invokes.front(); 2859 BasicBlock *II0BB = II0->getParent(); 2860 BasicBlock *InsertBeforeBlock = 2861 II0->getParent()->getIterator()->getNextNode(); 2862 Function *Func = II0BB->getParent(); 2863 LLVMContext &Ctx = II0->getContext(); 2864 2865 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2866 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2867 2868 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2869 // NOTE: all invokes have the same attributes, so no handling needed. 2870 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); 2871 2872 if (!HasNormalDest) { 2873 // This set does not have a normal destination, 2874 // so just form a new block with unreachable terminator. 2875 BasicBlock *MergedNormalDest = BasicBlock::Create( 2876 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2877 new UnreachableInst(Ctx, MergedNormalDest); 2878 MergedInvoke->setNormalDest(MergedNormalDest); 2879 } 2880 2881 // The unwind destination, however, remainds identical for all invokes here. 2882 2883 return MergedInvoke; 2884 }(); 2885 2886 if (DTU) { 2887 // Predecessor blocks that contained these invokes will now branch to 2888 // the new block that contains the merged invoke, ... 2889 for (InvokeInst *II : Invokes) 2890 Updates.push_back( 2891 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2892 2893 // ... which has the new `unreachable` block as normal destination, 2894 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2895 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2896 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2897 SuccBBOfMergedInvoke}); 2898 2899 // Since predecessor blocks now unconditionally branch to a new block, 2900 // they no longer branch to their original successors. 2901 for (InvokeInst *II : Invokes) 2902 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2903 Updates.push_back( 2904 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2905 } 2906 2907 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2908 2909 // Form the merged operands for the merged invoke. 2910 for (Use &U : MergedInvoke->operands()) { 2911 // Only PHI together the indirect callees and data operands. 2912 if (MergedInvoke->isCallee(&U)) { 2913 if (!IsIndirectCall) 2914 continue; 2915 } else if (!MergedInvoke->isDataOperand(&U)) 2916 continue; 2917 2918 // Don't create trivial PHI's with all-identical incoming values. 2919 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2920 return II->getOperand(U.getOperandNo()) != U.get(); 2921 }); 2922 if (!NeedPHI) 2923 continue; 2924 2925 // Form a PHI out of all the data ops under this index. 2926 PHINode *PN = PHINode::Create( 2927 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator()); 2928 for (InvokeInst *II : Invokes) 2929 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2930 2931 U.set(PN); 2932 } 2933 2934 // We've ensured that each PHI node has compatible (identical) incoming values 2935 // when coming from each of the `invoke`s in the current merge set, 2936 // so update the PHI nodes accordingly. 2937 for (BasicBlock *Succ : successors(MergedInvoke)) 2938 addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2939 /*ExistPred=*/Invokes.front()->getParent()); 2940 2941 // And finally, replace the original `invoke`s with an unconditional branch 2942 // to the block with the merged `invoke`. Also, give that merged `invoke` 2943 // the merged debugloc of all the original `invoke`s. 2944 DILocation *MergedDebugLoc = nullptr; 2945 for (InvokeInst *II : Invokes) { 2946 // Compute the debug location common to all the original `invoke`s. 2947 if (!MergedDebugLoc) 2948 MergedDebugLoc = II->getDebugLoc(); 2949 else 2950 MergedDebugLoc = 2951 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2952 2953 // And replace the old `invoke` with an unconditionally branch 2954 // to the block with the merged `invoke`. 2955 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2956 OrigSuccBB->removePredecessor(II->getParent()); 2957 auto *BI = BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2958 // The unconditional branch is part of the replacement for the original 2959 // invoke, so should use its DebugLoc. 2960 BI->setDebugLoc(II->getDebugLoc()); 2961 bool Success = MergedInvoke->tryIntersectAttributes(II); 2962 assert(Success && "Merged invokes with incompatible attributes"); 2963 // For NDEBUG Compile 2964 (void)Success; 2965 II->replaceAllUsesWith(MergedInvoke); 2966 II->eraseFromParent(); 2967 ++NumInvokesMerged; 2968 } 2969 MergedInvoke->setDebugLoc(MergedDebugLoc); 2970 ++NumInvokeSetsFormed; 2971 2972 if (DTU) 2973 DTU->applyUpdates(Updates); 2974 } 2975 2976 /// If this block is a `landingpad` exception handling block, categorize all 2977 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2978 /// being "mergeable" together, and then merge invokes in each set together. 2979 /// 2980 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2981 /// [...] [...] 2982 /// | | 2983 /// [invoke0] [invoke1] 2984 /// / \ / \ 2985 /// [cont0] [landingpad] [cont1] 2986 /// to: 2987 /// [...] [...] 2988 /// \ / 2989 /// [invoke] 2990 /// / \ 2991 /// [cont] [landingpad] 2992 /// 2993 /// But of course we can only do that if the invokes share the `landingpad`, 2994 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2995 /// and the invoked functions are "compatible". 2996 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2997 if (!EnableMergeCompatibleInvokes) 2998 return false; 2999 3000 bool Changed = false; 3001 3002 // FIXME: generalize to all exception handling blocks? 3003 if (!BB->isLandingPad()) 3004 return Changed; 3005 3006 CompatibleSets Grouper; 3007 3008 // Record all the predecessors of this `landingpad`. As per verifier, 3009 // the only allowed predecessor is the unwind edge of an `invoke`. 3010 // We want to group "compatible" `invokes` into the same set to be merged. 3011 for (BasicBlock *PredBB : predecessors(BB)) 3012 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 3013 3014 // And now, merge `invoke`s that were grouped togeter. 3015 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 3016 if (Invokes.size() < 2) 3017 continue; 3018 Changed = true; 3019 mergeCompatibleInvokesImpl(Invokes, DTU); 3020 } 3021 3022 return Changed; 3023 } 3024 3025 namespace { 3026 /// Track ephemeral values, which should be ignored for cost-modelling 3027 /// purposes. Requires walking instructions in reverse order. 3028 class EphemeralValueTracker { 3029 SmallPtrSet<const Instruction *, 32> EphValues; 3030 3031 bool isEphemeral(const Instruction *I) { 3032 if (isa<AssumeInst>(I)) 3033 return true; 3034 return !I->mayHaveSideEffects() && !I->isTerminator() && 3035 all_of(I->users(), [&](const User *U) { 3036 return EphValues.count(cast<Instruction>(U)); 3037 }); 3038 } 3039 3040 public: 3041 bool track(const Instruction *I) { 3042 if (isEphemeral(I)) { 3043 EphValues.insert(I); 3044 return true; 3045 } 3046 return false; 3047 } 3048 3049 bool contains(const Instruction *I) const { return EphValues.contains(I); } 3050 }; 3051 } // namespace 3052 3053 /// Determine if we can hoist sink a sole store instruction out of a 3054 /// conditional block. 3055 /// 3056 /// We are looking for code like the following: 3057 /// BrBB: 3058 /// store i32 %add, i32* %arrayidx2 3059 /// ... // No other stores or function calls (we could be calling a memory 3060 /// ... // function). 3061 /// %cmp = icmp ult %x, %y 3062 /// br i1 %cmp, label %EndBB, label %ThenBB 3063 /// ThenBB: 3064 /// store i32 %add5, i32* %arrayidx2 3065 /// br label EndBB 3066 /// EndBB: 3067 /// ... 3068 /// We are going to transform this into: 3069 /// BrBB: 3070 /// store i32 %add, i32* %arrayidx2 3071 /// ... // 3072 /// %cmp = icmp ult %x, %y 3073 /// %add.add5 = select i1 %cmp, i32 %add, %add5 3074 /// store i32 %add.add5, i32* %arrayidx2 3075 /// ... 3076 /// 3077 /// \return The pointer to the value of the previous store if the store can be 3078 /// hoisted into the predecessor block. 0 otherwise. 3079 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 3080 BasicBlock *StoreBB, BasicBlock *EndBB) { 3081 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 3082 if (!StoreToHoist) 3083 return nullptr; 3084 3085 // Volatile or atomic. 3086 if (!StoreToHoist->isSimple()) 3087 return nullptr; 3088 3089 Value *StorePtr = StoreToHoist->getPointerOperand(); 3090 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 3091 3092 // Look for a store to the same pointer in BrBB. 3093 unsigned MaxNumInstToLookAt = 9; 3094 // Skip pseudo probe intrinsic calls which are not really killing any memory 3095 // accesses. 3096 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 3097 if (!MaxNumInstToLookAt) 3098 break; 3099 --MaxNumInstToLookAt; 3100 3101 // Could be calling an instruction that affects memory like free(). 3102 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 3103 return nullptr; 3104 3105 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 3106 // Found the previous store to same location and type. Make sure it is 3107 // simple, to avoid introducing a spurious non-atomic write after an 3108 // atomic write. 3109 if (SI->getPointerOperand() == StorePtr && 3110 SI->getValueOperand()->getType() == StoreTy && SI->isSimple() && 3111 SI->getAlign() >= StoreToHoist->getAlign()) 3112 // Found the previous store, return its value operand. 3113 return SI->getValueOperand(); 3114 return nullptr; // Unknown store. 3115 } 3116 3117 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 3118 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 3119 LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) { 3120 Value *Obj = getUnderlyingObject(StorePtr); 3121 bool ExplicitlyDereferenceableOnly; 3122 if (isWritableObject(Obj, ExplicitlyDereferenceableOnly) && 3123 !PointerMayBeCaptured(Obj, /*ReturnCaptures=*/false, 3124 /*StoreCaptures=*/true) && 3125 (!ExplicitlyDereferenceableOnly || 3126 isDereferenceablePointer(StorePtr, StoreTy, 3127 LI->getDataLayout()))) { 3128 // Found a previous load, return it. 3129 return LI; 3130 } 3131 } 3132 // The load didn't work out, but we may still find a store. 3133 } 3134 } 3135 3136 return nullptr; 3137 } 3138 3139 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 3140 /// converted to selects. 3141 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 3142 BasicBlock *EndBB, 3143 unsigned &SpeculatedInstructions, 3144 InstructionCost &Cost, 3145 const TargetTransformInfo &TTI) { 3146 TargetTransformInfo::TargetCostKind CostKind = 3147 BB->getParent()->hasMinSize() 3148 ? TargetTransformInfo::TCK_CodeSize 3149 : TargetTransformInfo::TCK_SizeAndLatency; 3150 3151 bool HaveRewritablePHIs = false; 3152 for (PHINode &PN : EndBB->phis()) { 3153 Value *OrigV = PN.getIncomingValueForBlock(BB); 3154 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 3155 3156 // FIXME: Try to remove some of the duplication with 3157 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial. 3158 if (ThenV == OrigV) 3159 continue; 3160 3161 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 3162 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3163 3164 // Don't convert to selects if we could remove undefined behavior instead. 3165 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 3166 passingValueIsAlwaysUndefined(ThenV, &PN)) 3167 return false; 3168 3169 HaveRewritablePHIs = true; 3170 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 3171 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 3172 if (!OrigCE && !ThenCE) 3173 continue; // Known cheap (FIXME: Maybe not true for aggregates). 3174 3175 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 3176 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 3177 InstructionCost MaxCost = 3178 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3179 if (OrigCost + ThenCost > MaxCost) 3180 return false; 3181 3182 // Account for the cost of an unfolded ConstantExpr which could end up 3183 // getting expanded into Instructions. 3184 // FIXME: This doesn't account for how many operations are combined in the 3185 // constant expression. 3186 ++SpeculatedInstructions; 3187 if (SpeculatedInstructions > 1) 3188 return false; 3189 } 3190 3191 return HaveRewritablePHIs; 3192 } 3193 3194 static bool isProfitableToSpeculate(const BranchInst *BI, 3195 std::optional<bool> Invert, 3196 const TargetTransformInfo &TTI) { 3197 // If the branch is non-unpredictable, and is predicted to *not* branch to 3198 // the `then` block, then avoid speculating it. 3199 if (BI->getMetadata(LLVMContext::MD_unpredictable)) 3200 return true; 3201 3202 uint64_t TWeight, FWeight; 3203 if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0) 3204 return true; 3205 3206 if (!Invert.has_value()) 3207 return false; 3208 3209 uint64_t EndWeight = *Invert ? TWeight : FWeight; 3210 BranchProbability BIEndProb = 3211 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 3212 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3213 return BIEndProb < Likely; 3214 } 3215 3216 /// Speculate a conditional basic block flattening the CFG. 3217 /// 3218 /// Note that this is a very risky transform currently. Speculating 3219 /// instructions like this is most often not desirable. Instead, there is an MI 3220 /// pass which can do it with full awareness of the resource constraints. 3221 /// However, some cases are "obvious" and we should do directly. An example of 3222 /// this is speculating a single, reasonably cheap instruction. 3223 /// 3224 /// There is only one distinct advantage to flattening the CFG at the IR level: 3225 /// it makes very common but simplistic optimizations such as are common in 3226 /// instcombine and the DAG combiner more powerful by removing CFG edges and 3227 /// modeling their effects with easier to reason about SSA value graphs. 3228 /// 3229 /// 3230 /// An illustration of this transform is turning this IR: 3231 /// \code 3232 /// BB: 3233 /// %cmp = icmp ult %x, %y 3234 /// br i1 %cmp, label %EndBB, label %ThenBB 3235 /// ThenBB: 3236 /// %sub = sub %x, %y 3237 /// br label BB2 3238 /// EndBB: 3239 /// %phi = phi [ %sub, %ThenBB ], [ 0, %BB ] 3240 /// ... 3241 /// \endcode 3242 /// 3243 /// Into this IR: 3244 /// \code 3245 /// BB: 3246 /// %cmp = icmp ult %x, %y 3247 /// %sub = sub %x, %y 3248 /// %cond = select i1 %cmp, 0, %sub 3249 /// ... 3250 /// \endcode 3251 /// 3252 /// \returns true if the conditional block is removed. 3253 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI, 3254 BasicBlock *ThenBB) { 3255 if (!Options.SpeculateBlocks) 3256 return false; 3257 3258 // Be conservative for now. FP select instruction can often be expensive. 3259 Value *BrCond = BI->getCondition(); 3260 if (isa<FCmpInst>(BrCond)) 3261 return false; 3262 3263 BasicBlock *BB = BI->getParent(); 3264 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 3265 InstructionCost Budget = 3266 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3267 3268 // If ThenBB is actually on the false edge of the conditional branch, remember 3269 // to swap the select operands later. 3270 bool Invert = false; 3271 if (ThenBB != BI->getSuccessor(0)) { 3272 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 3273 Invert = true; 3274 } 3275 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 3276 3277 if (!isProfitableToSpeculate(BI, Invert, TTI)) 3278 return false; 3279 3280 // Keep a count of how many times instructions are used within ThenBB when 3281 // they are candidates for sinking into ThenBB. Specifically: 3282 // - They are defined in BB, and 3283 // - They have no side effects, and 3284 // - All of their uses are in ThenBB. 3285 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 3286 3287 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 3288 3289 unsigned SpeculatedInstructions = 0; 3290 bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting && 3291 Options.HoistLoadsStoresWithCondFaulting; 3292 SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores; 3293 Value *SpeculatedStoreValue = nullptr; 3294 StoreInst *SpeculatedStore = nullptr; 3295 EphemeralValueTracker EphTracker; 3296 for (Instruction &I : reverse(drop_end(*ThenBB))) { 3297 // Skip debug info. 3298 if (isa<DbgInfoIntrinsic>(I)) { 3299 SpeculatedDbgIntrinsics.push_back(&I); 3300 continue; 3301 } 3302 3303 // Skip pseudo probes. The consequence is we lose track of the branch 3304 // probability for ThenBB, which is fine since the optimization here takes 3305 // place regardless of the branch probability. 3306 if (isa<PseudoProbeInst>(I)) { 3307 // The probe should be deleted so that it will not be over-counted when 3308 // the samples collected on the non-conditional path are counted towards 3309 // the conditional path. We leave it for the counts inference algorithm to 3310 // figure out a proper count for an unknown probe. 3311 SpeculatedDbgIntrinsics.push_back(&I); 3312 continue; 3313 } 3314 3315 // Ignore ephemeral values, they will be dropped by the transform. 3316 if (EphTracker.track(&I)) 3317 continue; 3318 3319 // Only speculatively execute a single instruction (not counting the 3320 // terminator) for now. 3321 bool IsSafeCheapLoadStore = HoistLoadsStores && 3322 isSafeCheapLoadStore(&I, TTI) && 3323 SpeculatedConditionalLoadsStores.size() < 3324 HoistLoadsStoresWithCondFaultingThreshold; 3325 // Not count load/store into cost if target supports conditional faulting 3326 // b/c it's cheap to speculate it. 3327 if (IsSafeCheapLoadStore) 3328 SpeculatedConditionalLoadsStores.push_back(&I); 3329 else 3330 ++SpeculatedInstructions; 3331 3332 if (SpeculatedInstructions > 1) 3333 return false; 3334 3335 // Don't hoist the instruction if it's unsafe or expensive. 3336 if (!IsSafeCheapLoadStore && 3337 !isSafeToSpeculativelyExecute(&I, BI, Options.AC) && 3338 !(HoistCondStores && !SpeculatedStoreValue && 3339 (SpeculatedStoreValue = 3340 isSafeToSpeculateStore(&I, BB, ThenBB, EndBB)))) 3341 return false; 3342 if (!IsSafeCheapLoadStore && !SpeculatedStoreValue && 3343 computeSpeculationCost(&I, TTI) > 3344 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 3345 return false; 3346 3347 // Store the store speculation candidate. 3348 if (!SpeculatedStore && SpeculatedStoreValue) 3349 SpeculatedStore = cast<StoreInst>(&I); 3350 3351 // Do not hoist the instruction if any of its operands are defined but not 3352 // used in BB. The transformation will prevent the operand from 3353 // being sunk into the use block. 3354 for (Use &Op : I.operands()) { 3355 Instruction *OpI = dyn_cast<Instruction>(Op); 3356 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 3357 continue; // Not a candidate for sinking. 3358 3359 ++SinkCandidateUseCounts[OpI]; 3360 } 3361 } 3362 3363 // Consider any sink candidates which are only used in ThenBB as costs for 3364 // speculation. Note, while we iterate over a DenseMap here, we are summing 3365 // and so iteration order isn't significant. 3366 for (const auto &[Inst, Count] : SinkCandidateUseCounts) 3367 if (Inst->hasNUses(Count)) { 3368 ++SpeculatedInstructions; 3369 if (SpeculatedInstructions > 1) 3370 return false; 3371 } 3372 3373 // Check that we can insert the selects and that it's not too expensive to do 3374 // so. 3375 bool Convert = 3376 SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty(); 3377 InstructionCost Cost = 0; 3378 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 3379 SpeculatedInstructions, Cost, TTI); 3380 if (!Convert || Cost > Budget) 3381 return false; 3382 3383 // If we get here, we can hoist the instruction and if-convert. 3384 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 3385 3386 // Insert a select of the value of the speculated store. 3387 if (SpeculatedStoreValue) { 3388 IRBuilder<NoFolder> Builder(BI); 3389 Value *OrigV = SpeculatedStore->getValueOperand(); 3390 Value *TrueV = SpeculatedStore->getValueOperand(); 3391 Value *FalseV = SpeculatedStoreValue; 3392 if (Invert) 3393 std::swap(TrueV, FalseV); 3394 Value *S = Builder.CreateSelect( 3395 BrCond, TrueV, FalseV, "spec.store.select", BI); 3396 SpeculatedStore->setOperand(0, S); 3397 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 3398 SpeculatedStore->getDebugLoc()); 3399 // The value stored is still conditional, but the store itself is now 3400 // unconditonally executed, so we must be sure that any linked dbg.assign 3401 // intrinsics are tracking the new stored value (the result of the 3402 // select). If we don't, and the store were to be removed by another pass 3403 // (e.g. DSE), then we'd eventually end up emitting a location describing 3404 // the conditional value, unconditionally. 3405 // 3406 // === Before this transformation === 3407 // pred: 3408 // store %one, %x.dest, !DIAssignID !1 3409 // dbg.assign %one, "x", ..., !1, ... 3410 // br %cond if.then 3411 // 3412 // if.then: 3413 // store %two, %x.dest, !DIAssignID !2 3414 // dbg.assign %two, "x", ..., !2, ... 3415 // 3416 // === After this transformation === 3417 // pred: 3418 // store %one, %x.dest, !DIAssignID !1 3419 // dbg.assign %one, "x", ..., !1 3420 /// ... 3421 // %merge = select %cond, %two, %one 3422 // store %merge, %x.dest, !DIAssignID !2 3423 // dbg.assign %merge, "x", ..., !2 3424 auto replaceVariable = [OrigV, S](auto *DbgAssign) { 3425 if (llvm::is_contained(DbgAssign->location_ops(), OrigV)) 3426 DbgAssign->replaceVariableLocationOp(OrigV, S); 3427 }; 3428 for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable); 3429 for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable); 3430 } 3431 3432 // Metadata can be dependent on the condition we are hoisting above. 3433 // Strip all UB-implying metadata on the instruction. Drop the debug loc 3434 // to avoid making it appear as if the condition is a constant, which would 3435 // be misleading while debugging. 3436 // Similarly strip attributes that maybe dependent on condition we are 3437 // hoisting above. 3438 for (auto &I : make_early_inc_range(*ThenBB)) { 3439 if (!SpeculatedStoreValue || &I != SpeculatedStore) { 3440 // Don't update the DILocation of dbg.assign intrinsics. 3441 if (!isa<DbgAssignIntrinsic>(&I)) 3442 I.setDebugLoc(DebugLoc()); 3443 } 3444 I.dropUBImplyingAttrsAndMetadata(); 3445 3446 // Drop ephemeral values. 3447 if (EphTracker.contains(&I)) { 3448 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 3449 I.eraseFromParent(); 3450 } 3451 } 3452 3453 // Hoist the instructions. 3454 // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached 3455 // to these instructions, in the same way that dbg.value intrinsics are 3456 // dropped at the end of this block. 3457 for (auto &It : make_range(ThenBB->begin(), ThenBB->end())) 3458 for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange())) 3459 // Drop all records except assign-kind DbgVariableRecords (dbg.assign 3460 // equivalent). 3461 if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR); 3462 !DVR || !DVR->isDbgAssign()) 3463 It.dropOneDbgRecord(&DR); 3464 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), 3465 std::prev(ThenBB->end())); 3466 3467 if (!SpeculatedConditionalLoadsStores.empty()) 3468 hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert); 3469 3470 // Insert selects and rewrite the PHI operands. 3471 IRBuilder<NoFolder> Builder(BI); 3472 for (PHINode &PN : EndBB->phis()) { 3473 unsigned OrigI = PN.getBasicBlockIndex(BB); 3474 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 3475 Value *OrigV = PN.getIncomingValue(OrigI); 3476 Value *ThenV = PN.getIncomingValue(ThenI); 3477 3478 // Skip PHIs which are trivial. 3479 if (OrigV == ThenV) 3480 continue; 3481 3482 // Create a select whose true value is the speculatively executed value and 3483 // false value is the pre-existing value. Swap them if the branch 3484 // destinations were inverted. 3485 Value *TrueV = ThenV, *FalseV = OrigV; 3486 if (Invert) 3487 std::swap(TrueV, FalseV); 3488 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 3489 PN.setIncomingValue(OrigI, V); 3490 PN.setIncomingValue(ThenI, V); 3491 } 3492 3493 // Remove speculated dbg intrinsics. 3494 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 3495 // dbg value for the different flows and inserting it after the select. 3496 for (Instruction *I : SpeculatedDbgIntrinsics) { 3497 // We still want to know that an assignment took place so don't remove 3498 // dbg.assign intrinsics. 3499 if (!isa<DbgAssignIntrinsic>(I)) 3500 I->eraseFromParent(); 3501 } 3502 3503 ++NumSpeculations; 3504 return true; 3505 } 3506 3507 /// Return true if we can thread a branch across this block. 3508 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 3509 int Size = 0; 3510 EphemeralValueTracker EphTracker; 3511 3512 // Walk the loop in reverse so that we can identify ephemeral values properly 3513 // (values only feeding assumes). 3514 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 3515 // Can't fold blocks that contain noduplicate or convergent calls. 3516 if (CallInst *CI = dyn_cast<CallInst>(&I)) 3517 if (CI->cannotDuplicate() || CI->isConvergent()) 3518 return false; 3519 3520 // Ignore ephemeral values which are deleted during codegen. 3521 // We will delete Phis while threading, so Phis should not be accounted in 3522 // block's size. 3523 if (!EphTracker.track(&I) && !isa<PHINode>(I)) { 3524 if (Size++ > MaxSmallBlockSize) 3525 return false; // Don't clone large BB's. 3526 } 3527 3528 // We can only support instructions that do not define values that are 3529 // live outside of the current basic block. 3530 for (User *U : I.users()) { 3531 Instruction *UI = cast<Instruction>(U); 3532 if (UI->getParent() != BB || isa<PHINode>(UI)) 3533 return false; 3534 } 3535 3536 // Looks ok, continue checking. 3537 } 3538 3539 return true; 3540 } 3541 3542 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 3543 BasicBlock *To) { 3544 // Don't look past the block defining the value, we might get the value from 3545 // a previous loop iteration. 3546 auto *I = dyn_cast<Instruction>(V); 3547 if (I && I->getParent() == To) 3548 return nullptr; 3549 3550 // We know the value if the From block branches on it. 3551 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 3552 if (BI && BI->isConditional() && BI->getCondition() == V && 3553 BI->getSuccessor(0) != BI->getSuccessor(1)) 3554 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 3555 : ConstantInt::getFalse(BI->getContext()); 3556 3557 return nullptr; 3558 } 3559 3560 /// If we have a conditional branch on something for which we know the constant 3561 /// value in predecessors (e.g. a phi node in the current block), thread edges 3562 /// from the predecessor to their ultimate destination. 3563 static std::optional<bool> 3564 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3565 const DataLayout &DL, 3566 AssumptionCache *AC) { 3567 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3568 BasicBlock *BB = BI->getParent(); 3569 Value *Cond = BI->getCondition(); 3570 PHINode *PN = dyn_cast<PHINode>(Cond); 3571 if (PN && PN->getParent() == BB) { 3572 // Degenerate case of a single entry PHI. 3573 if (PN->getNumIncomingValues() == 1) { 3574 FoldSingleEntryPHINodes(PN->getParent()); 3575 return true; 3576 } 3577 3578 for (Use &U : PN->incoming_values()) 3579 if (auto *CB = dyn_cast<ConstantInt>(U)) 3580 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3581 } else { 3582 for (BasicBlock *Pred : predecessors(BB)) { 3583 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3584 KnownValues[CB].insert(Pred); 3585 } 3586 } 3587 3588 if (KnownValues.empty()) 3589 return false; 3590 3591 // Now we know that this block has multiple preds and two succs. 3592 // Check that the block is small enough and values defined in the block are 3593 // not used outside of it. 3594 if (!blockIsSimpleEnoughToThreadThrough(BB)) 3595 return false; 3596 3597 for (const auto &Pair : KnownValues) { 3598 // Okay, we now know that all edges from PredBB should be revectored to 3599 // branch to RealDest. 3600 ConstantInt *CB = Pair.first; 3601 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3602 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3603 3604 if (RealDest == BB) 3605 continue; // Skip self loops. 3606 3607 // Skip if the predecessor's terminator is an indirect branch. 3608 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3609 return isa<IndirectBrInst>(PredBB->getTerminator()); 3610 })) 3611 continue; 3612 3613 LLVM_DEBUG({ 3614 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3615 << " has value " << *Pair.first << " in predecessors:\n"; 3616 for (const BasicBlock *PredBB : Pair.second) 3617 dbgs() << " " << PredBB->getName() << "\n"; 3618 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3619 }); 3620 3621 // Split the predecessors we are threading into a new edge block. We'll 3622 // clone the instructions into this block, and then redirect it to RealDest. 3623 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3624 3625 // TODO: These just exist to reduce test diff, we can drop them if we like. 3626 EdgeBB->setName(RealDest->getName() + ".critedge"); 3627 EdgeBB->moveBefore(RealDest); 3628 3629 // Update PHI nodes. 3630 addPredecessorToBlock(RealDest, EdgeBB, BB); 3631 3632 // BB may have instructions that are being threaded over. Clone these 3633 // instructions into EdgeBB. We know that there will be no uses of the 3634 // cloned instructions outside of EdgeBB. 3635 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3636 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3637 TranslateMap[Cond] = CB; 3638 3639 // RemoveDIs: track instructions that we optimise away while folding, so 3640 // that we can copy DbgVariableRecords from them later. 3641 BasicBlock::iterator SrcDbgCursor = BB->begin(); 3642 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3643 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3644 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3645 continue; 3646 } 3647 // Clone the instruction. 3648 Instruction *N = BBI->clone(); 3649 // Insert the new instruction into its new home. 3650 N->insertInto(EdgeBB, InsertPt); 3651 3652 if (BBI->hasName()) 3653 N->setName(BBI->getName() + ".c"); 3654 3655 // Update operands due to translation. 3656 for (Use &Op : N->operands()) { 3657 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3658 if (PI != TranslateMap.end()) 3659 Op = PI->second; 3660 } 3661 3662 // Check for trivial simplification. 3663 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3664 if (!BBI->use_empty()) 3665 TranslateMap[&*BBI] = V; 3666 if (!N->mayHaveSideEffects()) { 3667 N->eraseFromParent(); // Instruction folded away, don't need actual 3668 // inst 3669 N = nullptr; 3670 } 3671 } else { 3672 if (!BBI->use_empty()) 3673 TranslateMap[&*BBI] = N; 3674 } 3675 if (N) { 3676 // Copy all debug-info attached to instructions from the last we 3677 // successfully clone, up to this instruction (they might have been 3678 // folded away). 3679 for (; SrcDbgCursor != BBI; ++SrcDbgCursor) 3680 N->cloneDebugInfoFrom(&*SrcDbgCursor); 3681 SrcDbgCursor = std::next(BBI); 3682 // Clone debug-info on this instruction too. 3683 N->cloneDebugInfoFrom(&*BBI); 3684 3685 // Register the new instruction with the assumption cache if necessary. 3686 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3687 if (AC) 3688 AC->registerAssumption(Assume); 3689 } 3690 } 3691 3692 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor) 3693 InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor); 3694 InsertPt->cloneDebugInfoFrom(BI); 3695 3696 BB->removePredecessor(EdgeBB); 3697 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3698 EdgeBI->setSuccessor(0, RealDest); 3699 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3700 3701 if (DTU) { 3702 SmallVector<DominatorTree::UpdateType, 2> Updates; 3703 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3704 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3705 DTU->applyUpdates(Updates); 3706 } 3707 3708 // For simplicity, we created a separate basic block for the edge. Merge 3709 // it back into the predecessor if possible. This not only avoids 3710 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3711 // bypass the check for trivial cycles above. 3712 MergeBlockIntoPredecessor(EdgeBB, DTU); 3713 3714 // Signal repeat, simplifying any other constants. 3715 return std::nullopt; 3716 } 3717 3718 return false; 3719 } 3720 3721 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3722 DomTreeUpdater *DTU, 3723 const DataLayout &DL, 3724 AssumptionCache *AC) { 3725 std::optional<bool> Result; 3726 bool EverChanged = false; 3727 do { 3728 // Note that None means "we changed things, but recurse further." 3729 Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3730 EverChanged |= Result == std::nullopt || *Result; 3731 } while (Result == std::nullopt); 3732 return EverChanged; 3733 } 3734 3735 /// Given a BB that starts with the specified two-entry PHI node, 3736 /// see if we can eliminate it. 3737 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3738 DomTreeUpdater *DTU, AssumptionCache *AC, 3739 const DataLayout &DL, 3740 bool SpeculateUnpredictables) { 3741 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3742 // statement", which has a very simple dominance structure. Basically, we 3743 // are trying to find the condition that is being branched on, which 3744 // subsequently causes this merge to happen. We really want control 3745 // dependence information for this check, but simplifycfg can't keep it up 3746 // to date, and this catches most of the cases we care about anyway. 3747 BasicBlock *BB = PN->getParent(); 3748 3749 BasicBlock *IfTrue, *IfFalse; 3750 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3751 if (!DomBI) 3752 return false; 3753 Value *IfCond = DomBI->getCondition(); 3754 // Don't bother if the branch will be constant folded trivially. 3755 if (isa<ConstantInt>(IfCond)) 3756 return false; 3757 3758 BasicBlock *DomBlock = DomBI->getParent(); 3759 SmallVector<BasicBlock *, 2> IfBlocks; 3760 llvm::copy_if( 3761 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3762 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3763 }); 3764 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3765 "Will have either one or two blocks to speculate."); 3766 3767 // If the branch is non-unpredictable, see if we either predictably jump to 3768 // the merge bb (if we have only a single 'then' block), or if we predictably 3769 // jump to one specific 'then' block (if we have two of them). 3770 // It isn't beneficial to speculatively execute the code 3771 // from the block that we know is predictably not entered. 3772 bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable); 3773 if (!IsUnpredictable) { 3774 uint64_t TWeight, FWeight; 3775 if (extractBranchWeights(*DomBI, TWeight, FWeight) && 3776 (TWeight + FWeight) != 0) { 3777 BranchProbability BITrueProb = 3778 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3779 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3780 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3781 if (IfBlocks.size() == 1) { 3782 BranchProbability BIBBProb = 3783 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3784 if (BIBBProb >= Likely) 3785 return false; 3786 } else { 3787 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3788 return false; 3789 } 3790 } 3791 } 3792 3793 // Don't try to fold an unreachable block. For example, the phi node itself 3794 // can't be the candidate if-condition for a select that we want to form. 3795 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3796 if (IfCondPhiInst->getParent() == BB) 3797 return false; 3798 3799 // Okay, we found that we can merge this two-entry phi node into a select. 3800 // Doing so would require us to fold *all* two entry phi nodes in this block. 3801 // At some point this becomes non-profitable (particularly if the target 3802 // doesn't support cmov's). Only do this transformation if there are two or 3803 // fewer PHI nodes in this block. 3804 unsigned NumPhis = 0; 3805 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3806 if (NumPhis > 2) 3807 return false; 3808 3809 // Loop over the PHI's seeing if we can promote them all to select 3810 // instructions. While we are at it, keep track of the instructions 3811 // that need to be moved to the dominating block. 3812 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3813 InstructionCost Cost = 0; 3814 InstructionCost Budget = 3815 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3816 if (SpeculateUnpredictables && IsUnpredictable) 3817 Budget += TTI.getBranchMispredictPenalty(); 3818 3819 bool Changed = false; 3820 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3821 PHINode *PN = cast<PHINode>(II++); 3822 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3823 PN->replaceAllUsesWith(V); 3824 PN->eraseFromParent(); 3825 Changed = true; 3826 continue; 3827 } 3828 3829 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI, 3830 AggressiveInsts, Cost, Budget, TTI, AC) || 3831 !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI, 3832 AggressiveInsts, Cost, Budget, TTI, AC)) 3833 return Changed; 3834 } 3835 3836 // If we folded the first phi, PN dangles at this point. Refresh it. If 3837 // we ran out of PHIs then we simplified them all. 3838 PN = dyn_cast<PHINode>(BB->begin()); 3839 if (!PN) 3840 return true; 3841 3842 // Return true if at least one of these is a 'not', and another is either 3843 // a 'not' too, or a constant. 3844 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3845 if (!match(V0, m_Not(m_Value()))) 3846 std::swap(V0, V1); 3847 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3848 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3849 }; 3850 3851 // Don't fold i1 branches on PHIs which contain binary operators or 3852 // (possibly inverted) select form of or/ands, unless one of 3853 // the incoming values is an 'not' and another one is freely invertible. 3854 // These can often be turned into switches and other things. 3855 auto IsBinOpOrAnd = [](Value *V) { 3856 return match( 3857 V, m_CombineOr(m_BinOp(), m_c_Select(m_ImmConstant(), m_Value()))); 3858 }; 3859 if (PN->getType()->isIntegerTy(1) && 3860 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3861 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3862 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3863 PN->getIncomingValue(1))) 3864 return Changed; 3865 3866 // If all PHI nodes are promotable, check to make sure that all instructions 3867 // in the predecessor blocks can be promoted as well. If not, we won't be able 3868 // to get rid of the control flow, so it's not worth promoting to select 3869 // instructions. 3870 for (BasicBlock *IfBlock : IfBlocks) 3871 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3872 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3873 // This is not an aggressive instruction that we can promote. 3874 // Because of this, we won't be able to get rid of the control flow, so 3875 // the xform is not worth it. 3876 return Changed; 3877 } 3878 3879 // If either of the blocks has it's address taken, we can't do this fold. 3880 if (any_of(IfBlocks, 3881 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3882 return Changed; 3883 3884 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond; 3885 if (IsUnpredictable) dbgs() << " (unpredictable)"; 3886 dbgs() << " T: " << IfTrue->getName() 3887 << " F: " << IfFalse->getName() << "\n"); 3888 3889 // If we can still promote the PHI nodes after this gauntlet of tests, 3890 // do all of the PHI's now. 3891 3892 // Move all 'aggressive' instructions, which are defined in the 3893 // conditional parts of the if's up to the dominating block. 3894 for (BasicBlock *IfBlock : IfBlocks) 3895 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3896 3897 IRBuilder<NoFolder> Builder(DomBI); 3898 // Propagate fast-math-flags from phi nodes to replacement selects. 3899 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3900 // Change the PHI node into a select instruction. 3901 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3902 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3903 3904 Value *Sel = Builder.CreateSelectFMF(IfCond, TrueVal, FalseVal, 3905 isa<FPMathOperator>(PN) ? PN : nullptr, 3906 "", DomBI); 3907 PN->replaceAllUsesWith(Sel); 3908 Sel->takeName(PN); 3909 PN->eraseFromParent(); 3910 } 3911 3912 // At this point, all IfBlocks are empty, so our if statement 3913 // has been flattened. Change DomBlock to jump directly to our new block to 3914 // avoid other simplifycfg's kicking in on the diamond. 3915 Builder.CreateBr(BB); 3916 3917 SmallVector<DominatorTree::UpdateType, 3> Updates; 3918 if (DTU) { 3919 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3920 for (auto *Successor : successors(DomBlock)) 3921 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3922 } 3923 3924 DomBI->eraseFromParent(); 3925 if (DTU) 3926 DTU->applyUpdates(Updates); 3927 3928 return true; 3929 } 3930 3931 static Value *createLogicalOp(IRBuilderBase &Builder, 3932 Instruction::BinaryOps Opc, Value *LHS, 3933 Value *RHS, const Twine &Name = "") { 3934 // Try to relax logical op to binary op. 3935 if (impliesPoison(RHS, LHS)) 3936 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3937 if (Opc == Instruction::And) 3938 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3939 if (Opc == Instruction::Or) 3940 return Builder.CreateLogicalOr(LHS, RHS, Name); 3941 llvm_unreachable("Invalid logical opcode"); 3942 } 3943 3944 /// Return true if either PBI or BI has branch weight available, and store 3945 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3946 /// not have branch weight, use 1:1 as its weight. 3947 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3948 uint64_t &PredTrueWeight, 3949 uint64_t &PredFalseWeight, 3950 uint64_t &SuccTrueWeight, 3951 uint64_t &SuccFalseWeight) { 3952 bool PredHasWeights = 3953 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); 3954 bool SuccHasWeights = 3955 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); 3956 if (PredHasWeights || SuccHasWeights) { 3957 if (!PredHasWeights) 3958 PredTrueWeight = PredFalseWeight = 1; 3959 if (!SuccHasWeights) 3960 SuccTrueWeight = SuccFalseWeight = 1; 3961 return true; 3962 } else { 3963 return false; 3964 } 3965 } 3966 3967 /// Determine if the two branches share a common destination and deduce a glue 3968 /// that joins the branches' conditions to arrive at the common destination if 3969 /// that would be profitable. 3970 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> 3971 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3972 const TargetTransformInfo *TTI) { 3973 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3974 "Both blocks must end with a conditional branches."); 3975 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3976 "PredBB must be a predecessor of BB."); 3977 3978 // We have the potential to fold the conditions together, but if the 3979 // predecessor branch is predictable, we may not want to merge them. 3980 uint64_t PTWeight, PFWeight; 3981 BranchProbability PBITrueProb, Likely; 3982 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3983 extractBranchWeights(*PBI, PTWeight, PFWeight) && 3984 (PTWeight + PFWeight) != 0) { 3985 PBITrueProb = 3986 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3987 Likely = TTI->getPredictableBranchThreshold(); 3988 } 3989 3990 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3991 // Speculate the 2nd condition unless the 1st is probably true. 3992 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3993 return {{BI->getSuccessor(0), Instruction::Or, false}}; 3994 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3995 // Speculate the 2nd condition unless the 1st is probably false. 3996 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3997 return {{BI->getSuccessor(1), Instruction::And, false}}; 3998 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3999 // Speculate the 2nd condition unless the 1st is probably true. 4000 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 4001 return {{BI->getSuccessor(1), Instruction::And, true}}; 4002 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4003 // Speculate the 2nd condition unless the 1st is probably false. 4004 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 4005 return {{BI->getSuccessor(0), Instruction::Or, true}}; 4006 } 4007 return std::nullopt; 4008 } 4009 4010 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 4011 DomTreeUpdater *DTU, 4012 MemorySSAUpdater *MSSAU, 4013 const TargetTransformInfo *TTI) { 4014 BasicBlock *BB = BI->getParent(); 4015 BasicBlock *PredBlock = PBI->getParent(); 4016 4017 // Determine if the two branches share a common destination. 4018 BasicBlock *CommonSucc; 4019 Instruction::BinaryOps Opc; 4020 bool InvertPredCond; 4021 std::tie(CommonSucc, Opc, InvertPredCond) = 4022 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 4023 4024 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 4025 4026 IRBuilder<> Builder(PBI); 4027 // The builder is used to create instructions to eliminate the branch in BB. 4028 // If BB's terminator has !annotation metadata, add it to the new 4029 // instructions. 4030 Builder.CollectMetadataToCopy(BB->getTerminator(), 4031 {LLVMContext::MD_annotation}); 4032 4033 // If we need to invert the condition in the pred block to match, do so now. 4034 if (InvertPredCond) { 4035 InvertBranch(PBI, Builder); 4036 } 4037 4038 BasicBlock *UniqueSucc = 4039 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 4040 4041 // Before cloning instructions, notify the successor basic block that it 4042 // is about to have a new predecessor. This will update PHI nodes, 4043 // which will allow us to update live-out uses of bonus instructions. 4044 addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 4045 4046 // Try to update branch weights. 4047 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4048 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4049 SuccTrueWeight, SuccFalseWeight)) { 4050 SmallVector<uint64_t, 8> NewWeights; 4051 4052 if (PBI->getSuccessor(0) == BB) { 4053 // PBI: br i1 %x, BB, FalseDest 4054 // BI: br i1 %y, UniqueSucc, FalseDest 4055 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 4056 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 4057 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 4058 // TrueWeight for PBI * FalseWeight for BI. 4059 // We assume that total weights of a BranchInst can fit into 32 bits. 4060 // Therefore, we will not have overflow using 64-bit arithmetic. 4061 NewWeights.push_back(PredFalseWeight * 4062 (SuccFalseWeight + SuccTrueWeight) + 4063 PredTrueWeight * SuccFalseWeight); 4064 } else { 4065 // PBI: br i1 %x, TrueDest, BB 4066 // BI: br i1 %y, TrueDest, UniqueSucc 4067 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 4068 // FalseWeight for PBI * TrueWeight for BI. 4069 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 4070 PredFalseWeight * SuccTrueWeight); 4071 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 4072 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 4073 } 4074 4075 // Halve the weights if any of them cannot fit in an uint32_t 4076 fitWeights(NewWeights); 4077 4078 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 4079 setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false); 4080 4081 // TODO: If BB is reachable from all paths through PredBlock, then we 4082 // could replace PBI's branch probabilities with BI's. 4083 } else 4084 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 4085 4086 // Now, update the CFG. 4087 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 4088 4089 if (DTU) 4090 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 4091 {DominatorTree::Delete, PredBlock, BB}}); 4092 4093 // If BI was a loop latch, it may have had associated loop metadata. 4094 // We need to copy it to the new latch, that is, PBI. 4095 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 4096 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 4097 4098 ValueToValueMapTy VMap; // maps original values to cloned values 4099 cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 4100 4101 Module *M = BB->getModule(); 4102 4103 if (PredBlock->IsNewDbgInfoFormat) { 4104 PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator()); 4105 for (DbgVariableRecord &DVR : 4106 filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) { 4107 RemapDbgRecord(M, &DVR, VMap, 4108 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 4109 } 4110 } 4111 4112 // Now that the Cond was cloned into the predecessor basic block, 4113 // or/and the two conditions together. 4114 Value *BICond = VMap[BI->getCondition()]; 4115 PBI->setCondition( 4116 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 4117 4118 ++NumFoldBranchToCommonDest; 4119 return true; 4120 } 4121 4122 /// Return if an instruction's type or any of its operands' types are a vector 4123 /// type. 4124 static bool isVectorOp(Instruction &I) { 4125 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 4126 return U->getType()->isVectorTy(); 4127 }); 4128 } 4129 4130 /// If this basic block is simple enough, and if a predecessor branches to us 4131 /// and one of our successors, fold the block into the predecessor and use 4132 /// logical operations to pick the right destination. 4133 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 4134 MemorySSAUpdater *MSSAU, 4135 const TargetTransformInfo *TTI, 4136 unsigned BonusInstThreshold) { 4137 // If this block ends with an unconditional branch, 4138 // let speculativelyExecuteBB() deal with it. 4139 if (!BI->isConditional()) 4140 return false; 4141 4142 BasicBlock *BB = BI->getParent(); 4143 TargetTransformInfo::TargetCostKind CostKind = 4144 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 4145 : TargetTransformInfo::TCK_SizeAndLatency; 4146 4147 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4148 4149 if (!Cond || 4150 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 4151 !isa<SelectInst>(Cond)) || 4152 Cond->getParent() != BB || !Cond->hasOneUse()) 4153 return false; 4154 4155 // Finally, don't infinitely unroll conditional loops. 4156 if (is_contained(successors(BB), BB)) 4157 return false; 4158 4159 // With which predecessors will we want to deal with? 4160 SmallVector<BasicBlock *, 8> Preds; 4161 for (BasicBlock *PredBlock : predecessors(BB)) { 4162 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 4163 4164 // Check that we have two conditional branches. If there is a PHI node in 4165 // the common successor, verify that the same value flows in from both 4166 // blocks. 4167 if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI)) 4168 continue; 4169 4170 // Determine if the two branches share a common destination. 4171 BasicBlock *CommonSucc; 4172 Instruction::BinaryOps Opc; 4173 bool InvertPredCond; 4174 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 4175 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; 4176 else 4177 continue; 4178 4179 // Check the cost of inserting the necessary logic before performing the 4180 // transformation. 4181 if (TTI) { 4182 Type *Ty = BI->getCondition()->getType(); 4183 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 4184 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 4185 !isa<CmpInst>(PBI->getCondition()))) 4186 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 4187 4188 if (Cost > BranchFoldThreshold) 4189 continue; 4190 } 4191 4192 // Ok, we do want to deal with this predecessor. Record it. 4193 Preds.emplace_back(PredBlock); 4194 } 4195 4196 // If there aren't any predecessors into which we can fold, 4197 // don't bother checking the cost. 4198 if (Preds.empty()) 4199 return false; 4200 4201 // Only allow this transformation if computing the condition doesn't involve 4202 // too many instructions and these involved instructions can be executed 4203 // unconditionally. We denote all involved instructions except the condition 4204 // as "bonus instructions", and only allow this transformation when the 4205 // number of the bonus instructions we'll need to create when cloning into 4206 // each predecessor does not exceed a certain threshold. 4207 unsigned NumBonusInsts = 0; 4208 bool SawVectorOp = false; 4209 const unsigned PredCount = Preds.size(); 4210 for (Instruction &I : *BB) { 4211 // Don't check the branch condition comparison itself. 4212 if (&I == Cond) 4213 continue; 4214 // Ignore dbg intrinsics, and the terminator. 4215 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 4216 continue; 4217 // I must be safe to execute unconditionally. 4218 if (!isSafeToSpeculativelyExecute(&I)) 4219 return false; 4220 SawVectorOp |= isVectorOp(I); 4221 4222 // Account for the cost of duplicating this instruction into each 4223 // predecessor. Ignore free instructions. 4224 if (!TTI || TTI->getInstructionCost(&I, CostKind) != 4225 TargetTransformInfo::TCC_Free) { 4226 NumBonusInsts += PredCount; 4227 4228 // Early exits once we reach the limit. 4229 if (NumBonusInsts > 4230 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 4231 return false; 4232 } 4233 4234 auto IsBCSSAUse = [BB, &I](Use &U) { 4235 auto *UI = cast<Instruction>(U.getUser()); 4236 if (auto *PN = dyn_cast<PHINode>(UI)) 4237 return PN->getIncomingBlock(U) == BB; 4238 return UI->getParent() == BB && I.comesBefore(UI); 4239 }; 4240 4241 // Does this instruction require rewriting of uses? 4242 if (!all_of(I.uses(), IsBCSSAUse)) 4243 return false; 4244 } 4245 if (NumBonusInsts > 4246 BonusInstThreshold * 4247 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 4248 return false; 4249 4250 // Ok, we have the budget. Perform the transformation. 4251 for (BasicBlock *PredBlock : Preds) { 4252 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 4253 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 4254 } 4255 return false; 4256 } 4257 4258 // If there is only one store in BB1 and BB2, return it, otherwise return 4259 // nullptr. 4260 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 4261 StoreInst *S = nullptr; 4262 for (auto *BB : {BB1, BB2}) { 4263 if (!BB) 4264 continue; 4265 for (auto &I : *BB) 4266 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4267 if (S) 4268 // Multiple stores seen. 4269 return nullptr; 4270 else 4271 S = SI; 4272 } 4273 } 4274 return S; 4275 } 4276 4277 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 4278 Value *AlternativeV = nullptr) { 4279 // PHI is going to be a PHI node that allows the value V that is defined in 4280 // BB to be referenced in BB's only successor. 4281 // 4282 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 4283 // doesn't matter to us what the other operand is (it'll never get used). We 4284 // could just create a new PHI with an undef incoming value, but that could 4285 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 4286 // other PHI. So here we directly look for some PHI in BB's successor with V 4287 // as an incoming operand. If we find one, we use it, else we create a new 4288 // one. 4289 // 4290 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 4291 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 4292 // where OtherBB is the single other predecessor of BB's only successor. 4293 PHINode *PHI = nullptr; 4294 BasicBlock *Succ = BB->getSingleSuccessor(); 4295 4296 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 4297 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 4298 PHI = cast<PHINode>(I); 4299 if (!AlternativeV) 4300 break; 4301 4302 assert(Succ->hasNPredecessors(2)); 4303 auto PredI = pred_begin(Succ); 4304 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 4305 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 4306 break; 4307 PHI = nullptr; 4308 } 4309 if (PHI) 4310 return PHI; 4311 4312 // If V is not an instruction defined in BB, just return it. 4313 if (!AlternativeV && 4314 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 4315 return V; 4316 4317 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge"); 4318 PHI->insertBefore(Succ->begin()); 4319 PHI->addIncoming(V, BB); 4320 for (BasicBlock *PredBB : predecessors(Succ)) 4321 if (PredBB != BB) 4322 PHI->addIncoming( 4323 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB); 4324 return PHI; 4325 } 4326 4327 static bool mergeConditionalStoreToAddress( 4328 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 4329 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 4330 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 4331 // For every pointer, there must be exactly two stores, one coming from 4332 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 4333 // store (to any address) in PTB,PFB or QTB,QFB. 4334 // FIXME: We could relax this restriction with a bit more work and performance 4335 // testing. 4336 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 4337 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 4338 if (!PStore || !QStore) 4339 return false; 4340 4341 // Now check the stores are compatible. 4342 if (!QStore->isUnordered() || !PStore->isUnordered() || 4343 PStore->getValueOperand()->getType() != 4344 QStore->getValueOperand()->getType()) 4345 return false; 4346 4347 // Check that sinking the store won't cause program behavior changes. Sinking 4348 // the store out of the Q blocks won't change any behavior as we're sinking 4349 // from a block to its unconditional successor. But we're moving a store from 4350 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 4351 // So we need to check that there are no aliasing loads or stores in 4352 // QBI, QTB and QFB. We also need to check there are no conflicting memory 4353 // operations between PStore and the end of its parent block. 4354 // 4355 // The ideal way to do this is to query AliasAnalysis, but we don't 4356 // preserve AA currently so that is dangerous. Be super safe and just 4357 // check there are no other memory operations at all. 4358 for (auto &I : *QFB->getSinglePredecessor()) 4359 if (I.mayReadOrWriteMemory()) 4360 return false; 4361 for (auto &I : *QFB) 4362 if (&I != QStore && I.mayReadOrWriteMemory()) 4363 return false; 4364 if (QTB) 4365 for (auto &I : *QTB) 4366 if (&I != QStore && I.mayReadOrWriteMemory()) 4367 return false; 4368 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 4369 I != E; ++I) 4370 if (&*I != PStore && I->mayReadOrWriteMemory()) 4371 return false; 4372 4373 // If we're not in aggressive mode, we only optimize if we have some 4374 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 4375 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 4376 if (!BB) 4377 return true; 4378 // Heuristic: if the block can be if-converted/phi-folded and the 4379 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 4380 // thread this store. 4381 InstructionCost Cost = 0; 4382 InstructionCost Budget = 4383 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 4384 for (auto &I : BB->instructionsWithoutDebug(false)) { 4385 // Consider terminator instruction to be free. 4386 if (I.isTerminator()) 4387 continue; 4388 // If this is one the stores that we want to speculate out of this BB, 4389 // then don't count it's cost, consider it to be free. 4390 if (auto *S = dyn_cast<StoreInst>(&I)) 4391 if (llvm::find(FreeStores, S)) 4392 continue; 4393 // Else, we have a white-list of instructions that we are ak speculating. 4394 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 4395 return false; // Not in white-list - not worthwhile folding. 4396 // And finally, if this is a non-free instruction that we are okay 4397 // speculating, ensure that we consider the speculation budget. 4398 Cost += 4399 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 4400 if (Cost > Budget) 4401 return false; // Eagerly refuse to fold as soon as we're out of budget. 4402 } 4403 assert(Cost <= Budget && 4404 "When we run out of budget we will eagerly return from within the " 4405 "per-instruction loop."); 4406 return true; 4407 }; 4408 4409 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 4410 if (!MergeCondStoresAggressively && 4411 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 4412 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 4413 return false; 4414 4415 // If PostBB has more than two predecessors, we need to split it so we can 4416 // sink the store. 4417 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 4418 // We know that QFB's only successor is PostBB. And QFB has a single 4419 // predecessor. If QTB exists, then its only successor is also PostBB. 4420 // If QTB does not exist, then QFB's only predecessor has a conditional 4421 // branch to QFB and PostBB. 4422 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 4423 BasicBlock *NewBB = 4424 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 4425 if (!NewBB) 4426 return false; 4427 PostBB = NewBB; 4428 } 4429 4430 // OK, we're going to sink the stores to PostBB. The store has to be 4431 // conditional though, so first create the predicate. 4432 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 4433 ->getCondition(); 4434 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 4435 ->getCondition(); 4436 4437 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 4438 PStore->getParent()); 4439 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 4440 QStore->getParent(), PPHI); 4441 4442 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt(); 4443 IRBuilder<> QB(PostBB, PostBBFirst); 4444 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc()); 4445 4446 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 4447 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 4448 4449 if (InvertPCond) 4450 PPred = QB.CreateNot(PPred); 4451 if (InvertQCond) 4452 QPred = QB.CreateNot(QPred); 4453 Value *CombinedPred = QB.CreateOr(PPred, QPred); 4454 4455 BasicBlock::iterator InsertPt = QB.GetInsertPoint(); 4456 auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt, 4457 /*Unreachable=*/false, 4458 /*BranchWeights=*/nullptr, DTU); 4459 4460 QB.SetInsertPoint(T); 4461 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 4462 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 4463 // Choose the minimum alignment. If we could prove both stores execute, we 4464 // could use biggest one. In this case, though, we only know that one of the 4465 // stores executes. And we don't know it's safe to take the alignment from a 4466 // store that doesn't execute. 4467 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 4468 4469 QStore->eraseFromParent(); 4470 PStore->eraseFromParent(); 4471 4472 return true; 4473 } 4474 4475 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 4476 DomTreeUpdater *DTU, const DataLayout &DL, 4477 const TargetTransformInfo &TTI) { 4478 // The intention here is to find diamonds or triangles (see below) where each 4479 // conditional block contains a store to the same address. Both of these 4480 // stores are conditional, so they can't be unconditionally sunk. But it may 4481 // be profitable to speculatively sink the stores into one merged store at the 4482 // end, and predicate the merged store on the union of the two conditions of 4483 // PBI and QBI. 4484 // 4485 // This can reduce the number of stores executed if both of the conditions are 4486 // true, and can allow the blocks to become small enough to be if-converted. 4487 // This optimization will also chain, so that ladders of test-and-set 4488 // sequences can be if-converted away. 4489 // 4490 // We only deal with simple diamonds or triangles: 4491 // 4492 // PBI or PBI or a combination of the two 4493 // / \ | \ 4494 // PTB PFB | PFB 4495 // \ / | / 4496 // QBI QBI 4497 // / \ | \ 4498 // QTB QFB | QFB 4499 // \ / | / 4500 // PostBB PostBB 4501 // 4502 // We model triangles as a type of diamond with a nullptr "true" block. 4503 // Triangles are canonicalized so that the fallthrough edge is represented by 4504 // a true condition, as in the diagram above. 4505 BasicBlock *PTB = PBI->getSuccessor(0); 4506 BasicBlock *PFB = PBI->getSuccessor(1); 4507 BasicBlock *QTB = QBI->getSuccessor(0); 4508 BasicBlock *QFB = QBI->getSuccessor(1); 4509 BasicBlock *PostBB = QFB->getSingleSuccessor(); 4510 4511 // Make sure we have a good guess for PostBB. If QTB's only successor is 4512 // QFB, then QFB is a better PostBB. 4513 if (QTB->getSingleSuccessor() == QFB) 4514 PostBB = QFB; 4515 4516 // If we couldn't find a good PostBB, stop. 4517 if (!PostBB) 4518 return false; 4519 4520 bool InvertPCond = false, InvertQCond = false; 4521 // Canonicalize fallthroughs to the true branches. 4522 if (PFB == QBI->getParent()) { 4523 std::swap(PFB, PTB); 4524 InvertPCond = true; 4525 } 4526 if (QFB == PostBB) { 4527 std::swap(QFB, QTB); 4528 InvertQCond = true; 4529 } 4530 4531 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 4532 // and QFB may not. Model fallthroughs as a nullptr block. 4533 if (PTB == QBI->getParent()) 4534 PTB = nullptr; 4535 if (QTB == PostBB) 4536 QTB = nullptr; 4537 4538 // Legality bailouts. We must have at least the non-fallthrough blocks and 4539 // the post-dominating block, and the non-fallthroughs must only have one 4540 // predecessor. 4541 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 4542 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 4543 }; 4544 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 4545 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 4546 return false; 4547 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 4548 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 4549 return false; 4550 if (!QBI->getParent()->hasNUses(2)) 4551 return false; 4552 4553 // OK, this is a sequence of two diamonds or triangles. 4554 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4555 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4556 for (auto *BB : {PTB, PFB}) { 4557 if (!BB) 4558 continue; 4559 for (auto &I : *BB) 4560 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4561 PStoreAddresses.insert(SI->getPointerOperand()); 4562 } 4563 for (auto *BB : {QTB, QFB}) { 4564 if (!BB) 4565 continue; 4566 for (auto &I : *BB) 4567 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4568 QStoreAddresses.insert(SI->getPointerOperand()); 4569 } 4570 4571 set_intersect(PStoreAddresses, QStoreAddresses); 4572 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4573 // clear what it contains. 4574 auto &CommonAddresses = PStoreAddresses; 4575 4576 bool Changed = false; 4577 for (auto *Address : CommonAddresses) 4578 Changed |= 4579 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4580 InvertPCond, InvertQCond, DTU, DL, TTI); 4581 return Changed; 4582 } 4583 4584 /// If the previous block ended with a widenable branch, determine if reusing 4585 /// the target block is profitable and legal. This will have the effect of 4586 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4587 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4588 DomTreeUpdater *DTU) { 4589 // TODO: This can be generalized in two important ways: 4590 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4591 // values from the PBI edge. 4592 // 2) We can sink side effecting instructions into BI's fallthrough 4593 // successor provided they doesn't contribute to computation of 4594 // BI's condition. 4595 BasicBlock *IfTrueBB = PBI->getSuccessor(0); 4596 BasicBlock *IfFalseBB = PBI->getSuccessor(1); 4597 if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() || 4598 !BI->getParent()->getSinglePredecessor()) 4599 return false; 4600 if (!IfFalseBB->phis().empty()) 4601 return false; // TODO 4602 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which 4603 // may undo the transform done here. 4604 // TODO: There might be a more fine-grained solution to this. 4605 if (!llvm::succ_empty(IfFalseBB)) 4606 return false; 4607 // Use lambda to lazily compute expensive condition after cheap ones. 4608 auto NoSideEffects = [](BasicBlock &BB) { 4609 return llvm::none_of(BB, [](const Instruction &I) { 4610 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4611 }); 4612 }; 4613 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4614 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4615 NoSideEffects(*BI->getParent())) { 4616 auto *OldSuccessor = BI->getSuccessor(1); 4617 OldSuccessor->removePredecessor(BI->getParent()); 4618 BI->setSuccessor(1, IfFalseBB); 4619 if (DTU) 4620 DTU->applyUpdates( 4621 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4622 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4623 return true; 4624 } 4625 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4626 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4627 NoSideEffects(*BI->getParent())) { 4628 auto *OldSuccessor = BI->getSuccessor(0); 4629 OldSuccessor->removePredecessor(BI->getParent()); 4630 BI->setSuccessor(0, IfFalseBB); 4631 if (DTU) 4632 DTU->applyUpdates( 4633 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4634 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4635 return true; 4636 } 4637 return false; 4638 } 4639 4640 /// If we have a conditional branch as a predecessor of another block, 4641 /// this function tries to simplify it. We know 4642 /// that PBI and BI are both conditional branches, and BI is in one of the 4643 /// successor blocks of PBI - PBI branches to BI. 4644 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4645 DomTreeUpdater *DTU, 4646 const DataLayout &DL, 4647 const TargetTransformInfo &TTI) { 4648 assert(PBI->isConditional() && BI->isConditional()); 4649 BasicBlock *BB = BI->getParent(); 4650 4651 // If this block ends with a branch instruction, and if there is a 4652 // predecessor that ends on a branch of the same condition, make 4653 // this conditional branch redundant. 4654 if (PBI->getCondition() == BI->getCondition() && 4655 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4656 // Okay, the outcome of this conditional branch is statically 4657 // knowable. If this block had a single pred, handle specially, otherwise 4658 // foldCondBranchOnValueKnownInPredecessor() will handle it. 4659 if (BB->getSinglePredecessor()) { 4660 // Turn this into a branch on constant. 4661 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4662 BI->setCondition( 4663 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4664 return true; // Nuke the branch on constant. 4665 } 4666 } 4667 4668 // If the previous block ended with a widenable branch, determine if reusing 4669 // the target block is profitable and legal. This will have the effect of 4670 // "widening" PBI, but doesn't require us to reason about hosting safety. 4671 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4672 return true; 4673 4674 // If both branches are conditional and both contain stores to the same 4675 // address, remove the stores from the conditionals and create a conditional 4676 // merged store at the end. 4677 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4678 return true; 4679 4680 // If this is a conditional branch in an empty block, and if any 4681 // predecessors are a conditional branch to one of our destinations, 4682 // fold the conditions into logical ops and one cond br. 4683 4684 // Ignore dbg intrinsics. 4685 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4686 return false; 4687 4688 int PBIOp, BIOp; 4689 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4690 PBIOp = 0; 4691 BIOp = 0; 4692 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4693 PBIOp = 0; 4694 BIOp = 1; 4695 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4696 PBIOp = 1; 4697 BIOp = 0; 4698 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4699 PBIOp = 1; 4700 BIOp = 1; 4701 } else { 4702 return false; 4703 } 4704 4705 // Check to make sure that the other destination of this branch 4706 // isn't BB itself. If so, this is an infinite loop that will 4707 // keep getting unwound. 4708 if (PBI->getSuccessor(PBIOp) == BB) 4709 return false; 4710 4711 // If predecessor's branch probability to BB is too low don't merge branches. 4712 SmallVector<uint32_t, 2> PredWeights; 4713 if (!PBI->getMetadata(LLVMContext::MD_unpredictable) && 4714 extractBranchWeights(*PBI, PredWeights) && 4715 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) { 4716 4717 BranchProbability CommonDestProb = BranchProbability::getBranchProbability( 4718 PredWeights[PBIOp], 4719 static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]); 4720 4721 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 4722 if (CommonDestProb >= Likely) 4723 return false; 4724 } 4725 4726 // Do not perform this transformation if it would require 4727 // insertion of a large number of select instructions. For targets 4728 // without predication/cmovs, this is a big pessimization. 4729 4730 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4731 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4732 unsigned NumPhis = 0; 4733 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4734 ++II, ++NumPhis) { 4735 if (NumPhis > 2) // Disable this xform. 4736 return false; 4737 } 4738 4739 // Finally, if everything is ok, fold the branches to logical ops. 4740 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4741 4742 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4743 << "AND: " << *BI->getParent()); 4744 4745 SmallVector<DominatorTree::UpdateType, 5> Updates; 4746 4747 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4748 // branch in it, where one edge (OtherDest) goes back to itself but the other 4749 // exits. We don't *know* that the program avoids the infinite loop 4750 // (even though that seems likely). If we do this xform naively, we'll end up 4751 // recursively unpeeling the loop. Since we know that (after the xform is 4752 // done) that the block *is* infinite if reached, we just make it an obviously 4753 // infinite loop with no cond branch. 4754 if (OtherDest == BB) { 4755 // Insert it at the end of the function, because it's either code, 4756 // or it won't matter if it's hot. :) 4757 BasicBlock *InfLoopBlock = 4758 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4759 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4760 if (DTU) 4761 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4762 OtherDest = InfLoopBlock; 4763 } 4764 4765 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4766 4767 // BI may have other predecessors. Because of this, we leave 4768 // it alone, but modify PBI. 4769 4770 // Make sure we get to CommonDest on True&True directions. 4771 Value *PBICond = PBI->getCondition(); 4772 IRBuilder<NoFolder> Builder(PBI); 4773 if (PBIOp) 4774 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4775 4776 Value *BICond = BI->getCondition(); 4777 if (BIOp) 4778 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4779 4780 // Merge the conditions. 4781 Value *Cond = 4782 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4783 4784 // Modify PBI to branch on the new condition to the new dests. 4785 PBI->setCondition(Cond); 4786 PBI->setSuccessor(0, CommonDest); 4787 PBI->setSuccessor(1, OtherDest); 4788 4789 if (DTU) { 4790 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4791 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4792 4793 DTU->applyUpdates(Updates); 4794 } 4795 4796 // Update branch weight for PBI. 4797 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4798 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4799 bool HasWeights = 4800 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4801 SuccTrueWeight, SuccFalseWeight); 4802 if (HasWeights) { 4803 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4804 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4805 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4806 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4807 // The weight to CommonDest should be PredCommon * SuccTotal + 4808 // PredOther * SuccCommon. 4809 // The weight to OtherDest should be PredOther * SuccOther. 4810 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4811 PredOther * SuccCommon, 4812 PredOther * SuccOther}; 4813 // Halve the weights if any of them cannot fit in an uint32_t 4814 fitWeights(NewWeights); 4815 4816 setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false); 4817 } 4818 4819 // OtherDest may have phi nodes. If so, add an entry from PBI's 4820 // block that are identical to the entries for BI's block. 4821 addPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4822 4823 // We know that the CommonDest already had an edge from PBI to 4824 // it. If it has PHIs though, the PHIs may have different 4825 // entries for BB and PBI's BB. If so, insert a select to make 4826 // them agree. 4827 for (PHINode &PN : CommonDest->phis()) { 4828 Value *BIV = PN.getIncomingValueForBlock(BB); 4829 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4830 Value *PBIV = PN.getIncomingValue(PBBIdx); 4831 if (BIV != PBIV) { 4832 // Insert a select in PBI to pick the right value. 4833 SelectInst *NV = cast<SelectInst>( 4834 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4835 PN.setIncomingValue(PBBIdx, NV); 4836 // Although the select has the same condition as PBI, the original branch 4837 // weights for PBI do not apply to the new select because the select's 4838 // 'logical' edges are incoming edges of the phi that is eliminated, not 4839 // the outgoing edges of PBI. 4840 if (HasWeights) { 4841 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4842 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4843 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4844 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4845 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4846 // The weight to PredOtherDest should be PredOther * SuccCommon. 4847 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4848 PredOther * SuccCommon}; 4849 4850 fitWeights(NewWeights); 4851 4852 setBranchWeights(NV, NewWeights[0], NewWeights[1], 4853 /*IsExpected=*/false); 4854 } 4855 } 4856 } 4857 4858 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4859 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4860 4861 // This basic block is probably dead. We know it has at least 4862 // one fewer predecessor. 4863 return true; 4864 } 4865 4866 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4867 // true or to FalseBB if Cond is false. 4868 // Takes care of updating the successors and removing the old terminator. 4869 // Also makes sure not to introduce new successors by assuming that edges to 4870 // non-successor TrueBBs and FalseBBs aren't reachable. 4871 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm, 4872 Value *Cond, BasicBlock *TrueBB, 4873 BasicBlock *FalseBB, 4874 uint32_t TrueWeight, 4875 uint32_t FalseWeight) { 4876 auto *BB = OldTerm->getParent(); 4877 // Remove any superfluous successor edges from the CFG. 4878 // First, figure out which successors to preserve. 4879 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4880 // successor. 4881 BasicBlock *KeepEdge1 = TrueBB; 4882 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4883 4884 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4885 4886 // Then remove the rest. 4887 for (BasicBlock *Succ : successors(OldTerm)) { 4888 // Make sure only to keep exactly one copy of each edge. 4889 if (Succ == KeepEdge1) 4890 KeepEdge1 = nullptr; 4891 else if (Succ == KeepEdge2) 4892 KeepEdge2 = nullptr; 4893 else { 4894 Succ->removePredecessor(BB, 4895 /*KeepOneInputPHIs=*/true); 4896 4897 if (Succ != TrueBB && Succ != FalseBB) 4898 RemovedSuccessors.insert(Succ); 4899 } 4900 } 4901 4902 IRBuilder<> Builder(OldTerm); 4903 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4904 4905 // Insert an appropriate new terminator. 4906 if (!KeepEdge1 && !KeepEdge2) { 4907 if (TrueBB == FalseBB) { 4908 // We were only looking for one successor, and it was present. 4909 // Create an unconditional branch to it. 4910 Builder.CreateBr(TrueBB); 4911 } else { 4912 // We found both of the successors we were looking for. 4913 // Create a conditional branch sharing the condition of the select. 4914 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4915 if (TrueWeight != FalseWeight) 4916 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 4917 } 4918 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4919 // Neither of the selected blocks were successors, so this 4920 // terminator must be unreachable. 4921 new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator()); 4922 } else { 4923 // One of the selected values was a successor, but the other wasn't. 4924 // Insert an unconditional branch to the one that was found; 4925 // the edge to the one that wasn't must be unreachable. 4926 if (!KeepEdge1) { 4927 // Only TrueBB was found. 4928 Builder.CreateBr(TrueBB); 4929 } else { 4930 // Only FalseBB was found. 4931 Builder.CreateBr(FalseBB); 4932 } 4933 } 4934 4935 eraseTerminatorAndDCECond(OldTerm); 4936 4937 if (DTU) { 4938 SmallVector<DominatorTree::UpdateType, 2> Updates; 4939 Updates.reserve(RemovedSuccessors.size()); 4940 for (auto *RemovedSuccessor : RemovedSuccessors) 4941 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4942 DTU->applyUpdates(Updates); 4943 } 4944 4945 return true; 4946 } 4947 4948 // Replaces 4949 // (switch (select cond, X, Y)) on constant X, Y 4950 // with a branch - conditional if X and Y lead to distinct BBs, 4951 // unconditional otherwise. 4952 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI, 4953 SelectInst *Select) { 4954 // Check for constant integer values in the select. 4955 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4956 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4957 if (!TrueVal || !FalseVal) 4958 return false; 4959 4960 // Find the relevant condition and destinations. 4961 Value *Condition = Select->getCondition(); 4962 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4963 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4964 4965 // Get weight for TrueBB and FalseBB. 4966 uint32_t TrueWeight = 0, FalseWeight = 0; 4967 SmallVector<uint64_t, 8> Weights; 4968 bool HasWeights = hasBranchWeightMD(*SI); 4969 if (HasWeights) { 4970 getBranchWeights(SI, Weights); 4971 if (Weights.size() == 1 + SI->getNumCases()) { 4972 TrueWeight = 4973 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4974 FalseWeight = 4975 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4976 } 4977 } 4978 4979 // Perform the actual simplification. 4980 return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4981 FalseWeight); 4982 } 4983 4984 // Replaces 4985 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4986 // blockaddress(@fn, BlockB))) 4987 // with 4988 // (br cond, BlockA, BlockB). 4989 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4990 SelectInst *SI) { 4991 // Check that both operands of the select are block addresses. 4992 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4993 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4994 if (!TBA || !FBA) 4995 return false; 4996 4997 // Extract the actual blocks. 4998 BasicBlock *TrueBB = TBA->getBasicBlock(); 4999 BasicBlock *FalseBB = FBA->getBasicBlock(); 5000 5001 // Perform the actual simplification. 5002 return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 5003 0); 5004 } 5005 5006 /// This is called when we find an icmp instruction 5007 /// (a seteq/setne with a constant) as the only instruction in a 5008 /// block that ends with an uncond branch. We are looking for a very specific 5009 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 5010 /// this case, we merge the first two "or's of icmp" into a switch, but then the 5011 /// default value goes to an uncond block with a seteq in it, we get something 5012 /// like: 5013 /// 5014 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 5015 /// DEFAULT: 5016 /// %tmp = icmp eq i8 %A, 92 5017 /// br label %end 5018 /// end: 5019 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 5020 /// 5021 /// We prefer to split the edge to 'end' so that there is a true/false entry to 5022 /// the PHI, merging the third icmp into the switch. 5023 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 5024 ICmpInst *ICI, IRBuilder<> &Builder) { 5025 BasicBlock *BB = ICI->getParent(); 5026 5027 // If the block has any PHIs in it or the icmp has multiple uses, it is too 5028 // complex. 5029 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 5030 return false; 5031 5032 Value *V = ICI->getOperand(0); 5033 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 5034 5035 // The pattern we're looking for is where our only predecessor is a switch on 5036 // 'V' and this block is the default case for the switch. In this case we can 5037 // fold the compared value into the switch to simplify things. 5038 BasicBlock *Pred = BB->getSinglePredecessor(); 5039 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 5040 return false; 5041 5042 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 5043 if (SI->getCondition() != V) 5044 return false; 5045 5046 // If BB is reachable on a non-default case, then we simply know the value of 5047 // V in this block. Substitute it and constant fold the icmp instruction 5048 // away. 5049 if (SI->getDefaultDest() != BB) { 5050 ConstantInt *VVal = SI->findCaseDest(BB); 5051 assert(VVal && "Should have a unique destination value"); 5052 ICI->setOperand(0, VVal); 5053 5054 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 5055 ICI->replaceAllUsesWith(V); 5056 ICI->eraseFromParent(); 5057 } 5058 // BB is now empty, so it is likely to simplify away. 5059 return requestResimplify(); 5060 } 5061 5062 // Ok, the block is reachable from the default dest. If the constant we're 5063 // comparing exists in one of the other edges, then we can constant fold ICI 5064 // and zap it. 5065 if (SI->findCaseValue(Cst) != SI->case_default()) { 5066 Value *V; 5067 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 5068 V = ConstantInt::getFalse(BB->getContext()); 5069 else 5070 V = ConstantInt::getTrue(BB->getContext()); 5071 5072 ICI->replaceAllUsesWith(V); 5073 ICI->eraseFromParent(); 5074 // BB is now empty, so it is likely to simplify away. 5075 return requestResimplify(); 5076 } 5077 5078 // The use of the icmp has to be in the 'end' block, by the only PHI node in 5079 // the block. 5080 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 5081 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 5082 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 5083 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 5084 return false; 5085 5086 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 5087 // true in the PHI. 5088 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 5089 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 5090 5091 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 5092 std::swap(DefaultCst, NewCst); 5093 5094 // Replace ICI (which is used by the PHI for the default value) with true or 5095 // false depending on if it is EQ or NE. 5096 ICI->replaceAllUsesWith(DefaultCst); 5097 ICI->eraseFromParent(); 5098 5099 SmallVector<DominatorTree::UpdateType, 2> Updates; 5100 5101 // Okay, the switch goes to this block on a default value. Add an edge from 5102 // the switch to the merge point on the compared value. 5103 BasicBlock *NewBB = 5104 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 5105 { 5106 SwitchInstProfUpdateWrapper SIW(*SI); 5107 auto W0 = SIW.getSuccessorWeight(0); 5108 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 5109 if (W0) { 5110 NewW = ((uint64_t(*W0) + 1) >> 1); 5111 SIW.setSuccessorWeight(0, *NewW); 5112 } 5113 SIW.addCase(Cst, NewBB, NewW); 5114 if (DTU) 5115 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 5116 } 5117 5118 // NewBB branches to the phi block, add the uncond branch and the phi entry. 5119 Builder.SetInsertPoint(NewBB); 5120 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 5121 Builder.CreateBr(SuccBlock); 5122 PHIUse->addIncoming(NewCst, NewBB); 5123 if (DTU) { 5124 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 5125 DTU->applyUpdates(Updates); 5126 } 5127 return true; 5128 } 5129 5130 /// The specified branch is a conditional branch. 5131 /// Check to see if it is branching on an or/and chain of icmp instructions, and 5132 /// fold it into a switch instruction if so. 5133 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI, 5134 IRBuilder<> &Builder, 5135 const DataLayout &DL) { 5136 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 5137 if (!Cond) 5138 return false; 5139 5140 // Change br (X == 0 | X == 1), T, F into a switch instruction. 5141 // If this is a bunch of seteq's or'd together, or if it's a bunch of 5142 // 'setne's and'ed together, collect them. 5143 5144 // Try to gather values from a chain of and/or to be turned into a switch 5145 ConstantComparesGatherer ConstantCompare(Cond, DL); 5146 // Unpack the result 5147 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 5148 Value *CompVal = ConstantCompare.CompValue; 5149 unsigned UsedICmps = ConstantCompare.UsedICmps; 5150 Value *ExtraCase = ConstantCompare.Extra; 5151 5152 // If we didn't have a multiply compared value, fail. 5153 if (!CompVal) 5154 return false; 5155 5156 // Avoid turning single icmps into a switch. 5157 if (UsedICmps <= 1) 5158 return false; 5159 5160 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 5161 5162 // There might be duplicate constants in the list, which the switch 5163 // instruction can't handle, remove them now. 5164 array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate); 5165 Values.erase(llvm::unique(Values), Values.end()); 5166 5167 // If Extra was used, we require at least two switch values to do the 5168 // transformation. A switch with one value is just a conditional branch. 5169 if (ExtraCase && Values.size() < 2) 5170 return false; 5171 5172 // TODO: Preserve branch weight metadata, similarly to how 5173 // foldValueComparisonIntoPredecessors preserves it. 5174 5175 // Figure out which block is which destination. 5176 BasicBlock *DefaultBB = BI->getSuccessor(1); 5177 BasicBlock *EdgeBB = BI->getSuccessor(0); 5178 if (!TrueWhenEqual) 5179 std::swap(DefaultBB, EdgeBB); 5180 5181 BasicBlock *BB = BI->getParent(); 5182 5183 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 5184 << " cases into SWITCH. BB is:\n" 5185 << *BB); 5186 5187 SmallVector<DominatorTree::UpdateType, 2> Updates; 5188 5189 // If there are any extra values that couldn't be folded into the switch 5190 // then we evaluate them with an explicit branch first. Split the block 5191 // right before the condbr to handle it. 5192 if (ExtraCase) { 5193 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 5194 /*MSSAU=*/nullptr, "switch.early.test"); 5195 5196 // Remove the uncond branch added to the old block. 5197 Instruction *OldTI = BB->getTerminator(); 5198 Builder.SetInsertPoint(OldTI); 5199 5200 // There can be an unintended UB if extra values are Poison. Before the 5201 // transformation, extra values may not be evaluated according to the 5202 // condition, and it will not raise UB. But after transformation, we are 5203 // evaluating extra values before checking the condition, and it will raise 5204 // UB. It can be solved by adding freeze instruction to extra values. 5205 AssumptionCache *AC = Options.AC; 5206 5207 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 5208 ExtraCase = Builder.CreateFreeze(ExtraCase); 5209 5210 if (TrueWhenEqual) 5211 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 5212 else 5213 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 5214 5215 OldTI->eraseFromParent(); 5216 5217 if (DTU) 5218 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 5219 5220 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 5221 // for the edge we just added. 5222 addPredecessorToBlock(EdgeBB, BB, NewBB); 5223 5224 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 5225 << "\nEXTRABB = " << *BB); 5226 BB = NewBB; 5227 } 5228 5229 Builder.SetInsertPoint(BI); 5230 // Convert pointer to int before we switch. 5231 if (CompVal->getType()->isPointerTy()) { 5232 CompVal = Builder.CreatePtrToInt( 5233 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 5234 } 5235 5236 // Create the new switch instruction now. 5237 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 5238 5239 // Add all of the 'cases' to the switch instruction. 5240 for (unsigned i = 0, e = Values.size(); i != e; ++i) 5241 New->addCase(Values[i], EdgeBB); 5242 5243 // We added edges from PI to the EdgeBB. As such, if there were any 5244 // PHI nodes in EdgeBB, they need entries to be added corresponding to 5245 // the number of edges added. 5246 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 5247 PHINode *PN = cast<PHINode>(BBI); 5248 Value *InVal = PN->getIncomingValueForBlock(BB); 5249 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 5250 PN->addIncoming(InVal, BB); 5251 } 5252 5253 // Erase the old branch instruction. 5254 eraseTerminatorAndDCECond(BI); 5255 if (DTU) 5256 DTU->applyUpdates(Updates); 5257 5258 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 5259 return true; 5260 } 5261 5262 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 5263 if (isa<PHINode>(RI->getValue())) 5264 return simplifyCommonResume(RI); 5265 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHIIt()) && 5266 RI->getValue() == &*RI->getParent()->getFirstNonPHIIt()) 5267 // The resume must unwind the exception that caused control to branch here. 5268 return simplifySingleResume(RI); 5269 5270 return false; 5271 } 5272 5273 // Check if cleanup block is empty 5274 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 5275 for (Instruction &I : R) { 5276 auto *II = dyn_cast<IntrinsicInst>(&I); 5277 if (!II) 5278 return false; 5279 5280 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 5281 switch (IntrinsicID) { 5282 case Intrinsic::dbg_declare: 5283 case Intrinsic::dbg_value: 5284 case Intrinsic::dbg_label: 5285 case Intrinsic::lifetime_end: 5286 break; 5287 default: 5288 return false; 5289 } 5290 } 5291 return true; 5292 } 5293 5294 // Simplify resume that is shared by several landing pads (phi of landing pad). 5295 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 5296 BasicBlock *BB = RI->getParent(); 5297 5298 // Check that there are no other instructions except for debug and lifetime 5299 // intrinsics between the phi's and resume instruction. 5300 if (!isCleanupBlockEmpty(make_range(RI->getParent()->getFirstNonPHIIt(), 5301 BB->getTerminator()->getIterator()))) 5302 return false; 5303 5304 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 5305 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 5306 5307 // Check incoming blocks to see if any of them are trivial. 5308 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 5309 Idx++) { 5310 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 5311 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 5312 5313 // If the block has other successors, we can not delete it because 5314 // it has other dependents. 5315 if (IncomingBB->getUniqueSuccessor() != BB) 5316 continue; 5317 5318 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHIIt()); 5319 // Not the landing pad that caused the control to branch here. 5320 if (IncomingValue != LandingPad) 5321 continue; 5322 5323 if (isCleanupBlockEmpty( 5324 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 5325 TrivialUnwindBlocks.insert(IncomingBB); 5326 } 5327 5328 // If no trivial unwind blocks, don't do any simplifications. 5329 if (TrivialUnwindBlocks.empty()) 5330 return false; 5331 5332 // Turn all invokes that unwind here into calls. 5333 for (auto *TrivialBB : TrivialUnwindBlocks) { 5334 // Blocks that will be simplified should be removed from the phi node. 5335 // Note there could be multiple edges to the resume block, and we need 5336 // to remove them all. 5337 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 5338 BB->removePredecessor(TrivialBB, true); 5339 5340 for (BasicBlock *Pred : 5341 llvm::make_early_inc_range(predecessors(TrivialBB))) { 5342 removeUnwindEdge(Pred, DTU); 5343 ++NumInvokes; 5344 } 5345 5346 // In each SimplifyCFG run, only the current processed block can be erased. 5347 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 5348 // of erasing TrivialBB, we only remove the branch to the common resume 5349 // block so that we can later erase the resume block since it has no 5350 // predecessors. 5351 TrivialBB->getTerminator()->eraseFromParent(); 5352 new UnreachableInst(RI->getContext(), TrivialBB); 5353 if (DTU) 5354 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 5355 } 5356 5357 // Delete the resume block if all its predecessors have been removed. 5358 if (pred_empty(BB)) 5359 DeleteDeadBlock(BB, DTU); 5360 5361 return !TrivialUnwindBlocks.empty(); 5362 } 5363 5364 // Simplify resume that is only used by a single (non-phi) landing pad. 5365 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 5366 BasicBlock *BB = RI->getParent(); 5367 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHIIt()); 5368 assert(RI->getValue() == LPInst && 5369 "Resume must unwind the exception that caused control to here"); 5370 5371 // Check that there are no other instructions except for debug intrinsics. 5372 if (!isCleanupBlockEmpty( 5373 make_range<Instruction *>(LPInst->getNextNode(), RI))) 5374 return false; 5375 5376 // Turn all invokes that unwind here into calls and delete the basic block. 5377 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 5378 removeUnwindEdge(Pred, DTU); 5379 ++NumInvokes; 5380 } 5381 5382 // The landingpad is now unreachable. Zap it. 5383 DeleteDeadBlock(BB, DTU); 5384 return true; 5385 } 5386 5387 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 5388 // If this is a trivial cleanup pad that executes no instructions, it can be 5389 // eliminated. If the cleanup pad continues to the caller, any predecessor 5390 // that is an EH pad will be updated to continue to the caller and any 5391 // predecessor that terminates with an invoke instruction will have its invoke 5392 // instruction converted to a call instruction. If the cleanup pad being 5393 // simplified does not continue to the caller, each predecessor will be 5394 // updated to continue to the unwind destination of the cleanup pad being 5395 // simplified. 5396 BasicBlock *BB = RI->getParent(); 5397 CleanupPadInst *CPInst = RI->getCleanupPad(); 5398 if (CPInst->getParent() != BB) 5399 // This isn't an empty cleanup. 5400 return false; 5401 5402 // We cannot kill the pad if it has multiple uses. This typically arises 5403 // from unreachable basic blocks. 5404 if (!CPInst->hasOneUse()) 5405 return false; 5406 5407 // Check that there are no other instructions except for benign intrinsics. 5408 if (!isCleanupBlockEmpty( 5409 make_range<Instruction *>(CPInst->getNextNode(), RI))) 5410 return false; 5411 5412 // If the cleanup return we are simplifying unwinds to the caller, this will 5413 // set UnwindDest to nullptr. 5414 BasicBlock *UnwindDest = RI->getUnwindDest(); 5415 5416 // We're about to remove BB from the control flow. Before we do, sink any 5417 // PHINodes into the unwind destination. Doing this before changing the 5418 // control flow avoids some potentially slow checks, since we can currently 5419 // be certain that UnwindDest and BB have no common predecessors (since they 5420 // are both EH pads). 5421 if (UnwindDest) { 5422 // First, go through the PHI nodes in UnwindDest and update any nodes that 5423 // reference the block we are removing 5424 for (PHINode &DestPN : UnwindDest->phis()) { 5425 int Idx = DestPN.getBasicBlockIndex(BB); 5426 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 5427 assert(Idx != -1); 5428 // This PHI node has an incoming value that corresponds to a control 5429 // path through the cleanup pad we are removing. If the incoming 5430 // value is in the cleanup pad, it must be a PHINode (because we 5431 // verified above that the block is otherwise empty). Otherwise, the 5432 // value is either a constant or a value that dominates the cleanup 5433 // pad being removed. 5434 // 5435 // Because BB and UnwindDest are both EH pads, all of their 5436 // predecessors must unwind to these blocks, and since no instruction 5437 // can have multiple unwind destinations, there will be no overlap in 5438 // incoming blocks between SrcPN and DestPN. 5439 Value *SrcVal = DestPN.getIncomingValue(Idx); 5440 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 5441 5442 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 5443 for (auto *Pred : predecessors(BB)) { 5444 Value *Incoming = 5445 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 5446 DestPN.addIncoming(Incoming, Pred); 5447 } 5448 } 5449 5450 // Sink any remaining PHI nodes directly into UnwindDest. 5451 BasicBlock::iterator InsertPt = UnwindDest->getFirstNonPHIIt(); 5452 for (PHINode &PN : make_early_inc_range(BB->phis())) { 5453 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 5454 // If the PHI node has no uses or all of its uses are in this basic 5455 // block (meaning they are debug or lifetime intrinsics), just leave 5456 // it. It will be erased when we erase BB below. 5457 continue; 5458 5459 // Otherwise, sink this PHI node into UnwindDest. 5460 // Any predecessors to UnwindDest which are not already represented 5461 // must be back edges which inherit the value from the path through 5462 // BB. In this case, the PHI value must reference itself. 5463 for (auto *pred : predecessors(UnwindDest)) 5464 if (pred != BB) 5465 PN.addIncoming(&PN, pred); 5466 PN.moveBefore(InsertPt); 5467 // Also, add a dummy incoming value for the original BB itself, 5468 // so that the PHI is well-formed until we drop said predecessor. 5469 PN.addIncoming(PoisonValue::get(PN.getType()), BB); 5470 } 5471 } 5472 5473 std::vector<DominatorTree::UpdateType> Updates; 5474 5475 // We use make_early_inc_range here because we will remove all predecessors. 5476 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 5477 if (UnwindDest == nullptr) { 5478 if (DTU) { 5479 DTU->applyUpdates(Updates); 5480 Updates.clear(); 5481 } 5482 removeUnwindEdge(PredBB, DTU); 5483 ++NumInvokes; 5484 } else { 5485 BB->removePredecessor(PredBB); 5486 Instruction *TI = PredBB->getTerminator(); 5487 TI->replaceUsesOfWith(BB, UnwindDest); 5488 if (DTU) { 5489 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 5490 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 5491 } 5492 } 5493 } 5494 5495 if (DTU) 5496 DTU->applyUpdates(Updates); 5497 5498 DeleteDeadBlock(BB, DTU); 5499 5500 return true; 5501 } 5502 5503 // Try to merge two cleanuppads together. 5504 static bool mergeCleanupPad(CleanupReturnInst *RI) { 5505 // Skip any cleanuprets which unwind to caller, there is nothing to merge 5506 // with. 5507 BasicBlock *UnwindDest = RI->getUnwindDest(); 5508 if (!UnwindDest) 5509 return false; 5510 5511 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 5512 // be safe to merge without code duplication. 5513 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 5514 return false; 5515 5516 // Verify that our cleanuppad's unwind destination is another cleanuppad. 5517 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 5518 if (!SuccessorCleanupPad) 5519 return false; 5520 5521 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 5522 // Replace any uses of the successor cleanupad with the predecessor pad 5523 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 5524 // funclet bundle operands. 5525 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 5526 // Remove the old cleanuppad. 5527 SuccessorCleanupPad->eraseFromParent(); 5528 // Now, we simply replace the cleanupret with a branch to the unwind 5529 // destination. 5530 BranchInst::Create(UnwindDest, RI->getParent()); 5531 RI->eraseFromParent(); 5532 5533 return true; 5534 } 5535 5536 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 5537 // It is possible to transiantly have an undef cleanuppad operand because we 5538 // have deleted some, but not all, dead blocks. 5539 // Eventually, this block will be deleted. 5540 if (isa<UndefValue>(RI->getOperand(0))) 5541 return false; 5542 5543 if (mergeCleanupPad(RI)) 5544 return true; 5545 5546 if (removeEmptyCleanup(RI, DTU)) 5547 return true; 5548 5549 return false; 5550 } 5551 5552 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 5553 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 5554 BasicBlock *BB = UI->getParent(); 5555 5556 bool Changed = false; 5557 5558 // Ensure that any debug-info records that used to occur after the Unreachable 5559 // are moved to in front of it -- otherwise they'll "dangle" at the end of 5560 // the block. 5561 BB->flushTerminatorDbgRecords(); 5562 5563 // Debug-info records on the unreachable inst itself should be deleted, as 5564 // below we delete everything past the final executable instruction. 5565 UI->dropDbgRecords(); 5566 5567 // If there are any instructions immediately before the unreachable that can 5568 // be removed, do so. 5569 while (UI->getIterator() != BB->begin()) { 5570 BasicBlock::iterator BBI = UI->getIterator(); 5571 --BBI; 5572 5573 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5574 break; // Can not drop any more instructions. We're done here. 5575 // Otherwise, this instruction can be freely erased, 5576 // even if it is not side-effect free. 5577 5578 // Note that deleting EH's here is in fact okay, although it involves a bit 5579 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5580 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5581 // and we can therefore guarantee this block will be erased. 5582 5583 // If we're deleting this, we're deleting any subsequent debug info, so 5584 // delete DbgRecords. 5585 BBI->dropDbgRecords(); 5586 5587 // Delete this instruction (any uses are guaranteed to be dead) 5588 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5589 BBI->eraseFromParent(); 5590 Changed = true; 5591 } 5592 5593 // If the unreachable instruction is the first in the block, take a gander 5594 // at all of the predecessors of this instruction, and simplify them. 5595 if (&BB->front() != UI) 5596 return Changed; 5597 5598 std::vector<DominatorTree::UpdateType> Updates; 5599 5600 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5601 for (BasicBlock *Predecessor : Preds) { 5602 Instruction *TI = Predecessor->getTerminator(); 5603 IRBuilder<> Builder(TI); 5604 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5605 // We could either have a proper unconditional branch, 5606 // or a degenerate conditional branch with matching destinations. 5607 if (all_of(BI->successors(), 5608 [BB](auto *Successor) { return Successor == BB; })) { 5609 new UnreachableInst(TI->getContext(), TI->getIterator()); 5610 TI->eraseFromParent(); 5611 Changed = true; 5612 } else { 5613 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5614 Value* Cond = BI->getCondition(); 5615 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5616 "The destinations are guaranteed to be different here."); 5617 CallInst *Assumption; 5618 if (BI->getSuccessor(0) == BB) { 5619 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 5620 Builder.CreateBr(BI->getSuccessor(1)); 5621 } else { 5622 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5623 Assumption = Builder.CreateAssumption(Cond); 5624 Builder.CreateBr(BI->getSuccessor(0)); 5625 } 5626 if (Options.AC) 5627 Options.AC->registerAssumption(cast<AssumeInst>(Assumption)); 5628 5629 eraseTerminatorAndDCECond(BI); 5630 Changed = true; 5631 } 5632 if (DTU) 5633 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5634 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5635 SwitchInstProfUpdateWrapper SU(*SI); 5636 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5637 if (i->getCaseSuccessor() != BB) { 5638 ++i; 5639 continue; 5640 } 5641 BB->removePredecessor(SU->getParent()); 5642 i = SU.removeCase(i); 5643 e = SU->case_end(); 5644 Changed = true; 5645 } 5646 // Note that the default destination can't be removed! 5647 if (DTU && SI->getDefaultDest() != BB) 5648 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5649 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5650 if (II->getUnwindDest() == BB) { 5651 if (DTU) { 5652 DTU->applyUpdates(Updates); 5653 Updates.clear(); 5654 } 5655 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); 5656 if (!CI->doesNotThrow()) 5657 CI->setDoesNotThrow(); 5658 Changed = true; 5659 } 5660 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5661 if (CSI->getUnwindDest() == BB) { 5662 if (DTU) { 5663 DTU->applyUpdates(Updates); 5664 Updates.clear(); 5665 } 5666 removeUnwindEdge(TI->getParent(), DTU); 5667 Changed = true; 5668 continue; 5669 } 5670 5671 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5672 E = CSI->handler_end(); 5673 I != E; ++I) { 5674 if (*I == BB) { 5675 CSI->removeHandler(I); 5676 --I; 5677 --E; 5678 Changed = true; 5679 } 5680 } 5681 if (DTU) 5682 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5683 if (CSI->getNumHandlers() == 0) { 5684 if (CSI->hasUnwindDest()) { 5685 // Redirect all predecessors of the block containing CatchSwitchInst 5686 // to instead branch to the CatchSwitchInst's unwind destination. 5687 if (DTU) { 5688 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5689 Updates.push_back({DominatorTree::Insert, 5690 PredecessorOfPredecessor, 5691 CSI->getUnwindDest()}); 5692 Updates.push_back({DominatorTree::Delete, 5693 PredecessorOfPredecessor, Predecessor}); 5694 } 5695 } 5696 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5697 } else { 5698 // Rewrite all preds to unwind to caller (or from invoke to call). 5699 if (DTU) { 5700 DTU->applyUpdates(Updates); 5701 Updates.clear(); 5702 } 5703 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5704 for (BasicBlock *EHPred : EHPreds) 5705 removeUnwindEdge(EHPred, DTU); 5706 } 5707 // The catchswitch is no longer reachable. 5708 new UnreachableInst(CSI->getContext(), CSI->getIterator()); 5709 CSI->eraseFromParent(); 5710 Changed = true; 5711 } 5712 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5713 (void)CRI; 5714 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5715 "Expected to always have an unwind to BB."); 5716 if (DTU) 5717 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5718 new UnreachableInst(TI->getContext(), TI->getIterator()); 5719 TI->eraseFromParent(); 5720 Changed = true; 5721 } 5722 } 5723 5724 if (DTU) 5725 DTU->applyUpdates(Updates); 5726 5727 // If this block is now dead, remove it. 5728 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5729 DeleteDeadBlock(BB, DTU); 5730 return true; 5731 } 5732 5733 return Changed; 5734 } 5735 5736 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5737 assert(Cases.size() >= 1); 5738 5739 array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate); 5740 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5741 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5742 return false; 5743 } 5744 return true; 5745 } 5746 5747 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5748 DomTreeUpdater *DTU, 5749 bool RemoveOrigDefaultBlock = true) { 5750 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5751 auto *BB = Switch->getParent(); 5752 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5753 if (RemoveOrigDefaultBlock) 5754 OrigDefaultBlock->removePredecessor(BB); 5755 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5756 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5757 OrigDefaultBlock); 5758 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5759 Switch->setDefaultDest(&*NewDefaultBlock); 5760 if (DTU) { 5761 SmallVector<DominatorTree::UpdateType, 2> Updates; 5762 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5763 if (RemoveOrigDefaultBlock && 5764 !is_contained(successors(BB), OrigDefaultBlock)) 5765 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5766 DTU->applyUpdates(Updates); 5767 } 5768 } 5769 5770 /// Turn a switch into an integer range comparison and branch. 5771 /// Switches with more than 2 destinations are ignored. 5772 /// Switches with 1 destination are also ignored. 5773 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI, 5774 IRBuilder<> &Builder) { 5775 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5776 5777 bool HasDefault = 5778 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5779 5780 auto *BB = SI->getParent(); 5781 5782 // Partition the cases into two sets with different destinations. 5783 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5784 BasicBlock *DestB = nullptr; 5785 SmallVector<ConstantInt *, 16> CasesA; 5786 SmallVector<ConstantInt *, 16> CasesB; 5787 5788 for (auto Case : SI->cases()) { 5789 BasicBlock *Dest = Case.getCaseSuccessor(); 5790 if (!DestA) 5791 DestA = Dest; 5792 if (Dest == DestA) { 5793 CasesA.push_back(Case.getCaseValue()); 5794 continue; 5795 } 5796 if (!DestB) 5797 DestB = Dest; 5798 if (Dest == DestB) { 5799 CasesB.push_back(Case.getCaseValue()); 5800 continue; 5801 } 5802 return false; // More than two destinations. 5803 } 5804 if (!DestB) 5805 return false; // All destinations are the same and the default is unreachable 5806 5807 assert(DestA && DestB && 5808 "Single-destination switch should have been folded."); 5809 assert(DestA != DestB); 5810 assert(DestB != SI->getDefaultDest()); 5811 assert(!CasesB.empty() && "There must be non-default cases."); 5812 assert(!CasesA.empty() || HasDefault); 5813 5814 // Figure out if one of the sets of cases form a contiguous range. 5815 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5816 BasicBlock *ContiguousDest = nullptr; 5817 BasicBlock *OtherDest = nullptr; 5818 if (!CasesA.empty() && casesAreContiguous(CasesA)) { 5819 ContiguousCases = &CasesA; 5820 ContiguousDest = DestA; 5821 OtherDest = DestB; 5822 } else if (casesAreContiguous(CasesB)) { 5823 ContiguousCases = &CasesB; 5824 ContiguousDest = DestB; 5825 OtherDest = DestA; 5826 } else 5827 return false; 5828 5829 // Start building the compare and branch. 5830 5831 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5832 Constant *NumCases = 5833 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5834 5835 Value *Sub = SI->getCondition(); 5836 if (!Offset->isNullValue()) 5837 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5838 5839 Value *Cmp; 5840 // If NumCases overflowed, then all possible values jump to the successor. 5841 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5842 Cmp = ConstantInt::getTrue(SI->getContext()); 5843 else 5844 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5845 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5846 5847 // Update weight for the newly-created conditional branch. 5848 if (hasBranchWeightMD(*SI)) { 5849 SmallVector<uint64_t, 8> Weights; 5850 getBranchWeights(SI, Weights); 5851 if (Weights.size() == 1 + SI->getNumCases()) { 5852 uint64_t TrueWeight = 0; 5853 uint64_t FalseWeight = 0; 5854 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5855 if (SI->getSuccessor(I) == ContiguousDest) 5856 TrueWeight += Weights[I]; 5857 else 5858 FalseWeight += Weights[I]; 5859 } 5860 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5861 TrueWeight /= 2; 5862 FalseWeight /= 2; 5863 } 5864 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 5865 } 5866 } 5867 5868 // Prune obsolete incoming values off the successors' PHI nodes. 5869 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5870 unsigned PreviousEdges = ContiguousCases->size(); 5871 if (ContiguousDest == SI->getDefaultDest()) 5872 ++PreviousEdges; 5873 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5874 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5875 } 5876 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5877 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5878 if (OtherDest == SI->getDefaultDest()) 5879 ++PreviousEdges; 5880 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5881 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5882 } 5883 5884 // Clean up the default block - it may have phis or other instructions before 5885 // the unreachable terminator. 5886 if (!HasDefault) 5887 createUnreachableSwitchDefault(SI, DTU); 5888 5889 auto *UnreachableDefault = SI->getDefaultDest(); 5890 5891 // Drop the switch. 5892 SI->eraseFromParent(); 5893 5894 if (!HasDefault && DTU) 5895 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5896 5897 return true; 5898 } 5899 5900 /// Compute masked bits for the condition of a switch 5901 /// and use it to remove dead cases. 5902 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5903 AssumptionCache *AC, 5904 const DataLayout &DL) { 5905 Value *Cond = SI->getCondition(); 5906 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5907 5908 // We can also eliminate cases by determining that their values are outside of 5909 // the limited range of the condition based on how many significant (non-sign) 5910 // bits are in the condition value. 5911 unsigned MaxSignificantBitsInCond = 5912 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5913 5914 // Gather dead cases. 5915 SmallVector<ConstantInt *, 8> DeadCases; 5916 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5917 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5918 for (const auto &Case : SI->cases()) { 5919 auto *Successor = Case.getCaseSuccessor(); 5920 if (DTU) { 5921 if (!NumPerSuccessorCases.count(Successor)) 5922 UniqueSuccessors.push_back(Successor); 5923 ++NumPerSuccessorCases[Successor]; 5924 } 5925 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5926 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5927 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) { 5928 DeadCases.push_back(Case.getCaseValue()); 5929 if (DTU) 5930 --NumPerSuccessorCases[Successor]; 5931 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5932 << " is dead.\n"); 5933 } 5934 } 5935 5936 // If we can prove that the cases must cover all possible values, the 5937 // default destination becomes dead and we can remove it. If we know some 5938 // of the bits in the value, we can use that to more precisely compute the 5939 // number of possible unique case values. 5940 bool HasDefault = 5941 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5942 const unsigned NumUnknownBits = 5943 Known.getBitWidth() - (Known.Zero | Known.One).popcount(); 5944 assert(NumUnknownBits <= Known.getBitWidth()); 5945 if (HasDefault && DeadCases.empty() && 5946 NumUnknownBits < 64 /* avoid overflow */) { 5947 uint64_t AllNumCases = 1ULL << NumUnknownBits; 5948 if (SI->getNumCases() == AllNumCases) { 5949 createUnreachableSwitchDefault(SI, DTU); 5950 return true; 5951 } 5952 // When only one case value is missing, replace default with that case. 5953 // Eliminating the default branch will provide more opportunities for 5954 // optimization, such as lookup tables. 5955 if (SI->getNumCases() == AllNumCases - 1) { 5956 assert(NumUnknownBits > 1 && "Should be canonicalized to a branch"); 5957 IntegerType *CondTy = cast<IntegerType>(Cond->getType()); 5958 if (CondTy->getIntegerBitWidth() > 64 || 5959 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5960 return false; 5961 5962 uint64_t MissingCaseVal = 0; 5963 for (const auto &Case : SI->cases()) 5964 MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue(); 5965 auto *MissingCase = 5966 cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal)); 5967 SwitchInstProfUpdateWrapper SIW(*SI); 5968 SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0)); 5969 createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false); 5970 SIW.setSuccessorWeight(0, 0); 5971 return true; 5972 } 5973 } 5974 5975 if (DeadCases.empty()) 5976 return false; 5977 5978 SwitchInstProfUpdateWrapper SIW(*SI); 5979 for (ConstantInt *DeadCase : DeadCases) { 5980 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5981 assert(CaseI != SI->case_default() && 5982 "Case was not found. Probably mistake in DeadCases forming."); 5983 // Prune unused values from PHI nodes. 5984 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5985 SIW.removeCase(CaseI); 5986 } 5987 5988 if (DTU) { 5989 std::vector<DominatorTree::UpdateType> Updates; 5990 for (auto *Successor : UniqueSuccessors) 5991 if (NumPerSuccessorCases[Successor] == 0) 5992 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5993 DTU->applyUpdates(Updates); 5994 } 5995 5996 return true; 5997 } 5998 5999 /// If BB would be eligible for simplification by 6000 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 6001 /// by an unconditional branch), look at the phi node for BB in the successor 6002 /// block and see if the incoming value is equal to CaseValue. If so, return 6003 /// the phi node, and set PhiIndex to BB's index in the phi node. 6004 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue, 6005 BasicBlock *BB, int *PhiIndex) { 6006 if (&*BB->getFirstNonPHIIt() != BB->getTerminator()) 6007 return nullptr; // BB must be empty to be a candidate for simplification. 6008 if (!BB->getSinglePredecessor()) 6009 return nullptr; // BB must be dominated by the switch. 6010 6011 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6012 if (!Branch || !Branch->isUnconditional()) 6013 return nullptr; // Terminator must be unconditional branch. 6014 6015 BasicBlock *Succ = Branch->getSuccessor(0); 6016 6017 for (PHINode &PHI : Succ->phis()) { 6018 int Idx = PHI.getBasicBlockIndex(BB); 6019 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 6020 6021 Value *InValue = PHI.getIncomingValue(Idx); 6022 if (InValue != CaseValue) 6023 continue; 6024 6025 *PhiIndex = Idx; 6026 return &PHI; 6027 } 6028 6029 return nullptr; 6030 } 6031 6032 /// Try to forward the condition of a switch instruction to a phi node 6033 /// dominated by the switch, if that would mean that some of the destination 6034 /// blocks of the switch can be folded away. Return true if a change is made. 6035 static bool forwardSwitchConditionToPHI(SwitchInst *SI) { 6036 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 6037 6038 ForwardingNodesMap ForwardingNodes; 6039 BasicBlock *SwitchBlock = SI->getParent(); 6040 bool Changed = false; 6041 for (const auto &Case : SI->cases()) { 6042 ConstantInt *CaseValue = Case.getCaseValue(); 6043 BasicBlock *CaseDest = Case.getCaseSuccessor(); 6044 6045 // Replace phi operands in successor blocks that are using the constant case 6046 // value rather than the switch condition variable: 6047 // switchbb: 6048 // switch i32 %x, label %default [ 6049 // i32 17, label %succ 6050 // ... 6051 // succ: 6052 // %r = phi i32 ... [ 17, %switchbb ] ... 6053 // --> 6054 // %r = phi i32 ... [ %x, %switchbb ] ... 6055 6056 for (PHINode &Phi : CaseDest->phis()) { 6057 // This only works if there is exactly 1 incoming edge from the switch to 6058 // a phi. If there is >1, that means multiple cases of the switch map to 1 6059 // value in the phi, and that phi value is not the switch condition. Thus, 6060 // this transform would not make sense (the phi would be invalid because 6061 // a phi can't have different incoming values from the same block). 6062 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 6063 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 6064 count(Phi.blocks(), SwitchBlock) == 1) { 6065 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 6066 Changed = true; 6067 } 6068 } 6069 6070 // Collect phi nodes that are indirectly using this switch's case constants. 6071 int PhiIdx; 6072 if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 6073 ForwardingNodes[Phi].push_back(PhiIdx); 6074 } 6075 6076 for (auto &ForwardingNode : ForwardingNodes) { 6077 PHINode *Phi = ForwardingNode.first; 6078 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 6079 // Check if it helps to fold PHI. 6080 if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition())) 6081 continue; 6082 6083 for (int Index : Indexes) 6084 Phi->setIncomingValue(Index, SI->getCondition()); 6085 Changed = true; 6086 } 6087 6088 return Changed; 6089 } 6090 6091 /// Return true if the backend will be able to handle 6092 /// initializing an array of constants like C. 6093 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 6094 if (C->isThreadDependent()) 6095 return false; 6096 if (C->isDLLImportDependent()) 6097 return false; 6098 6099 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 6100 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 6101 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 6102 return false; 6103 6104 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 6105 // Pointer casts and in-bounds GEPs will not prohibit the backend from 6106 // materializing the array of constants. 6107 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 6108 if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI)) 6109 return false; 6110 } 6111 6112 if (!TTI.shouldBuildLookupTablesForConstant(C)) 6113 return false; 6114 6115 return true; 6116 } 6117 6118 /// If V is a Constant, return it. Otherwise, try to look up 6119 /// its constant value in ConstantPool, returning 0 if it's not there. 6120 static Constant * 6121 lookupConstant(Value *V, 6122 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6123 if (Constant *C = dyn_cast<Constant>(V)) 6124 return C; 6125 return ConstantPool.lookup(V); 6126 } 6127 6128 /// Try to fold instruction I into a constant. This works for 6129 /// simple instructions such as binary operations where both operands are 6130 /// constant or can be replaced by constants from the ConstantPool. Returns the 6131 /// resulting constant on success, 0 otherwise. 6132 static Constant * 6133 constantFold(Instruction *I, const DataLayout &DL, 6134 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6135 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 6136 Constant *A = lookupConstant(Select->getCondition(), ConstantPool); 6137 if (!A) 6138 return nullptr; 6139 if (A->isAllOnesValue()) 6140 return lookupConstant(Select->getTrueValue(), ConstantPool); 6141 if (A->isNullValue()) 6142 return lookupConstant(Select->getFalseValue(), ConstantPool); 6143 return nullptr; 6144 } 6145 6146 SmallVector<Constant *, 4> COps; 6147 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 6148 if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool)) 6149 COps.push_back(A); 6150 else 6151 return nullptr; 6152 } 6153 6154 return ConstantFoldInstOperands(I, COps, DL); 6155 } 6156 6157 /// Try to determine the resulting constant values in phi nodes 6158 /// at the common destination basic block, *CommonDest, for one of the case 6159 /// destionations CaseDest corresponding to value CaseVal (0 for the default 6160 /// case), of a switch instruction SI. 6161 static bool 6162 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 6163 BasicBlock **CommonDest, 6164 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 6165 const DataLayout &DL, const TargetTransformInfo &TTI) { 6166 // The block from which we enter the common destination. 6167 BasicBlock *Pred = SI->getParent(); 6168 6169 // If CaseDest is empty except for some side-effect free instructions through 6170 // which we can constant-propagate the CaseVal, continue to its successor. 6171 SmallDenseMap<Value *, Constant *> ConstantPool; 6172 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 6173 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 6174 if (I.isTerminator()) { 6175 // If the terminator is a simple branch, continue to the next block. 6176 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator()) 6177 return false; 6178 Pred = CaseDest; 6179 CaseDest = I.getSuccessor(0); 6180 } else if (Constant *C = constantFold(&I, DL, ConstantPool)) { 6181 // Instruction is side-effect free and constant. 6182 6183 // If the instruction has uses outside this block or a phi node slot for 6184 // the block, it is not safe to bypass the instruction since it would then 6185 // no longer dominate all its uses. 6186 for (auto &Use : I.uses()) { 6187 User *User = Use.getUser(); 6188 if (Instruction *I = dyn_cast<Instruction>(User)) 6189 if (I->getParent() == CaseDest) 6190 continue; 6191 if (PHINode *Phi = dyn_cast<PHINode>(User)) 6192 if (Phi->getIncomingBlock(Use) == CaseDest) 6193 continue; 6194 return false; 6195 } 6196 6197 ConstantPool.insert(std::make_pair(&I, C)); 6198 } else { 6199 break; 6200 } 6201 } 6202 6203 // If we did not have a CommonDest before, use the current one. 6204 if (!*CommonDest) 6205 *CommonDest = CaseDest; 6206 // If the destination isn't the common one, abort. 6207 if (CaseDest != *CommonDest) 6208 return false; 6209 6210 // Get the values for this case from phi nodes in the destination block. 6211 for (PHINode &PHI : (*CommonDest)->phis()) { 6212 int Idx = PHI.getBasicBlockIndex(Pred); 6213 if (Idx == -1) 6214 continue; 6215 6216 Constant *ConstVal = 6217 lookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 6218 if (!ConstVal) 6219 return false; 6220 6221 // Be conservative about which kinds of constants we support. 6222 if (!validLookupTableConstant(ConstVal, TTI)) 6223 return false; 6224 6225 Res.push_back(std::make_pair(&PHI, ConstVal)); 6226 } 6227 6228 return Res.size() > 0; 6229 } 6230 6231 // Helper function used to add CaseVal to the list of cases that generate 6232 // Result. Returns the updated number of cases that generate this result. 6233 static size_t mapCaseToResult(ConstantInt *CaseVal, 6234 SwitchCaseResultVectorTy &UniqueResults, 6235 Constant *Result) { 6236 for (auto &I : UniqueResults) { 6237 if (I.first == Result) { 6238 I.second.push_back(CaseVal); 6239 return I.second.size(); 6240 } 6241 } 6242 UniqueResults.push_back( 6243 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 6244 return 1; 6245 } 6246 6247 // Helper function that initializes a map containing 6248 // results for the PHI node of the common destination block for a switch 6249 // instruction. Returns false if multiple PHI nodes have been found or if 6250 // there is not a common destination block for the switch. 6251 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 6252 BasicBlock *&CommonDest, 6253 SwitchCaseResultVectorTy &UniqueResults, 6254 Constant *&DefaultResult, 6255 const DataLayout &DL, 6256 const TargetTransformInfo &TTI, 6257 uintptr_t MaxUniqueResults) { 6258 for (const auto &I : SI->cases()) { 6259 ConstantInt *CaseVal = I.getCaseValue(); 6260 6261 // Resulting value at phi nodes for this case value. 6262 SwitchCaseResultsTy Results; 6263 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 6264 DL, TTI)) 6265 return false; 6266 6267 // Only one value per case is permitted. 6268 if (Results.size() > 1) 6269 return false; 6270 6271 // Add the case->result mapping to UniqueResults. 6272 const size_t NumCasesForResult = 6273 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 6274 6275 // Early out if there are too many cases for this result. 6276 if (NumCasesForResult > MaxSwitchCasesPerResult) 6277 return false; 6278 6279 // Early out if there are too many unique results. 6280 if (UniqueResults.size() > MaxUniqueResults) 6281 return false; 6282 6283 // Check the PHI consistency. 6284 if (!PHI) 6285 PHI = Results[0].first; 6286 else if (PHI != Results[0].first) 6287 return false; 6288 } 6289 // Find the default result value. 6290 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 6291 BasicBlock *DefaultDest = SI->getDefaultDest(); 6292 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 6293 DL, TTI); 6294 // If the default value is not found abort unless the default destination 6295 // is unreachable. 6296 DefaultResult = 6297 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 6298 if ((!DefaultResult && 6299 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 6300 return false; 6301 6302 return true; 6303 } 6304 6305 // Helper function that checks if it is possible to transform a switch with only 6306 // two cases (or two cases + default) that produces a result into a select. 6307 // TODO: Handle switches with more than 2 cases that map to the same result. 6308 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 6309 Constant *DefaultResult, Value *Condition, 6310 IRBuilder<> &Builder) { 6311 // If we are selecting between only two cases transform into a simple 6312 // select or a two-way select if default is possible. 6313 // Example: 6314 // switch (a) { %0 = icmp eq i32 %a, 10 6315 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 6316 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 6317 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 6318 // } 6319 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 6320 ResultVector[1].second.size() == 1) { 6321 ConstantInt *FirstCase = ResultVector[0].second[0]; 6322 ConstantInt *SecondCase = ResultVector[1].second[0]; 6323 Value *SelectValue = ResultVector[1].first; 6324 if (DefaultResult) { 6325 Value *ValueCompare = 6326 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 6327 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 6328 DefaultResult, "switch.select"); 6329 } 6330 Value *ValueCompare = 6331 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 6332 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 6333 SelectValue, "switch.select"); 6334 } 6335 6336 // Handle the degenerate case where two cases have the same result value. 6337 if (ResultVector.size() == 1 && DefaultResult) { 6338 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 6339 unsigned CaseCount = CaseValues.size(); 6340 // n bits group cases map to the same result: 6341 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 6342 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 6343 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 6344 if (isPowerOf2_32(CaseCount)) { 6345 ConstantInt *MinCaseVal = CaseValues[0]; 6346 // Find mininal value. 6347 for (auto *Case : CaseValues) 6348 if (Case->getValue().slt(MinCaseVal->getValue())) 6349 MinCaseVal = Case; 6350 6351 // Mark the bits case number touched. 6352 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 6353 for (auto *Case : CaseValues) 6354 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 6355 6356 // Check if cases with the same result can cover all number 6357 // in touched bits. 6358 if (BitMask.popcount() == Log2_32(CaseCount)) { 6359 if (!MinCaseVal->isNullValue()) 6360 Condition = Builder.CreateSub(Condition, MinCaseVal); 6361 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 6362 Value *Cmp = Builder.CreateICmpEQ( 6363 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 6364 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6365 } 6366 } 6367 6368 // Handle the degenerate case where two cases have the same value. 6369 if (CaseValues.size() == 2) { 6370 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 6371 "switch.selectcmp.case1"); 6372 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 6373 "switch.selectcmp.case2"); 6374 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 6375 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6376 } 6377 } 6378 6379 return nullptr; 6380 } 6381 6382 // Helper function to cleanup a switch instruction that has been converted into 6383 // a select, fixing up PHI nodes and basic blocks. 6384 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 6385 Value *SelectValue, 6386 IRBuilder<> &Builder, 6387 DomTreeUpdater *DTU) { 6388 std::vector<DominatorTree::UpdateType> Updates; 6389 6390 BasicBlock *SelectBB = SI->getParent(); 6391 BasicBlock *DestBB = PHI->getParent(); 6392 6393 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 6394 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 6395 Builder.CreateBr(DestBB); 6396 6397 // Remove the switch. 6398 6399 PHI->removeIncomingValueIf( 6400 [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; }); 6401 PHI->addIncoming(SelectValue, SelectBB); 6402 6403 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 6404 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6405 BasicBlock *Succ = SI->getSuccessor(i); 6406 6407 if (Succ == DestBB) 6408 continue; 6409 Succ->removePredecessor(SelectBB); 6410 if (DTU && RemovedSuccessors.insert(Succ).second) 6411 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 6412 } 6413 SI->eraseFromParent(); 6414 if (DTU) 6415 DTU->applyUpdates(Updates); 6416 } 6417 6418 /// If a switch is only used to initialize one or more phi nodes in a common 6419 /// successor block with only two different constant values, try to replace the 6420 /// switch with a select. Returns true if the fold was made. 6421 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 6422 DomTreeUpdater *DTU, const DataLayout &DL, 6423 const TargetTransformInfo &TTI) { 6424 Value *const Cond = SI->getCondition(); 6425 PHINode *PHI = nullptr; 6426 BasicBlock *CommonDest = nullptr; 6427 Constant *DefaultResult; 6428 SwitchCaseResultVectorTy UniqueResults; 6429 // Collect all the cases that will deliver the same value from the switch. 6430 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 6431 DL, TTI, /*MaxUniqueResults*/ 2)) 6432 return false; 6433 6434 assert(PHI != nullptr && "PHI for value select not found"); 6435 Builder.SetInsertPoint(SI); 6436 Value *SelectValue = 6437 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 6438 if (!SelectValue) 6439 return false; 6440 6441 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 6442 return true; 6443 } 6444 6445 namespace { 6446 6447 /// This class represents a lookup table that can be used to replace a switch. 6448 class SwitchLookupTable { 6449 public: 6450 /// Create a lookup table to use as a switch replacement with the contents 6451 /// of Values, using DefaultValue to fill any holes in the table. 6452 SwitchLookupTable( 6453 Module &M, uint64_t TableSize, ConstantInt *Offset, 6454 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6455 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 6456 6457 /// Build instructions with Builder to retrieve the value at 6458 /// the position given by Index in the lookup table. 6459 Value *buildLookup(Value *Index, IRBuilder<> &Builder); 6460 6461 /// Return true if a table with TableSize elements of 6462 /// type ElementType would fit in a target-legal register. 6463 static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 6464 Type *ElementType); 6465 6466 private: 6467 // Depending on the contents of the table, it can be represented in 6468 // different ways. 6469 enum { 6470 // For tables where each element contains the same value, we just have to 6471 // store that single value and return it for each lookup. 6472 SingleValueKind, 6473 6474 // For tables where there is a linear relationship between table index 6475 // and values. We calculate the result with a simple multiplication 6476 // and addition instead of a table lookup. 6477 LinearMapKind, 6478 6479 // For small tables with integer elements, we can pack them into a bitmap 6480 // that fits into a target-legal register. Values are retrieved by 6481 // shift and mask operations. 6482 BitMapKind, 6483 6484 // The table is stored as an array of values. Values are retrieved by load 6485 // instructions from the table. 6486 ArrayKind 6487 } Kind; 6488 6489 // For SingleValueKind, this is the single value. 6490 Constant *SingleValue = nullptr; 6491 6492 // For BitMapKind, this is the bitmap. 6493 ConstantInt *BitMap = nullptr; 6494 IntegerType *BitMapElementTy = nullptr; 6495 6496 // For LinearMapKind, these are the constants used to derive the value. 6497 ConstantInt *LinearOffset = nullptr; 6498 ConstantInt *LinearMultiplier = nullptr; 6499 bool LinearMapValWrapped = false; 6500 6501 // For ArrayKind, this is the array. 6502 GlobalVariable *Array = nullptr; 6503 }; 6504 6505 } // end anonymous namespace 6506 6507 SwitchLookupTable::SwitchLookupTable( 6508 Module &M, uint64_t TableSize, ConstantInt *Offset, 6509 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6510 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 6511 assert(Values.size() && "Can't build lookup table without values!"); 6512 assert(TableSize >= Values.size() && "Can't fit values in table!"); 6513 6514 // If all values in the table are equal, this is that value. 6515 SingleValue = Values.begin()->second; 6516 6517 Type *ValueType = Values.begin()->second->getType(); 6518 6519 // Build up the table contents. 6520 SmallVector<Constant *, 64> TableContents(TableSize); 6521 for (size_t I = 0, E = Values.size(); I != E; ++I) { 6522 ConstantInt *CaseVal = Values[I].first; 6523 Constant *CaseRes = Values[I].second; 6524 assert(CaseRes->getType() == ValueType); 6525 6526 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 6527 TableContents[Idx] = CaseRes; 6528 6529 if (SingleValue && !isa<PoisonValue>(CaseRes) && CaseRes != SingleValue) 6530 SingleValue = isa<PoisonValue>(SingleValue) ? CaseRes : nullptr; 6531 } 6532 6533 // Fill in any holes in the table with the default result. 6534 if (Values.size() < TableSize) { 6535 assert(DefaultValue && 6536 "Need a default value to fill the lookup table holes."); 6537 assert(DefaultValue->getType() == ValueType); 6538 for (uint64_t I = 0; I < TableSize; ++I) { 6539 if (!TableContents[I]) 6540 TableContents[I] = DefaultValue; 6541 } 6542 6543 // If the default value is poison, all the holes are poison. 6544 bool DefaultValueIsPoison = isa<PoisonValue>(DefaultValue); 6545 6546 if (DefaultValue != SingleValue && !DefaultValueIsPoison) 6547 SingleValue = nullptr; 6548 } 6549 6550 // If each element in the table contains the same value, we only need to store 6551 // that single value. 6552 if (SingleValue) { 6553 Kind = SingleValueKind; 6554 return; 6555 } 6556 6557 // Check if we can derive the value with a linear transformation from the 6558 // table index. 6559 if (isa<IntegerType>(ValueType)) { 6560 bool LinearMappingPossible = true; 6561 APInt PrevVal; 6562 APInt DistToPrev; 6563 // When linear map is monotonic and signed overflow doesn't happen on 6564 // maximum index, we can attach nsw on Add and Mul. 6565 bool NonMonotonic = false; 6566 assert(TableSize >= 2 && "Should be a SingleValue table."); 6567 // Check if there is the same distance between two consecutive values. 6568 for (uint64_t I = 0; I < TableSize; ++I) { 6569 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 6570 6571 if (!ConstVal && isa<PoisonValue>(TableContents[I])) { 6572 // This is an poison, so it's (probably) a lookup table hole. 6573 // To prevent any regressions from before we switched to using poison as 6574 // the default value, holes will fall back to using the first value. 6575 // This can be removed once we add proper handling for poisons in lookup 6576 // tables. 6577 ConstVal = dyn_cast<ConstantInt>(Values[0].second); 6578 } 6579 6580 if (!ConstVal) { 6581 // This is an undef. We could deal with it, but undefs in lookup tables 6582 // are very seldom. It's probably not worth the additional complexity. 6583 LinearMappingPossible = false; 6584 break; 6585 } 6586 const APInt &Val = ConstVal->getValue(); 6587 if (I != 0) { 6588 APInt Dist = Val - PrevVal; 6589 if (I == 1) { 6590 DistToPrev = Dist; 6591 } else if (Dist != DistToPrev) { 6592 LinearMappingPossible = false; 6593 break; 6594 } 6595 NonMonotonic |= 6596 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal); 6597 } 6598 PrevVal = Val; 6599 } 6600 if (LinearMappingPossible) { 6601 LinearOffset = cast<ConstantInt>(TableContents[0]); 6602 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 6603 APInt M = LinearMultiplier->getValue(); 6604 bool MayWrap = true; 6605 if (isIntN(M.getBitWidth(), TableSize - 1)) 6606 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap); 6607 LinearMapValWrapped = NonMonotonic || MayWrap; 6608 Kind = LinearMapKind; 6609 ++NumLinearMaps; 6610 return; 6611 } 6612 } 6613 6614 // If the type is integer and the table fits in a register, build a bitmap. 6615 if (wouldFitInRegister(DL, TableSize, ValueType)) { 6616 IntegerType *IT = cast<IntegerType>(ValueType); 6617 APInt TableInt(TableSize * IT->getBitWidth(), 0); 6618 for (uint64_t I = TableSize; I > 0; --I) { 6619 TableInt <<= IT->getBitWidth(); 6620 // Insert values into the bitmap. Undef values are set to zero. 6621 if (!isa<UndefValue>(TableContents[I - 1])) { 6622 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 6623 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 6624 } 6625 } 6626 BitMap = ConstantInt::get(M.getContext(), TableInt); 6627 BitMapElementTy = IT; 6628 Kind = BitMapKind; 6629 ++NumBitMaps; 6630 return; 6631 } 6632 6633 // Store the table in an array. 6634 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6635 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6636 6637 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6638 GlobalVariable::PrivateLinkage, Initializer, 6639 "switch.table." + FuncName); 6640 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6641 // Set the alignment to that of an array items. We will be only loading one 6642 // value out of it. 6643 Array->setAlignment(DL.getPrefTypeAlign(ValueType)); 6644 Kind = ArrayKind; 6645 } 6646 6647 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) { 6648 switch (Kind) { 6649 case SingleValueKind: 6650 return SingleValue; 6651 case LinearMapKind: { 6652 // Derive the result value from the input value. 6653 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6654 false, "switch.idx.cast"); 6655 if (!LinearMultiplier->isOne()) 6656 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult", 6657 /*HasNUW = */ false, 6658 /*HasNSW = */ !LinearMapValWrapped); 6659 6660 if (!LinearOffset->isZero()) 6661 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset", 6662 /*HasNUW = */ false, 6663 /*HasNSW = */ !LinearMapValWrapped); 6664 return Result; 6665 } 6666 case BitMapKind: { 6667 // Type of the bitmap (e.g. i59). 6668 IntegerType *MapTy = BitMap->getIntegerType(); 6669 6670 // Cast Index to the same type as the bitmap. 6671 // Note: The Index is <= the number of elements in the table, so 6672 // truncating it to the width of the bitmask is safe. 6673 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6674 6675 // Multiply the shift amount by the element width. NUW/NSW can always be 6676 // set, because wouldFitInRegister guarantees Index * ShiftAmt is in 6677 // BitMap's bit width. 6678 ShiftAmt = Builder.CreateMul( 6679 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6680 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true); 6681 6682 // Shift down. 6683 Value *DownShifted = 6684 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6685 // Mask off. 6686 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6687 } 6688 case ArrayKind: { 6689 // Make sure the table index will not overflow when treated as signed. 6690 IntegerType *IT = cast<IntegerType>(Index->getType()); 6691 uint64_t TableSize = 6692 Array->getInitializer()->getType()->getArrayNumElements(); 6693 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6694 Index = Builder.CreateZExt( 6695 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6696 "switch.tableidx.zext"); 6697 6698 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6699 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6700 GEPIndices, "switch.gep"); 6701 return Builder.CreateLoad( 6702 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6703 "switch.load"); 6704 } 6705 } 6706 llvm_unreachable("Unknown lookup table kind!"); 6707 } 6708 6709 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL, 6710 uint64_t TableSize, 6711 Type *ElementType) { 6712 auto *IT = dyn_cast<IntegerType>(ElementType); 6713 if (!IT) 6714 return false; 6715 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6716 // are <= 15, we could try to narrow the type. 6717 6718 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6719 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6720 return false; 6721 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6722 } 6723 6724 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6725 const DataLayout &DL) { 6726 // Allow any legal type. 6727 if (TTI.isTypeLegal(Ty)) 6728 return true; 6729 6730 auto *IT = dyn_cast<IntegerType>(Ty); 6731 if (!IT) 6732 return false; 6733 6734 // Also allow power of 2 integer types that have at least 8 bits and fit in 6735 // a register. These types are common in frontend languages and targets 6736 // usually support loads of these types. 6737 // TODO: We could relax this to any integer that fits in a register and rely 6738 // on ABI alignment and padding in the table to allow the load to be widened. 6739 // Or we could widen the constants and truncate the load. 6740 unsigned BitWidth = IT->getBitWidth(); 6741 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6742 DL.fitsInLegalInteger(IT->getBitWidth()); 6743 } 6744 6745 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6746 // 40% is the default density for building a jump table in optsize/minsize 6747 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6748 // function was based on. 6749 const uint64_t MinDensity = 40; 6750 6751 if (CaseRange >= UINT64_MAX / 100) 6752 return false; // Avoid multiplication overflows below. 6753 6754 return NumCases * 100 >= CaseRange * MinDensity; 6755 } 6756 6757 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6758 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6759 uint64_t Range = Diff + 1; 6760 if (Range < Diff) 6761 return false; // Overflow. 6762 6763 return isSwitchDense(Values.size(), Range); 6764 } 6765 6766 /// Determine whether a lookup table should be built for this switch, based on 6767 /// the number of cases, size of the table, and the types of the results. 6768 // TODO: We could support larger than legal types by limiting based on the 6769 // number of loads required and/or table size. If the constants are small we 6770 // could use smaller table entries and extend after the load. 6771 static bool 6772 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6773 const TargetTransformInfo &TTI, const DataLayout &DL, 6774 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6775 if (SI->getNumCases() > TableSize) 6776 return false; // TableSize overflowed. 6777 6778 bool AllTablesFitInRegister = true; 6779 bool HasIllegalType = false; 6780 for (const auto &I : ResultTypes) { 6781 Type *Ty = I.second; 6782 6783 // Saturate this flag to true. 6784 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6785 6786 // Saturate this flag to false. 6787 AllTablesFitInRegister = 6788 AllTablesFitInRegister && 6789 SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty); 6790 6791 // If both flags saturate, we're done. NOTE: This *only* works with 6792 // saturating flags, and all flags have to saturate first due to the 6793 // non-deterministic behavior of iterating over a dense map. 6794 if (HasIllegalType && !AllTablesFitInRegister) 6795 break; 6796 } 6797 6798 // If each table would fit in a register, we should build it anyway. 6799 if (AllTablesFitInRegister) 6800 return true; 6801 6802 // Don't build a table that doesn't fit in-register if it has illegal types. 6803 if (HasIllegalType) 6804 return false; 6805 6806 return isSwitchDense(SI->getNumCases(), TableSize); 6807 } 6808 6809 static bool shouldUseSwitchConditionAsTableIndex( 6810 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, 6811 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, 6812 const DataLayout &DL, const TargetTransformInfo &TTI) { 6813 if (MinCaseVal.isNullValue()) 6814 return true; 6815 if (MinCaseVal.isNegative() || 6816 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || 6817 !HasDefaultResults) 6818 return false; 6819 return all_of(ResultTypes, [&](const auto &KV) { 6820 return SwitchLookupTable::wouldFitInRegister( 6821 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, 6822 KV.second /* ResultType */); 6823 }); 6824 } 6825 6826 /// Try to reuse the switch table index compare. Following pattern: 6827 /// \code 6828 /// if (idx < tablesize) 6829 /// r = table[idx]; // table does not contain default_value 6830 /// else 6831 /// r = default_value; 6832 /// if (r != default_value) 6833 /// ... 6834 /// \endcode 6835 /// Is optimized to: 6836 /// \code 6837 /// cond = idx < tablesize; 6838 /// if (cond) 6839 /// r = table[idx]; 6840 /// else 6841 /// r = default_value; 6842 /// if (cond) 6843 /// ... 6844 /// \endcode 6845 /// Jump threading will then eliminate the second if(cond). 6846 static void reuseTableCompare( 6847 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6848 Constant *DefaultValue, 6849 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6850 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6851 if (!CmpInst) 6852 return; 6853 6854 // We require that the compare is in the same block as the phi so that jump 6855 // threading can do its work afterwards. 6856 if (CmpInst->getParent() != PhiBlock) 6857 return; 6858 6859 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6860 if (!CmpOp1) 6861 return; 6862 6863 Value *RangeCmp = RangeCheckBranch->getCondition(); 6864 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6865 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6866 6867 // Check if the compare with the default value is constant true or false. 6868 const DataLayout &DL = PhiBlock->getDataLayout(); 6869 Constant *DefaultConst = ConstantFoldCompareInstOperands( 6870 CmpInst->getPredicate(), DefaultValue, CmpOp1, DL); 6871 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6872 return; 6873 6874 // Check if the compare with the case values is distinct from the default 6875 // compare result. 6876 for (auto ValuePair : Values) { 6877 Constant *CaseConst = ConstantFoldCompareInstOperands( 6878 CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL); 6879 if (!CaseConst || CaseConst == DefaultConst || 6880 (CaseConst != TrueConst && CaseConst != FalseConst)) 6881 return; 6882 } 6883 6884 // Check if the branch instruction dominates the phi node. It's a simple 6885 // dominance check, but sufficient for our needs. 6886 // Although this check is invariant in the calling loops, it's better to do it 6887 // at this late stage. Practically we do it at most once for a switch. 6888 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6889 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6890 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6891 return; 6892 } 6893 6894 if (DefaultConst == FalseConst) { 6895 // The compare yields the same result. We can replace it. 6896 CmpInst->replaceAllUsesWith(RangeCmp); 6897 ++NumTableCmpReuses; 6898 } else { 6899 // The compare yields the same result, just inverted. We can replace it. 6900 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6901 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6902 RangeCheckBranch->getIterator()); 6903 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6904 ++NumTableCmpReuses; 6905 } 6906 } 6907 6908 /// If the switch is only used to initialize one or more phi nodes in a common 6909 /// successor block with different constant values, replace the switch with 6910 /// lookup tables. 6911 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6912 DomTreeUpdater *DTU, const DataLayout &DL, 6913 const TargetTransformInfo &TTI) { 6914 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6915 6916 BasicBlock *BB = SI->getParent(); 6917 Function *Fn = BB->getParent(); 6918 // Only build lookup table when we have a target that supports it or the 6919 // attribute is not set. 6920 if (!TTI.shouldBuildLookupTables() || 6921 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6922 return false; 6923 6924 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6925 // split off a dense part and build a lookup table for that. 6926 6927 // FIXME: This creates arrays of GEPs to constant strings, which means each 6928 // GEP needs a runtime relocation in PIC code. We should just build one big 6929 // string and lookup indices into that. 6930 6931 // Ignore switches with less than three cases. Lookup tables will not make 6932 // them faster, so we don't analyze them. 6933 if (SI->getNumCases() < 3) 6934 return false; 6935 6936 // Figure out the corresponding result for each case value and phi node in the 6937 // common destination, as well as the min and max case values. 6938 assert(!SI->cases().empty()); 6939 SwitchInst::CaseIt CI = SI->case_begin(); 6940 ConstantInt *MinCaseVal = CI->getCaseValue(); 6941 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6942 6943 BasicBlock *CommonDest = nullptr; 6944 6945 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6946 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6947 6948 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6949 SmallDenseMap<PHINode *, Type *> ResultTypes; 6950 SmallVector<PHINode *, 4> PHIs; 6951 6952 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6953 ConstantInt *CaseVal = CI->getCaseValue(); 6954 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6955 MinCaseVal = CaseVal; 6956 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6957 MaxCaseVal = CaseVal; 6958 6959 // Resulting value at phi nodes for this case value. 6960 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6961 ResultsTy Results; 6962 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6963 Results, DL, TTI)) 6964 return false; 6965 6966 // Append the result from this case to the list for each phi. 6967 for (const auto &I : Results) { 6968 PHINode *PHI = I.first; 6969 Constant *Value = I.second; 6970 if (!ResultLists.count(PHI)) 6971 PHIs.push_back(PHI); 6972 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6973 } 6974 } 6975 6976 // Keep track of the result types. 6977 for (PHINode *PHI : PHIs) { 6978 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6979 } 6980 6981 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6982 6983 // If the table has holes, we need a constant result for the default case 6984 // or a bitmask that fits in a register. 6985 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6986 bool HasDefaultResults = 6987 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6988 DefaultResultsList, DL, TTI); 6989 6990 for (const auto &I : DefaultResultsList) { 6991 PHINode *PHI = I.first; 6992 Constant *Result = I.second; 6993 DefaultResults[PHI] = Result; 6994 } 6995 6996 bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex( 6997 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); 6998 uint64_t TableSize; 6999 if (UseSwitchConditionAsTableIndex) 7000 TableSize = MaxCaseVal->getLimitedValue() + 1; 7001 else 7002 TableSize = 7003 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; 7004 7005 // If the default destination is unreachable, or if the lookup table covers 7006 // all values of the conditional variable, branch directly to the lookup table 7007 // BB. Otherwise, check that the condition is within the case range. 7008 bool DefaultIsReachable = !SI->defaultDestUndefined(); 7009 7010 bool TableHasHoles = (NumResults < TableSize); 7011 7012 // If the table has holes but the default destination doesn't produce any 7013 // constant results, the lookup table entries corresponding to the holes will 7014 // contain poison. 7015 bool AllHolesArePoison = TableHasHoles && !HasDefaultResults; 7016 7017 // If the default destination doesn't produce a constant result but is still 7018 // reachable, and the lookup table has holes, we need to use a mask to 7019 // determine if the current index should load from the lookup table or jump 7020 // to the default case. 7021 // The mask is unnecessary if the table has holes but the default destination 7022 // is unreachable, as in that case the holes must also be unreachable. 7023 bool NeedMask = AllHolesArePoison && DefaultIsReachable; 7024 if (NeedMask) { 7025 // As an extra penalty for the validity test we require more cases. 7026 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 7027 return false; 7028 if (!DL.fitsInLegalInteger(TableSize)) 7029 return false; 7030 } 7031 7032 if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 7033 return false; 7034 7035 std::vector<DominatorTree::UpdateType> Updates; 7036 7037 // Compute the maximum table size representable by the integer type we are 7038 // switching upon. 7039 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 7040 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 7041 assert(MaxTableSize >= TableSize && 7042 "It is impossible for a switch to have more entries than the max " 7043 "representable value of its input integer type's size."); 7044 7045 // Create the BB that does the lookups. 7046 Module &Mod = *CommonDest->getParent()->getParent(); 7047 BasicBlock *LookupBB = BasicBlock::Create( 7048 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 7049 7050 // Compute the table index value. 7051 Builder.SetInsertPoint(SI); 7052 Value *TableIndex; 7053 ConstantInt *TableIndexOffset; 7054 if (UseSwitchConditionAsTableIndex) { 7055 TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0); 7056 TableIndex = SI->getCondition(); 7057 } else { 7058 TableIndexOffset = MinCaseVal; 7059 // If the default is unreachable, all case values are s>= MinCaseVal. Then 7060 // we can try to attach nsw. 7061 bool MayWrap = true; 7062 if (!DefaultIsReachable) { 7063 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap); 7064 (void)Res; 7065 } 7066 7067 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset, 7068 "switch.tableidx", /*HasNUW =*/false, 7069 /*HasNSW =*/!MayWrap); 7070 } 7071 7072 BranchInst *RangeCheckBranch = nullptr; 7073 7074 // Grow the table to cover all possible index values to avoid the range check. 7075 // It will use the default result to fill in the table hole later, so make 7076 // sure it exist. 7077 if (UseSwitchConditionAsTableIndex && HasDefaultResults) { 7078 ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false); 7079 // Grow the table shouldn't have any size impact by checking 7080 // wouldFitInRegister. 7081 // TODO: Consider growing the table also when it doesn't fit in a register 7082 // if no optsize is specified. 7083 const uint64_t UpperBound = CR.getUpper().getLimitedValue(); 7084 if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) { 7085 return SwitchLookupTable::wouldFitInRegister( 7086 DL, UpperBound, KV.second /* ResultType */); 7087 })) { 7088 // There may be some case index larger than the UpperBound (unreachable 7089 // case), so make sure the table size does not get smaller. 7090 TableSize = std::max(UpperBound, TableSize); 7091 // The default branch is unreachable after we enlarge the lookup table. 7092 // Adjust DefaultIsReachable to reuse code path. 7093 DefaultIsReachable = false; 7094 } 7095 } 7096 7097 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 7098 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7099 Builder.CreateBr(LookupBB); 7100 if (DTU) 7101 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7102 // Note: We call removeProdecessor later since we need to be able to get the 7103 // PHI value for the default case in case we're using a bit mask. 7104 } else { 7105 Value *Cmp = Builder.CreateICmpULT( 7106 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 7107 RangeCheckBranch = 7108 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 7109 if (DTU) 7110 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7111 } 7112 7113 // Populate the BB that does the lookups. 7114 Builder.SetInsertPoint(LookupBB); 7115 7116 if (NeedMask) { 7117 // Before doing the lookup, we do the hole check. The LookupBB is therefore 7118 // re-purposed to do the hole check, and we create a new LookupBB. 7119 BasicBlock *MaskBB = LookupBB; 7120 MaskBB->setName("switch.hole_check"); 7121 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 7122 CommonDest->getParent(), CommonDest); 7123 7124 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 7125 // unnecessary illegal types. 7126 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 7127 APInt MaskInt(TableSizePowOf2, 0); 7128 APInt One(TableSizePowOf2, 1); 7129 // Build bitmask; fill in a 1 bit for every case. 7130 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 7131 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 7132 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) 7133 .getLimitedValue(); 7134 MaskInt |= One << Idx; 7135 } 7136 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 7137 7138 // Get the TableIndex'th bit of the bitmask. 7139 // If this bit is 0 (meaning hole) jump to the default destination, 7140 // else continue with table lookup. 7141 IntegerType *MapTy = TableMask->getIntegerType(); 7142 Value *MaskIndex = 7143 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 7144 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 7145 Value *LoBit = Builder.CreateTrunc( 7146 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 7147 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 7148 if (DTU) { 7149 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 7150 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 7151 } 7152 Builder.SetInsertPoint(LookupBB); 7153 addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 7154 } 7155 7156 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7157 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 7158 // do not delete PHINodes here. 7159 SI->getDefaultDest()->removePredecessor(BB, 7160 /*KeepOneInputPHIs=*/true); 7161 if (DTU) 7162 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 7163 } 7164 7165 for (PHINode *PHI : PHIs) { 7166 const ResultListTy &ResultList = ResultLists[PHI]; 7167 7168 Type *ResultType = ResultList.begin()->second->getType(); 7169 7170 // Use any value to fill the lookup table holes. 7171 Constant *DV = 7172 AllHolesArePoison ? PoisonValue::get(ResultType) : DefaultResults[PHI]; 7173 StringRef FuncName = Fn->getName(); 7174 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, 7175 DL, FuncName); 7176 7177 Value *Result = Table.buildLookup(TableIndex, Builder); 7178 7179 // Do a small peephole optimization: re-use the switch table compare if 7180 // possible. 7181 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 7182 BasicBlock *PhiBlock = PHI->getParent(); 7183 // Search for compare instructions which use the phi. 7184 for (auto *User : PHI->users()) { 7185 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 7186 } 7187 } 7188 7189 PHI->addIncoming(Result, LookupBB); 7190 } 7191 7192 Builder.CreateBr(CommonDest); 7193 if (DTU) 7194 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 7195 7196 // Remove the switch. 7197 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 7198 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 7199 BasicBlock *Succ = SI->getSuccessor(i); 7200 7201 if (Succ == SI->getDefaultDest()) 7202 continue; 7203 Succ->removePredecessor(BB); 7204 if (DTU && RemovedSuccessors.insert(Succ).second) 7205 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7206 } 7207 SI->eraseFromParent(); 7208 7209 if (DTU) 7210 DTU->applyUpdates(Updates); 7211 7212 ++NumLookupTables; 7213 if (NeedMask) 7214 ++NumLookupTablesHoles; 7215 return true; 7216 } 7217 7218 /// Try to transform a switch that has "holes" in it to a contiguous sequence 7219 /// of cases. 7220 /// 7221 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 7222 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 7223 /// 7224 /// This converts a sparse switch into a dense switch which allows better 7225 /// lowering and could also allow transforming into a lookup table. 7226 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 7227 const DataLayout &DL, 7228 const TargetTransformInfo &TTI) { 7229 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 7230 if (CondTy->getIntegerBitWidth() > 64 || 7231 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7232 return false; 7233 // Only bother with this optimization if there are more than 3 switch cases; 7234 // SDAG will only bother creating jump tables for 4 or more cases. 7235 if (SI->getNumCases() < 4) 7236 return false; 7237 7238 // This transform is agnostic to the signedness of the input or case values. We 7239 // can treat the case values as signed or unsigned. We can optimize more common 7240 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 7241 // as signed. 7242 SmallVector<int64_t,4> Values; 7243 for (const auto &C : SI->cases()) 7244 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 7245 llvm::sort(Values); 7246 7247 // If the switch is already dense, there's nothing useful to do here. 7248 if (isSwitchDense(Values)) 7249 return false; 7250 7251 // First, transform the values such that they start at zero and ascend. 7252 int64_t Base = Values[0]; 7253 for (auto &V : Values) 7254 V -= (uint64_t)(Base); 7255 7256 // Now we have signed numbers that have been shifted so that, given enough 7257 // precision, there are no negative values. Since the rest of the transform 7258 // is bitwise only, we switch now to an unsigned representation. 7259 7260 // This transform can be done speculatively because it is so cheap - it 7261 // results in a single rotate operation being inserted. 7262 7263 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 7264 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 7265 // less than 64. 7266 unsigned Shift = 64; 7267 for (auto &V : Values) 7268 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V)); 7269 assert(Shift < 64); 7270 if (Shift > 0) 7271 for (auto &V : Values) 7272 V = (int64_t)((uint64_t)V >> Shift); 7273 7274 if (!isSwitchDense(Values)) 7275 // Transform didn't create a dense switch. 7276 return false; 7277 7278 // The obvious transform is to shift the switch condition right and emit a 7279 // check that the condition actually cleanly divided by GCD, i.e. 7280 // C & (1 << Shift - 1) == 0 7281 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 7282 // 7283 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 7284 // shift and puts the shifted-off bits in the uppermost bits. If any of these 7285 // are nonzero then the switch condition will be very large and will hit the 7286 // default case. 7287 7288 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 7289 Builder.SetInsertPoint(SI); 7290 Value *Sub = 7291 Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 7292 Value *Rot = Builder.CreateIntrinsic( 7293 Ty, Intrinsic::fshl, 7294 {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)}); 7295 SI->replaceUsesOfWith(SI->getCondition(), Rot); 7296 7297 for (auto Case : SI->cases()) { 7298 auto *Orig = Case.getCaseValue(); 7299 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base, true); 7300 Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift)))); 7301 } 7302 return true; 7303 } 7304 7305 /// Tries to transform switch of powers of two to reduce switch range. 7306 /// For example, switch like: 7307 /// switch (C) { case 1: case 2: case 64: case 128: } 7308 /// will be transformed to: 7309 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: } 7310 /// 7311 /// This transformation allows better lowering and could allow transforming into 7312 /// a lookup table. 7313 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder, 7314 const DataLayout &DL, 7315 const TargetTransformInfo &TTI) { 7316 Value *Condition = SI->getCondition(); 7317 LLVMContext &Context = SI->getContext(); 7318 auto *CondTy = cast<IntegerType>(Condition->getType()); 7319 7320 if (CondTy->getIntegerBitWidth() > 64 || 7321 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7322 return false; 7323 7324 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost( 7325 IntrinsicCostAttributes(Intrinsic::cttz, CondTy, 7326 {Condition, ConstantInt::getTrue(Context)}), 7327 TTI::TCK_SizeAndLatency); 7328 7329 if (CttzIntrinsicCost > TTI::TCC_Basic) 7330 // Inserting intrinsic is too expensive. 7331 return false; 7332 7333 // Only bother with this optimization if there are more than 3 switch cases. 7334 // SDAG will only bother creating jump tables for 4 or more cases. 7335 if (SI->getNumCases() < 4) 7336 return false; 7337 7338 // We perform this optimization only for switches with 7339 // unreachable default case. 7340 // This assumtion will save us from checking if `Condition` is a power of two. 7341 if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg())) 7342 return false; 7343 7344 // Check that switch cases are powers of two. 7345 SmallVector<uint64_t, 4> Values; 7346 for (const auto &Case : SI->cases()) { 7347 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue(); 7348 if (llvm::has_single_bit(CaseValue)) 7349 Values.push_back(CaseValue); 7350 else 7351 return false; 7352 } 7353 7354 // isSwichDense requires case values to be sorted. 7355 llvm::sort(Values); 7356 if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) - 7357 llvm::countr_zero(Values.front()) + 1)) 7358 // Transform is unable to generate dense switch. 7359 return false; 7360 7361 Builder.SetInsertPoint(SI); 7362 7363 // Replace each case with its trailing zeros number. 7364 for (auto &Case : SI->cases()) { 7365 auto *OrigValue = Case.getCaseValue(); 7366 Case.setValue(ConstantInt::get(OrigValue->getIntegerType(), 7367 OrigValue->getValue().countr_zero())); 7368 } 7369 7370 // Replace condition with its trailing zeros number. 7371 auto *ConditionTrailingZeros = Builder.CreateIntrinsic( 7372 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)}); 7373 7374 SI->setCondition(ConditionTrailingZeros); 7375 7376 return true; 7377 } 7378 7379 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have 7380 /// the same destination. 7381 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder, 7382 DomTreeUpdater *DTU) { 7383 auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition()); 7384 if (!Cmp || !Cmp->hasOneUse()) 7385 return false; 7386 7387 SmallVector<uint32_t, 4> Weights; 7388 bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights); 7389 if (!HasWeights) 7390 Weights.resize(4); // Avoid checking HasWeights everywhere. 7391 7392 // Normalize to [us]cmp == Res ? Succ : OtherSucc. 7393 int64_t Res; 7394 BasicBlock *Succ, *OtherSucc; 7395 uint32_t SuccWeight = 0, OtherSuccWeight = 0; 7396 BasicBlock *Unreachable = nullptr; 7397 7398 if (SI->getNumCases() == 2) { 7399 // Find which of 1, 0 or -1 is missing (handled by default dest). 7400 SmallSet<int64_t, 3> Missing; 7401 Missing.insert(1); 7402 Missing.insert(0); 7403 Missing.insert(-1); 7404 7405 Succ = SI->getDefaultDest(); 7406 SuccWeight = Weights[0]; 7407 OtherSucc = nullptr; 7408 for (auto &Case : SI->cases()) { 7409 std::optional<int64_t> Val = 7410 Case.getCaseValue()->getValue().trySExtValue(); 7411 if (!Val) 7412 return false; 7413 if (!Missing.erase(*Val)) 7414 return false; 7415 if (OtherSucc && OtherSucc != Case.getCaseSuccessor()) 7416 return false; 7417 OtherSucc = Case.getCaseSuccessor(); 7418 OtherSuccWeight += Weights[Case.getSuccessorIndex()]; 7419 } 7420 7421 assert(Missing.size() == 1 && "Should have one case left"); 7422 Res = *Missing.begin(); 7423 } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) { 7424 // Normalize so that Succ is taken once and OtherSucc twice. 7425 Unreachable = SI->getDefaultDest(); 7426 Succ = OtherSucc = nullptr; 7427 for (auto &Case : SI->cases()) { 7428 BasicBlock *NewSucc = Case.getCaseSuccessor(); 7429 uint32_t Weight = Weights[Case.getSuccessorIndex()]; 7430 if (!OtherSucc || OtherSucc == NewSucc) { 7431 OtherSucc = NewSucc; 7432 OtherSuccWeight += Weight; 7433 } else if (!Succ) { 7434 Succ = NewSucc; 7435 SuccWeight = Weight; 7436 } else if (Succ == NewSucc) { 7437 std::swap(Succ, OtherSucc); 7438 std::swap(SuccWeight, OtherSuccWeight); 7439 } else 7440 return false; 7441 } 7442 for (auto &Case : SI->cases()) { 7443 std::optional<int64_t> Val = 7444 Case.getCaseValue()->getValue().trySExtValue(); 7445 if (!Val || (Val != 1 && Val != 0 && Val != -1)) 7446 return false; 7447 if (Case.getCaseSuccessor() == Succ) { 7448 Res = *Val; 7449 break; 7450 } 7451 } 7452 } else { 7453 return false; 7454 } 7455 7456 // Determine predicate for the missing case. 7457 ICmpInst::Predicate Pred; 7458 switch (Res) { 7459 case 1: 7460 Pred = ICmpInst::ICMP_UGT; 7461 break; 7462 case 0: 7463 Pred = ICmpInst::ICMP_EQ; 7464 break; 7465 case -1: 7466 Pred = ICmpInst::ICMP_ULT; 7467 break; 7468 } 7469 if (Cmp->isSigned()) 7470 Pred = ICmpInst::getSignedPredicate(Pred); 7471 7472 MDNode *NewWeights = nullptr; 7473 if (HasWeights) 7474 NewWeights = MDBuilder(SI->getContext()) 7475 .createBranchWeights(SuccWeight, OtherSuccWeight); 7476 7477 BasicBlock *BB = SI->getParent(); 7478 Builder.SetInsertPoint(SI->getIterator()); 7479 Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS()); 7480 Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights, 7481 SI->getMetadata(LLVMContext::MD_unpredictable)); 7482 OtherSucc->removePredecessor(BB); 7483 if (Unreachable) 7484 Unreachable->removePredecessor(BB); 7485 SI->eraseFromParent(); 7486 Cmp->eraseFromParent(); 7487 if (DTU && Unreachable) 7488 DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}}); 7489 return true; 7490 } 7491 7492 /// Checking whether two cases of SI are equal depends on the contents of the 7493 /// BasicBlock and the incoming values of their successor PHINodes. 7494 /// PHINode::getIncomingValueForBlock is O(|Preds|), so we'd like to avoid 7495 /// calling this function on each BasicBlock every time isEqual is called, 7496 /// especially since the same BasicBlock may be passed as an argument multiple 7497 /// times. To do this, we can precompute a map of PHINode -> Pred BasicBlock -> 7498 /// IncomingValue and add it in the Wrapper so isEqual can do O(1) checking 7499 /// of the incoming values. 7500 struct SwitchSuccWrapper { 7501 BasicBlock *Dest; 7502 DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> *PhiPredIVs; 7503 }; 7504 7505 namespace llvm { 7506 template <> struct DenseMapInfo<const SwitchSuccWrapper *> { 7507 static const SwitchSuccWrapper *getEmptyKey() { 7508 return static_cast<SwitchSuccWrapper *>( 7509 DenseMapInfo<void *>::getEmptyKey()); 7510 } 7511 static const SwitchSuccWrapper *getTombstoneKey() { 7512 return static_cast<SwitchSuccWrapper *>( 7513 DenseMapInfo<void *>::getTombstoneKey()); 7514 } 7515 static unsigned getHashValue(const SwitchSuccWrapper *SSW) { 7516 BasicBlock *Succ = SSW->Dest; 7517 BranchInst *BI = cast<BranchInst>(Succ->getTerminator()); 7518 assert(BI->isUnconditional() && 7519 "Only supporting unconditional branches for now"); 7520 assert(BI->getNumSuccessors() == 1 && 7521 "Expected unconditional branches to have one successor"); 7522 assert(Succ->size() == 1 && "Expected just a single branch in the BB"); 7523 7524 // Since we assume the BB is just a single BranchInst with a single 7525 // successor, we hash as the BB and the incoming Values of its successor 7526 // PHIs. Initially, we tried to just use the successor BB as the hash, but 7527 // including the incoming PHI values leads to better performance. 7528 // We also tried to build a map from BB -> Succs.IncomingValues ahead of 7529 // time and passing it in SwitchSuccWrapper, but this slowed down the 7530 // average compile time without having any impact on the worst case compile 7531 // time. 7532 BasicBlock *BB = BI->getSuccessor(0); 7533 SmallVector<Value *> PhiValsForBB; 7534 for (PHINode &Phi : BB->phis()) 7535 PhiValsForBB.emplace_back((*SSW->PhiPredIVs)[&Phi][BB]); 7536 7537 return hash_combine( 7538 BB, hash_combine_range(PhiValsForBB.begin(), PhiValsForBB.end())); 7539 } 7540 static bool isEqual(const SwitchSuccWrapper *LHS, 7541 const SwitchSuccWrapper *RHS) { 7542 auto EKey = DenseMapInfo<SwitchSuccWrapper *>::getEmptyKey(); 7543 auto TKey = DenseMapInfo<SwitchSuccWrapper *>::getTombstoneKey(); 7544 if (LHS == EKey || RHS == EKey || LHS == TKey || RHS == TKey) 7545 return LHS == RHS; 7546 7547 BasicBlock *A = LHS->Dest; 7548 BasicBlock *B = RHS->Dest; 7549 7550 // FIXME: we checked that the size of A and B are both 1 in 7551 // simplifyDuplicateSwitchArms to make the Case list smaller to 7552 // improve performance. If we decide to support BasicBlocks with more 7553 // than just a single instruction, we need to check that A.size() == 7554 // B.size() here, and we need to check more than just the BranchInsts 7555 // for equality. 7556 7557 BranchInst *ABI = cast<BranchInst>(A->getTerminator()); 7558 BranchInst *BBI = cast<BranchInst>(B->getTerminator()); 7559 assert(ABI->isUnconditional() && BBI->isUnconditional() && 7560 "Only supporting unconditional branches for now"); 7561 if (ABI->getSuccessor(0) != BBI->getSuccessor(0)) 7562 return false; 7563 7564 // Need to check that PHIs in successor have matching values 7565 BasicBlock *Succ = ABI->getSuccessor(0); 7566 for (PHINode &Phi : Succ->phis()) { 7567 auto &PredIVs = (*LHS->PhiPredIVs)[&Phi]; 7568 if (PredIVs[A] != PredIVs[B]) 7569 return false; 7570 } 7571 7572 return true; 7573 } 7574 }; 7575 } // namespace llvm 7576 7577 bool SimplifyCFGOpt::simplifyDuplicateSwitchArms(SwitchInst *SI, 7578 DomTreeUpdater *DTU) { 7579 // Build Cases. Skip BBs that are not candidates for simplification. Mark 7580 // PHINodes which need to be processed into PhiPredIVs. We decide to process 7581 // an entire PHI at once after the loop, opposed to calling 7582 // getIncomingValueForBlock inside this loop, since each call to 7583 // getIncomingValueForBlock is O(|Preds|). 7584 SmallPtrSet<PHINode *, 8> Phis; 7585 SmallPtrSet<BasicBlock *, 8> Seen; 7586 DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> PhiPredIVs; 7587 DenseMap<BasicBlock *, SmallVector<unsigned, 4>> BBToSuccessorIndexes; 7588 SmallVector<SwitchSuccWrapper> Cases; 7589 Cases.reserve(SI->getNumSuccessors()); 7590 7591 for (unsigned I = 0; I < SI->getNumSuccessors(); ++I) { 7592 BasicBlock *BB = SI->getSuccessor(I); 7593 7594 // FIXME: Support more than just a single BranchInst. One way we could do 7595 // this is by taking a hashing approach of all insts in BB. 7596 if (BB->size() != 1) 7597 continue; 7598 7599 // FIXME: This case needs some extra care because the terminators other than 7600 // SI need to be updated. For now, consider only backedges to the SI. 7601 if (BB->hasNPredecessorsOrMore(4) || 7602 BB->getUniquePredecessor() != SI->getParent()) 7603 continue; 7604 7605 // FIXME: Relax that the terminator is a BranchInst by checking for equality 7606 // on other kinds of terminators. We decide to only support unconditional 7607 // branches for now for compile time reasons. 7608 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 7609 if (!BI || BI->isConditional()) 7610 continue; 7611 7612 if (Seen.insert(BB).second) { 7613 // Keep track of which PHIs we need as keys in PhiPredIVs below. 7614 for (BasicBlock *Succ : BI->successors()) 7615 for (PHINode &Phi : Succ->phis()) 7616 Phis.insert(&Phi); 7617 // Add the successor only if not previously visited. 7618 Cases.emplace_back(SwitchSuccWrapper{BB, &PhiPredIVs}); 7619 } 7620 7621 BBToSuccessorIndexes[BB].emplace_back(I); 7622 } 7623 7624 // Precompute a data structure to improve performance of isEqual for 7625 // SwitchSuccWrapper. 7626 PhiPredIVs.reserve(Phis.size()); 7627 for (PHINode *Phi : Phis) { 7628 PhiPredIVs[Phi] = 7629 SmallDenseMap<BasicBlock *, Value *, 8>(Phi->getNumIncomingValues()); 7630 for (auto &IV : Phi->incoming_values()) 7631 PhiPredIVs[Phi].insert({Phi->getIncomingBlock(IV), IV.get()}); 7632 } 7633 7634 // Build a set such that if the SwitchSuccWrapper exists in the set and 7635 // another SwitchSuccWrapper isEqual, then the equivalent SwitchSuccWrapper 7636 // which is not in the set should be replaced with the one in the set. If the 7637 // SwitchSuccWrapper is not in the set, then it should be added to the set so 7638 // other SwitchSuccWrappers can check against it in the same manner. We use 7639 // SwitchSuccWrapper instead of just BasicBlock because we'd like to pass 7640 // around information to isEquality, getHashValue, and when doing the 7641 // replacement with better performance. 7642 DenseSet<const SwitchSuccWrapper *> ReplaceWith; 7643 ReplaceWith.reserve(Cases.size()); 7644 7645 SmallVector<DominatorTree::UpdateType> Updates; 7646 Updates.reserve(ReplaceWith.size()); 7647 bool MadeChange = false; 7648 for (auto &SSW : Cases) { 7649 // SSW is a candidate for simplification. If we find a duplicate BB, 7650 // replace it. 7651 const auto [It, Inserted] = ReplaceWith.insert(&SSW); 7652 if (!Inserted) { 7653 // We know that SI's parent BB no longer dominates the old case successor 7654 // since we are making it dead. 7655 Updates.push_back({DominatorTree::Delete, SI->getParent(), SSW.Dest}); 7656 const auto &Successors = BBToSuccessorIndexes.at(SSW.Dest); 7657 for (unsigned Idx : Successors) 7658 SI->setSuccessor(Idx, (*It)->Dest); 7659 MadeChange = true; 7660 } 7661 } 7662 7663 if (DTU) 7664 DTU->applyUpdates(Updates); 7665 7666 return MadeChange; 7667 } 7668 7669 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 7670 BasicBlock *BB = SI->getParent(); 7671 7672 if (isValueEqualityComparison(SI)) { 7673 // If we only have one predecessor, and if it is a branch on this value, 7674 // see if that predecessor totally determines the outcome of this switch. 7675 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7676 if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 7677 return requestResimplify(); 7678 7679 Value *Cond = SI->getCondition(); 7680 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 7681 if (simplifySwitchOnSelect(SI, Select)) 7682 return requestResimplify(); 7683 7684 // If the block only contains the switch, see if we can fold the block 7685 // away into any preds. 7686 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 7687 if (foldValueComparisonIntoPredecessors(SI, Builder)) 7688 return requestResimplify(); 7689 } 7690 7691 // Try to transform the switch into an icmp and a branch. 7692 // The conversion from switch to comparison may lose information on 7693 // impossible switch values, so disable it early in the pipeline. 7694 if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder)) 7695 return requestResimplify(); 7696 7697 // Remove unreachable cases. 7698 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 7699 return requestResimplify(); 7700 7701 if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU)) 7702 return requestResimplify(); 7703 7704 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 7705 return requestResimplify(); 7706 7707 if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI)) 7708 return requestResimplify(); 7709 7710 // The conversion from switch to lookup tables results in difficult-to-analyze 7711 // code and makes pruning branches much harder. This is a problem if the 7712 // switch expression itself can still be restricted as a result of inlining or 7713 // CVP. Therefore, only apply this transformation during late stages of the 7714 // optimisation pipeline. 7715 if (Options.ConvertSwitchToLookupTable && 7716 switchToLookupTable(SI, Builder, DTU, DL, TTI)) 7717 return requestResimplify(); 7718 7719 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI)) 7720 return requestResimplify(); 7721 7722 if (reduceSwitchRange(SI, Builder, DL, TTI)) 7723 return requestResimplify(); 7724 7725 if (HoistCommon && 7726 hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts)) 7727 return requestResimplify(); 7728 7729 if (simplifyDuplicateSwitchArms(SI, DTU)) 7730 return requestResimplify(); 7731 7732 return false; 7733 } 7734 7735 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 7736 BasicBlock *BB = IBI->getParent(); 7737 bool Changed = false; 7738 7739 // Eliminate redundant destinations. 7740 SmallPtrSet<Value *, 8> Succs; 7741 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 7742 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 7743 BasicBlock *Dest = IBI->getDestination(i); 7744 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 7745 if (!Dest->hasAddressTaken()) 7746 RemovedSuccs.insert(Dest); 7747 Dest->removePredecessor(BB); 7748 IBI->removeDestination(i); 7749 --i; 7750 --e; 7751 Changed = true; 7752 } 7753 } 7754 7755 if (DTU) { 7756 std::vector<DominatorTree::UpdateType> Updates; 7757 Updates.reserve(RemovedSuccs.size()); 7758 for (auto *RemovedSucc : RemovedSuccs) 7759 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 7760 DTU->applyUpdates(Updates); 7761 } 7762 7763 if (IBI->getNumDestinations() == 0) { 7764 // If the indirectbr has no successors, change it to unreachable. 7765 new UnreachableInst(IBI->getContext(), IBI->getIterator()); 7766 eraseTerminatorAndDCECond(IBI); 7767 return true; 7768 } 7769 7770 if (IBI->getNumDestinations() == 1) { 7771 // If the indirectbr has one successor, change it to a direct branch. 7772 BranchInst::Create(IBI->getDestination(0), IBI->getIterator()); 7773 eraseTerminatorAndDCECond(IBI); 7774 return true; 7775 } 7776 7777 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 7778 if (simplifyIndirectBrOnSelect(IBI, SI)) 7779 return requestResimplify(); 7780 } 7781 return Changed; 7782 } 7783 7784 /// Given an block with only a single landing pad and a unconditional branch 7785 /// try to find another basic block which this one can be merged with. This 7786 /// handles cases where we have multiple invokes with unique landing pads, but 7787 /// a shared handler. 7788 /// 7789 /// We specifically choose to not worry about merging non-empty blocks 7790 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 7791 /// practice, the optimizer produces empty landing pad blocks quite frequently 7792 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 7793 /// sinking in this file) 7794 /// 7795 /// This is primarily a code size optimization. We need to avoid performing 7796 /// any transform which might inhibit optimization (such as our ability to 7797 /// specialize a particular handler via tail commoning). We do this by not 7798 /// merging any blocks which require us to introduce a phi. Since the same 7799 /// values are flowing through both blocks, we don't lose any ability to 7800 /// specialize. If anything, we make such specialization more likely. 7801 /// 7802 /// TODO - This transformation could remove entries from a phi in the target 7803 /// block when the inputs in the phi are the same for the two blocks being 7804 /// merged. In some cases, this could result in removal of the PHI entirely. 7805 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 7806 BasicBlock *BB, DomTreeUpdater *DTU) { 7807 auto Succ = BB->getUniqueSuccessor(); 7808 assert(Succ); 7809 // If there's a phi in the successor block, we'd likely have to introduce 7810 // a phi into the merged landing pad block. 7811 if (isa<PHINode>(*Succ->begin())) 7812 return false; 7813 7814 for (BasicBlock *OtherPred : predecessors(Succ)) { 7815 if (BB == OtherPred) 7816 continue; 7817 BasicBlock::iterator I = OtherPred->begin(); 7818 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 7819 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 7820 continue; 7821 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7822 ; 7823 BranchInst *BI2 = dyn_cast<BranchInst>(I); 7824 if (!BI2 || !BI2->isIdenticalTo(BI)) 7825 continue; 7826 7827 std::vector<DominatorTree::UpdateType> Updates; 7828 7829 // We've found an identical block. Update our predecessors to take that 7830 // path instead and make ourselves dead. 7831 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 7832 for (BasicBlock *Pred : UniquePreds) { 7833 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 7834 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 7835 "unexpected successor"); 7836 II->setUnwindDest(OtherPred); 7837 if (DTU) { 7838 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 7839 Updates.push_back({DominatorTree::Delete, Pred, BB}); 7840 } 7841 } 7842 7843 // The debug info in OtherPred doesn't cover the merged control flow that 7844 // used to go through BB. We need to delete it or update it. 7845 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 7846 if (isa<DbgInfoIntrinsic>(Inst)) 7847 Inst.eraseFromParent(); 7848 7849 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 7850 for (BasicBlock *Succ : UniqueSuccs) { 7851 Succ->removePredecessor(BB); 7852 if (DTU) 7853 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7854 } 7855 7856 IRBuilder<> Builder(BI); 7857 Builder.CreateUnreachable(); 7858 BI->eraseFromParent(); 7859 if (DTU) 7860 DTU->applyUpdates(Updates); 7861 return true; 7862 } 7863 return false; 7864 } 7865 7866 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 7867 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 7868 : simplifyCondBranch(Branch, Builder); 7869 } 7870 7871 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 7872 IRBuilder<> &Builder) { 7873 BasicBlock *BB = BI->getParent(); 7874 BasicBlock *Succ = BI->getSuccessor(0); 7875 7876 // If the Terminator is the only non-phi instruction, simplify the block. 7877 // If LoopHeader is provided, check if the block or its successor is a loop 7878 // header. (This is for early invocations before loop simplify and 7879 // vectorization to keep canonical loop forms for nested loops. These blocks 7880 // can be eliminated when the pass is invoked later in the back-end.) 7881 // Note that if BB has only one predecessor then we do not introduce new 7882 // backedge, so we can eliminate BB. 7883 bool NeedCanonicalLoop = 7884 Options.NeedCanonicalLoop && 7885 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 7886 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 7887 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(); 7888 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 7889 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 7890 return true; 7891 7892 // If the only instruction in the block is a seteq/setne comparison against a 7893 // constant, try to simplify the block. 7894 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 7895 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 7896 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7897 ; 7898 if (I->isTerminator() && 7899 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 7900 return true; 7901 } 7902 7903 // See if we can merge an empty landing pad block with another which is 7904 // equivalent. 7905 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 7906 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7907 ; 7908 if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU)) 7909 return true; 7910 } 7911 7912 // If this basic block is ONLY a compare and a branch, and if a predecessor 7913 // branches to us and our successor, fold the comparison into the 7914 // predecessor and use logical operations to update the incoming value 7915 // for PHI nodes in common successor. 7916 if (Options.SpeculateBlocks && 7917 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7918 Options.BonusInstThreshold)) 7919 return requestResimplify(); 7920 return false; 7921 } 7922 7923 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 7924 BasicBlock *PredPred = nullptr; 7925 for (auto *P : predecessors(BB)) { 7926 BasicBlock *PPred = P->getSinglePredecessor(); 7927 if (!PPred || (PredPred && PredPred != PPred)) 7928 return nullptr; 7929 PredPred = PPred; 7930 } 7931 return PredPred; 7932 } 7933 7934 /// Fold the following pattern: 7935 /// bb0: 7936 /// br i1 %cond1, label %bb1, label %bb2 7937 /// bb1: 7938 /// br i1 %cond2, label %bb3, label %bb4 7939 /// bb2: 7940 /// br i1 %cond2, label %bb4, label %bb3 7941 /// bb3: 7942 /// ... 7943 /// bb4: 7944 /// ... 7945 /// into 7946 /// bb0: 7947 /// %cond = xor i1 %cond1, %cond2 7948 /// br i1 %cond, label %bb4, label %bb3 7949 /// bb3: 7950 /// ... 7951 /// bb4: 7952 /// ... 7953 /// NOTE: %cond2 always dominates the terminator of bb0. 7954 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) { 7955 BasicBlock *BB = BI->getParent(); 7956 BasicBlock *BB1 = BI->getSuccessor(0); 7957 BasicBlock *BB2 = BI->getSuccessor(1); 7958 auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) { 7959 if (Succ == BB) 7960 return false; 7961 if (&Succ->front() != Succ->getTerminator()) 7962 return false; 7963 SuccBI = dyn_cast<BranchInst>(Succ->getTerminator()); 7964 if (!SuccBI || !SuccBI->isConditional()) 7965 return false; 7966 BasicBlock *Succ1 = SuccBI->getSuccessor(0); 7967 BasicBlock *Succ2 = SuccBI->getSuccessor(1); 7968 return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB && 7969 !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front()); 7970 }; 7971 BranchInst *BB1BI, *BB2BI; 7972 if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI)) 7973 return false; 7974 7975 if (BB1BI->getCondition() != BB2BI->getCondition() || 7976 BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) || 7977 BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0)) 7978 return false; 7979 7980 BasicBlock *BB3 = BB1BI->getSuccessor(0); 7981 BasicBlock *BB4 = BB1BI->getSuccessor(1); 7982 IRBuilder<> Builder(BI); 7983 BI->setCondition( 7984 Builder.CreateXor(BI->getCondition(), BB1BI->getCondition())); 7985 BB1->removePredecessor(BB); 7986 BI->setSuccessor(0, BB4); 7987 BB2->removePredecessor(BB); 7988 BI->setSuccessor(1, BB3); 7989 if (DTU) { 7990 SmallVector<DominatorTree::UpdateType, 4> Updates; 7991 Updates.push_back({DominatorTree::Delete, BB, BB1}); 7992 Updates.push_back({DominatorTree::Insert, BB, BB4}); 7993 Updates.push_back({DominatorTree::Delete, BB, BB2}); 7994 Updates.push_back({DominatorTree::Insert, BB, BB3}); 7995 7996 DTU->applyUpdates(Updates); 7997 } 7998 bool HasWeight = false; 7999 uint64_t BBTWeight, BBFWeight; 8000 if (extractBranchWeights(*BI, BBTWeight, BBFWeight)) 8001 HasWeight = true; 8002 else 8003 BBTWeight = BBFWeight = 1; 8004 uint64_t BB1TWeight, BB1FWeight; 8005 if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight)) 8006 HasWeight = true; 8007 else 8008 BB1TWeight = BB1FWeight = 1; 8009 uint64_t BB2TWeight, BB2FWeight; 8010 if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight)) 8011 HasWeight = true; 8012 else 8013 BB2TWeight = BB2FWeight = 1; 8014 if (HasWeight) { 8015 uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight, 8016 BBTWeight * BB1TWeight + BBFWeight * BB2FWeight}; 8017 fitWeights(Weights); 8018 setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false); 8019 } 8020 return true; 8021 } 8022 8023 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 8024 assert( 8025 !isa<ConstantInt>(BI->getCondition()) && 8026 BI->getSuccessor(0) != BI->getSuccessor(1) && 8027 "Tautological conditional branch should have been eliminated already."); 8028 8029 BasicBlock *BB = BI->getParent(); 8030 if (!Options.SimplifyCondBranch || 8031 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing)) 8032 return false; 8033 8034 // Conditional branch 8035 if (isValueEqualityComparison(BI)) { 8036 // If we only have one predecessor, and if it is a branch on this value, 8037 // see if that predecessor totally determines the outcome of this 8038 // switch. 8039 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 8040 if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 8041 return requestResimplify(); 8042 8043 // This block must be empty, except for the setcond inst, if it exists. 8044 // Ignore dbg and pseudo intrinsics. 8045 auto I = BB->instructionsWithoutDebug(true).begin(); 8046 if (&*I == BI) { 8047 if (foldValueComparisonIntoPredecessors(BI, Builder)) 8048 return requestResimplify(); 8049 } else if (&*I == cast<Instruction>(BI->getCondition())) { 8050 ++I; 8051 if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder)) 8052 return requestResimplify(); 8053 } 8054 } 8055 8056 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 8057 if (simplifyBranchOnICmpChain(BI, Builder, DL)) 8058 return true; 8059 8060 // If this basic block has dominating predecessor blocks and the dominating 8061 // blocks' conditions imply BI's condition, we know the direction of BI. 8062 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 8063 if (Imp) { 8064 // Turn this into a branch on constant. 8065 auto *OldCond = BI->getCondition(); 8066 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 8067 : ConstantInt::getFalse(BB->getContext()); 8068 BI->setCondition(TorF); 8069 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 8070 return requestResimplify(); 8071 } 8072 8073 // If this basic block is ONLY a compare and a branch, and if a predecessor 8074 // branches to us and one of our successors, fold the comparison into the 8075 // predecessor and use logical operations to pick the right destination. 8076 if (Options.SpeculateBlocks && 8077 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 8078 Options.BonusInstThreshold)) 8079 return requestResimplify(); 8080 8081 // We have a conditional branch to two blocks that are only reachable 8082 // from BI. We know that the condbr dominates the two blocks, so see if 8083 // there is any identical code in the "then" and "else" blocks. If so, we 8084 // can hoist it up to the branching block. 8085 if (BI->getSuccessor(0)->getSinglePredecessor()) { 8086 if (BI->getSuccessor(1)->getSinglePredecessor()) { 8087 if (HoistCommon && 8088 hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts)) 8089 return requestResimplify(); 8090 8091 if (BI && HoistLoadsStoresWithCondFaulting && 8092 Options.HoistLoadsStoresWithCondFaulting && 8093 isProfitableToSpeculate(BI, std::nullopt, TTI)) { 8094 SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores; 8095 auto CanSpeculateConditionalLoadsStores = [&]() { 8096 for (auto *Succ : successors(BB)) { 8097 for (Instruction &I : *Succ) { 8098 if (I.isTerminator()) { 8099 if (I.getNumSuccessors() > 1) 8100 return false; 8101 continue; 8102 } else if (!isSafeCheapLoadStore(&I, TTI) || 8103 SpeculatedConditionalLoadsStores.size() == 8104 HoistLoadsStoresWithCondFaultingThreshold) { 8105 return false; 8106 } 8107 SpeculatedConditionalLoadsStores.push_back(&I); 8108 } 8109 } 8110 return !SpeculatedConditionalLoadsStores.empty(); 8111 }; 8112 8113 if (CanSpeculateConditionalLoadsStores()) { 8114 hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, 8115 std::nullopt); 8116 return requestResimplify(); 8117 } 8118 } 8119 } else { 8120 // If Successor #1 has multiple preds, we may be able to conditionally 8121 // execute Successor #0 if it branches to Successor #1. 8122 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 8123 if (Succ0TI->getNumSuccessors() == 1 && 8124 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 8125 if (speculativelyExecuteBB(BI, BI->getSuccessor(0))) 8126 return requestResimplify(); 8127 } 8128 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 8129 // If Successor #0 has multiple preds, we may be able to conditionally 8130 // execute Successor #1 if it branches to Successor #0. 8131 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 8132 if (Succ1TI->getNumSuccessors() == 1 && 8133 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 8134 if (speculativelyExecuteBB(BI, BI->getSuccessor(1))) 8135 return requestResimplify(); 8136 } 8137 8138 // If this is a branch on something for which we know the constant value in 8139 // predecessors (e.g. a phi node in the current block), thread control 8140 // through this block. 8141 if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 8142 return requestResimplify(); 8143 8144 // Scan predecessor blocks for conditional branches. 8145 for (BasicBlock *Pred : predecessors(BB)) 8146 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 8147 if (PBI != BI && PBI->isConditional()) 8148 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 8149 return requestResimplify(); 8150 8151 // Look for diamond patterns. 8152 if (MergeCondStores) 8153 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 8154 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 8155 if (PBI != BI && PBI->isConditional()) 8156 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 8157 return requestResimplify(); 8158 8159 // Look for nested conditional branches. 8160 if (mergeNestedCondBranch(BI, DTU)) 8161 return requestResimplify(); 8162 8163 return false; 8164 } 8165 8166 /// Check if passing a value to an instruction will cause undefined behavior. 8167 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 8168 Constant *C = dyn_cast<Constant>(V); 8169 if (!C) 8170 return false; 8171 8172 if (I->use_empty()) 8173 return false; 8174 8175 if (C->isNullValue() || isa<UndefValue>(C)) { 8176 // Only look at the first use we can handle, avoid hurting compile time with 8177 // long uselists 8178 auto FindUse = llvm::find_if(I->users(), [](auto *U) { 8179 auto *Use = cast<Instruction>(U); 8180 // Change this list when we want to add new instructions. 8181 switch (Use->getOpcode()) { 8182 default: 8183 return false; 8184 case Instruction::GetElementPtr: 8185 case Instruction::Ret: 8186 case Instruction::BitCast: 8187 case Instruction::Load: 8188 case Instruction::Store: 8189 case Instruction::Call: 8190 case Instruction::CallBr: 8191 case Instruction::Invoke: 8192 case Instruction::UDiv: 8193 case Instruction::URem: 8194 // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not 8195 // implemented to avoid code complexity as it is unclear how useful such 8196 // logic is. 8197 case Instruction::SDiv: 8198 case Instruction::SRem: 8199 return true; 8200 } 8201 }); 8202 if (FindUse == I->user_end()) 8203 return false; 8204 auto *Use = cast<Instruction>(*FindUse); 8205 // Bail out if Use is not in the same BB as I or Use == I or Use comes 8206 // before I in the block. The latter two can be the case if Use is a 8207 // PHI node. 8208 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 8209 return false; 8210 8211 // Now make sure that there are no instructions in between that can alter 8212 // control flow (eg. calls) 8213 auto InstrRange = 8214 make_range(std::next(I->getIterator()), Use->getIterator()); 8215 if (any_of(InstrRange, [](Instruction &I) { 8216 return !isGuaranteedToTransferExecutionToSuccessor(&I); 8217 })) 8218 return false; 8219 8220 // Look through GEPs. A load from a GEP derived from NULL is still undefined 8221 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 8222 if (GEP->getPointerOperand() == I) { 8223 // The current base address is null, there are four cases to consider: 8224 // getelementptr (TY, null, 0) -> null 8225 // getelementptr (TY, null, not zero) -> may be modified 8226 // getelementptr inbounds (TY, null, 0) -> null 8227 // getelementptr inbounds (TY, null, not zero) -> poison iff null is 8228 // undefined? 8229 if (!GEP->hasAllZeroIndices() && 8230 (!GEP->isInBounds() || 8231 NullPointerIsDefined(GEP->getFunction(), 8232 GEP->getPointerAddressSpace()))) 8233 PtrValueMayBeModified = true; 8234 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 8235 } 8236 8237 // Look through return. 8238 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) { 8239 bool HasNoUndefAttr = 8240 Ret->getFunction()->hasRetAttribute(Attribute::NoUndef); 8241 // Return undefined to a noundef return value is undefined. 8242 if (isa<UndefValue>(C) && HasNoUndefAttr) 8243 return true; 8244 // Return null to a nonnull+noundef return value is undefined. 8245 if (C->isNullValue() && HasNoUndefAttr && 8246 Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) { 8247 return !PtrValueMayBeModified; 8248 } 8249 } 8250 8251 // Load from null is undefined. 8252 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 8253 if (!LI->isVolatile()) 8254 return !NullPointerIsDefined(LI->getFunction(), 8255 LI->getPointerAddressSpace()); 8256 8257 // Store to null is undefined. 8258 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 8259 if (!SI->isVolatile()) 8260 return (!NullPointerIsDefined(SI->getFunction(), 8261 SI->getPointerAddressSpace())) && 8262 SI->getPointerOperand() == I; 8263 8264 // llvm.assume(false/undef) always triggers immediate UB. 8265 if (auto *Assume = dyn_cast<AssumeInst>(Use)) { 8266 // Ignore assume operand bundles. 8267 if (I == Assume->getArgOperand(0)) 8268 return true; 8269 } 8270 8271 if (auto *CB = dyn_cast<CallBase>(Use)) { 8272 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 8273 return false; 8274 // A call to null is undefined. 8275 if (CB->getCalledOperand() == I) 8276 return true; 8277 8278 if (C->isNullValue()) { 8279 for (const llvm::Use &Arg : CB->args()) 8280 if (Arg == I) { 8281 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 8282 if (CB->isPassingUndefUB(ArgIdx) && 8283 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 8284 // Passing null to a nonnnull+noundef argument is undefined. 8285 return !PtrValueMayBeModified; 8286 } 8287 } 8288 } else if (isa<UndefValue>(C)) { 8289 // Passing undef to a noundef argument is undefined. 8290 for (const llvm::Use &Arg : CB->args()) 8291 if (Arg == I) { 8292 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 8293 if (CB->isPassingUndefUB(ArgIdx)) { 8294 // Passing undef to a noundef argument is undefined. 8295 return true; 8296 } 8297 } 8298 } 8299 } 8300 // Div/Rem by zero is immediate UB 8301 if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem()) 8302 return true; 8303 } 8304 return false; 8305 } 8306 8307 /// If BB has an incoming value that will always trigger undefined behavior 8308 /// (eg. null pointer dereference), remove the branch leading here. 8309 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 8310 DomTreeUpdater *DTU, 8311 AssumptionCache *AC) { 8312 for (PHINode &PHI : BB->phis()) 8313 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 8314 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 8315 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 8316 Instruction *T = Predecessor->getTerminator(); 8317 IRBuilder<> Builder(T); 8318 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 8319 BB->removePredecessor(Predecessor); 8320 // Turn unconditional branches into unreachables and remove the dead 8321 // destination from conditional branches. 8322 if (BI->isUnconditional()) 8323 Builder.CreateUnreachable(); 8324 else { 8325 // Preserve guarding condition in assume, because it might not be 8326 // inferrable from any dominating condition. 8327 Value *Cond = BI->getCondition(); 8328 CallInst *Assumption; 8329 if (BI->getSuccessor(0) == BB) 8330 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 8331 else 8332 Assumption = Builder.CreateAssumption(Cond); 8333 if (AC) 8334 AC->registerAssumption(cast<AssumeInst>(Assumption)); 8335 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 8336 : BI->getSuccessor(0)); 8337 } 8338 BI->eraseFromParent(); 8339 if (DTU) 8340 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 8341 return true; 8342 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 8343 // Redirect all branches leading to UB into 8344 // a newly created unreachable block. 8345 BasicBlock *Unreachable = BasicBlock::Create( 8346 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 8347 Builder.SetInsertPoint(Unreachable); 8348 // The new block contains only one instruction: Unreachable 8349 Builder.CreateUnreachable(); 8350 for (const auto &Case : SI->cases()) 8351 if (Case.getCaseSuccessor() == BB) { 8352 BB->removePredecessor(Predecessor); 8353 Case.setSuccessor(Unreachable); 8354 } 8355 if (SI->getDefaultDest() == BB) { 8356 BB->removePredecessor(Predecessor); 8357 SI->setDefaultDest(Unreachable); 8358 } 8359 8360 if (DTU) 8361 DTU->applyUpdates( 8362 { { DominatorTree::Insert, Predecessor, Unreachable }, 8363 { DominatorTree::Delete, Predecessor, BB } }); 8364 return true; 8365 } 8366 } 8367 8368 return false; 8369 } 8370 8371 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 8372 bool Changed = false; 8373 8374 assert(BB && BB->getParent() && "Block not embedded in function!"); 8375 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 8376 8377 // Remove basic blocks that have no predecessors (except the entry block)... 8378 // or that just have themself as a predecessor. These are unreachable. 8379 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 8380 BB->getSinglePredecessor() == BB) { 8381 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 8382 DeleteDeadBlock(BB, DTU); 8383 return true; 8384 } 8385 8386 // Check to see if we can constant propagate this terminator instruction 8387 // away... 8388 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 8389 /*TLI=*/nullptr, DTU); 8390 8391 // Check for and eliminate duplicate PHI nodes in this block. 8392 Changed |= EliminateDuplicatePHINodes(BB); 8393 8394 // Check for and remove branches that will always cause undefined behavior. 8395 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC)) 8396 return requestResimplify(); 8397 8398 // Merge basic blocks into their predecessor if there is only one distinct 8399 // pred, and if there is only one distinct successor of the predecessor, and 8400 // if there are no PHI nodes. 8401 if (MergeBlockIntoPredecessor(BB, DTU)) 8402 return true; 8403 8404 if (SinkCommon && Options.SinkCommonInsts) 8405 if (sinkCommonCodeFromPredecessors(BB, DTU) || 8406 mergeCompatibleInvokes(BB, DTU)) { 8407 // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 8408 // so we may now how duplicate PHI's. 8409 // Let's rerun EliminateDuplicatePHINodes() first, 8410 // before foldTwoEntryPHINode() potentially converts them into select's, 8411 // after which we'd need a whole EarlyCSE pass run to cleanup them. 8412 return true; 8413 } 8414 8415 IRBuilder<> Builder(BB); 8416 8417 if (Options.SpeculateBlocks && 8418 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) { 8419 // If there is a trivial two-entry PHI node in this basic block, and we can 8420 // eliminate it, do so now. 8421 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 8422 if (PN->getNumIncomingValues() == 2) 8423 if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL, 8424 Options.SpeculateUnpredictables)) 8425 return true; 8426 } 8427 8428 Instruction *Terminator = BB->getTerminator(); 8429 Builder.SetInsertPoint(Terminator); 8430 switch (Terminator->getOpcode()) { 8431 case Instruction::Br: 8432 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 8433 break; 8434 case Instruction::Resume: 8435 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 8436 break; 8437 case Instruction::CleanupRet: 8438 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 8439 break; 8440 case Instruction::Switch: 8441 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 8442 break; 8443 case Instruction::Unreachable: 8444 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 8445 break; 8446 case Instruction::IndirectBr: 8447 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 8448 break; 8449 } 8450 8451 return Changed; 8452 } 8453 8454 bool SimplifyCFGOpt::run(BasicBlock *BB) { 8455 bool Changed = false; 8456 8457 // Repeated simplify BB as long as resimplification is requested. 8458 do { 8459 Resimplify = false; 8460 8461 // Perform one round of simplifcation. Resimplify flag will be set if 8462 // another iteration is requested. 8463 Changed |= simplifyOnce(BB); 8464 } while (Resimplify); 8465 8466 return Changed; 8467 } 8468 8469 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 8470 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 8471 ArrayRef<WeakVH> LoopHeaders) { 8472 return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders, 8473 Options) 8474 .run(BB); 8475 } 8476