xref: /llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp (revision 4a0d53a0b0a58a3c6980a7c551357ac71ba3db10)
1 //===- LoopPeel.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop Peeling Utilities.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Transforms/Utils/LoopPeel.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/Loads.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/ProfDataUtils.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopSimplify.h"
39 #include "llvm/Transforms/Utils/LoopUtils.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <optional>
45 
46 using namespace llvm;
47 using namespace llvm::PatternMatch;
48 
49 #define DEBUG_TYPE "loop-peel"
50 
51 STATISTIC(NumPeeled, "Number of loops peeled");
52 
53 static cl::opt<unsigned> UnrollPeelCount(
54     "unroll-peel-count", cl::Hidden,
55     cl::desc("Set the unroll peeling count, for testing purposes"));
56 
57 static cl::opt<bool>
58     UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
59                        cl::desc("Allows loops to be peeled when the dynamic "
60                                 "trip count is known to be low."));
61 
62 static cl::opt<bool>
63     UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
64                                 cl::init(false), cl::Hidden,
65                                 cl::desc("Allows loop nests to be peeled."));
66 
67 static cl::opt<unsigned> UnrollPeelMaxCount(
68     "unroll-peel-max-count", cl::init(7), cl::Hidden,
69     cl::desc("Max average trip count which will cause loop peeling."));
70 
71 static cl::opt<unsigned> UnrollForcePeelCount(
72     "unroll-force-peel-count", cl::init(0), cl::Hidden,
73     cl::desc("Force a peel count regardless of profiling information."));
74 
75 static cl::opt<bool> DisableAdvancedPeeling(
76     "disable-advanced-peeling", cl::init(false), cl::Hidden,
77     cl::desc(
78         "Disable advance peeling. Issues for convergent targets (D134803)."));
79 
80 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
81 
82 // Check whether we are capable of peeling this loop.
83 bool llvm::canPeel(const Loop *L) {
84   // Make sure the loop is in simplified form
85   if (!L->isLoopSimplifyForm())
86     return false;
87   if (!DisableAdvancedPeeling)
88     return true;
89 
90   SmallVector<BasicBlock *, 4> Exits;
91   L->getUniqueNonLatchExitBlocks(Exits);
92   // The latch must either be the only exiting block or all non-latch exit
93   // blocks have either a deopt or unreachable terminator or compose a chain of
94   // blocks where the last one is either deopt or unreachable terminated. Both
95   // deopt and unreachable terminators are a strong indication they are not
96   // taken. Note that this is a profitability check, not a legality check. Also
97   // note that LoopPeeling currently can only update the branch weights of latch
98   // blocks and branch weights to blocks with deopt or unreachable do not need
99   // updating.
100   return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable);
101 }
102 
103 namespace {
104 
105 // As a loop is peeled, it may be the case that Phi nodes become
106 // loop-invariant (ie, known because there is only one choice).
107 // For example, consider the following function:
108 //   void g(int);
109 //   void binary() {
110 //     int x = 0;
111 //     int y = 0;
112 //     int a = 0;
113 //     for(int i = 0; i <100000; ++i) {
114 //       g(x);
115 //       x = y;
116 //       g(a);
117 //       y = a + 1;
118 //       a = 5;
119 //     }
120 //   }
121 // Peeling 3 iterations is beneficial because the values for x, y and a
122 // become known.  The IR for this loop looks something like the following:
123 //
124 //   %i = phi i32 [ 0, %entry ], [ %inc, %if.end ]
125 //   %a = phi i32 [ 0, %entry ], [ 5, %if.end ]
126 //   %y = phi i32 [ 0, %entry ], [ %add, %if.end ]
127 //   %x = phi i32 [ 0, %entry ], [ %y, %if.end ]
128 //   ...
129 //   tail call void @_Z1gi(i32 signext %x)
130 //   tail call void @_Z1gi(i32 signext %a)
131 //   %add = add nuw nsw i32 %a, 1
132 //   %inc = add nuw nsw i32 %i, 1
133 //   %exitcond = icmp eq i32 %inc, 100000
134 //   br i1 %exitcond, label %for.cond.cleanup, label %for.body
135 //
136 // The arguments for the calls to g will become known after 3 iterations
137 // of the loop, because the phi nodes values become known after 3 iterations
138 // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations).
139 // The first iteration has g(0), g(0); the second has g(0), g(5); the
140 // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5).
141 // Now consider the phi nodes:
142 //   %a is a phi with constants so it is determined after iteration 1.
143 //   %y is a phi based on a constant and %a so it is determined on
144 //     the iteration after %a is determined, so iteration 2.
145 //   %x is a phi based on a constant and %y so it is determined on
146 //     the iteration after %y, so iteration 3.
147 //   %i is based on itself (and is an induction variable) so it is
148 //     never determined.
149 // This means that peeling off 3 iterations will result in being able to
150 // remove the phi nodes for %a, %y, and %x.  The arguments for the
151 // corresponding calls to g are determined and the code for computing
152 // x, y, and a can be removed.
153 //
154 // The PhiAnalyzer class calculates how many times a loop should be
155 // peeled based on the above analysis of the phi nodes in the loop while
156 // respecting the maximum specified.
157 class PhiAnalyzer {
158 public:
159   PhiAnalyzer(const Loop &L, unsigned MaxIterations);
160 
161   // Calculate the sufficient minimum number of iterations of the loop to peel
162   // such that phi instructions become determined (subject to allowable limits)
163   std::optional<unsigned> calculateIterationsToPeel();
164 
165 protected:
166   using PeelCounter = std::optional<unsigned>;
167   const PeelCounter Unknown = std::nullopt;
168 
169   // Add 1 respecting Unknown and return Unknown if result over MaxIterations
170   PeelCounter addOne(PeelCounter PC) const {
171     if (PC == Unknown)
172       return Unknown;
173     return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown;
174   }
175 
176   // Calculate the number of iterations after which the given value
177   // becomes an invariant.
178   PeelCounter calculate(const Value &);
179 
180   const Loop &L;
181   const unsigned MaxIterations;
182 
183   // Map of Values to number of iterations to invariance
184   SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance;
185 };
186 
187 PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations)
188     : L(L), MaxIterations(MaxIterations) {
189   assert(canPeel(&L) && "loop is not suitable for peeling");
190   assert(MaxIterations > 0 && "no peeling is allowed?");
191 }
192 
193 // This function calculates the number of iterations after which the value
194 // becomes an invariant. The pre-calculated values are memorized in a map.
195 // N.B. This number will be Unknown or <= MaxIterations.
196 // The function is calculated according to the following definition:
197 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
198 //   F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown)
199 //   G(%y) = 0 if %y is a loop invariant
200 //   G(%y) = G(%BackEdgeValue) if %y is a phi in the header block
201 //   G(%y) = TODO: if %y is an expression based on phis and loop invariants
202 //           The example looks like:
203 //           %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration.
204 //           %y = phi(0, 5)
205 //           %a = %y + 1
206 //   G(%y) = Unknown otherwise (including phi not in header block)
207 PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) {
208   // If we already know the answer, take it from the map.
209   // Otherwise, place Unknown to map to avoid infinite recursion. Such
210   // cycles can never stop on an invariant.
211   auto [I, Inserted] = IterationsToInvariance.try_emplace(&V, Unknown);
212   if (!Inserted)
213     return I->second;
214 
215   if (L.isLoopInvariant(&V))
216     // Loop invariant so known at start.
217     return (IterationsToInvariance[&V] = 0);
218   if (const PHINode *Phi = dyn_cast<PHINode>(&V)) {
219     if (Phi->getParent() != L.getHeader()) {
220       // Phi is not in header block so Unknown.
221       assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
222       return Unknown;
223     }
224     // We need to analyze the input from the back edge and add 1.
225     Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch());
226     PeelCounter Iterations = calculate(*Input);
227     assert(IterationsToInvariance[Input] == Iterations &&
228            "unexpected value saved");
229     return (IterationsToInvariance[Phi] = addOne(Iterations));
230   }
231   if (const Instruction *I = dyn_cast<Instruction>(&V)) {
232     if (isa<CmpInst>(I) || I->isBinaryOp()) {
233       // Binary instructions get the max of the operands.
234       PeelCounter LHS = calculate(*I->getOperand(0));
235       if (LHS == Unknown)
236         return Unknown;
237       PeelCounter RHS = calculate(*I->getOperand(1));
238       if (RHS == Unknown)
239         return Unknown;
240       return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)});
241     }
242     if (I->isCast())
243       // Cast instructions get the value of the operand.
244       return (IterationsToInvariance[I] = calculate(*I->getOperand(0)));
245   }
246   // TODO: handle more expressions
247 
248   // Everything else is Unknown.
249   assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved");
250   return Unknown;
251 }
252 
253 std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() {
254   unsigned Iterations = 0;
255   for (auto &PHI : L.getHeader()->phis()) {
256     PeelCounter ToInvariance = calculate(PHI);
257     if (ToInvariance != Unknown) {
258       assert(*ToInvariance <= MaxIterations && "bad result in phi analysis");
259       Iterations = std::max(Iterations, *ToInvariance);
260       if (Iterations == MaxIterations)
261         break;
262     }
263   }
264   assert((Iterations <= MaxIterations) && "bad result in phi analysis");
265   return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt;
266 }
267 
268 } // unnamed namespace
269 
270 // Try to find any invariant memory reads that will become dereferenceable in
271 // the remainder loop after peeling. The load must also be used (transitively)
272 // by an exit condition. Returns the number of iterations to peel off (at the
273 // moment either 0 or 1).
274 static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L,
275                                                       DominatorTree &DT,
276                                                       AssumptionCache *AC) {
277   // Skip loops with a single exiting block, because there should be no benefit
278   // for the heuristic below.
279   if (L.getExitingBlock())
280     return 0;
281 
282   // All non-latch exit blocks must have an UnreachableInst terminator.
283   // Otherwise the heuristic below may not be profitable.
284   SmallVector<BasicBlock *, 4> Exits;
285   L.getUniqueNonLatchExitBlocks(Exits);
286   if (any_of(Exits, [](const BasicBlock *BB) {
287         return !isa<UnreachableInst>(BB->getTerminator());
288       }))
289     return 0;
290 
291   // Now look for invariant loads that dominate the latch and are not known to
292   // be dereferenceable. If there are such loads and no writes, they will become
293   // dereferenceable in the loop if the first iteration is peeled off. Also
294   // collect the set of instructions controlled by such loads. Only peel if an
295   // exit condition uses (transitively) such a load.
296   BasicBlock *Header = L.getHeader();
297   BasicBlock *Latch = L.getLoopLatch();
298   SmallPtrSet<Value *, 8> LoadUsers;
299   const DataLayout &DL = L.getHeader()->getDataLayout();
300   for (BasicBlock *BB : L.blocks()) {
301     for (Instruction &I : *BB) {
302       if (I.mayWriteToMemory())
303         return 0;
304 
305       auto Iter = LoadUsers.find(&I);
306       if (Iter != LoadUsers.end()) {
307         for (Value *U : I.users())
308           LoadUsers.insert(U);
309       }
310       // Do not look for reads in the header; they can already be hoisted
311       // without peeling.
312       if (BB == Header)
313         continue;
314       if (auto *LI = dyn_cast<LoadInst>(&I)) {
315         Value *Ptr = LI->getPointerOperand();
316         if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) &&
317             !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT))
318           for (Value *U : I.users())
319             LoadUsers.insert(U);
320       }
321     }
322   }
323   SmallVector<BasicBlock *> ExitingBlocks;
324   L.getExitingBlocks(ExitingBlocks);
325   if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) {
326         return LoadUsers.contains(Exiting->getTerminator());
327       }))
328     return 1;
329   return 0;
330 }
331 
332 // Return the number of iterations to peel off that make conditions in the
333 // body true/false. For example, if we peel 2 iterations off the loop below,
334 // the condition i < 2 can be evaluated at compile time.
335 //  for (i = 0; i < n; i++)
336 //    if (i < 2)
337 //      ..
338 //    else
339 //      ..
340 //   }
341 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
342                                          ScalarEvolution &SE) {
343   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
344   unsigned DesiredPeelCount = 0;
345 
346   // Do not peel the entire loop.
347   const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L);
348   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(BE))
349     MaxPeelCount =
350         std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount);
351 
352   // Increase PeelCount while (IterVal Pred BoundSCEV) condition is satisfied;
353   // return true if inversed condition become known before reaching the
354   // MaxPeelCount limit.
355   auto PeelWhilePredicateIsKnown =
356       [&](unsigned &PeelCount, const SCEV *&IterVal, const SCEV *BoundSCEV,
357           const SCEV *Step, ICmpInst::Predicate Pred) {
358         while (PeelCount < MaxPeelCount &&
359                SE.isKnownPredicate(Pred, IterVal, BoundSCEV)) {
360           IterVal = SE.getAddExpr(IterVal, Step);
361           ++PeelCount;
362         }
363         return SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
364                                    BoundSCEV);
365       };
366 
367   const unsigned MaxDepth = 4;
368   std::function<void(Value *, unsigned)> ComputePeelCount =
369       [&](Value *Condition, unsigned Depth) -> void {
370     if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth)
371       return;
372 
373     Value *LeftVal, *RightVal;
374     if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) ||
375         match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) {
376       ComputePeelCount(LeftVal, Depth + 1);
377       ComputePeelCount(RightVal, Depth + 1);
378       return;
379     }
380 
381     CmpPredicate Pred;
382     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
383       return;
384 
385     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
386     const SCEV *RightSCEV = SE.getSCEV(RightVal);
387 
388     // Do not consider predicates that are known to be true or false
389     // independently of the loop iteration.
390     if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV))
391       return;
392 
393     // Check if we have a condition with one AddRec and one non AddRec
394     // expression. Normalize LeftSCEV to be the AddRec.
395     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
396       if (isa<SCEVAddRecExpr>(RightSCEV)) {
397         std::swap(LeftSCEV, RightSCEV);
398         Pred = ICmpInst::getSwappedPredicate(Pred);
399       } else
400         return;
401     }
402 
403     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
404 
405     // Avoid huge SCEV computations in the loop below, make sure we only
406     // consider AddRecs of the loop we are trying to peel.
407     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
408       return;
409     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
410         !SE.getMonotonicPredicateType(LeftAR, Pred))
411       return;
412 
413     // Check if extending the current DesiredPeelCount lets us evaluate Pred
414     // or !Pred in the loop body statically.
415     unsigned NewPeelCount = DesiredPeelCount;
416 
417     const SCEV *IterVal = LeftAR->evaluateAtIteration(
418         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
419 
420     // If the original condition is not known, get the negated predicate
421     // (which holds on the else branch) and check if it is known. This allows
422     // us to peel of iterations that make the original condition false.
423     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
424       Pred = ICmpInst::getInversePredicate(Pred);
425 
426     const SCEV *Step = LeftAR->getStepRecurrence(SE);
427     if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, RightSCEV, Step,
428                                    Pred))
429       return;
430 
431     // However, for equality comparisons, that isn't always sufficient to
432     // eliminate the comparsion in loop body, we may need to peel one more
433     // iteration. See if that makes !Pred become unknown again.
434     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
435     if (ICmpInst::isEquality(Pred) &&
436         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
437                              RightSCEV) &&
438         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
439         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
440       if (NewPeelCount >= MaxPeelCount)
441         return; // Need to peel one more iteration, but can't. Give up.
442       ++NewPeelCount; // Great!
443     }
444 
445     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
446   };
447 
448   auto ComputePeelCountMinMax = [&](MinMaxIntrinsic *MinMax) {
449     if (!MinMax->getType()->isIntegerTy())
450       return;
451     Value *LHS = MinMax->getLHS(), *RHS = MinMax->getRHS();
452     const SCEV *BoundSCEV, *IterSCEV;
453     if (L.isLoopInvariant(LHS)) {
454       BoundSCEV = SE.getSCEV(LHS);
455       IterSCEV = SE.getSCEV(RHS);
456     } else if (L.isLoopInvariant(RHS)) {
457       BoundSCEV = SE.getSCEV(RHS);
458       IterSCEV = SE.getSCEV(LHS);
459     } else
460       return;
461     const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IterSCEV);
462     // For simplicity, we support only affine recurrences.
463     if (!AddRec || !AddRec->isAffine() || AddRec->getLoop() != &L)
464       return;
465     const SCEV *Step = AddRec->getStepRecurrence(SE);
466     bool IsSigned = MinMax->isSigned();
467     // To minimize number of peeled iterations, we use strict relational
468     // predicates here.
469     ICmpInst::Predicate Pred;
470     if (SE.isKnownPositive(Step))
471       Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
472     else if (SE.isKnownNegative(Step))
473       Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
474     else
475       return;
476     // Check that AddRec is not wrapping.
477     if (!(IsSigned ? AddRec->hasNoSignedWrap() : AddRec->hasNoUnsignedWrap()))
478       return;
479     unsigned NewPeelCount = DesiredPeelCount;
480     const SCEV *IterVal = AddRec->evaluateAtIteration(
481         SE.getConstant(AddRec->getType(), NewPeelCount), SE);
482     if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, BoundSCEV, Step,
483                                    Pred))
484       return;
485     DesiredPeelCount = NewPeelCount;
486   };
487 
488   for (BasicBlock *BB : L.blocks()) {
489     for (Instruction &I : *BB) {
490       if (SelectInst *SI = dyn_cast<SelectInst>(&I))
491         ComputePeelCount(SI->getCondition(), 0);
492       if (MinMaxIntrinsic *MinMax = dyn_cast<MinMaxIntrinsic>(&I))
493         ComputePeelCountMinMax(MinMax);
494     }
495 
496     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
497     if (!BI || BI->isUnconditional())
498       continue;
499 
500     // Ignore loop exit condition.
501     if (L.getLoopLatch() == BB)
502       continue;
503 
504     ComputePeelCount(BI->getCondition(), 0);
505   }
506 
507   return DesiredPeelCount;
508 }
509 
510 /// This "heuristic" exactly matches implicit behavior which used to exist
511 /// inside getLoopEstimatedTripCount.  It was added here to keep an
512 /// improvement inside that API from causing peeling to become more aggressive.
513 /// This should probably be removed.
514 static bool violatesLegacyMultiExitLoopCheck(Loop *L) {
515   BasicBlock *Latch = L->getLoopLatch();
516   if (!Latch)
517     return true;
518 
519   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
520   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
521     return true;
522 
523   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
524           LatchBR->getSuccessor(1) == L->getHeader()) &&
525          "At least one edge out of the latch must go to the header");
526 
527   SmallVector<BasicBlock *, 4> ExitBlocks;
528   L->getUniqueNonLatchExitBlocks(ExitBlocks);
529   return any_of(ExitBlocks, [](const BasicBlock *EB) {
530       return !EB->getTerminatingDeoptimizeCall();
531     });
532 }
533 
534 
535 // Return the number of iterations we want to peel off.
536 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
537                             TargetTransformInfo::PeelingPreferences &PP,
538                             unsigned TripCount, DominatorTree &DT,
539                             ScalarEvolution &SE, AssumptionCache *AC,
540                             unsigned Threshold) {
541   assert(LoopSize > 0 && "Zero loop size is not allowed!");
542   // Save the PP.PeelCount value set by the target in
543   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
544   unsigned TargetPeelCount = PP.PeelCount;
545   PP.PeelCount = 0;
546   if (!canPeel(L))
547     return;
548 
549   // Only try to peel innermost loops by default.
550   // The constraint can be relaxed by the target in TTI.getPeelingPreferences
551   // or by the flag -unroll-allow-loop-nests-peeling.
552   if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
553     return;
554 
555   // If the user provided a peel count, use that.
556   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
557   if (UserPeelCount) {
558     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
559                       << " iterations.\n");
560     PP.PeelCount = UnrollForcePeelCount;
561     PP.PeelProfiledIterations = true;
562     return;
563   }
564 
565   // Skip peeling if it's disabled.
566   if (!PP.AllowPeeling)
567     return;
568 
569   // Check that we can peel at least one iteration.
570   if (2 * LoopSize > Threshold)
571     return;
572 
573   unsigned AlreadyPeeled = 0;
574   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
575     AlreadyPeeled = *Peeled;
576   // Stop if we already peeled off the maximum number of iterations.
577   if (AlreadyPeeled >= UnrollPeelMaxCount)
578     return;
579 
580   // Pay respect to limitations implied by loop size and the max peel count.
581   unsigned MaxPeelCount = UnrollPeelMaxCount;
582   MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
583 
584   // Start the max computation with the PP.PeelCount value set by the target
585   // in TTI.getPeelingPreferences or by the flag -unroll-peel-count.
586   unsigned DesiredPeelCount = TargetPeelCount;
587 
588   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
589   // iterations of the loop. For this we compute the number for iterations after
590   // which every Phi is guaranteed to become an invariant, and try to peel the
591   // maximum number of iterations among these values, thus turning all those
592   // Phis into invariants.
593   if (MaxPeelCount > DesiredPeelCount) {
594     // Check how many iterations are useful for resolving Phis
595     auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel();
596     if (NumPeels)
597       DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels);
598   }
599 
600   DesiredPeelCount = std::max(DesiredPeelCount,
601                               countToEliminateCompares(*L, MaxPeelCount, SE));
602 
603   if (DesiredPeelCount == 0)
604     DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC);
605 
606   if (DesiredPeelCount > 0) {
607     DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
608     // Consider max peel count limitation.
609     assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
610     if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
611       LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
612                         << " iteration(s) to turn"
613                         << " some Phis into invariants.\n");
614       PP.PeelCount = DesiredPeelCount;
615       PP.PeelProfiledIterations = false;
616       return;
617     }
618   }
619 
620   // Bail if we know the statically calculated trip count.
621   // In this case we rather prefer partial unrolling.
622   if (TripCount)
623     return;
624 
625   // Do not apply profile base peeling if it is disabled.
626   if (!PP.PeelProfiledIterations)
627     return;
628   // If we don't know the trip count, but have reason to believe the average
629   // trip count is low, peeling should be beneficial, since we will usually
630   // hit the peeled section.
631   // We only do this in the presence of profile information, since otherwise
632   // our estimates of the trip count are not reliable enough.
633   if (L->getHeader()->getParent()->hasProfileData()) {
634     if (violatesLegacyMultiExitLoopCheck(L))
635       return;
636     std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L);
637     if (!EstimatedTripCount)
638       return;
639 
640     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is "
641                       << *EstimatedTripCount << "\n");
642 
643     if (*EstimatedTripCount) {
644       if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) {
645         unsigned PeelCount = *EstimatedTripCount;
646         LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n");
647         PP.PeelCount = PeelCount;
648         return;
649       }
650       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
651       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
652       LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n");
653       LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
654       LLVM_DEBUG(dbgs() << "Max peel count by cost: "
655                         << (Threshold / LoopSize - 1) << "\n");
656     }
657   }
658 }
659 
660 struct WeightInfo {
661   // Weights for current iteration.
662   SmallVector<uint32_t> Weights;
663   // Weights to subtract after each iteration.
664   const SmallVector<uint32_t> SubWeights;
665 };
666 
667 /// Update the branch weights of an exiting block of a peeled-off loop
668 /// iteration.
669 /// Let F is a weight of the edge to continue (fallthrough) into the loop.
670 /// Let E is a weight of the edge to an exit.
671 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
672 /// go to exit.
673 /// Then, Estimated ExitCount = F / E.
674 /// For I-th (counting from 0) peeled off iteration we set the weights for
675 /// the peeled exit as (EC - I, 1). It gives us reasonable distribution,
676 /// The probability to go to exit 1/(EC-I) increases. At the same time
677 /// the estimated exit count in the remainder loop reduces by I.
678 /// To avoid dealing with division rounding we can just multiple both part
679 /// of weights to E and use weight as (F - I * E, E).
680 static void updateBranchWeights(Instruction *Term, WeightInfo &Info) {
681   setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false);
682   for (auto [Idx, SubWeight] : enumerate(Info.SubWeights))
683     if (SubWeight != 0)
684       // Don't set the probability of taking the edge from latch to loop header
685       // to less than 1:1 ratio (meaning Weight should not be lower than
686       // SubWeight), as this could significantly reduce the loop's hotness,
687       // which would be incorrect in the case of underestimating the trip count.
688       Info.Weights[Idx] =
689           Info.Weights[Idx] > SubWeight
690               ? std::max(Info.Weights[Idx] - SubWeight, SubWeight)
691               : SubWeight;
692 }
693 
694 /// Initialize the weights for all exiting blocks.
695 static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos,
696                               Loop *L) {
697   SmallVector<BasicBlock *> ExitingBlocks;
698   L->getExitingBlocks(ExitingBlocks);
699   for (BasicBlock *ExitingBlock : ExitingBlocks) {
700     Instruction *Term = ExitingBlock->getTerminator();
701     SmallVector<uint32_t> Weights;
702     if (!extractBranchWeights(*Term, Weights))
703       continue;
704 
705     // See the comment on updateBranchWeights() for an explanation of what we
706     // do here.
707     uint32_t FallThroughWeights = 0;
708     uint32_t ExitWeights = 0;
709     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
710       if (L->contains(Succ))
711         FallThroughWeights += Weight;
712       else
713         ExitWeights += Weight;
714     }
715 
716     // Don't try to update weights for degenerate case.
717     if (FallThroughWeights == 0)
718       continue;
719 
720     SmallVector<uint32_t> SubWeights;
721     for (auto [Succ, Weight] : zip(successors(Term), Weights)) {
722       if (!L->contains(Succ)) {
723         // Exit weights stay the same.
724         SubWeights.push_back(0);
725         continue;
726       }
727 
728       // Subtract exit weights on each iteration, distributed across all
729       // fallthrough edges.
730       double W = (double)Weight / (double)FallThroughWeights;
731       SubWeights.push_back((uint32_t)(ExitWeights * W));
732     }
733 
734     WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}});
735   }
736 }
737 
738 /// Clones the body of the loop L, putting it between \p InsertTop and \p
739 /// InsertBot.
740 /// \param IterNumber The serial number of the iteration currently being
741 /// peeled off.
742 /// \param ExitEdges The exit edges of the original loop.
743 /// \param[out] NewBlocks A list of the blocks in the newly created clone
744 /// \param[out] VMap The value map between the loop and the new clone.
745 /// \param LoopBlocks A helper for DFS-traversal of the loop.
746 /// \param LVMap A value-map that maps instructions from the original loop to
747 /// instructions in the last peeled-off iteration.
748 static void cloneLoopBlocks(
749     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
750     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
751     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
752     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
753     LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes,
754     ScalarEvolution &SE) {
755   BasicBlock *Header = L->getHeader();
756   BasicBlock *Latch = L->getLoopLatch();
757   BasicBlock *PreHeader = L->getLoopPreheader();
758 
759   Function *F = Header->getParent();
760   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
761   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
762   Loop *ParentLoop = L->getParentLoop();
763 
764   // For each block in the original loop, create a new copy,
765   // and update the value map with the newly created values.
766   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
767     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
768     NewBlocks.push_back(NewBB);
769 
770     // If an original block is an immediate child of the loop L, its copy
771     // is a child of a ParentLoop after peeling. If a block is a child of
772     // a nested loop, it is handled in the cloneLoop() call below.
773     if (ParentLoop && LI->getLoopFor(*BB) == L)
774       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
775 
776     VMap[*BB] = NewBB;
777 
778     // If dominator tree is available, insert nodes to represent cloned blocks.
779     if (DT) {
780       if (Header == *BB)
781         DT->addNewBlock(NewBB, InsertTop);
782       else {
783         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
784         // VMap must contain entry for IDom, as the iteration order is RPO.
785         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
786       }
787     }
788   }
789 
790   {
791     // Identify what other metadata depends on the cloned version. After
792     // cloning, replace the metadata with the corrected version for both
793     // memory instructions and noalias intrinsics.
794     std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
795     cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
796                                Header->getContext(), Ext);
797   }
798 
799   // Recursively create the new Loop objects for nested loops, if any,
800   // to preserve LoopInfo.
801   for (Loop *ChildLoop : *L) {
802     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
803   }
804 
805   // Hook-up the control flow for the newly inserted blocks.
806   // The new header is hooked up directly to the "top", which is either
807   // the original loop preheader (for the first iteration) or the previous
808   // iteration's exiting block (for every other iteration)
809   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
810 
811   // Similarly, for the latch:
812   // The original exiting edge is still hooked up to the loop exit.
813   // The backedge now goes to the "bottom", which is either the loop's real
814   // header (for the last peeled iteration) or the copied header of the next
815   // iteration (for every other iteration)
816   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
817   auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator());
818   for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx)
819     if (LatchTerm->getSuccessor(idx) == Header) {
820       LatchTerm->setSuccessor(idx, InsertBot);
821       break;
822     }
823   if (DT)
824     DT->changeImmediateDominator(InsertBot, NewLatch);
825 
826   // The new copy of the loop body starts with a bunch of PHI nodes
827   // that pick an incoming value from either the preheader, or the previous
828   // loop iteration. Since this copy is no longer part of the loop, we
829   // resolve this statically:
830   // For the first iteration, we use the value from the preheader directly.
831   // For any other iteration, we replace the phi with the value generated by
832   // the immediately preceding clone of the loop body (which represents
833   // the previous iteration).
834   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
835     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
836     if (IterNumber == 0) {
837       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
838     } else {
839       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
840       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
841       if (LatchInst && L->contains(LatchInst))
842         VMap[&*I] = LVMap[LatchInst];
843       else
844         VMap[&*I] = LatchVal;
845     }
846     NewPHI->eraseFromParent();
847   }
848 
849   // Fix up the outgoing values - we need to add a value for the iteration
850   // we've just created. Note that this must happen *after* the incoming
851   // values are adjusted, since the value going out of the latch may also be
852   // a value coming into the header.
853   for (auto Edge : ExitEdges)
854     for (PHINode &PHI : Edge.second->phis()) {
855       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
856       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
857       if (LatchInst && L->contains(LatchInst))
858         LatchVal = VMap[LatchVal];
859       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
860       SE.forgetLcssaPhiWithNewPredecessor(L, &PHI);
861     }
862 
863   // LastValueMap is updated with the values for the current loop
864   // which are used the next time this function is called.
865   for (auto KV : VMap)
866     LVMap[KV.first] = KV.second;
867 }
868 
869 TargetTransformInfo::PeelingPreferences
870 llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE,
871                                const TargetTransformInfo &TTI,
872                                std::optional<bool> UserAllowPeeling,
873                                std::optional<bool> UserAllowProfileBasedPeeling,
874                                bool UnrollingSpecficValues) {
875   TargetTransformInfo::PeelingPreferences PP;
876 
877   // Set the default values.
878   PP.PeelCount = 0;
879   PP.AllowPeeling = true;
880   PP.AllowLoopNestsPeeling = false;
881   PP.PeelProfiledIterations = true;
882 
883   // Get the target specifc values.
884   TTI.getPeelingPreferences(L, SE, PP);
885 
886   // User specified values using cl::opt.
887   if (UnrollingSpecficValues) {
888     if (UnrollPeelCount.getNumOccurrences() > 0)
889       PP.PeelCount = UnrollPeelCount;
890     if (UnrollAllowPeeling.getNumOccurrences() > 0)
891       PP.AllowPeeling = UnrollAllowPeeling;
892     if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
893       PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
894   }
895 
896   // User specifed values provided by argument.
897   if (UserAllowPeeling)
898     PP.AllowPeeling = *UserAllowPeeling;
899   if (UserAllowProfileBasedPeeling)
900     PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
901 
902   return PP;
903 }
904 
905 /// Peel off the first \p PeelCount iterations of loop \p L.
906 ///
907 /// Note that this does not peel them off as a single straight-line block.
908 /// Rather, each iteration is peeled off separately, and needs to check the
909 /// exit condition.
910 /// For loops that dynamically execute \p PeelCount iterations or less
911 /// this provides a benefit, since the peeled off iterations, which account
912 /// for the bulk of dynamic execution, can be further simplified by scalar
913 /// optimizations.
914 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
915                     ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC,
916                     bool PreserveLCSSA, ValueToValueMapTy &LVMap) {
917   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
918   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
919 
920   LoopBlocksDFS LoopBlocks(L);
921   LoopBlocks.perform(LI);
922 
923   BasicBlock *Header = L->getHeader();
924   BasicBlock *PreHeader = L->getLoopPreheader();
925   BasicBlock *Latch = L->getLoopLatch();
926   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
927   L->getExitEdges(ExitEdges);
928 
929   // Remember dominators of blocks we might reach through exits to change them
930   // later. Immediate dominator of such block might change, because we add more
931   // routes which can lead to the exit: we can reach it from the peeled
932   // iterations too.
933   DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom;
934   for (auto *BB : L->blocks()) {
935     auto *BBDomNode = DT.getNode(BB);
936     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
937     for (auto *ChildDomNode : BBDomNode->children()) {
938       auto *ChildBB = ChildDomNode->getBlock();
939       if (!L->contains(ChildBB))
940         ChildrenToUpdate.push_back(ChildBB);
941     }
942     // The new idom of the block will be the nearest common dominator
943     // of all copies of the previous idom. This is equivalent to the
944     // nearest common dominator of the previous idom and the first latch,
945     // which dominates all copies of the previous idom.
946     BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch);
947     for (auto *ChildBB : ChildrenToUpdate)
948       NonLoopBlocksIDom[ChildBB] = NewIDom;
949   }
950 
951   Function *F = Header->getParent();
952 
953   // Set up all the necessary basic blocks. It is convenient to split the
954   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
955   // body, and a new preheader for the "real" loop.
956 
957   // Peeling the first iteration transforms.
958   //
959   // PreHeader:
960   // ...
961   // Header:
962   //   LoopBody
963   //   If (cond) goto Header
964   // Exit:
965   //
966   // into
967   //
968   // InsertTop:
969   //   LoopBody
970   //   If (!cond) goto Exit
971   // InsertBot:
972   // NewPreHeader:
973   // ...
974   // Header:
975   //  LoopBody
976   //  If (cond) goto Header
977   // Exit:
978   //
979   // Each following iteration will split the current bottom anchor in two,
980   // and put the new copy of the loop body between these two blocks. That is,
981   // after peeling another iteration from the example above, we'll split
982   // InsertBot, and get:
983   //
984   // InsertTop:
985   //   LoopBody
986   //   If (!cond) goto Exit
987   // InsertBot:
988   //   LoopBody
989   //   If (!cond) goto Exit
990   // InsertBot.next:
991   // NewPreHeader:
992   // ...
993   // Header:
994   //  LoopBody
995   //  If (cond) goto Header
996   // Exit:
997 
998   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI);
999   BasicBlock *InsertBot =
1000       SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI);
1001   BasicBlock *NewPreHeader =
1002       SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
1003 
1004   InsertTop->setName(Header->getName() + ".peel.begin");
1005   InsertBot->setName(Header->getName() + ".peel.next");
1006   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
1007 
1008   Instruction *LatchTerm =
1009       cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator());
1010 
1011   // If we have branch weight information, we'll want to update it for the
1012   // newly created branches.
1013   DenseMap<Instruction *, WeightInfo> Weights;
1014   initBranchWeights(Weights, L);
1015 
1016   // Identify what noalias metadata is inside the loop: if it is inside the
1017   // loop, the associated metadata must be cloned for each iteration.
1018   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
1019   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
1020 
1021   // For each peeled-off iteration, make a copy of the loop.
1022   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
1023     SmallVector<BasicBlock *, 8> NewBlocks;
1024     ValueToValueMapTy VMap;
1025 
1026     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
1027                     LoopBlocks, VMap, LVMap, &DT, LI,
1028                     LoopLocalNoAliasDeclScopes, *SE);
1029 
1030     // Remap to use values from the current iteration instead of the
1031     // previous one.
1032     remapInstructionsInBlocks(NewBlocks, VMap);
1033 
1034     // Update IDoms of the blocks reachable through exits.
1035     if (Iter == 0)
1036       for (auto BBIDom : NonLoopBlocksIDom)
1037         DT.changeImmediateDominator(BBIDom.first,
1038                                      cast<BasicBlock>(LVMap[BBIDom.second]));
1039 #ifdef EXPENSIVE_CHECKS
1040     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1041 #endif
1042 
1043     for (auto &[Term, Info] : Weights) {
1044       auto *TermCopy = cast<Instruction>(VMap[Term]);
1045       updateBranchWeights(TermCopy, Info);
1046     }
1047 
1048     // Remove Loop metadata from the latch branch instruction
1049     // because it is not the Loop's latch branch anymore.
1050     auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]);
1051     LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr);
1052 
1053     InsertTop = InsertBot;
1054     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI);
1055     InsertBot->setName(Header->getName() + ".peel.next");
1056 
1057     F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(),
1058               F->end());
1059   }
1060 
1061   // Now adjust the phi nodes in the loop header to get their initial values
1062   // from the last peeled-off iteration instead of the preheader.
1063   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
1064     PHINode *PHI = cast<PHINode>(I);
1065     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
1066     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
1067     if (LatchInst && L->contains(LatchInst))
1068       NewVal = LVMap[LatchInst];
1069 
1070     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
1071   }
1072 
1073   for (const auto &[Term, Info] : Weights) {
1074     setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false);
1075   }
1076 
1077   // Update Metadata for count of peeled off iterations.
1078   unsigned AlreadyPeeled = 0;
1079   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
1080     AlreadyPeeled = *Peeled;
1081   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
1082 
1083   if (Loop *ParentLoop = L->getParentLoop())
1084     L = ParentLoop;
1085 
1086   // We modified the loop, update SE.
1087   SE->forgetTopmostLoop(L);
1088   SE->forgetBlockAndLoopDispositions();
1089 
1090 #ifdef EXPENSIVE_CHECKS
1091   // Finally DomtTree must be correct.
1092   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1093 #endif
1094 
1095   // FIXME: Incrementally update loop-simplify
1096   simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA);
1097 
1098   NumPeeled++;
1099 
1100   return true;
1101 }
1102