1 //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Function evaluator for LLVM IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/Evaluator.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalValue.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 #define DEBUG_TYPE "evaluator" 40 41 using namespace llvm; 42 43 static inline bool 44 isSimpleEnoughValueToCommit(Constant *C, 45 SmallPtrSetImpl<Constant *> &SimpleConstants, 46 const DataLayout &DL); 47 48 /// Return true if the specified constant can be handled by the code generator. 49 /// We don't want to generate something like: 50 /// void *X = &X/42; 51 /// because the code generator doesn't have a relocation that can handle that. 52 /// 53 /// This function should be called if C was not found (but just got inserted) 54 /// in SimpleConstants to avoid having to rescan the same constants all the 55 /// time. 56 static bool 57 isSimpleEnoughValueToCommitHelper(Constant *C, 58 SmallPtrSetImpl<Constant *> &SimpleConstants, 59 const DataLayout &DL) { 60 // Simple global addresses are supported, do not allow dllimport or 61 // thread-local globals. 62 if (auto *GV = dyn_cast<GlobalValue>(C)) 63 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 64 65 // Simple integer, undef, constant aggregate zero, etc are all supported. 66 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 67 return true; 68 69 // Aggregate values are safe if all their elements are. 70 if (isa<ConstantAggregate>(C)) { 71 for (Value *Op : C->operands()) 72 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 73 return false; 74 return true; 75 } 76 77 // We don't know exactly what relocations are allowed in constant expressions, 78 // so we allow &global+constantoffset, which is safe and uniformly supported 79 // across targets. 80 ConstantExpr *CE = cast<ConstantExpr>(C); 81 switch (CE->getOpcode()) { 82 case Instruction::BitCast: 83 // Bitcast is fine if the casted value is fine. 84 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 85 86 case Instruction::IntToPtr: 87 case Instruction::PtrToInt: 88 // int <=> ptr is fine if the int type is the same size as the 89 // pointer type. 90 if (DL.getTypeSizeInBits(CE->getType()) != 91 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 92 return false; 93 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 94 95 // GEP is fine if it is simple + constant offset. 96 case Instruction::GetElementPtr: 97 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 98 if (!isa<ConstantInt>(CE->getOperand(i))) 99 return false; 100 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 101 102 case Instruction::Add: 103 // We allow simple+cst. 104 if (!isa<ConstantInt>(CE->getOperand(1))) 105 return false; 106 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 107 } 108 return false; 109 } 110 111 static inline bool 112 isSimpleEnoughValueToCommit(Constant *C, 113 SmallPtrSetImpl<Constant *> &SimpleConstants, 114 const DataLayout &DL) { 115 // If we already checked this constant, we win. 116 if (!SimpleConstants.insert(C).second) 117 return true; 118 // Check the constant. 119 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 120 } 121 122 void Evaluator::MutableValue::clear() { 123 if (auto *Agg = dyn_cast_if_present<MutableAggregate *>(Val)) 124 delete Agg; 125 Val = nullptr; 126 } 127 128 Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset, 129 const DataLayout &DL) const { 130 TypeSize TySize = DL.getTypeStoreSize(Ty); 131 const MutableValue *V = this; 132 while (const auto *Agg = dyn_cast_if_present<MutableAggregate *>(V->Val)) { 133 Type *AggTy = Agg->Ty; 134 std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset); 135 if (!Index || Index->uge(Agg->Elements.size()) || 136 !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) 137 return nullptr; 138 139 V = &Agg->Elements[Index->getZExtValue()]; 140 } 141 142 return ConstantFoldLoadFromConst(cast<Constant *>(V->Val), Ty, Offset, DL); 143 } 144 145 bool Evaluator::MutableValue::makeMutable() { 146 Constant *C = cast<Constant *>(Val); 147 Type *Ty = C->getType(); 148 unsigned NumElements; 149 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 150 NumElements = VT->getNumElements(); 151 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) 152 NumElements = AT->getNumElements(); 153 else if (auto *ST = dyn_cast<StructType>(Ty)) 154 NumElements = ST->getNumElements(); 155 else 156 return false; 157 158 MutableAggregate *MA = new MutableAggregate(Ty); 159 MA->Elements.reserve(NumElements); 160 for (unsigned I = 0; I < NumElements; ++I) 161 MA->Elements.push_back(C->getAggregateElement(I)); 162 Val = MA; 163 return true; 164 } 165 166 bool Evaluator::MutableValue::write(Constant *V, APInt Offset, 167 const DataLayout &DL) { 168 Type *Ty = V->getType(); 169 TypeSize TySize = DL.getTypeStoreSize(Ty); 170 MutableValue *MV = this; 171 while (Offset != 0 || 172 !CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) { 173 if (isa<Constant *>(MV->Val) && !MV->makeMutable()) 174 return false; 175 176 MutableAggregate *Agg = cast<MutableAggregate *>(MV->Val); 177 Type *AggTy = Agg->Ty; 178 std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset); 179 if (!Index || Index->uge(Agg->Elements.size()) || 180 !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy))) 181 return false; 182 183 MV = &Agg->Elements[Index->getZExtValue()]; 184 } 185 186 Type *MVType = MV->getType(); 187 MV->clear(); 188 if (Ty->isIntegerTy() && MVType->isPointerTy()) 189 MV->Val = ConstantExpr::getIntToPtr(V, MVType); 190 else if (Ty->isPointerTy() && MVType->isIntegerTy()) 191 MV->Val = ConstantExpr::getPtrToInt(V, MVType); 192 else if (Ty != MVType) 193 MV->Val = ConstantExpr::getBitCast(V, MVType); 194 else 195 MV->Val = V; 196 return true; 197 } 198 199 Constant *Evaluator::MutableAggregate::toConstant() const { 200 SmallVector<Constant *, 32> Consts; 201 for (const MutableValue &MV : Elements) 202 Consts.push_back(MV.toConstant()); 203 204 if (auto *ST = dyn_cast<StructType>(Ty)) 205 return ConstantStruct::get(ST, Consts); 206 if (auto *AT = dyn_cast<ArrayType>(Ty)) 207 return ConstantArray::get(AT, Consts); 208 assert(isa<FixedVectorType>(Ty) && "Must be vector"); 209 return ConstantVector::get(Consts); 210 } 211 212 /// Return the value that would be computed by a load from P after the stores 213 /// reflected by 'memory' have been performed. If we can't decide, return null. 214 Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) { 215 APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0); 216 P = cast<Constant>(P->stripAndAccumulateConstantOffsets( 217 DL, Offset, /* AllowNonInbounds */ true)); 218 Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType())); 219 if (auto *GV = dyn_cast<GlobalVariable>(P)) 220 return ComputeLoadResult(GV, Ty, Offset); 221 return nullptr; 222 } 223 224 Constant *Evaluator::ComputeLoadResult(GlobalVariable *GV, Type *Ty, 225 const APInt &Offset) { 226 auto It = MutatedMemory.find(GV); 227 if (It != MutatedMemory.end()) 228 return It->second.read(Ty, Offset, DL); 229 230 if (!GV->hasDefinitiveInitializer()) 231 return nullptr; 232 return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL); 233 } 234 235 static Function *getFunction(Constant *C) { 236 if (auto *Fn = dyn_cast<Function>(C)) 237 return Fn; 238 239 if (auto *Alias = dyn_cast<GlobalAlias>(C)) 240 if (auto *Fn = dyn_cast<Function>(Alias->getAliasee())) 241 return Fn; 242 return nullptr; 243 } 244 245 Function * 246 Evaluator::getCalleeWithFormalArgs(CallBase &CB, 247 SmallVectorImpl<Constant *> &Formals) { 248 auto *V = CB.getCalledOperand()->stripPointerCasts(); 249 if (auto *Fn = getFunction(getVal(V))) 250 return getFormalParams(CB, Fn, Formals) ? Fn : nullptr; 251 return nullptr; 252 } 253 254 bool Evaluator::getFormalParams(CallBase &CB, Function *F, 255 SmallVectorImpl<Constant *> &Formals) { 256 auto *FTy = F->getFunctionType(); 257 if (FTy != CB.getFunctionType()) { 258 LLVM_DEBUG(dbgs() << "Signature mismatch.\n"); 259 return false; 260 } 261 262 for (Value *Arg : CB.args()) 263 Formals.push_back(getVal(Arg)); 264 return true; 265 } 266 267 /// Evaluate all instructions in block BB, returning true if successful, false 268 /// if we can't evaluate it. NewBB returns the next BB that control flows into, 269 /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if 270 /// we looked through pointer casts to evaluate something. 271 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB, 272 bool &StrippedPointerCastsForAliasAnalysis) { 273 // This is the main evaluation loop. 274 while (true) { 275 Constant *InstResult = nullptr; 276 277 LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 278 279 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 280 if (SI->isVolatile()) { 281 LLVM_DEBUG(dbgs() << "Store is volatile! Can not evaluate.\n"); 282 return false; // no volatile accesses. 283 } 284 Constant *Ptr = getVal(SI->getOperand(1)); 285 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 286 if (Ptr != FoldedPtr) { 287 LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 288 Ptr = FoldedPtr; 289 LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 290 } 291 292 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 293 Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets( 294 DL, Offset, /* AllowNonInbounds */ true)); 295 Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType())); 296 auto *GV = dyn_cast<GlobalVariable>(Ptr); 297 if (!GV || !GV->hasUniqueInitializer()) { 298 LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: " 299 << *Ptr << "\n"); 300 return false; 301 } 302 303 // If this might be too difficult for the backend to handle (e.g. the addr 304 // of one global variable divided by another) then we can't commit it. 305 Constant *Val = getVal(SI->getOperand(0)); 306 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 307 LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. " 308 << *Val << "\n"); 309 return false; 310 } 311 312 auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer()); 313 if (!Res.first->second.write(Val, Offset, DL)) 314 return false; 315 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 316 if (LI->isVolatile()) { 317 LLVM_DEBUG( 318 dbgs() << "Found a Load! Volatile load, can not evaluate.\n"); 319 return false; // no volatile accesses. 320 } 321 322 Constant *Ptr = getVal(LI->getOperand(0)); 323 Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI); 324 if (Ptr != FoldedPtr) { 325 Ptr = FoldedPtr; 326 LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant " 327 "folding: " 328 << *Ptr << "\n"); 329 } 330 InstResult = ComputeLoadResult(Ptr, LI->getType()); 331 if (!InstResult) { 332 LLVM_DEBUG( 333 dbgs() << "Failed to compute load result. Can not evaluate load." 334 "\n"); 335 return false; // Could not evaluate load. 336 } 337 338 LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 339 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 340 if (AI->isArrayAllocation()) { 341 LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 342 return false; // Cannot handle array allocs. 343 } 344 Type *Ty = AI->getAllocatedType(); 345 AllocaTmps.push_back(std::make_unique<GlobalVariable>( 346 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty), 347 AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal, 348 AI->getType()->getPointerAddressSpace())); 349 InstResult = AllocaTmps.back().get(); 350 LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 351 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 352 CallBase &CB = *cast<CallBase>(&*CurInst); 353 354 // Debug info can safely be ignored here. 355 if (isa<DbgInfoIntrinsic>(CB)) { 356 LLVM_DEBUG(dbgs() << "Ignoring debug info.\n"); 357 ++CurInst; 358 continue; 359 } 360 361 // Cannot handle inline asm. 362 if (CB.isInlineAsm()) { 363 LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 364 return false; 365 } 366 367 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) { 368 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 369 if (MSI->isVolatile()) { 370 LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset " 371 << "intrinsic.\n"); 372 return false; 373 } 374 375 auto *LenC = dyn_cast<ConstantInt>(getVal(MSI->getLength())); 376 if (!LenC) { 377 LLVM_DEBUG(dbgs() << "Memset with unknown length.\n"); 378 return false; 379 } 380 381 Constant *Ptr = getVal(MSI->getDest()); 382 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 383 Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets( 384 DL, Offset, /* AllowNonInbounds */ true)); 385 auto *GV = dyn_cast<GlobalVariable>(Ptr); 386 if (!GV) { 387 LLVM_DEBUG(dbgs() << "Memset with unknown base.\n"); 388 return false; 389 } 390 391 Constant *Val = getVal(MSI->getValue()); 392 // Avoid the byte-per-byte scan if we're memseting a zeroinitializer 393 // to zero. 394 if (!Val->isNullValue() || MutatedMemory.contains(GV) || 395 !GV->hasDefinitiveInitializer() || 396 !GV->getInitializer()->isNullValue()) { 397 APInt Len = LenC->getValue(); 398 if (Len.ugt(64 * 1024)) { 399 LLVM_DEBUG(dbgs() << "Not evaluating large memset of size " 400 << Len << "\n"); 401 return false; 402 } 403 404 while (Len != 0) { 405 Constant *DestVal = ComputeLoadResult(GV, Val->getType(), Offset); 406 if (DestVal != Val) { 407 LLVM_DEBUG(dbgs() << "Memset is not a no-op at offset " 408 << Offset << " of " << *GV << ".\n"); 409 return false; 410 } 411 ++Offset; 412 --Len; 413 } 414 } 415 416 LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n"); 417 ++CurInst; 418 continue; 419 } 420 421 if (II->isLifetimeStartOrEnd()) { 422 LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 423 ++CurInst; 424 continue; 425 } 426 427 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 428 // We don't insert an entry into Values, as it doesn't have a 429 // meaningful return value. 430 if (!II->use_empty()) { 431 LLVM_DEBUG(dbgs() 432 << "Found unused invariant_start. Can't evaluate.\n"); 433 return false; 434 } 435 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 436 Value *PtrArg = getVal(II->getArgOperand(1)); 437 Value *Ptr = PtrArg->stripPointerCasts(); 438 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 439 Type *ElemTy = GV->getValueType(); 440 if (!Size->isMinusOne() && 441 Size->getValue().getLimitedValue() >= 442 DL.getTypeStoreSize(ElemTy)) { 443 Invariants.insert(GV); 444 LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: " 445 << *GV << "\n"); 446 } else { 447 LLVM_DEBUG(dbgs() 448 << "Found a global var, but can not treat it as an " 449 "invariant.\n"); 450 } 451 } 452 // Continue even if we do nothing. 453 ++CurInst; 454 continue; 455 } else if (II->getIntrinsicID() == Intrinsic::assume) { 456 LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 457 ++CurInst; 458 continue; 459 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) { 460 LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n"); 461 ++CurInst; 462 continue; 463 } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) { 464 LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n"); 465 ++CurInst; 466 continue; 467 } else { 468 Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis(); 469 // Only attempt to getVal() if we've actually managed to strip 470 // anything away, or else we'll call getVal() on the current 471 // instruction. 472 if (Stripped != &*CurInst) { 473 InstResult = getVal(Stripped); 474 } 475 if (InstResult) { 476 LLVM_DEBUG(dbgs() 477 << "Stripped pointer casts for alias analysis for " 478 "intrinsic call.\n"); 479 StrippedPointerCastsForAliasAnalysis = true; 480 InstResult = ConstantExpr::getBitCast(InstResult, II->getType()); 481 } else { 482 LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n"); 483 return false; 484 } 485 } 486 } 487 488 if (!InstResult) { 489 // Resolve function pointers. 490 SmallVector<Constant *, 8> Formals; 491 Function *Callee = getCalleeWithFormalArgs(CB, Formals); 492 if (!Callee || Callee->isInterposable()) { 493 LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n"); 494 return false; // Cannot resolve. 495 } 496 497 if (Callee->isDeclaration()) { 498 // If this is a function we can constant fold, do it. 499 if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) { 500 InstResult = C; 501 LLVM_DEBUG(dbgs() << "Constant folded function call. Result: " 502 << *InstResult << "\n"); 503 } else { 504 LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n"); 505 return false; 506 } 507 } else { 508 if (Callee->getFunctionType()->isVarArg()) { 509 LLVM_DEBUG(dbgs() 510 << "Can not constant fold vararg function call.\n"); 511 return false; 512 } 513 514 Constant *RetVal = nullptr; 515 // Execute the call, if successful, use the return value. 516 ValueStack.emplace_back(); 517 if (!EvaluateFunction(Callee, RetVal, Formals)) { 518 LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n"); 519 return false; 520 } 521 ValueStack.pop_back(); 522 InstResult = RetVal; 523 if (InstResult) { 524 LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: " 525 << *InstResult << "\n\n"); 526 } else { 527 LLVM_DEBUG(dbgs() 528 << "Successfully evaluated function. Result: 0\n\n"); 529 } 530 } 531 } 532 } else if (CurInst->isTerminator()) { 533 LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n"); 534 535 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 536 if (BI->isUnconditional()) { 537 NextBB = BI->getSuccessor(0); 538 } else { 539 ConstantInt *Cond = 540 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 541 if (!Cond) return false; // Cannot determine. 542 543 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 544 } 545 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 546 ConstantInt *Val = 547 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 548 if (!Val) return false; // Cannot determine. 549 NextBB = SI->findCaseValue(Val)->getCaseSuccessor(); 550 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 551 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 552 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 553 NextBB = BA->getBasicBlock(); 554 else 555 return false; // Cannot determine. 556 } else if (isa<ReturnInst>(CurInst)) { 557 NextBB = nullptr; 558 } else { 559 // invoke, unwind, resume, unreachable. 560 LLVM_DEBUG(dbgs() << "Can not handle terminator."); 561 return false; // Cannot handle this terminator. 562 } 563 564 // We succeeded at evaluating this block! 565 LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n"); 566 return true; 567 } else { 568 SmallVector<Constant *> Ops; 569 for (Value *Op : CurInst->operands()) 570 Ops.push_back(getVal(Op)); 571 InstResult = ConstantFoldInstOperands(&*CurInst, Ops, DL, TLI); 572 if (!InstResult) { 573 LLVM_DEBUG(dbgs() << "Cannot fold instruction: " << *CurInst << "\n"); 574 return false; 575 } 576 LLVM_DEBUG(dbgs() << "Folded instruction " << *CurInst << " to " 577 << *InstResult << "\n"); 578 } 579 580 if (!CurInst->use_empty()) { 581 InstResult = ConstantFoldConstant(InstResult, DL, TLI); 582 setVal(&*CurInst, InstResult); 583 } 584 585 // If we just processed an invoke, we finished evaluating the block. 586 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 587 NextBB = II->getNormalDest(); 588 LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 589 return true; 590 } 591 592 // Advance program counter. 593 ++CurInst; 594 } 595 } 596 597 /// Evaluate a call to function F, returning true if successful, false if we 598 /// can't evaluate it. ActualArgs contains the formal arguments for the 599 /// function. 600 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 601 const SmallVectorImpl<Constant*> &ActualArgs) { 602 assert(ActualArgs.size() == F->arg_size() && "wrong number of arguments"); 603 604 // Check to see if this function is already executing (recursion). If so, 605 // bail out. TODO: we might want to accept limited recursion. 606 if (is_contained(CallStack, F)) 607 return false; 608 609 CallStack.push_back(F); 610 611 // Initialize arguments to the incoming values specified. 612 for (const auto &[ArgNo, Arg] : llvm::enumerate(F->args())) 613 setVal(&Arg, ActualArgs[ArgNo]); 614 615 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 616 // we can only evaluate any one basic block at most once. This set keeps 617 // track of what we have executed so we can detect recursive cases etc. 618 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 619 620 // CurBB - The current basic block we're evaluating. 621 BasicBlock *CurBB = &F->front(); 622 623 BasicBlock::iterator CurInst = CurBB->begin(); 624 625 while (true) { 626 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 627 LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 628 629 bool StrippedPointerCastsForAliasAnalysis = false; 630 631 if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis)) 632 return false; 633 634 if (!NextBB) { 635 // Successfully running until there's no next block means that we found 636 // the return. Fill it the return value and pop the call stack. 637 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 638 if (RI->getNumOperands()) { 639 // The Evaluator can look through pointer casts as long as alias 640 // analysis holds because it's just a simple interpreter and doesn't 641 // skip memory accesses due to invariant group metadata, but we can't 642 // let users of Evaluator use a value that's been gleaned looking 643 // through stripping pointer casts. 644 if (StrippedPointerCastsForAliasAnalysis && 645 !RI->getReturnValue()->getType()->isVoidTy()) { 646 return false; 647 } 648 RetVal = getVal(RI->getOperand(0)); 649 } 650 CallStack.pop_back(); 651 return true; 652 } 653 654 // Okay, we succeeded in evaluating this control flow. See if we have 655 // executed the new block before. If so, we have a looping function, 656 // which we cannot evaluate in reasonable time. 657 if (!ExecutedBlocks.insert(NextBB).second) 658 return false; // looped! 659 660 // Okay, we have never been in this block before. Check to see if there 661 // are any PHI nodes. If so, evaluate them with information about where 662 // we came from. 663 PHINode *PN = nullptr; 664 for (CurInst = NextBB->begin(); 665 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 666 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 667 668 // Advance to the next block. 669 CurBB = NextBB; 670 } 671 } 672