1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/DomTreeUpdater.h" 57 #include "llvm/Analysis/GlobalsModRef.h" 58 #include "llvm/Analysis/InstructionSimplify.h" 59 #include "llvm/Analysis/Loads.h" 60 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 61 #include "llvm/Analysis/PostDominators.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Module.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 82 using namespace llvm; 83 84 #define DEBUG_TYPE "tailcallelim" 85 86 STATISTIC(NumEliminated, "Number of tail calls removed"); 87 STATISTIC(NumRetDuped, "Number of return duplicated"); 88 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 89 90 /// Scan the specified function for alloca instructions. 91 /// If it contains any dynamic allocas, returns false. 92 static bool canTRE(Function &F) { 93 // TODO: We don't do TRE if dynamic allocas are used. 94 // Dynamic allocas allocate stack space which should be 95 // deallocated before new iteration started. That is 96 // currently not implemented. 97 return llvm::all_of(instructions(F), [](Instruction &I) { 98 auto *AI = dyn_cast<AllocaInst>(&I); 99 return !AI || AI->isStaticAlloca(); 100 }); 101 } 102 103 namespace { 104 struct AllocaDerivedValueTracker { 105 // Start at a root value and walk its use-def chain to mark calls that use the 106 // value or a derived value in AllocaUsers, and places where it may escape in 107 // EscapePoints. 108 void walk(Value *Root) { 109 SmallVector<Use *, 32> Worklist; 110 SmallPtrSet<Use *, 32> Visited; 111 112 auto AddUsesToWorklist = [&](Value *V) { 113 for (auto &U : V->uses()) { 114 if (!Visited.insert(&U).second) 115 continue; 116 Worklist.push_back(&U); 117 } 118 }; 119 120 AddUsesToWorklist(Root); 121 122 while (!Worklist.empty()) { 123 Use *U = Worklist.pop_back_val(); 124 Instruction *I = cast<Instruction>(U->getUser()); 125 126 switch (I->getOpcode()) { 127 case Instruction::Call: 128 case Instruction::Invoke: { 129 auto &CB = cast<CallBase>(*I); 130 // If the alloca-derived argument is passed byval it is not an escape 131 // point, or a use of an alloca. Calling with byval copies the contents 132 // of the alloca into argument registers or stack slots, which exist 133 // beyond the lifetime of the current frame. 134 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 135 continue; 136 bool IsNocapture = 137 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 138 callUsesLocalStack(CB, IsNocapture); 139 if (IsNocapture) { 140 // If the alloca-derived argument is passed in as nocapture, then it 141 // can't propagate to the call's return. That would be capturing. 142 continue; 143 } 144 break; 145 } 146 case Instruction::Load: { 147 // The result of a load is not alloca-derived (unless an alloca has 148 // otherwise escaped, but this is a local analysis). 149 continue; 150 } 151 case Instruction::Store: { 152 if (U->getOperandNo() == 0) 153 EscapePoints.insert(I); 154 continue; // Stores have no users to analyze. 155 } 156 case Instruction::BitCast: 157 case Instruction::GetElementPtr: 158 case Instruction::PHI: 159 case Instruction::Select: 160 case Instruction::AddrSpaceCast: 161 break; 162 default: 163 EscapePoints.insert(I); 164 break; 165 } 166 167 AddUsesToWorklist(I); 168 } 169 } 170 171 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 172 // Add it to the list of alloca users. 173 AllocaUsers.insert(&CB); 174 175 // If it's nocapture then it can't capture this alloca. 176 if (IsNocapture) 177 return; 178 179 // If it can write to memory, it can leak the alloca value. 180 if (!CB.onlyReadsMemory()) 181 EscapePoints.insert(&CB); 182 } 183 184 SmallPtrSet<Instruction *, 32> AllocaUsers; 185 SmallPtrSet<Instruction *, 32> EscapePoints; 186 }; 187 } 188 189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) { 190 if (F.callsFunctionThatReturnsTwice()) 191 return false; 192 193 // The local stack holds all alloca instructions and all byval arguments. 194 AllocaDerivedValueTracker Tracker; 195 for (Argument &Arg : F.args()) { 196 if (Arg.hasByValAttr()) 197 Tracker.walk(&Arg); 198 } 199 for (auto &BB : F) { 200 for (auto &I : BB) 201 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 202 Tracker.walk(AI); 203 } 204 205 bool Modified = false; 206 207 // Track whether a block is reachable after an alloca has escaped. Blocks that 208 // contain the escaping instruction will be marked as being visited without an 209 // escaped alloca, since that is how the block began. 210 enum VisitType { 211 UNVISITED, 212 UNESCAPED, 213 ESCAPED 214 }; 215 DenseMap<BasicBlock *, VisitType> Visited; 216 217 // We propagate the fact that an alloca has escaped from block to successor. 218 // Visit the blocks that are propagating the escapedness first. To do this, we 219 // maintain two worklists. 220 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 221 222 // We may enter a block and visit it thinking that no alloca has escaped yet, 223 // then see an escape point and go back around a loop edge and come back to 224 // the same block twice. Because of this, we defer setting tail on calls when 225 // we first encounter them in a block. Every entry in this list does not 226 // statically use an alloca via use-def chain analysis, but may find an alloca 227 // through other means if the block turns out to be reachable after an escape 228 // point. 229 SmallVector<CallInst *, 32> DeferredTails; 230 231 BasicBlock *BB = &F.getEntryBlock(); 232 VisitType Escaped = UNESCAPED; 233 do { 234 for (auto &I : *BB) { 235 if (Tracker.EscapePoints.count(&I)) 236 Escaped = ESCAPED; 237 238 CallInst *CI = dyn_cast<CallInst>(&I); 239 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is 240 // considered accessing memory and will be marked as a tail call if we 241 // don't bail out here. 242 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) || 243 isa<PseudoProbeInst>(&I)) 244 continue; 245 246 // Bail out for intrinsic stackrestore call because it can modify 247 // unescaped allocas. 248 if (auto *II = dyn_cast<IntrinsicInst>(CI)) 249 if (II->getIntrinsicID() == Intrinsic::stackrestore) 250 continue; 251 252 // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and 253 // "kcfi". 254 bool IsNoTail = CI->isNoTailCall() || 255 CI->hasOperandBundlesOtherThan( 256 {LLVMContext::OB_clang_arc_attachedcall, 257 LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}); 258 259 if (!IsNoTail && CI->doesNotAccessMemory()) { 260 // A call to a readnone function whose arguments are all things computed 261 // outside this function can be marked tail. Even if you stored the 262 // alloca address into a global, a readnone function can't load the 263 // global anyhow. 264 // 265 // Note that this runs whether we know an alloca has escaped or not. If 266 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 267 bool SafeToTail = true; 268 for (auto &Arg : CI->args()) { 269 if (isa<Constant>(Arg.getUser())) 270 continue; 271 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 272 if (!A->hasByValAttr()) 273 continue; 274 SafeToTail = false; 275 break; 276 } 277 if (SafeToTail) { 278 using namespace ore; 279 ORE->emit([&]() { 280 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 281 << "marked as tail call candidate (readnone)"; 282 }); 283 CI->setTailCall(); 284 Modified = true; 285 continue; 286 } 287 } 288 289 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) 290 DeferredTails.push_back(CI); 291 } 292 293 for (auto *SuccBB : successors(BB)) { 294 auto &State = Visited[SuccBB]; 295 if (State < Escaped) { 296 State = Escaped; 297 if (State == ESCAPED) 298 WorklistEscaped.push_back(SuccBB); 299 else 300 WorklistUnescaped.push_back(SuccBB); 301 } 302 } 303 304 if (!WorklistEscaped.empty()) { 305 BB = WorklistEscaped.pop_back_val(); 306 Escaped = ESCAPED; 307 } else { 308 BB = nullptr; 309 while (!WorklistUnescaped.empty()) { 310 auto *NextBB = WorklistUnescaped.pop_back_val(); 311 if (Visited[NextBB] == UNESCAPED) { 312 BB = NextBB; 313 Escaped = UNESCAPED; 314 break; 315 } 316 } 317 } 318 } while (BB); 319 320 for (CallInst *CI : DeferredTails) { 321 if (Visited[CI->getParent()] != ESCAPED) { 322 // If the escape point was part way through the block, calls after the 323 // escape point wouldn't have been put into DeferredTails. 324 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 325 CI->setTailCall(); 326 Modified = true; 327 } 328 } 329 330 return Modified; 331 } 332 333 /// Return true if it is safe to move the specified 334 /// instruction from after the call to before the call, assuming that all 335 /// instructions between the call and this instruction are movable. 336 /// 337 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 338 if (isa<DbgInfoIntrinsic>(I)) 339 return true; 340 341 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 342 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 343 llvm::findAllocaForValue(II->getArgOperand(1))) 344 return true; 345 346 // FIXME: We can move load/store/call/free instructions above the call if the 347 // call does not mod/ref the memory location being processed. 348 if (I->mayHaveSideEffects()) // This also handles volatile loads. 349 return false; 350 351 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 352 // Loads may always be moved above calls without side effects. 353 if (CI->mayHaveSideEffects()) { 354 // Non-volatile loads may be moved above a call with side effects if it 355 // does not write to memory and the load provably won't trap. 356 // Writes to memory only matter if they may alias the pointer 357 // being loaded from. 358 const DataLayout &DL = L->getDataLayout(); 359 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 360 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 361 L->getAlign(), DL, L)) 362 return false; 363 } 364 } 365 366 // Otherwise, if this is a side-effect free instruction, check to make sure 367 // that it does not use the return value of the call. If it doesn't use the 368 // return value of the call, it must only use things that are defined before 369 // the call, or movable instructions between the call and the instruction 370 // itself. 371 return !is_contained(I->operands(), CI); 372 } 373 374 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 375 if (!I->isAssociative() || !I->isCommutative()) 376 return false; 377 378 assert(I->getNumOperands() >= 2 && 379 "Associative/commutative operations should have at least 2 args!"); 380 381 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 382 // Accumulators must have an identity. 383 if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType())) 384 return false; 385 } 386 387 // Exactly one operand should be the result of the call instruction. 388 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 389 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 390 return false; 391 392 // The only user of this instruction we allow is a single return instruction. 393 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 394 return false; 395 396 return true; 397 } 398 399 static Instruction *firstNonDbg(BasicBlock::iterator I) { 400 while (isa<DbgInfoIntrinsic>(I)) 401 ++I; 402 return &*I; 403 } 404 405 namespace { 406 class TailRecursionEliminator { 407 Function &F; 408 const TargetTransformInfo *TTI; 409 AliasAnalysis *AA; 410 OptimizationRemarkEmitter *ORE; 411 DomTreeUpdater &DTU; 412 413 // The below are shared state we want to have available when eliminating any 414 // calls in the function. There values should be populated by 415 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 416 BasicBlock *HeaderBB = nullptr; 417 SmallVector<PHINode *, 8> ArgumentPHIs; 418 419 // PHI node to store our return value. 420 PHINode *RetPN = nullptr; 421 422 // i1 PHI node to track if we have a valid return value stored in RetPN. 423 PHINode *RetKnownPN = nullptr; 424 425 // Vector of select instructions we insereted. These selects use RetKnownPN 426 // to either propagate RetPN or select a new return value. 427 SmallVector<SelectInst *, 8> RetSelects; 428 429 // The below are shared state needed when performing accumulator recursion. 430 // There values should be populated by insertAccumulator the first time we 431 // find an elimination that requires an accumulator. 432 433 // PHI node to store our current accumulated value. 434 PHINode *AccPN = nullptr; 435 436 // The instruction doing the accumulating. 437 Instruction *AccumulatorRecursionInstr = nullptr; 438 439 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 440 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 441 DomTreeUpdater &DTU) 442 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 443 444 CallInst *findTRECandidate(BasicBlock *BB); 445 446 void createTailRecurseLoopHeader(CallInst *CI); 447 448 void insertAccumulator(Instruction *AccRecInstr); 449 450 bool eliminateCall(CallInst *CI); 451 452 void cleanupAndFinalize(); 453 454 bool processBlock(BasicBlock &BB); 455 456 void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx); 457 458 void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx); 459 460 public: 461 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 462 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 463 DomTreeUpdater &DTU); 464 }; 465 } // namespace 466 467 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) { 468 Instruction *TI = BB->getTerminator(); 469 470 if (&BB->front() == TI) // Make sure there is something before the terminator. 471 return nullptr; 472 473 // Scan backwards from the return, checking to see if there is a tail call in 474 // this block. If so, set CI to it. 475 CallInst *CI = nullptr; 476 BasicBlock::iterator BBI(TI); 477 while (true) { 478 CI = dyn_cast<CallInst>(BBI); 479 if (CI && CI->getCalledFunction() == &F) 480 break; 481 482 if (BBI == BB->begin()) 483 return nullptr; // Didn't find a potential tail call. 484 --BBI; 485 } 486 487 assert((!CI->isTailCall() || !CI->isNoTailCall()) && 488 "Incompatible call site attributes(Tail,NoTail)"); 489 if (!CI->isTailCall()) 490 return nullptr; 491 492 // As a special case, detect code like this: 493 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 494 // and disable this xform in this case, because the code generator will 495 // lower the call to fabs into inline code. 496 if (BB == &F.getEntryBlock() && 497 firstNonDbg(BB->front().getIterator()) == CI && 498 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 499 !TTI->isLoweredToCall(CI->getCalledFunction())) { 500 // A single-block function with just a call and a return. Check that 501 // the arguments match. 502 auto I = CI->arg_begin(), E = CI->arg_end(); 503 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 504 for (; I != E && FI != FE; ++I, ++FI) 505 if (*I != &*FI) break; 506 if (I == E && FI == FE) 507 return nullptr; 508 } 509 510 return CI; 511 } 512 513 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 514 HeaderBB = &F.getEntryBlock(); 515 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 516 NewEntry->takeName(HeaderBB); 517 HeaderBB->setName("tailrecurse"); 518 BranchInst::Create(HeaderBB, NewEntry); 519 // If the new branch preserves the debug location of CI, it could result in 520 // misleading stepping, if CI is located in a conditional branch. 521 // So, here we don't give any debug location to the new branch. 522 523 // Move all fixed sized allocas from HeaderBB to NewEntry. 524 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 525 NEBI = NewEntry->begin(); 526 OEBI != E;) 527 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 528 if (isa<ConstantInt>(AI->getArraySize())) 529 AI->moveBefore(NEBI); 530 531 // Now that we have created a new block, which jumps to the entry 532 // block, insert a PHI node for each argument of the function. 533 // For now, we initialize each PHI to only have the real arguments 534 // which are passed in. 535 BasicBlock::iterator InsertPos = HeaderBB->begin(); 536 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 537 PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr"); 538 PN->insertBefore(InsertPos); 539 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 540 PN->addIncoming(&*I, NewEntry); 541 ArgumentPHIs.push_back(PN); 542 } 543 544 // If the function doen't return void, create the RetPN and RetKnownPN PHI 545 // nodes to track our return value. We initialize RetPN with poison and 546 // RetKnownPN with false since we can't know our return value at function 547 // entry. 548 Type *RetType = F.getReturnType(); 549 if (!RetType->isVoidTy()) { 550 Type *BoolType = Type::getInt1Ty(F.getContext()); 551 RetPN = PHINode::Create(RetType, 2, "ret.tr"); 552 RetPN->insertBefore(InsertPos); 553 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr"); 554 RetKnownPN->insertBefore(InsertPos); 555 556 RetPN->addIncoming(PoisonValue::get(RetType), NewEntry); 557 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 558 } 559 560 // The entry block was changed from HeaderBB to NewEntry. 561 // The forward DominatorTree needs to be recalculated when the EntryBB is 562 // changed. In this corner-case we recalculate the entire tree. 563 DTU.recalculate(*NewEntry->getParent()); 564 } 565 566 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 567 assert(!AccPN && "Trying to insert multiple accumulators"); 568 569 AccumulatorRecursionInstr = AccRecInstr; 570 571 // Start by inserting a new PHI node for the accumulator. 572 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 573 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 574 "accumulator.tr"); 575 AccPN->insertBefore(HeaderBB->begin()); 576 577 // Loop over all of the predecessors of the tail recursion block. For the 578 // real entry into the function we seed the PHI with the identity constant for 579 // the accumulation operation. For any other existing branches to this block 580 // (due to other tail recursions eliminated) the accumulator is not modified. 581 // Because we haven't added the branch in the current block to HeaderBB yet, 582 // it will not show up as a predecessor. 583 for (pred_iterator PI = PB; PI != PE; ++PI) { 584 BasicBlock *P = *PI; 585 if (P == &F.getEntryBlock()) { 586 Constant *Identity = 587 ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType()); 588 AccPN->addIncoming(Identity, P); 589 } else { 590 AccPN->addIncoming(AccPN, P); 591 } 592 } 593 594 ++NumAccumAdded; 595 } 596 597 // Creates a copy of contents of ByValue operand of the specified 598 // call instruction into the newly created temporarily variable. 599 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI, 600 int OpndIdx) { 601 Type *AggTy = CI->getParamByValType(OpndIdx); 602 assert(AggTy); 603 const DataLayout &DL = F.getDataLayout(); 604 605 // Get alignment of byVal operand. 606 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 607 608 // Create alloca for temporarily byval operands. 609 // Put alloca into the entry block. 610 Value *NewAlloca = new AllocaInst( 611 AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment, 612 CI->getArgOperand(OpndIdx)->getName(), F.getEntryBlock().begin()); 613 614 IRBuilder<> Builder(CI); 615 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 616 617 // Copy data from byvalue operand into the temporarily variable. 618 Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment, 619 CI->getArgOperand(OpndIdx), 620 /*SrcAlign*/ Alignment, Size); 621 CI->setArgOperand(OpndIdx, NewAlloca); 622 } 623 624 // Creates a copy from temporarily variable(keeping value of ByVal argument) 625 // into the corresponding function argument location. 626 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments( 627 CallInst *CI, int OpndIdx) { 628 Type *AggTy = CI->getParamByValType(OpndIdx); 629 assert(AggTy); 630 const DataLayout &DL = F.getDataLayout(); 631 632 // Get alignment of byVal operand. 633 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne()); 634 635 IRBuilder<> Builder(CI); 636 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy)); 637 638 // Copy data from the temporarily variable into corresponding 639 // function argument location. 640 Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment, 641 CI->getArgOperand(OpndIdx), 642 /*SrcAlign*/ Alignment, Size); 643 } 644 645 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 646 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 647 648 // Ok, we found a potential tail call. We can currently only transform the 649 // tail call if all of the instructions between the call and the return are 650 // movable to above the call itself, leaving the call next to the return. 651 // Check that this is the case now. 652 Instruction *AccRecInstr = nullptr; 653 BasicBlock::iterator BBI(CI); 654 for (++BBI; &*BBI != Ret; ++BBI) { 655 if (canMoveAboveCall(&*BBI, CI, AA)) 656 continue; 657 658 // If we can't move the instruction above the call, it might be because it 659 // is an associative and commutative operation that could be transformed 660 // using accumulator recursion elimination. Check to see if this is the 661 // case, and if so, remember which instruction accumulates for later. 662 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 663 return false; // We cannot eliminate the tail recursion! 664 665 // Yes, this is accumulator recursion. Remember which instruction 666 // accumulates. 667 AccRecInstr = &*BBI; 668 } 669 670 BasicBlock *BB = Ret->getParent(); 671 672 using namespace ore; 673 ORE->emit([&]() { 674 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 675 << "transforming tail recursion into loop"; 676 }); 677 678 // OK! We can transform this tail call. If this is the first one found, 679 // create the new entry block, allowing us to branch back to the old entry. 680 if (!HeaderBB) 681 createTailRecurseLoopHeader(CI); 682 683 // Copy values of ByVal operands into local temporarily variables. 684 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 685 if (CI->isByValArgument(I)) 686 copyByValueOperandIntoLocalTemp(CI, I); 687 } 688 689 // Ok, now that we know we have a pseudo-entry block WITH all of the 690 // required PHI nodes, add entries into the PHI node for the actual 691 // parameters passed into the tail-recursive call. 692 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { 693 if (CI->isByValArgument(I)) { 694 copyLocalTempOfByValueOperandIntoArguments(CI, I); 695 // When eliminating a tail call, we modify the values of the arguments. 696 // Therefore, if the byval parameter has a readonly attribute, we have to 697 // remove it. It is safe because, from the perspective of a caller, the 698 // byval parameter is always treated as "readonly," even if the readonly 699 // attribute is removed. 700 F.removeParamAttr(I, Attribute::ReadOnly); 701 ArgumentPHIs[I]->addIncoming(F.getArg(I), BB); 702 } else 703 ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB); 704 } 705 706 if (AccRecInstr) { 707 insertAccumulator(AccRecInstr); 708 709 // Rewrite the accumulator recursion instruction so that it does not use 710 // the result of the call anymore, instead, use the PHI node we just 711 // inserted. 712 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 713 } 714 715 // Update our return value tracking 716 if (RetPN) { 717 if (Ret->getReturnValue() == CI || AccRecInstr) { 718 // Defer selecting a return value 719 RetPN->addIncoming(RetPN, BB); 720 RetKnownPN->addIncoming(RetKnownPN, BB); 721 } else { 722 // We found a return value we want to use, insert a select instruction to 723 // select it if we don't already know what our return value will be and 724 // store the result in our return value PHI node. 725 SelectInst *SI = 726 SelectInst::Create(RetKnownPN, RetPN, Ret->getReturnValue(), 727 "current.ret.tr", Ret->getIterator()); 728 RetSelects.push_back(SI); 729 730 RetPN->addIncoming(SI, BB); 731 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 732 } 733 734 if (AccPN) 735 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 736 } 737 738 // Now that all of the PHI nodes are in place, remove the call and 739 // ret instructions, replacing them with an unconditional branch. 740 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret->getIterator()); 741 NewBI->setDebugLoc(CI->getDebugLoc()); 742 743 Ret->eraseFromParent(); // Remove return. 744 CI->eraseFromParent(); // Remove call. 745 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 746 ++NumEliminated; 747 return true; 748 } 749 750 void TailRecursionEliminator::cleanupAndFinalize() { 751 // If we eliminated any tail recursions, it's possible that we inserted some 752 // silly PHI nodes which just merge an initial value (the incoming operand) 753 // with themselves. Check to see if we did and clean up our mess if so. This 754 // occurs when a function passes an argument straight through to its tail 755 // call. 756 for (PHINode *PN : ArgumentPHIs) { 757 // If the PHI Node is a dynamic constant, replace it with the value it is. 758 if (Value *PNV = simplifyInstruction(PN, F.getDataLayout())) { 759 PN->replaceAllUsesWith(PNV); 760 PN->eraseFromParent(); 761 } 762 } 763 764 if (RetPN) { 765 if (RetSelects.empty()) { 766 // If we didn't insert any select instructions, then we know we didn't 767 // store a return value and we can remove the PHI nodes we inserted. 768 RetPN->dropAllReferences(); 769 RetPN->eraseFromParent(); 770 771 RetKnownPN->dropAllReferences(); 772 RetKnownPN->eraseFromParent(); 773 774 if (AccPN) { 775 // We need to insert a copy of our accumulator instruction before any 776 // return in the function, and return its result instead. 777 Instruction *AccRecInstr = AccumulatorRecursionInstr; 778 for (BasicBlock &BB : F) { 779 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 780 if (!RI) 781 continue; 782 783 Instruction *AccRecInstrNew = AccRecInstr->clone(); 784 AccRecInstrNew->setName("accumulator.ret.tr"); 785 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 786 RI->getOperand(0)); 787 AccRecInstrNew->insertBefore(RI->getIterator()); 788 AccRecInstrNew->dropLocation(); 789 RI->setOperand(0, AccRecInstrNew); 790 } 791 } 792 } else { 793 // We need to insert a select instruction before any return left in the 794 // function to select our stored return value if we have one. 795 for (BasicBlock &BB : F) { 796 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 797 if (!RI) 798 continue; 799 800 SelectInst *SI = 801 SelectInst::Create(RetKnownPN, RetPN, RI->getOperand(0), 802 "current.ret.tr", RI->getIterator()); 803 RetSelects.push_back(SI); 804 RI->setOperand(0, SI); 805 } 806 807 if (AccPN) { 808 // We need to insert a copy of our accumulator instruction before any 809 // of the selects we inserted, and select its result instead. 810 Instruction *AccRecInstr = AccumulatorRecursionInstr; 811 for (SelectInst *SI : RetSelects) { 812 Instruction *AccRecInstrNew = AccRecInstr->clone(); 813 AccRecInstrNew->setName("accumulator.ret.tr"); 814 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 815 SI->getFalseValue()); 816 AccRecInstrNew->insertBefore(SI->getIterator()); 817 AccRecInstrNew->dropLocation(); 818 SI->setFalseValue(AccRecInstrNew); 819 } 820 } 821 } 822 } 823 } 824 825 bool TailRecursionEliminator::processBlock(BasicBlock &BB) { 826 Instruction *TI = BB.getTerminator(); 827 828 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 829 if (BI->isConditional()) 830 return false; 831 832 BasicBlock *Succ = BI->getSuccessor(0); 833 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true)); 834 835 if (!Ret) 836 return false; 837 838 CallInst *CI = findTRECandidate(&BB); 839 840 if (!CI) 841 return false; 842 843 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ 844 << "INTO UNCOND BRANCH PRED: " << BB); 845 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); 846 ++NumRetDuped; 847 848 // If all predecessors of Succ have been eliminated by 849 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 850 // because the ret instruction in there is still using a value which 851 // eliminateCall will attempt to remove. This block can only contain 852 // instructions that can't have uses, therefore it is safe to remove. 853 if (pred_empty(Succ)) 854 DTU.deleteBB(Succ); 855 856 eliminateCall(CI); 857 return true; 858 } else if (isa<ReturnInst>(TI)) { 859 CallInst *CI = findTRECandidate(&BB); 860 861 if (CI) 862 return eliminateCall(CI); 863 } 864 865 return false; 866 } 867 868 bool TailRecursionEliminator::eliminate(Function &F, 869 const TargetTransformInfo *TTI, 870 AliasAnalysis *AA, 871 OptimizationRemarkEmitter *ORE, 872 DomTreeUpdater &DTU) { 873 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 874 return false; 875 876 bool MadeChange = false; 877 MadeChange |= markTails(F, ORE); 878 879 // If this function is a varargs function, we won't be able to PHI the args 880 // right, so don't even try to convert it... 881 if (F.getFunctionType()->isVarArg()) 882 return MadeChange; 883 884 if (!canTRE(F)) 885 return MadeChange; 886 887 // Change any tail recursive calls to loops. 888 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 889 890 for (BasicBlock &BB : F) 891 MadeChange |= TRE.processBlock(BB); 892 893 TRE.cleanupAndFinalize(); 894 895 return MadeChange; 896 } 897 898 namespace { 899 struct TailCallElim : public FunctionPass { 900 static char ID; // Pass identification, replacement for typeid 901 TailCallElim() : FunctionPass(ID) { 902 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 903 } 904 905 void getAnalysisUsage(AnalysisUsage &AU) const override { 906 AU.addRequired<TargetTransformInfoWrapperPass>(); 907 AU.addRequired<AAResultsWrapperPass>(); 908 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 909 AU.addPreserved<GlobalsAAWrapperPass>(); 910 AU.addPreserved<DominatorTreeWrapperPass>(); 911 AU.addPreserved<PostDominatorTreeWrapperPass>(); 912 } 913 914 bool runOnFunction(Function &F) override { 915 if (skipFunction(F)) 916 return false; 917 918 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 919 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 920 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 921 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 922 // There is no noticable performance difference here between Lazy and Eager 923 // UpdateStrategy based on some test results. It is feasible to switch the 924 // UpdateStrategy to Lazy if we find it profitable later. 925 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 926 927 return TailRecursionEliminator::eliminate( 928 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 929 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 930 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 931 } 932 }; 933 } 934 935 char TailCallElim::ID = 0; 936 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 937 false, false) 938 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 939 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 940 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 941 false, false) 942 943 // Public interface to the TailCallElimination pass 944 FunctionPass *llvm::createTailCallEliminationPass() { 945 return new TailCallElim(); 946 } 947 948 PreservedAnalyses TailCallElimPass::run(Function &F, 949 FunctionAnalysisManager &AM) { 950 951 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 952 AliasAnalysis &AA = AM.getResult<AAManager>(F); 953 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 954 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 955 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 956 // There is no noticable performance difference here between Lazy and Eager 957 // UpdateStrategy based on some test results. It is feasible to switch the 958 // UpdateStrategy to Lazy if we find it profitable later. 959 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 960 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 961 962 if (!Changed) 963 return PreservedAnalyses::all(); 964 PreservedAnalyses PA; 965 PA.preserve<DominatorTreeAnalysis>(); 966 PA.preserve<PostDominatorTreeAnalysis>(); 967 return PA; 968 } 969