xref: /llvm-project/llvm/lib/Transforms/Scalar/TailRecursionElimination.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/DomTreeUpdater.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/InstructionSimplify.h"
59 #include "llvm/Analysis/Loads.h"
60 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
61 #include "llvm/Analysis/PostDominators.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 using namespace llvm;
83 
84 #define DEBUG_TYPE "tailcallelim"
85 
86 STATISTIC(NumEliminated, "Number of tail calls removed");
87 STATISTIC(NumRetDuped,   "Number of return duplicated");
88 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
89 
90 /// Scan the specified function for alloca instructions.
91 /// If it contains any dynamic allocas, returns false.
92 static bool canTRE(Function &F) {
93   // TODO: We don't do TRE if dynamic allocas are used.
94   // Dynamic allocas allocate stack space which should be
95   // deallocated before new iteration started. That is
96   // currently not implemented.
97   return llvm::all_of(instructions(F), [](Instruction &I) {
98     auto *AI = dyn_cast<AllocaInst>(&I);
99     return !AI || AI->isStaticAlloca();
100   });
101 }
102 
103 namespace {
104 struct AllocaDerivedValueTracker {
105   // Start at a root value and walk its use-def chain to mark calls that use the
106   // value or a derived value in AllocaUsers, and places where it may escape in
107   // EscapePoints.
108   void walk(Value *Root) {
109     SmallVector<Use *, 32> Worklist;
110     SmallPtrSet<Use *, 32> Visited;
111 
112     auto AddUsesToWorklist = [&](Value *V) {
113       for (auto &U : V->uses()) {
114         if (!Visited.insert(&U).second)
115           continue;
116         Worklist.push_back(&U);
117       }
118     };
119 
120     AddUsesToWorklist(Root);
121 
122     while (!Worklist.empty()) {
123       Use *U = Worklist.pop_back_val();
124       Instruction *I = cast<Instruction>(U->getUser());
125 
126       switch (I->getOpcode()) {
127       case Instruction::Call:
128       case Instruction::Invoke: {
129         auto &CB = cast<CallBase>(*I);
130         // If the alloca-derived argument is passed byval it is not an escape
131         // point, or a use of an alloca. Calling with byval copies the contents
132         // of the alloca into argument registers or stack slots, which exist
133         // beyond the lifetime of the current frame.
134         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
135           continue;
136         bool IsNocapture =
137             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
138         callUsesLocalStack(CB, IsNocapture);
139         if (IsNocapture) {
140           // If the alloca-derived argument is passed in as nocapture, then it
141           // can't propagate to the call's return. That would be capturing.
142           continue;
143         }
144         break;
145       }
146       case Instruction::Load: {
147         // The result of a load is not alloca-derived (unless an alloca has
148         // otherwise escaped, but this is a local analysis).
149         continue;
150       }
151       case Instruction::Store: {
152         if (U->getOperandNo() == 0)
153           EscapePoints.insert(I);
154         continue;  // Stores have no users to analyze.
155       }
156       case Instruction::BitCast:
157       case Instruction::GetElementPtr:
158       case Instruction::PHI:
159       case Instruction::Select:
160       case Instruction::AddrSpaceCast:
161         break;
162       default:
163         EscapePoints.insert(I);
164         break;
165       }
166 
167       AddUsesToWorklist(I);
168     }
169   }
170 
171   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
172     // Add it to the list of alloca users.
173     AllocaUsers.insert(&CB);
174 
175     // If it's nocapture then it can't capture this alloca.
176     if (IsNocapture)
177       return;
178 
179     // If it can write to memory, it can leak the alloca value.
180     if (!CB.onlyReadsMemory())
181       EscapePoints.insert(&CB);
182   }
183 
184   SmallPtrSet<Instruction *, 32> AllocaUsers;
185   SmallPtrSet<Instruction *, 32> EscapePoints;
186 };
187 }
188 
189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
190   if (F.callsFunctionThatReturnsTwice())
191     return false;
192 
193   // The local stack holds all alloca instructions and all byval arguments.
194   AllocaDerivedValueTracker Tracker;
195   for (Argument &Arg : F.args()) {
196     if (Arg.hasByValAttr())
197       Tracker.walk(&Arg);
198   }
199   for (auto &BB : F) {
200     for (auto &I : BB)
201       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
202         Tracker.walk(AI);
203   }
204 
205   bool Modified = false;
206 
207   // Track whether a block is reachable after an alloca has escaped. Blocks that
208   // contain the escaping instruction will be marked as being visited without an
209   // escaped alloca, since that is how the block began.
210   enum VisitType {
211     UNVISITED,
212     UNESCAPED,
213     ESCAPED
214   };
215   DenseMap<BasicBlock *, VisitType> Visited;
216 
217   // We propagate the fact that an alloca has escaped from block to successor.
218   // Visit the blocks that are propagating the escapedness first. To do this, we
219   // maintain two worklists.
220   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
221 
222   // We may enter a block and visit it thinking that no alloca has escaped yet,
223   // then see an escape point and go back around a loop edge and come back to
224   // the same block twice. Because of this, we defer setting tail on calls when
225   // we first encounter them in a block. Every entry in this list does not
226   // statically use an alloca via use-def chain analysis, but may find an alloca
227   // through other means if the block turns out to be reachable after an escape
228   // point.
229   SmallVector<CallInst *, 32> DeferredTails;
230 
231   BasicBlock *BB = &F.getEntryBlock();
232   VisitType Escaped = UNESCAPED;
233   do {
234     for (auto &I : *BB) {
235       if (Tracker.EscapePoints.count(&I))
236         Escaped = ESCAPED;
237 
238       CallInst *CI = dyn_cast<CallInst>(&I);
239       // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
240       // considered accessing memory and will be marked as a tail call if we
241       // don't bail out here.
242       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
243           isa<PseudoProbeInst>(&I))
244         continue;
245 
246       // Bail out for intrinsic stackrestore call because it can modify
247       // unescaped allocas.
248       if (auto *II = dyn_cast<IntrinsicInst>(CI))
249         if (II->getIntrinsicID() == Intrinsic::stackrestore)
250           continue;
251 
252       // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and
253       // "kcfi".
254       bool IsNoTail = CI->isNoTailCall() ||
255                       CI->hasOperandBundlesOtherThan(
256                           {LLVMContext::OB_clang_arc_attachedcall,
257                            LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi});
258 
259       if (!IsNoTail && CI->doesNotAccessMemory()) {
260         // A call to a readnone function whose arguments are all things computed
261         // outside this function can be marked tail. Even if you stored the
262         // alloca address into a global, a readnone function can't load the
263         // global anyhow.
264         //
265         // Note that this runs whether we know an alloca has escaped or not. If
266         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
267         bool SafeToTail = true;
268         for (auto &Arg : CI->args()) {
269           if (isa<Constant>(Arg.getUser()))
270             continue;
271           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
272             if (!A->hasByValAttr())
273               continue;
274           SafeToTail = false;
275           break;
276         }
277         if (SafeToTail) {
278           using namespace ore;
279           ORE->emit([&]() {
280             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
281                    << "marked as tail call candidate (readnone)";
282           });
283           CI->setTailCall();
284           Modified = true;
285           continue;
286         }
287       }
288 
289       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
290         DeferredTails.push_back(CI);
291     }
292 
293     for (auto *SuccBB : successors(BB)) {
294       auto &State = Visited[SuccBB];
295       if (State < Escaped) {
296         State = Escaped;
297         if (State == ESCAPED)
298           WorklistEscaped.push_back(SuccBB);
299         else
300           WorklistUnescaped.push_back(SuccBB);
301       }
302     }
303 
304     if (!WorklistEscaped.empty()) {
305       BB = WorklistEscaped.pop_back_val();
306       Escaped = ESCAPED;
307     } else {
308       BB = nullptr;
309       while (!WorklistUnescaped.empty()) {
310         auto *NextBB = WorklistUnescaped.pop_back_val();
311         if (Visited[NextBB] == UNESCAPED) {
312           BB = NextBB;
313           Escaped = UNESCAPED;
314           break;
315         }
316       }
317     }
318   } while (BB);
319 
320   for (CallInst *CI : DeferredTails) {
321     if (Visited[CI->getParent()] != ESCAPED) {
322       // If the escape point was part way through the block, calls after the
323       // escape point wouldn't have been put into DeferredTails.
324       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
325       CI->setTailCall();
326       Modified = true;
327     }
328   }
329 
330   return Modified;
331 }
332 
333 /// Return true if it is safe to move the specified
334 /// instruction from after the call to before the call, assuming that all
335 /// instructions between the call and this instruction are movable.
336 ///
337 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
338   if (isa<DbgInfoIntrinsic>(I))
339     return true;
340 
341   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
342     if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
343         llvm::findAllocaForValue(II->getArgOperand(1)))
344       return true;
345 
346   // FIXME: We can move load/store/call/free instructions above the call if the
347   // call does not mod/ref the memory location being processed.
348   if (I->mayHaveSideEffects())  // This also handles volatile loads.
349     return false;
350 
351   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
352     // Loads may always be moved above calls without side effects.
353     if (CI->mayHaveSideEffects()) {
354       // Non-volatile loads may be moved above a call with side effects if it
355       // does not write to memory and the load provably won't trap.
356       // Writes to memory only matter if they may alias the pointer
357       // being loaded from.
358       const DataLayout &DL = L->getDataLayout();
359       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
360           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
361                                        L->getAlign(), DL, L))
362         return false;
363     }
364   }
365 
366   // Otherwise, if this is a side-effect free instruction, check to make sure
367   // that it does not use the return value of the call.  If it doesn't use the
368   // return value of the call, it must only use things that are defined before
369   // the call, or movable instructions between the call and the instruction
370   // itself.
371   return !is_contained(I->operands(), CI);
372 }
373 
374 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
375   if (!I->isAssociative() || !I->isCommutative())
376     return false;
377 
378   assert(I->getNumOperands() >= 2 &&
379          "Associative/commutative operations should have at least 2 args!");
380 
381   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
382     // Accumulators must have an identity.
383     if (!ConstantExpr::getIntrinsicIdentity(II->getIntrinsicID(), I->getType()))
384       return false;
385   }
386 
387   // Exactly one operand should be the result of the call instruction.
388   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
389       (I->getOperand(0) != CI && I->getOperand(1) != CI))
390     return false;
391 
392   // The only user of this instruction we allow is a single return instruction.
393   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
394     return false;
395 
396   return true;
397 }
398 
399 static Instruction *firstNonDbg(BasicBlock::iterator I) {
400   while (isa<DbgInfoIntrinsic>(I))
401     ++I;
402   return &*I;
403 }
404 
405 namespace {
406 class TailRecursionEliminator {
407   Function &F;
408   const TargetTransformInfo *TTI;
409   AliasAnalysis *AA;
410   OptimizationRemarkEmitter *ORE;
411   DomTreeUpdater &DTU;
412 
413   // The below are shared state we want to have available when eliminating any
414   // calls in the function. There values should be populated by
415   // createTailRecurseLoopHeader the first time we find a call we can eliminate.
416   BasicBlock *HeaderBB = nullptr;
417   SmallVector<PHINode *, 8> ArgumentPHIs;
418 
419   // PHI node to store our return value.
420   PHINode *RetPN = nullptr;
421 
422   // i1 PHI node to track if we have a valid return value stored in RetPN.
423   PHINode *RetKnownPN = nullptr;
424 
425   // Vector of select instructions we insereted. These selects use RetKnownPN
426   // to either propagate RetPN or select a new return value.
427   SmallVector<SelectInst *, 8> RetSelects;
428 
429   // The below are shared state needed when performing accumulator recursion.
430   // There values should be populated by insertAccumulator the first time we
431   // find an elimination that requires an accumulator.
432 
433   // PHI node to store our current accumulated value.
434   PHINode *AccPN = nullptr;
435 
436   // The instruction doing the accumulating.
437   Instruction *AccumulatorRecursionInstr = nullptr;
438 
439   TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
440                           AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
441                           DomTreeUpdater &DTU)
442       : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
443 
444   CallInst *findTRECandidate(BasicBlock *BB);
445 
446   void createTailRecurseLoopHeader(CallInst *CI);
447 
448   void insertAccumulator(Instruction *AccRecInstr);
449 
450   bool eliminateCall(CallInst *CI);
451 
452   void cleanupAndFinalize();
453 
454   bool processBlock(BasicBlock &BB);
455 
456   void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
457 
458   void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
459 
460 public:
461   static bool eliminate(Function &F, const TargetTransformInfo *TTI,
462                         AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
463                         DomTreeUpdater &DTU);
464 };
465 } // namespace
466 
467 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
468   Instruction *TI = BB->getTerminator();
469 
470   if (&BB->front() == TI) // Make sure there is something before the terminator.
471     return nullptr;
472 
473   // Scan backwards from the return, checking to see if there is a tail call in
474   // this block.  If so, set CI to it.
475   CallInst *CI = nullptr;
476   BasicBlock::iterator BBI(TI);
477   while (true) {
478     CI = dyn_cast<CallInst>(BBI);
479     if (CI && CI->getCalledFunction() == &F)
480       break;
481 
482     if (BBI == BB->begin())
483       return nullptr;          // Didn't find a potential tail call.
484     --BBI;
485   }
486 
487   assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
488          "Incompatible call site attributes(Tail,NoTail)");
489   if (!CI->isTailCall())
490     return nullptr;
491 
492   // As a special case, detect code like this:
493   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
494   // and disable this xform in this case, because the code generator will
495   // lower the call to fabs into inline code.
496   if (BB == &F.getEntryBlock() &&
497       firstNonDbg(BB->front().getIterator()) == CI &&
498       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
499       !TTI->isLoweredToCall(CI->getCalledFunction())) {
500     // A single-block function with just a call and a return. Check that
501     // the arguments match.
502     auto I = CI->arg_begin(), E = CI->arg_end();
503     Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
504     for (; I != E && FI != FE; ++I, ++FI)
505       if (*I != &*FI) break;
506     if (I == E && FI == FE)
507       return nullptr;
508   }
509 
510   return CI;
511 }
512 
513 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
514   HeaderBB = &F.getEntryBlock();
515   BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
516   NewEntry->takeName(HeaderBB);
517   HeaderBB->setName("tailrecurse");
518   BranchInst::Create(HeaderBB, NewEntry);
519   // If the new branch preserves the debug location of CI, it could result in
520   // misleading stepping, if CI is located in a conditional branch.
521   // So, here we don't give any debug location to the new branch.
522 
523   // Move all fixed sized allocas from HeaderBB to NewEntry.
524   for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
525                             NEBI = NewEntry->begin();
526        OEBI != E;)
527     if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
528       if (isa<ConstantInt>(AI->getArraySize()))
529         AI->moveBefore(NEBI);
530 
531   // Now that we have created a new block, which jumps to the entry
532   // block, insert a PHI node for each argument of the function.
533   // For now, we initialize each PHI to only have the real arguments
534   // which are passed in.
535   BasicBlock::iterator InsertPos = HeaderBB->begin();
536   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
537     PHINode *PN = PHINode::Create(I->getType(), 2, I->getName() + ".tr");
538     PN->insertBefore(InsertPos);
539     I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
540     PN->addIncoming(&*I, NewEntry);
541     ArgumentPHIs.push_back(PN);
542   }
543 
544   // If the function doen't return void, create the RetPN and RetKnownPN PHI
545   // nodes to track our return value. We initialize RetPN with poison and
546   // RetKnownPN with false since we can't know our return value at function
547   // entry.
548   Type *RetType = F.getReturnType();
549   if (!RetType->isVoidTy()) {
550     Type *BoolType = Type::getInt1Ty(F.getContext());
551     RetPN = PHINode::Create(RetType, 2, "ret.tr");
552     RetPN->insertBefore(InsertPos);
553     RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr");
554     RetKnownPN->insertBefore(InsertPos);
555 
556     RetPN->addIncoming(PoisonValue::get(RetType), NewEntry);
557     RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
558   }
559 
560   // The entry block was changed from HeaderBB to NewEntry.
561   // The forward DominatorTree needs to be recalculated when the EntryBB is
562   // changed. In this corner-case we recalculate the entire tree.
563   DTU.recalculate(*NewEntry->getParent());
564 }
565 
566 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
567   assert(!AccPN && "Trying to insert multiple accumulators");
568 
569   AccumulatorRecursionInstr = AccRecInstr;
570 
571   // Start by inserting a new PHI node for the accumulator.
572   pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
573   AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
574                           "accumulator.tr");
575   AccPN->insertBefore(HeaderBB->begin());
576 
577   // Loop over all of the predecessors of the tail recursion block.  For the
578   // real entry into the function we seed the PHI with the identity constant for
579   // the accumulation operation.  For any other existing branches to this block
580   // (due to other tail recursions eliminated) the accumulator is not modified.
581   // Because we haven't added the branch in the current block to HeaderBB yet,
582   // it will not show up as a predecessor.
583   for (pred_iterator PI = PB; PI != PE; ++PI) {
584     BasicBlock *P = *PI;
585     if (P == &F.getEntryBlock()) {
586       Constant *Identity =
587           ConstantExpr::getIdentity(AccRecInstr, AccRecInstr->getType());
588       AccPN->addIncoming(Identity, P);
589     } else {
590       AccPN->addIncoming(AccPN, P);
591     }
592   }
593 
594   ++NumAccumAdded;
595 }
596 
597 // Creates a copy of contents of ByValue operand of the specified
598 // call instruction into the newly created temporarily variable.
599 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
600                                                               int OpndIdx) {
601   Type *AggTy = CI->getParamByValType(OpndIdx);
602   assert(AggTy);
603   const DataLayout &DL = F.getDataLayout();
604 
605   // Get alignment of byVal operand.
606   Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
607 
608   // Create alloca for temporarily byval operands.
609   // Put alloca into the entry block.
610   Value *NewAlloca = new AllocaInst(
611       AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
612       CI->getArgOperand(OpndIdx)->getName(), F.getEntryBlock().begin());
613 
614   IRBuilder<> Builder(CI);
615   Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
616 
617   // Copy data from byvalue operand into the temporarily variable.
618   Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
619                        CI->getArgOperand(OpndIdx),
620                        /*SrcAlign*/ Alignment, Size);
621   CI->setArgOperand(OpndIdx, NewAlloca);
622 }
623 
624 // Creates a copy from temporarily variable(keeping value of ByVal argument)
625 // into the corresponding function argument location.
626 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
627     CallInst *CI, int OpndIdx) {
628   Type *AggTy = CI->getParamByValType(OpndIdx);
629   assert(AggTy);
630   const DataLayout &DL = F.getDataLayout();
631 
632   // Get alignment of byVal operand.
633   Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
634 
635   IRBuilder<> Builder(CI);
636   Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
637 
638   // Copy data from the temporarily variable into corresponding
639   // function argument location.
640   Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
641                        CI->getArgOperand(OpndIdx),
642                        /*SrcAlign*/ Alignment, Size);
643 }
644 
645 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
646   ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
647 
648   // Ok, we found a potential tail call.  We can currently only transform the
649   // tail call if all of the instructions between the call and the return are
650   // movable to above the call itself, leaving the call next to the return.
651   // Check that this is the case now.
652   Instruction *AccRecInstr = nullptr;
653   BasicBlock::iterator BBI(CI);
654   for (++BBI; &*BBI != Ret; ++BBI) {
655     if (canMoveAboveCall(&*BBI, CI, AA))
656       continue;
657 
658     // If we can't move the instruction above the call, it might be because it
659     // is an associative and commutative operation that could be transformed
660     // using accumulator recursion elimination.  Check to see if this is the
661     // case, and if so, remember which instruction accumulates for later.
662     if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
663       return false; // We cannot eliminate the tail recursion!
664 
665     // Yes, this is accumulator recursion.  Remember which instruction
666     // accumulates.
667     AccRecInstr = &*BBI;
668   }
669 
670   BasicBlock *BB = Ret->getParent();
671 
672   using namespace ore;
673   ORE->emit([&]() {
674     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
675            << "transforming tail recursion into loop";
676   });
677 
678   // OK! We can transform this tail call.  If this is the first one found,
679   // create the new entry block, allowing us to branch back to the old entry.
680   if (!HeaderBB)
681     createTailRecurseLoopHeader(CI);
682 
683   // Copy values of ByVal operands into local temporarily variables.
684   for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
685     if (CI->isByValArgument(I))
686       copyByValueOperandIntoLocalTemp(CI, I);
687   }
688 
689   // Ok, now that we know we have a pseudo-entry block WITH all of the
690   // required PHI nodes, add entries into the PHI node for the actual
691   // parameters passed into the tail-recursive call.
692   for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
693     if (CI->isByValArgument(I)) {
694       copyLocalTempOfByValueOperandIntoArguments(CI, I);
695       // When eliminating a tail call, we modify the values of the arguments.
696       // Therefore, if the byval parameter has a readonly attribute, we have to
697       // remove it. It is safe because, from the perspective of a caller, the
698       // byval parameter is always treated as "readonly," even if the readonly
699       // attribute is removed.
700       F.removeParamAttr(I, Attribute::ReadOnly);
701       ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
702     } else
703       ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
704   }
705 
706   if (AccRecInstr) {
707     insertAccumulator(AccRecInstr);
708 
709     // Rewrite the accumulator recursion instruction so that it does not use
710     // the result of the call anymore, instead, use the PHI node we just
711     // inserted.
712     AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
713   }
714 
715   // Update our return value tracking
716   if (RetPN) {
717     if (Ret->getReturnValue() == CI || AccRecInstr) {
718       // Defer selecting a return value
719       RetPN->addIncoming(RetPN, BB);
720       RetKnownPN->addIncoming(RetKnownPN, BB);
721     } else {
722       // We found a return value we want to use, insert a select instruction to
723       // select it if we don't already know what our return value will be and
724       // store the result in our return value PHI node.
725       SelectInst *SI =
726           SelectInst::Create(RetKnownPN, RetPN, Ret->getReturnValue(),
727                              "current.ret.tr", Ret->getIterator());
728       RetSelects.push_back(SI);
729 
730       RetPN->addIncoming(SI, BB);
731       RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
732     }
733 
734     if (AccPN)
735       AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
736   }
737 
738   // Now that all of the PHI nodes are in place, remove the call and
739   // ret instructions, replacing them with an unconditional branch.
740   BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret->getIterator());
741   NewBI->setDebugLoc(CI->getDebugLoc());
742 
743   Ret->eraseFromParent();  // Remove return.
744   CI->eraseFromParent();   // Remove call.
745   DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
746   ++NumEliminated;
747   return true;
748 }
749 
750 void TailRecursionEliminator::cleanupAndFinalize() {
751   // If we eliminated any tail recursions, it's possible that we inserted some
752   // silly PHI nodes which just merge an initial value (the incoming operand)
753   // with themselves.  Check to see if we did and clean up our mess if so.  This
754   // occurs when a function passes an argument straight through to its tail
755   // call.
756   for (PHINode *PN : ArgumentPHIs) {
757     // If the PHI Node is a dynamic constant, replace it with the value it is.
758     if (Value *PNV = simplifyInstruction(PN, F.getDataLayout())) {
759       PN->replaceAllUsesWith(PNV);
760       PN->eraseFromParent();
761     }
762   }
763 
764   if (RetPN) {
765     if (RetSelects.empty()) {
766       // If we didn't insert any select instructions, then we know we didn't
767       // store a return value and we can remove the PHI nodes we inserted.
768       RetPN->dropAllReferences();
769       RetPN->eraseFromParent();
770 
771       RetKnownPN->dropAllReferences();
772       RetKnownPN->eraseFromParent();
773 
774       if (AccPN) {
775         // We need to insert a copy of our accumulator instruction before any
776         // return in the function, and return its result instead.
777         Instruction *AccRecInstr = AccumulatorRecursionInstr;
778         for (BasicBlock &BB : F) {
779           ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
780           if (!RI)
781             continue;
782 
783           Instruction *AccRecInstrNew = AccRecInstr->clone();
784           AccRecInstrNew->setName("accumulator.ret.tr");
785           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
786                                      RI->getOperand(0));
787           AccRecInstrNew->insertBefore(RI->getIterator());
788           AccRecInstrNew->dropLocation();
789           RI->setOperand(0, AccRecInstrNew);
790         }
791       }
792     } else {
793       // We need to insert a select instruction before any return left in the
794       // function to select our stored return value if we have one.
795       for (BasicBlock &BB : F) {
796         ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
797         if (!RI)
798           continue;
799 
800         SelectInst *SI =
801             SelectInst::Create(RetKnownPN, RetPN, RI->getOperand(0),
802                                "current.ret.tr", RI->getIterator());
803         RetSelects.push_back(SI);
804         RI->setOperand(0, SI);
805       }
806 
807       if (AccPN) {
808         // We need to insert a copy of our accumulator instruction before any
809         // of the selects we inserted, and select its result instead.
810         Instruction *AccRecInstr = AccumulatorRecursionInstr;
811         for (SelectInst *SI : RetSelects) {
812           Instruction *AccRecInstrNew = AccRecInstr->clone();
813           AccRecInstrNew->setName("accumulator.ret.tr");
814           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
815                                      SI->getFalseValue());
816           AccRecInstrNew->insertBefore(SI->getIterator());
817           AccRecInstrNew->dropLocation();
818           SI->setFalseValue(AccRecInstrNew);
819         }
820       }
821     }
822   }
823 }
824 
825 bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
826   Instruction *TI = BB.getTerminator();
827 
828   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
829     if (BI->isConditional())
830       return false;
831 
832     BasicBlock *Succ = BI->getSuccessor(0);
833     ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
834 
835     if (!Ret)
836       return false;
837 
838     CallInst *CI = findTRECandidate(&BB);
839 
840     if (!CI)
841       return false;
842 
843     LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
844                       << "INTO UNCOND BRANCH PRED: " << BB);
845     FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
846     ++NumRetDuped;
847 
848     // If all predecessors of Succ have been eliminated by
849     // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
850     // because the ret instruction in there is still using a value which
851     // eliminateCall will attempt to remove.  This block can only contain
852     // instructions that can't have uses, therefore it is safe to remove.
853     if (pred_empty(Succ))
854       DTU.deleteBB(Succ);
855 
856     eliminateCall(CI);
857     return true;
858   } else if (isa<ReturnInst>(TI)) {
859     CallInst *CI = findTRECandidate(&BB);
860 
861     if (CI)
862       return eliminateCall(CI);
863   }
864 
865   return false;
866 }
867 
868 bool TailRecursionEliminator::eliminate(Function &F,
869                                         const TargetTransformInfo *TTI,
870                                         AliasAnalysis *AA,
871                                         OptimizationRemarkEmitter *ORE,
872                                         DomTreeUpdater &DTU) {
873   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
874     return false;
875 
876   bool MadeChange = false;
877   MadeChange |= markTails(F, ORE);
878 
879   // If this function is a varargs function, we won't be able to PHI the args
880   // right, so don't even try to convert it...
881   if (F.getFunctionType()->isVarArg())
882     return MadeChange;
883 
884   if (!canTRE(F))
885     return MadeChange;
886 
887   // Change any tail recursive calls to loops.
888   TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
889 
890   for (BasicBlock &BB : F)
891     MadeChange |= TRE.processBlock(BB);
892 
893   TRE.cleanupAndFinalize();
894 
895   return MadeChange;
896 }
897 
898 namespace {
899 struct TailCallElim : public FunctionPass {
900   static char ID; // Pass identification, replacement for typeid
901   TailCallElim() : FunctionPass(ID) {
902     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
903   }
904 
905   void getAnalysisUsage(AnalysisUsage &AU) const override {
906     AU.addRequired<TargetTransformInfoWrapperPass>();
907     AU.addRequired<AAResultsWrapperPass>();
908     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
909     AU.addPreserved<GlobalsAAWrapperPass>();
910     AU.addPreserved<DominatorTreeWrapperPass>();
911     AU.addPreserved<PostDominatorTreeWrapperPass>();
912   }
913 
914   bool runOnFunction(Function &F) override {
915     if (skipFunction(F))
916       return false;
917 
918     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
919     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
920     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
921     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
922     // There is no noticable performance difference here between Lazy and Eager
923     // UpdateStrategy based on some test results. It is feasible to switch the
924     // UpdateStrategy to Lazy if we find it profitable later.
925     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
926 
927     return TailRecursionEliminator::eliminate(
928         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
929         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
930         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
931   }
932 };
933 }
934 
935 char TailCallElim::ID = 0;
936 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
937                       false, false)
938 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
939 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
940 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
941                     false, false)
942 
943 // Public interface to the TailCallElimination pass
944 FunctionPass *llvm::createTailCallEliminationPass() {
945   return new TailCallElim();
946 }
947 
948 PreservedAnalyses TailCallElimPass::run(Function &F,
949                                         FunctionAnalysisManager &AM) {
950 
951   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
952   AliasAnalysis &AA = AM.getResult<AAManager>(F);
953   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
954   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
955   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
956   // There is no noticable performance difference here between Lazy and Eager
957   // UpdateStrategy based on some test results. It is feasible to switch the
958   // UpdateStrategy to Lazy if we find it profitable later.
959   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
960   bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
961 
962   if (!Changed)
963     return PreservedAnalyses::all();
964   PreservedAnalyses PA;
965   PA.preserve<DominatorTreeAnalysis>();
966   PA.preserve<PostDominatorTreeAnalysis>();
967   return PA;
968 }
969