1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/CodeMetrics.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 30 #include "llvm/Analysis/MemorySSA.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ProfileSummaryInfo.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DiagnosticInfo.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Metadata.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/LoopPassManager.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/LoopPeel.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include "llvm/Transforms/Utils/UnrollLoop.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <limits> 67 #include <optional> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "loop-unroll" 75 76 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 77 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 78 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 79 " the current top-most loop. This is sometimes preferred to reduce" 80 " compile time.")); 81 82 static cl::opt<unsigned> 83 UnrollThreshold("unroll-threshold", cl::Hidden, 84 cl::desc("The cost threshold for loop unrolling")); 85 86 static cl::opt<unsigned> 87 UnrollOptSizeThreshold( 88 "unroll-optsize-threshold", cl::init(0), cl::Hidden, 89 cl::desc("The cost threshold for loop unrolling when optimizing for " 90 "size")); 91 92 static cl::opt<unsigned> UnrollPartialThreshold( 93 "unroll-partial-threshold", cl::Hidden, 94 cl::desc("The cost threshold for partial loop unrolling")); 95 96 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 97 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 98 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 99 "to the threshold when aggressively unrolling a loop due to the " 100 "dynamic cost savings. If completely unrolling a loop will reduce " 101 "the total runtime from X to Y, we boost the loop unroll " 102 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 103 "X/Y). This limit avoids excessive code bloat.")); 104 105 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 106 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 107 cl::desc("Don't allow loop unrolling to simulate more than this number of " 108 "iterations when checking full unroll profitability")); 109 110 static cl::opt<unsigned> UnrollCount( 111 "unroll-count", cl::Hidden, 112 cl::desc("Use this unroll count for all loops including those with " 113 "unroll_count pragma values, for testing purposes")); 114 115 static cl::opt<unsigned> UnrollMaxCount( 116 "unroll-max-count", cl::Hidden, 117 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 118 "testing purposes")); 119 120 static cl::opt<unsigned> UnrollFullMaxCount( 121 "unroll-full-max-count", cl::Hidden, 122 cl::desc( 123 "Set the max unroll count for full unrolling, for testing purposes")); 124 125 static cl::opt<bool> 126 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 127 cl::desc("Allows loops to be partially unrolled until " 128 "-unroll-threshold loop size is reached.")); 129 130 static cl::opt<bool> UnrollAllowRemainder( 131 "unroll-allow-remainder", cl::Hidden, 132 cl::desc("Allow generation of a loop remainder (extra iterations) " 133 "when unrolling a loop.")); 134 135 static cl::opt<bool> 136 UnrollRuntime("unroll-runtime", cl::Hidden, 137 cl::desc("Unroll loops with run-time trip counts")); 138 139 static cl::opt<unsigned> UnrollMaxUpperBound( 140 "unroll-max-upperbound", cl::init(8), cl::Hidden, 141 cl::desc( 142 "The max of trip count upper bound that is considered in unrolling")); 143 144 static cl::opt<unsigned> PragmaUnrollThreshold( 145 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 146 cl::desc("Unrolled size limit for loops with an unroll(full) or " 147 "unroll_count pragma.")); 148 149 static cl::opt<unsigned> FlatLoopTripCountThreshold( 150 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 151 cl::desc("If the runtime tripcount for the loop is lower than the " 152 "threshold, the loop is considered as flat and will be less " 153 "aggressively unrolled.")); 154 155 static cl::opt<bool> UnrollUnrollRemainder( 156 "unroll-remainder", cl::Hidden, 157 cl::desc("Allow the loop remainder to be unrolled.")); 158 159 // This option isn't ever intended to be enabled, it serves to allow 160 // experiments to check the assumptions about when this kind of revisit is 161 // necessary. 162 static cl::opt<bool> UnrollRevisitChildLoops( 163 "unroll-revisit-child-loops", cl::Hidden, 164 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 165 "This shouldn't typically be needed as child loops (or their " 166 "clones) were already visited.")); 167 168 static cl::opt<unsigned> UnrollThresholdAggressive( 169 "unroll-threshold-aggressive", cl::init(300), cl::Hidden, 170 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) " 171 "optimizations")); 172 static cl::opt<unsigned> 173 UnrollThresholdDefault("unroll-threshold-default", cl::init(150), 174 cl::Hidden, 175 cl::desc("Default threshold (max size of unrolled " 176 "loop), used in all but O3 optimizations")); 177 178 static cl::opt<unsigned> PragmaUnrollFullMaxIterations( 179 "pragma-unroll-full-max-iterations", cl::init(1'000'000), cl::Hidden, 180 cl::desc("Maximum allowed iterations to unroll under pragma unroll full.")); 181 182 /// A magic value for use with the Threshold parameter to indicate 183 /// that the loop unroll should be performed regardless of how much 184 /// code expansion would result. 185 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 186 187 /// Gather the various unrolling parameters based on the defaults, compiler 188 /// flags, TTI overrides and user specified parameters. 189 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 190 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 191 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 192 OptimizationRemarkEmitter &ORE, int OptLevel, 193 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount, 194 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime, 195 std::optional<bool> UserUpperBound, 196 std::optional<unsigned> UserFullUnrollMaxCount) { 197 TargetTransformInfo::UnrollingPreferences UP; 198 199 // Set up the defaults 200 UP.Threshold = 201 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault; 202 UP.MaxPercentThresholdBoost = 400; 203 UP.OptSizeThreshold = UnrollOptSizeThreshold; 204 UP.PartialThreshold = 150; 205 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold; 206 UP.Count = 0; 207 UP.DefaultUnrollRuntimeCount = 8; 208 UP.MaxCount = std::numeric_limits<unsigned>::max(); 209 UP.MaxUpperBound = UnrollMaxUpperBound; 210 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 211 UP.BEInsns = 2; 212 UP.Partial = false; 213 UP.Runtime = false; 214 UP.AllowRemainder = true; 215 UP.UnrollRemainder = false; 216 UP.AllowExpensiveTripCount = false; 217 UP.Force = false; 218 UP.UpperBound = false; 219 UP.UnrollAndJam = false; 220 UP.UnrollAndJamInnerLoopThreshold = 60; 221 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 222 UP.SCEVExpansionBudget = SCEVCheapExpansionBudget; 223 UP.RuntimeUnrollMultiExit = false; 224 225 // Override with any target specific settings 226 TTI.getUnrollingPreferences(L, SE, UP, &ORE); 227 228 // Apply size attributes 229 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 230 // Let unroll hints / pragmas take precedence over PGSO. 231 (hasUnrollTransformation(L) != TM_ForcedByUser && 232 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 233 PGSOQueryType::IRPass)); 234 if (OptForSize) { 235 UP.Threshold = UP.OptSizeThreshold; 236 UP.PartialThreshold = UP.PartialOptSizeThreshold; 237 UP.MaxPercentThresholdBoost = 100; 238 } 239 240 // Apply any user values specified by cl::opt 241 if (UnrollThreshold.getNumOccurrences() > 0) 242 UP.Threshold = UnrollThreshold; 243 if (UnrollPartialThreshold.getNumOccurrences() > 0) 244 UP.PartialThreshold = UnrollPartialThreshold; 245 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 246 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 247 if (UnrollMaxCount.getNumOccurrences() > 0) 248 UP.MaxCount = UnrollMaxCount; 249 if (UnrollMaxUpperBound.getNumOccurrences() > 0) 250 UP.MaxUpperBound = UnrollMaxUpperBound; 251 if (UnrollFullMaxCount.getNumOccurrences() > 0) 252 UP.FullUnrollMaxCount = UnrollFullMaxCount; 253 if (UnrollAllowPartial.getNumOccurrences() > 0) 254 UP.Partial = UnrollAllowPartial; 255 if (UnrollAllowRemainder.getNumOccurrences() > 0) 256 UP.AllowRemainder = UnrollAllowRemainder; 257 if (UnrollRuntime.getNumOccurrences() > 0) 258 UP.Runtime = UnrollRuntime; 259 if (UnrollMaxUpperBound == 0) 260 UP.UpperBound = false; 261 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 262 UP.UnrollRemainder = UnrollUnrollRemainder; 263 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0) 264 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze; 265 266 // Apply user values provided by argument 267 if (UserThreshold) { 268 UP.Threshold = *UserThreshold; 269 UP.PartialThreshold = *UserThreshold; 270 } 271 if (UserCount) 272 UP.Count = *UserCount; 273 if (UserAllowPartial) 274 UP.Partial = *UserAllowPartial; 275 if (UserRuntime) 276 UP.Runtime = *UserRuntime; 277 if (UserUpperBound) 278 UP.UpperBound = *UserUpperBound; 279 if (UserFullUnrollMaxCount) 280 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount; 281 282 return UP; 283 } 284 285 namespace { 286 287 /// A struct to densely store the state of an instruction after unrolling at 288 /// each iteration. 289 /// 290 /// This is designed to work like a tuple of <Instruction *, int> for the 291 /// purposes of hashing and lookup, but to be able to associate two boolean 292 /// states with each key. 293 struct UnrolledInstState { 294 Instruction *I; 295 int Iteration : 30; 296 unsigned IsFree : 1; 297 unsigned IsCounted : 1; 298 }; 299 300 /// Hashing and equality testing for a set of the instruction states. 301 struct UnrolledInstStateKeyInfo { 302 using PtrInfo = DenseMapInfo<Instruction *>; 303 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 304 305 static inline UnrolledInstState getEmptyKey() { 306 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 307 } 308 309 static inline UnrolledInstState getTombstoneKey() { 310 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 311 } 312 313 static inline unsigned getHashValue(const UnrolledInstState &S) { 314 return PairInfo::getHashValue({S.I, S.Iteration}); 315 } 316 317 static inline bool isEqual(const UnrolledInstState &LHS, 318 const UnrolledInstState &RHS) { 319 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 320 } 321 }; 322 323 struct EstimatedUnrollCost { 324 /// The estimated cost after unrolling. 325 unsigned UnrolledCost; 326 327 /// The estimated dynamic cost of executing the instructions in the 328 /// rolled form. 329 unsigned RolledDynamicCost; 330 }; 331 332 struct PragmaInfo { 333 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU) 334 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC), 335 PragmaEnableUnroll(PEU) {} 336 const bool UserUnrollCount; 337 const bool PragmaFullUnroll; 338 const unsigned PragmaCount; 339 const bool PragmaEnableUnroll; 340 }; 341 342 } // end anonymous namespace 343 344 /// Figure out if the loop is worth full unrolling. 345 /// 346 /// Complete loop unrolling can make some loads constant, and we need to know 347 /// if that would expose any further optimization opportunities. This routine 348 /// estimates this optimization. It computes cost of unrolled loop 349 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 350 /// dynamic cost we mean that we won't count costs of blocks that are known not 351 /// to be executed (i.e. if we have a branch in the loop and we know that at the 352 /// given iteration its condition would be resolved to true, we won't add up the 353 /// cost of the 'false'-block). 354 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 355 /// the analysis failed (no benefits expected from the unrolling, or the loop is 356 /// too big to analyze), the returned value is std::nullopt. 357 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 358 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 359 const SmallPtrSetImpl<const Value *> &EphValues, 360 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize, 361 unsigned MaxIterationsCountToAnalyze) { 362 // We want to be able to scale offsets by the trip count and add more offsets 363 // to them without checking for overflows, and we already don't want to 364 // analyze *massive* trip counts, so we force the max to be reasonably small. 365 assert(MaxIterationsCountToAnalyze < 366 (unsigned)(std::numeric_limits<int>::max() / 2) && 367 "The unroll iterations max is too large!"); 368 369 // Only analyze inner loops. We can't properly estimate cost of nested loops 370 // and we won't visit inner loops again anyway. 371 if (!L->isInnermost()) 372 return std::nullopt; 373 374 // Don't simulate loops with a big or unknown tripcount 375 if (!TripCount || TripCount > MaxIterationsCountToAnalyze) 376 return std::nullopt; 377 378 SmallSetVector<BasicBlock *, 16> BBWorklist; 379 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 380 DenseMap<Value *, Value *> SimplifiedValues; 381 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues; 382 383 // The estimated cost of the unrolled form of the loop. We try to estimate 384 // this by simplifying as much as we can while computing the estimate. 385 InstructionCost UnrolledCost = 0; 386 387 // We also track the estimated dynamic (that is, actually executed) cost in 388 // the rolled form. This helps identify cases when the savings from unrolling 389 // aren't just exposing dead control flows, but actual reduced dynamic 390 // instructions due to the simplifications which we expect to occur after 391 // unrolling. 392 InstructionCost RolledDynamicCost = 0; 393 394 // We track the simplification of each instruction in each iteration. We use 395 // this to recursively merge costs into the unrolled cost on-demand so that 396 // we don't count the cost of any dead code. This is essentially a map from 397 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 398 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 399 400 // A small worklist used to accumulate cost of instructions from each 401 // observable and reached root in the loop. 402 SmallVector<Instruction *, 16> CostWorklist; 403 404 // PHI-used worklist used between iterations while accumulating cost. 405 SmallVector<Instruction *, 4> PHIUsedList; 406 407 // Helper function to accumulate cost for instructions in the loop. 408 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 409 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 410 assert(CostWorklist.empty() && "Must start with an empty cost list"); 411 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 412 CostWorklist.push_back(&RootI); 413 TargetTransformInfo::TargetCostKind CostKind = 414 RootI.getFunction()->hasMinSize() ? 415 TargetTransformInfo::TCK_CodeSize : 416 TargetTransformInfo::TCK_SizeAndLatency; 417 for (;; --Iteration) { 418 do { 419 Instruction *I = CostWorklist.pop_back_val(); 420 421 // InstCostMap only uses I and Iteration as a key, the other two values 422 // don't matter here. 423 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 424 if (CostIter == InstCostMap.end()) 425 // If an input to a PHI node comes from a dead path through the loop 426 // we may have no cost data for it here. What that actually means is 427 // that it is free. 428 continue; 429 auto &Cost = *CostIter; 430 if (Cost.IsCounted) 431 // Already counted this instruction. 432 continue; 433 434 // Mark that we are counting the cost of this instruction now. 435 Cost.IsCounted = true; 436 437 // If this is a PHI node in the loop header, just add it to the PHI set. 438 if (auto *PhiI = dyn_cast<PHINode>(I)) 439 if (PhiI->getParent() == L->getHeader()) { 440 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 441 "inherently simplify during unrolling."); 442 if (Iteration == 0) 443 continue; 444 445 // Push the incoming value from the backedge into the PHI used list 446 // if it is an in-loop instruction. We'll use this to populate the 447 // cost worklist for the next iteration (as we count backwards). 448 if (auto *OpI = dyn_cast<Instruction>( 449 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 450 if (L->contains(OpI)) 451 PHIUsedList.push_back(OpI); 452 continue; 453 } 454 455 // First accumulate the cost of this instruction. 456 if (!Cost.IsFree) { 457 // Consider simplified operands in instruction cost. 458 SmallVector<Value *, 4> Operands; 459 transform(I->operands(), std::back_inserter(Operands), 460 [&](Value *Op) { 461 if (auto Res = SimplifiedValues.lookup(Op)) 462 return Res; 463 return Op; 464 }); 465 UnrolledCost += TTI.getInstructionCost(I, Operands, CostKind); 466 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 467 << Iteration << "): "); 468 LLVM_DEBUG(I->dump()); 469 } 470 471 // We must count the cost of every operand which is not free, 472 // recursively. If we reach a loop PHI node, simply add it to the set 473 // to be considered on the next iteration (backwards!). 474 for (Value *Op : I->operands()) { 475 // Check whether this operand is free due to being a constant or 476 // outside the loop. 477 auto *OpI = dyn_cast<Instruction>(Op); 478 if (!OpI || !L->contains(OpI)) 479 continue; 480 481 // Otherwise accumulate its cost. 482 CostWorklist.push_back(OpI); 483 } 484 } while (!CostWorklist.empty()); 485 486 if (PHIUsedList.empty()) 487 // We've exhausted the search. 488 break; 489 490 assert(Iteration > 0 && 491 "Cannot track PHI-used values past the first iteration!"); 492 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 493 PHIUsedList.clear(); 494 } 495 }; 496 497 // Ensure that we don't violate the loop structure invariants relied on by 498 // this analysis. 499 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 500 assert(L->isLCSSAForm(DT) && 501 "Must have loops in LCSSA form to track live-out values."); 502 503 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 504 505 TargetTransformInfo::TargetCostKind CostKind = 506 L->getHeader()->getParent()->hasMinSize() ? 507 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency; 508 // Simulate execution of each iteration of the loop counting instructions, 509 // which would be simplified. 510 // Since the same load will take different values on different iterations, 511 // we literally have to go through all loop's iterations. 512 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 513 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 514 515 // Prepare for the iteration by collecting any simplified entry or backedge 516 // inputs. 517 for (Instruction &I : *L->getHeader()) { 518 auto *PHI = dyn_cast<PHINode>(&I); 519 if (!PHI) 520 break; 521 522 // The loop header PHI nodes must have exactly two input: one from the 523 // loop preheader and one from the loop latch. 524 assert( 525 PHI->getNumIncomingValues() == 2 && 526 "Must have an incoming value only for the preheader and the latch."); 527 528 Value *V = PHI->getIncomingValueForBlock( 529 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 530 if (Iteration != 0 && SimplifiedValues.count(V)) 531 V = SimplifiedValues.lookup(V); 532 SimplifiedInputValues.push_back({PHI, V}); 533 } 534 535 // Now clear and re-populate the map for the next iteration. 536 SimplifiedValues.clear(); 537 while (!SimplifiedInputValues.empty()) 538 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 539 540 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 541 542 BBWorklist.clear(); 543 BBWorklist.insert(L->getHeader()); 544 // Note that we *must not* cache the size, this loop grows the worklist. 545 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 546 BasicBlock *BB = BBWorklist[Idx]; 547 548 // Visit all instructions in the given basic block and try to simplify 549 // it. We don't change the actual IR, just count optimization 550 // opportunities. 551 for (Instruction &I : *BB) { 552 // These won't get into the final code - don't even try calculating the 553 // cost for them. 554 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 555 continue; 556 557 // Track this instruction's expected baseline cost when executing the 558 // rolled loop form. 559 RolledDynamicCost += TTI.getInstructionCost(&I, CostKind); 560 561 // Visit the instruction to analyze its loop cost after unrolling, 562 // and if the visitor returns true, mark the instruction as free after 563 // unrolling and continue. 564 bool IsFree = Analyzer.visit(I); 565 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 566 (unsigned)IsFree, 567 /*IsCounted*/ false}).second; 568 (void)Inserted; 569 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 570 571 if (IsFree) 572 continue; 573 574 // Can't properly model a cost of a call. 575 // FIXME: With a proper cost model we should be able to do it. 576 if (auto *CI = dyn_cast<CallInst>(&I)) { 577 const Function *Callee = CI->getCalledFunction(); 578 if (!Callee || TTI.isLoweredToCall(Callee)) { 579 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 580 return std::nullopt; 581 } 582 } 583 584 // If the instruction might have a side-effect recursively account for 585 // the cost of it and all the instructions leading up to it. 586 if (I.mayHaveSideEffects()) 587 AddCostRecursively(I, Iteration); 588 589 // If unrolled body turns out to be too big, bail out. 590 if (UnrolledCost > MaxUnrolledLoopSize) { 591 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 592 << " UnrolledCost: " << UnrolledCost 593 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 594 << "\n"); 595 return std::nullopt; 596 } 597 } 598 599 Instruction *TI = BB->getTerminator(); 600 601 auto getSimplifiedConstant = [&](Value *V) -> Constant * { 602 if (SimplifiedValues.count(V)) 603 V = SimplifiedValues.lookup(V); 604 return dyn_cast<Constant>(V); 605 }; 606 607 // Add in the live successors by first checking whether we have terminator 608 // that may be simplified based on the values simplified by this call. 609 BasicBlock *KnownSucc = nullptr; 610 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 611 if (BI->isConditional()) { 612 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) { 613 // Just take the first successor if condition is undef 614 if (isa<UndefValue>(SimpleCond)) 615 KnownSucc = BI->getSuccessor(0); 616 else if (ConstantInt *SimpleCondVal = 617 dyn_cast<ConstantInt>(SimpleCond)) 618 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 619 } 620 } 621 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 622 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) { 623 // Just take the first successor if condition is undef 624 if (isa<UndefValue>(SimpleCond)) 625 KnownSucc = SI->getSuccessor(0); 626 else if (ConstantInt *SimpleCondVal = 627 dyn_cast<ConstantInt>(SimpleCond)) 628 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 629 } 630 } 631 if (KnownSucc) { 632 if (L->contains(KnownSucc)) 633 BBWorklist.insert(KnownSucc); 634 else 635 ExitWorklist.insert({BB, KnownSucc}); 636 continue; 637 } 638 639 // Add BB's successors to the worklist. 640 for (BasicBlock *Succ : successors(BB)) 641 if (L->contains(Succ)) 642 BBWorklist.insert(Succ); 643 else 644 ExitWorklist.insert({BB, Succ}); 645 AddCostRecursively(*TI, Iteration); 646 } 647 648 // If we found no optimization opportunities on the first iteration, we 649 // won't find them on later ones too. 650 if (UnrolledCost == RolledDynamicCost) { 651 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 652 << " UnrolledCost: " << UnrolledCost << "\n"); 653 return std::nullopt; 654 } 655 } 656 657 while (!ExitWorklist.empty()) { 658 BasicBlock *ExitingBB, *ExitBB; 659 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 660 661 for (Instruction &I : *ExitBB) { 662 auto *PN = dyn_cast<PHINode>(&I); 663 if (!PN) 664 break; 665 666 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 667 if (auto *OpI = dyn_cast<Instruction>(Op)) 668 if (L->contains(OpI)) 669 AddCostRecursively(*OpI, TripCount - 1); 670 } 671 } 672 673 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() && 674 "All instructions must have a valid cost, whether the " 675 "loop is rolled or unrolled."); 676 677 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 678 << "UnrolledCost: " << UnrolledCost << ", " 679 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 680 return {{unsigned(*UnrolledCost.getValue()), 681 unsigned(*RolledDynamicCost.getValue())}}; 682 } 683 684 UnrollCostEstimator::UnrollCostEstimator( 685 const Loop *L, const TargetTransformInfo &TTI, 686 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 687 CodeMetrics Metrics; 688 for (BasicBlock *BB : L->blocks()) 689 Metrics.analyzeBasicBlock(BB, TTI, EphValues, /* PrepareForLTO= */ false, 690 L); 691 NumInlineCandidates = Metrics.NumInlineCandidates; 692 NotDuplicatable = Metrics.notDuplicatable; 693 Convergence = Metrics.Convergence; 694 LoopSize = Metrics.NumInsts; 695 ConvergenceAllowsRuntime = 696 Metrics.Convergence != ConvergenceKind::Uncontrolled && 697 !getLoopConvergenceHeart(L); 698 699 // Don't allow an estimate of size zero. This would allows unrolling of loops 700 // with huge iteration counts, which is a compile time problem even if it's 701 // not a problem for code quality. Also, the code using this size may assume 702 // that each loop has at least three instructions (likely a conditional 703 // branch, a comparison feeding that branch, and some kind of loop increment 704 // feeding that comparison instruction). 705 if (LoopSize.isValid() && LoopSize < BEInsns + 1) 706 // This is an open coded max() on InstructionCost 707 LoopSize = BEInsns + 1; 708 } 709 710 bool UnrollCostEstimator::canUnroll() const { 711 switch (Convergence) { 712 case ConvergenceKind::ExtendedLoop: 713 LLVM_DEBUG(dbgs() << " Convergence prevents unrolling.\n"); 714 return false; 715 default: 716 break; 717 } 718 if (!LoopSize.isValid()) { 719 LLVM_DEBUG(dbgs() << " Invalid loop size prevents unrolling.\n"); 720 return false; 721 } 722 if (NotDuplicatable) { 723 LLVM_DEBUG(dbgs() << " Non-duplicatable blocks prevent unrolling.\n"); 724 return false; 725 } 726 return true; 727 } 728 729 uint64_t UnrollCostEstimator::getUnrolledLoopSize( 730 const TargetTransformInfo::UnrollingPreferences &UP, 731 unsigned CountOverwrite) const { 732 unsigned LS = *LoopSize.getValue(); 733 assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 734 if (CountOverwrite) 735 return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns; 736 else 737 return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns; 738 } 739 740 // Returns the loop hint metadata node with the given name (for example, 741 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 742 // returned. 743 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) { 744 if (MDNode *LoopID = L->getLoopID()) 745 return GetUnrollMetadata(LoopID, Name); 746 return nullptr; 747 } 748 749 // Returns true if the loop has an unroll(full) pragma. 750 static bool hasUnrollFullPragma(const Loop *L) { 751 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 752 } 753 754 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 755 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 756 static bool hasUnrollEnablePragma(const Loop *L) { 757 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 758 } 759 760 // Returns true if the loop has an runtime unroll(disable) pragma. 761 static bool hasRuntimeUnrollDisablePragma(const Loop *L) { 762 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 763 } 764 765 // If loop has an unroll_count pragma return the (necessarily 766 // positive) value from the pragma. Otherwise return 0. 767 static unsigned unrollCountPragmaValue(const Loop *L) { 768 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 769 if (MD) { 770 assert(MD->getNumOperands() == 2 && 771 "Unroll count hint metadata should have two operands."); 772 unsigned Count = 773 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 774 assert(Count >= 1 && "Unroll count must be positive."); 775 return Count; 776 } 777 return 0; 778 } 779 780 // Computes the boosting factor for complete unrolling. 781 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 782 // be beneficial to fully unroll the loop even if unrolledcost is large. We 783 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 784 // the unroll threshold. 785 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 786 unsigned MaxPercentThresholdBoost) { 787 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 788 return 100; 789 else if (Cost.UnrolledCost != 0) 790 // The boosting factor is RolledDynamicCost / UnrolledCost 791 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 792 MaxPercentThresholdBoost); 793 else 794 return MaxPercentThresholdBoost; 795 } 796 797 static std::optional<unsigned> 798 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo, 799 const unsigned TripMultiple, const unsigned TripCount, 800 unsigned MaxTripCount, const UnrollCostEstimator UCE, 801 const TargetTransformInfo::UnrollingPreferences &UP) { 802 803 // Using unroll pragma 804 // 1st priority is unroll count set by "unroll-count" option. 805 806 if (PInfo.UserUnrollCount) { 807 if (UP.AllowRemainder && 808 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold) 809 return (unsigned)UnrollCount; 810 } 811 812 // 2nd priority is unroll count set by pragma. 813 if (PInfo.PragmaCount > 0) { 814 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0))) 815 return PInfo.PragmaCount; 816 } 817 818 if (PInfo.PragmaFullUnroll && TripCount != 0) { 819 // Certain cases with UBSAN can cause trip count to be calculated as 820 // INT_MAX, Block full unrolling at a reasonable limit so that the compiler 821 // doesn't hang trying to unroll the loop. See PR77842 822 if (TripCount > PragmaUnrollFullMaxIterations) { 823 LLVM_DEBUG(dbgs() << "Won't unroll; trip count is too large\n"); 824 return std::nullopt; 825 } 826 827 return TripCount; 828 } 829 830 if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount && 831 MaxTripCount <= UP.MaxUpperBound) 832 return MaxTripCount; 833 834 // if didn't return until here, should continue to other priorties 835 return std::nullopt; 836 } 837 838 static std::optional<unsigned> shouldFullUnroll( 839 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, 840 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 841 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE, 842 const TargetTransformInfo::UnrollingPreferences &UP) { 843 assert(FullUnrollTripCount && "should be non-zero!"); 844 845 if (FullUnrollTripCount > UP.FullUnrollMaxCount) 846 return std::nullopt; 847 848 // When computing the unrolled size, note that BEInsns are not replicated 849 // like the rest of the loop body. 850 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold) 851 return FullUnrollTripCount; 852 853 // The loop isn't that small, but we still can fully unroll it if that 854 // helps to remove a significant number of instructions. 855 // To check that, run additional analysis on the loop. 856 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 857 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 858 UP.Threshold * UP.MaxPercentThresholdBoost / 100, 859 UP.MaxIterationsCountToAnalyze)) { 860 unsigned Boost = 861 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 862 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) 863 return FullUnrollTripCount; 864 } 865 return std::nullopt; 866 } 867 868 static std::optional<unsigned> 869 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount, 870 const UnrollCostEstimator UCE, 871 const TargetTransformInfo::UnrollingPreferences &UP) { 872 873 if (!TripCount) 874 return std::nullopt; 875 876 if (!UP.Partial) { 877 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 878 << "-unroll-allow-partial not given\n"); 879 return 0; 880 } 881 unsigned count = UP.Count; 882 if (count == 0) 883 count = TripCount; 884 if (UP.PartialThreshold != NoThreshold) { 885 // Reduce unroll count to be modulo of TripCount for partial unrolling. 886 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 887 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 888 (LoopSize - UP.BEInsns); 889 if (count > UP.MaxCount) 890 count = UP.MaxCount; 891 while (count != 0 && TripCount % count != 0) 892 count--; 893 if (UP.AllowRemainder && count <= 1) { 894 // If there is no Count that is modulo of TripCount, set Count to 895 // largest power-of-two factor that satisfies the threshold limit. 896 // As we'll create fixup loop, do the type of unrolling only if 897 // remainder loop is allowed. 898 count = UP.DefaultUnrollRuntimeCount; 899 while (count != 0 && 900 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold) 901 count >>= 1; 902 } 903 if (count < 2) { 904 count = 0; 905 } 906 } else { 907 count = TripCount; 908 } 909 if (count > UP.MaxCount) 910 count = UP.MaxCount; 911 912 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n"); 913 914 return count; 915 } 916 // Returns true if unroll count was set explicitly. 917 // Calculates unroll count and writes it to UP.Count. 918 // Unless IgnoreUser is true, will also use metadata and command-line options 919 // that are specific to to the LoopUnroll pass (which, for instance, are 920 // irrelevant for the LoopUnrollAndJam pass). 921 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 922 // many LoopUnroll-specific options. The shared functionality should be 923 // refactored into it own function. 924 bool llvm::computeUnrollCount( 925 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 926 AssumptionCache *AC, ScalarEvolution &SE, 927 const SmallPtrSetImpl<const Value *> &EphValues, 928 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount, 929 bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE, 930 TargetTransformInfo::UnrollingPreferences &UP, 931 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) { 932 933 unsigned LoopSize = UCE.getRolledLoopSize(); 934 935 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 936 const bool PragmaFullUnroll = hasUnrollFullPragma(L); 937 const unsigned PragmaCount = unrollCountPragmaValue(L); 938 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L); 939 940 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 941 PragmaEnableUnroll || UserUnrollCount; 942 943 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount, 944 PragmaEnableUnroll); 945 // Use an explicit peel count that has been specified for testing. In this 946 // case it's not permitted to also specify an explicit unroll count. 947 if (PP.PeelCount) { 948 if (UnrollCount.getNumOccurrences() > 0) { 949 report_fatal_error("Cannot specify both explicit peel count and " 950 "explicit unroll count", /*GenCrashDiag=*/false); 951 } 952 UP.Count = 1; 953 UP.Runtime = false; 954 return true; 955 } 956 // Check for explicit Count. 957 // 1st priority is unroll count set by "unroll-count" option. 958 // 2nd priority is unroll count set by pragma. 959 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount, 960 MaxTripCount, UCE, UP)) { 961 UP.Count = *UnrollFactor; 962 963 if (UserUnrollCount || (PragmaCount > 0)) { 964 UP.AllowExpensiveTripCount = true; 965 UP.Force = true; 966 } 967 UP.Runtime |= (PragmaCount > 0); 968 return ExplicitUnroll; 969 } else { 970 if (ExplicitUnroll && TripCount != 0) { 971 // If the loop has an unrolling pragma, we want to be more aggressive with 972 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 973 // value which is larger than the default limits. 974 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 975 UP.PartialThreshold = 976 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 977 } 978 } 979 980 // 3rd priority is exact full unrolling. This will eliminate all copies 981 // of some exit test. 982 UP.Count = 0; 983 if (TripCount) { 984 UP.Count = TripCount; 985 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 986 TripCount, UCE, UP)) { 987 UP.Count = *UnrollFactor; 988 UseUpperBound = false; 989 return ExplicitUnroll; 990 } 991 } 992 993 // 4th priority is bounded unrolling. 994 // We can unroll by the upper bound amount if it's generally allowed or if 995 // we know that the loop is executed either the upper bound or zero times. 996 // (MaxOrZero unrolling keeps only the first loop test, so the number of 997 // loop tests remains the same compared to the non-unrolled version, whereas 998 // the generic upper bound unrolling keeps all but the last loop test so the 999 // number of loop tests goes up which may end up being worse on targets with 1000 // constrained branch predictor resources so is controlled by an option.) 1001 // In addition we only unroll small upper bounds. 1002 // Note that the cost of bounded unrolling is always strictly greater than 1003 // cost of exact full unrolling. As such, if we have an exact count and 1004 // found it unprofitable, we'll never chose to bounded unroll. 1005 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) && 1006 MaxTripCount <= UP.MaxUpperBound) { 1007 UP.Count = MaxTripCount; 1008 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues, 1009 MaxTripCount, UCE, UP)) { 1010 UP.Count = *UnrollFactor; 1011 UseUpperBound = true; 1012 return ExplicitUnroll; 1013 } 1014 } 1015 1016 // 5th priority is loop peeling. 1017 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold); 1018 if (PP.PeelCount) { 1019 UP.Runtime = false; 1020 UP.Count = 1; 1021 return ExplicitUnroll; 1022 } 1023 1024 // Before starting partial unrolling, set up.partial to true, 1025 // if user explicitly asked for unrolling 1026 if (TripCount) 1027 UP.Partial |= ExplicitUnroll; 1028 1029 // 6th priority is partial unrolling. 1030 // Try partial unroll only when TripCount could be statically calculated. 1031 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) { 1032 UP.Count = *UnrollFactor; 1033 1034 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 1035 UP.Count != TripCount) 1036 ORE->emit([&]() { 1037 return OptimizationRemarkMissed(DEBUG_TYPE, 1038 "FullUnrollAsDirectedTooLarge", 1039 L->getStartLoc(), L->getHeader()) 1040 << "Unable to fully unroll loop as directed by unroll pragma " 1041 "because " 1042 "unrolled size is too large."; 1043 }); 1044 1045 if (UP.PartialThreshold != NoThreshold) { 1046 if (UP.Count == 0) { 1047 if (PragmaEnableUnroll) 1048 ORE->emit([&]() { 1049 return OptimizationRemarkMissed(DEBUG_TYPE, 1050 "UnrollAsDirectedTooLarge", 1051 L->getStartLoc(), L->getHeader()) 1052 << "Unable to unroll loop as directed by unroll(enable) " 1053 "pragma " 1054 "because unrolled size is too large."; 1055 }); 1056 } 1057 } 1058 return ExplicitUnroll; 1059 } 1060 assert(TripCount == 0 && 1061 "All cases when TripCount is constant should be covered here."); 1062 if (PragmaFullUnroll) 1063 ORE->emit([&]() { 1064 return OptimizationRemarkMissed( 1065 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 1066 L->getStartLoc(), L->getHeader()) 1067 << "Unable to fully unroll loop as directed by unroll(full) " 1068 "pragma " 1069 "because loop has a runtime trip count."; 1070 }); 1071 1072 // 7th priority is runtime unrolling. 1073 // Don't unroll a runtime trip count loop when it is disabled. 1074 if (hasRuntimeUnrollDisablePragma(L)) { 1075 UP.Count = 0; 1076 return false; 1077 } 1078 1079 // Don't unroll a small upper bound loop unless user or TTI asked to do so. 1080 if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) { 1081 UP.Count = 0; 1082 return false; 1083 } 1084 1085 // Check if the runtime trip count is too small when profile is available. 1086 if (L->getHeader()->getParent()->hasProfileData()) { 1087 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 1088 if (*ProfileTripCount < FlatLoopTripCountThreshold) 1089 return false; 1090 else 1091 UP.AllowExpensiveTripCount = true; 1092 } 1093 } 1094 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 1095 if (!UP.Runtime) { 1096 LLVM_DEBUG( 1097 dbgs() << " will not try to unroll loop with runtime trip count " 1098 << "-unroll-runtime not given\n"); 1099 UP.Count = 0; 1100 return false; 1101 } 1102 if (UP.Count == 0) 1103 UP.Count = UP.DefaultUnrollRuntimeCount; 1104 1105 // Reduce unroll count to be the largest power-of-two factor of 1106 // the original count which satisfies the threshold limit. 1107 while (UP.Count != 0 && 1108 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold) 1109 UP.Count >>= 1; 1110 1111 #ifndef NDEBUG 1112 unsigned OrigCount = UP.Count; 1113 #endif 1114 1115 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 1116 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 1117 UP.Count >>= 1; 1118 LLVM_DEBUG( 1119 dbgs() << "Remainder loop is restricted (that could architecture " 1120 "specific or because the loop contains a convergent " 1121 "instruction), so unroll count must divide the trip " 1122 "multiple, " 1123 << TripMultiple << ". Reducing unroll count from " << OrigCount 1124 << " to " << UP.Count << ".\n"); 1125 1126 using namespace ore; 1127 1128 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder) 1129 ORE->emit([&]() { 1130 return OptimizationRemarkMissed(DEBUG_TYPE, 1131 "DifferentUnrollCountFromDirected", 1132 L->getStartLoc(), L->getHeader()) 1133 << "Unable to unroll loop the number of times directed by " 1134 "unroll_count pragma because remainder loop is restricted " 1135 "(that could architecture specific or because the loop " 1136 "contains a convergent instruction) and so must have an " 1137 "unroll " 1138 "count that divides the loop trip multiple of " 1139 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 1140 << NV("UnrollCount", UP.Count) << " time(s)."; 1141 }); 1142 } 1143 1144 if (UP.Count > UP.MaxCount) 1145 UP.Count = UP.MaxCount; 1146 1147 if (MaxTripCount && UP.Count > MaxTripCount) 1148 UP.Count = MaxTripCount; 1149 1150 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count 1151 << "\n"); 1152 if (UP.Count < 2) 1153 UP.Count = 0; 1154 return ExplicitUnroll; 1155 } 1156 1157 static LoopUnrollResult 1158 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 1159 const TargetTransformInfo &TTI, AssumptionCache &AC, 1160 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 1161 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel, 1162 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV, 1163 std::optional<unsigned> ProvidedCount, 1164 std::optional<unsigned> ProvidedThreshold, 1165 std::optional<bool> ProvidedAllowPartial, 1166 std::optional<bool> ProvidedRuntime, 1167 std::optional<bool> ProvidedUpperBound, 1168 std::optional<bool> ProvidedAllowPeeling, 1169 std::optional<bool> ProvidedAllowProfileBasedPeeling, 1170 std::optional<unsigned> ProvidedFullUnrollMaxCount, 1171 AAResults *AA = nullptr) { 1172 1173 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 1174 << L->getHeader()->getParent()->getName() << "] Loop %" 1175 << L->getHeader()->getName() << "\n"); 1176 TransformationMode TM = hasUnrollTransformation(L); 1177 if (TM & TM_Disable) 1178 return LoopUnrollResult::Unmodified; 1179 1180 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1181 // parent loop has an explicit unroll-and-jam pragma. This is to prevent 1182 // automatic unrolling from interfering with the user requested 1183 // transformation. 1184 Loop *ParentL = L->getParentLoop(); 1185 if (ParentL != nullptr && 1186 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser && 1187 hasUnrollTransformation(L) != TM_ForcedByUser) { 1188 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has" 1189 << " llvm.loop.unroll_and_jam.\n"); 1190 return LoopUnrollResult::Unmodified; 1191 } 1192 1193 // If this loop isn't forced to be unrolled, avoid unrolling it when the 1194 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic 1195 // unrolling from interfering with the user requested transformation. 1196 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser && 1197 hasUnrollTransformation(L) != TM_ForcedByUser) { 1198 LLVM_DEBUG( 1199 dbgs() 1200 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n"); 1201 return LoopUnrollResult::Unmodified; 1202 } 1203 1204 if (!L->isLoopSimplifyForm()) { 1205 LLVM_DEBUG( 1206 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 1207 return LoopUnrollResult::Unmodified; 1208 } 1209 1210 // When automatic unrolling is disabled, do not unroll unless overridden for 1211 // this loop. 1212 if (OnlyWhenForced && !(TM & TM_Enable)) 1213 return LoopUnrollResult::Unmodified; 1214 1215 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1216 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1217 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount, 1218 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1219 ProvidedFullUnrollMaxCount); 1220 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences( 1221 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true); 1222 1223 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1224 // as threshold later on. 1225 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1226 !OptForSize) 1227 return LoopUnrollResult::Unmodified; 1228 1229 SmallPtrSet<const Value *, 32> EphValues; 1230 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1231 1232 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); 1233 if (!UCE.canUnroll()) { 1234 LLVM_DEBUG(dbgs() << " Loop not considered unrollable.\n"); 1235 return LoopUnrollResult::Unmodified; 1236 } 1237 1238 unsigned LoopSize = UCE.getRolledLoopSize(); 1239 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1240 1241 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold 1242 // later), to (fully) unroll loops, if it does not increase code size. 1243 if (OptForSize) 1244 UP.Threshold = std::max(UP.Threshold, LoopSize + 1); 1245 1246 if (UCE.NumInlineCandidates != 0) { 1247 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1248 return LoopUnrollResult::Unmodified; 1249 } 1250 1251 // Find the smallest exact trip count for any exit. This is an upper bound 1252 // on the loop trip count, but an exit at an earlier iteration is still 1253 // possible. An unroll by the smallest exact trip count guarantees that all 1254 // branches relating to at least one exit can be eliminated. This is unlike 1255 // the max trip count, which only guarantees that the backedge can be broken. 1256 unsigned TripCount = 0; 1257 unsigned TripMultiple = 1; 1258 SmallVector<BasicBlock *, 8> ExitingBlocks; 1259 L->getExitingBlocks(ExitingBlocks); 1260 for (BasicBlock *ExitingBlock : ExitingBlocks) 1261 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock)) 1262 if (!TripCount || TC < TripCount) 1263 TripCount = TripMultiple = TC; 1264 1265 if (!TripCount) { 1266 // If no exact trip count is known, determine the trip multiple of either 1267 // the loop latch or the single exiting block. 1268 // TODO: Relax for multiple exits. 1269 BasicBlock *ExitingBlock = L->getLoopLatch(); 1270 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1271 ExitingBlock = L->getExitingBlock(); 1272 if (ExitingBlock) 1273 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1274 } 1275 1276 // If the loop contains a convergent operation, the prelude we'd add 1277 // to do the first few instructions before we hit the unrolled loop 1278 // is unsafe -- it adds a control-flow dependency to the convergent 1279 // operation. Therefore restrict remainder loop (try unrolling without). 1280 // 1281 // TODO: This is somewhat conservative; we could allow the remainder if the 1282 // trip count is uniform. 1283 UP.AllowRemainder &= UCE.ConvergenceAllowsRuntime; 1284 1285 // Try to find the trip count upper bound if we cannot find the exact trip 1286 // count. 1287 unsigned MaxTripCount = 0; 1288 bool MaxOrZero = false; 1289 if (!TripCount) { 1290 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1291 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1292 } 1293 1294 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1295 // fully unroll the loop. 1296 bool UseUpperBound = false; 1297 bool IsCountSetExplicitly = computeUnrollCount( 1298 L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount, 1299 MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); 1300 if (!UP.Count) 1301 return LoopUnrollResult::Unmodified; 1302 1303 UP.Runtime &= UCE.ConvergenceAllowsRuntime; 1304 1305 if (PP.PeelCount) { 1306 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step"); 1307 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName() 1308 << " with iteration count " << PP.PeelCount << "!\n"); 1309 ORE.emit([&]() { 1310 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), 1311 L->getHeader()) 1312 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount) 1313 << " iterations"; 1314 }); 1315 1316 ValueToValueMapTy VMap; 1317 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) { 1318 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI, nullptr); 1319 // If the loop was peeled, we already "used up" the profile information 1320 // we had, so we don't want to unroll or peel again. 1321 if (PP.PeelProfiledIterations) 1322 L->setLoopAlreadyUnrolled(); 1323 return LoopUnrollResult::PartiallyUnrolled; 1324 } 1325 return LoopUnrollResult::Unmodified; 1326 } 1327 1328 // Do not attempt partial/runtime unrolling in FullLoopUnrolling 1329 if (OnlyFullUnroll && (UP.Count < TripCount || UP.Count < MaxTripCount)) { 1330 LLVM_DEBUG( 1331 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n"); 1332 return LoopUnrollResult::Unmodified; 1333 } 1334 1335 // At this point, UP.Runtime indicates that run-time unrolling is allowed. 1336 // However, we only want to actually perform it if we don't know the trip 1337 // count and the unroll count doesn't divide the known trip multiple. 1338 // TODO: This decision should probably be pushed up into 1339 // computeUnrollCount(). 1340 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0; 1341 1342 // Save loop properties before it is transformed. 1343 MDNode *OrigLoopID = L->getLoopID(); 1344 1345 // Unroll the loop. 1346 Loop *RemainderLoop = nullptr; 1347 UnrollLoopOptions ULO; 1348 ULO.Count = UP.Count; 1349 ULO.Force = UP.Force; 1350 ULO.AllowExpensiveTripCount = UP.AllowExpensiveTripCount; 1351 ULO.UnrollRemainder = UP.UnrollRemainder; 1352 ULO.Runtime = UP.Runtime; 1353 ULO.ForgetAllSCEV = ForgetAllSCEV; 1354 ULO.Heart = getLoopConvergenceHeart(L); 1355 ULO.SCEVExpansionBudget = UP.SCEVExpansionBudget; 1356 ULO.RuntimeUnrollMultiExit = UP.RuntimeUnrollMultiExit; 1357 LoopUnrollResult UnrollResult = UnrollLoop( 1358 L, ULO, LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop, AA); 1359 if (UnrollResult == LoopUnrollResult::Unmodified) 1360 return LoopUnrollResult::Unmodified; 1361 1362 if (RemainderLoop) { 1363 std::optional<MDNode *> RemainderLoopID = 1364 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1365 LLVMLoopUnrollFollowupRemainder}); 1366 if (RemainderLoopID) 1367 RemainderLoop->setLoopID(*RemainderLoopID); 1368 } 1369 1370 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1371 std::optional<MDNode *> NewLoopID = 1372 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1373 LLVMLoopUnrollFollowupUnrolled}); 1374 if (NewLoopID) { 1375 L->setLoopID(*NewLoopID); 1376 1377 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1378 // explicitly. 1379 return UnrollResult; 1380 } 1381 } 1382 1383 // If loop has an unroll count pragma or unrolled by explicitly set count 1384 // mark loop as unrolled to prevent unrolling beyond that requested. 1385 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly) 1386 L->setLoopAlreadyUnrolled(); 1387 1388 return UnrollResult; 1389 } 1390 1391 namespace { 1392 1393 class LoopUnroll : public LoopPass { 1394 public: 1395 static char ID; // Pass ID, replacement for typeid 1396 1397 int OptLevel; 1398 1399 /// If false, use a cost model to determine whether unrolling of a loop is 1400 /// profitable. If true, only loops that explicitly request unrolling via 1401 /// metadata are considered. All other loops are skipped. 1402 bool OnlyWhenForced; 1403 1404 /// If false, when SCEV is invalidated, only forget everything in the 1405 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1406 /// Otherwise, forgetAllLoops and rebuild when needed next. 1407 bool ForgetAllSCEV; 1408 1409 std::optional<unsigned> ProvidedCount; 1410 std::optional<unsigned> ProvidedThreshold; 1411 std::optional<bool> ProvidedAllowPartial; 1412 std::optional<bool> ProvidedRuntime; 1413 std::optional<bool> ProvidedUpperBound; 1414 std::optional<bool> ProvidedAllowPeeling; 1415 std::optional<bool> ProvidedAllowProfileBasedPeeling; 1416 std::optional<unsigned> ProvidedFullUnrollMaxCount; 1417 1418 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1419 bool ForgetAllSCEV = false, 1420 std::optional<unsigned> Threshold = std::nullopt, 1421 std::optional<unsigned> Count = std::nullopt, 1422 std::optional<bool> AllowPartial = std::nullopt, 1423 std::optional<bool> Runtime = std::nullopt, 1424 std::optional<bool> UpperBound = std::nullopt, 1425 std::optional<bool> AllowPeeling = std::nullopt, 1426 std::optional<bool> AllowProfileBasedPeeling = std::nullopt, 1427 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt) 1428 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1429 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1430 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1431 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1432 ProvidedAllowPeeling(AllowPeeling), 1433 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling), 1434 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) { 1435 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1436 } 1437 1438 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1439 if (skipLoop(L)) 1440 return false; 1441 1442 Function &F = *L->getHeader()->getParent(); 1443 1444 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1445 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1446 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1447 const TargetTransformInfo &TTI = 1448 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1449 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1450 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1451 // pass. Function analyses need to be preserved across loop transformations 1452 // but ORE cannot be preserved (see comment before the pass definition). 1453 OptimizationRemarkEmitter ORE(&F); 1454 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1455 1456 LoopUnrollResult Result = tryToUnrollLoop( 1457 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel, 1458 /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount, 1459 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime, 1460 ProvidedUpperBound, ProvidedAllowPeeling, 1461 ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount); 1462 1463 if (Result == LoopUnrollResult::FullyUnrolled) 1464 LPM.markLoopAsDeleted(*L); 1465 1466 return Result != LoopUnrollResult::Unmodified; 1467 } 1468 1469 /// This transformation requires natural loop information & requires that 1470 /// loop preheaders be inserted into the CFG... 1471 void getAnalysisUsage(AnalysisUsage &AU) const override { 1472 AU.addRequired<AssumptionCacheTracker>(); 1473 AU.addRequired<TargetTransformInfoWrapperPass>(); 1474 // FIXME: Loop passes are required to preserve domtree, and for now we just 1475 // recreate dom info if anything gets unrolled. 1476 getLoopAnalysisUsage(AU); 1477 } 1478 }; 1479 1480 } // end anonymous namespace 1481 1482 char LoopUnroll::ID = 0; 1483 1484 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1485 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1486 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1487 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1488 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1489 1490 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1491 bool ForgetAllSCEV, int Threshold, int Count, 1492 int AllowPartial, int Runtime, int UpperBound, 1493 int AllowPeeling) { 1494 // TODO: It would make more sense for this function to take the optionals 1495 // directly, but that's dangerous since it would silently break out of tree 1496 // callers. 1497 return new LoopUnroll( 1498 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1499 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold), 1500 Count == -1 ? std::nullopt : std::optional<unsigned>(Count), 1501 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial), 1502 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime), 1503 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound), 1504 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling)); 1505 } 1506 1507 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1508 LoopStandardAnalysisResults &AR, 1509 LPMUpdater &Updater) { 1510 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis 1511 // pass. Function analyses need to be preserved across loop transformations 1512 // but ORE cannot be preserved (see comment before the pass definition). 1513 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 1514 1515 // Keep track of the previous loop structure so we can identify new loops 1516 // created by unrolling. 1517 Loop *ParentL = L.getParentLoop(); 1518 SmallPtrSet<Loop *, 4> OldLoops; 1519 if (ParentL) 1520 OldLoops.insert(ParentL->begin(), ParentL->end()); 1521 else 1522 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1523 1524 std::string LoopName = std::string(L.getName()); 1525 1526 bool Changed = 1527 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE, 1528 /*BFI*/ nullptr, /*PSI*/ nullptr, 1529 /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true, 1530 OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt, 1531 /*Threshold*/ std::nullopt, /*AllowPartial*/ false, 1532 /*Runtime*/ false, /*UpperBound*/ false, 1533 /*AllowPeeling*/ true, 1534 /*AllowProfileBasedPeeling*/ false, 1535 /*FullUnrollMaxCount*/ std::nullopt) != 1536 LoopUnrollResult::Unmodified; 1537 if (!Changed) 1538 return PreservedAnalyses::all(); 1539 1540 // The parent must not be damaged by unrolling! 1541 #ifndef NDEBUG 1542 if (ParentL) 1543 ParentL->verifyLoop(); 1544 #endif 1545 1546 // Unrolling can do several things to introduce new loops into a loop nest: 1547 // - Full unrolling clones child loops within the current loop but then 1548 // removes the current loop making all of the children appear to be new 1549 // sibling loops. 1550 // 1551 // When a new loop appears as a sibling loop after fully unrolling, 1552 // its nesting structure has fundamentally changed and we want to revisit 1553 // it to reflect that. 1554 // 1555 // When unrolling has removed the current loop, we need to tell the 1556 // infrastructure that it is gone. 1557 // 1558 // Finally, we support a debugging/testing mode where we revisit child loops 1559 // as well. These are not expected to require further optimizations as either 1560 // they or the loop they were cloned from have been directly visited already. 1561 // But the debugging mode allows us to check this assumption. 1562 bool IsCurrentLoopValid = false; 1563 SmallVector<Loop *, 4> SibLoops; 1564 if (ParentL) 1565 SibLoops.append(ParentL->begin(), ParentL->end()); 1566 else 1567 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1568 erase_if(SibLoops, [&](Loop *SibLoop) { 1569 if (SibLoop == &L) { 1570 IsCurrentLoopValid = true; 1571 return true; 1572 } 1573 1574 // Otherwise erase the loop from the list if it was in the old loops. 1575 return OldLoops.contains(SibLoop); 1576 }); 1577 Updater.addSiblingLoops(SibLoops); 1578 1579 if (!IsCurrentLoopValid) { 1580 Updater.markLoopAsDeleted(L, LoopName); 1581 } else { 1582 // We can only walk child loops if the current loop remained valid. 1583 if (UnrollRevisitChildLoops) { 1584 // Walk *all* of the child loops. 1585 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1586 Updater.addChildLoops(ChildLoops); 1587 } 1588 } 1589 1590 return getLoopPassPreservedAnalyses(); 1591 } 1592 1593 PreservedAnalyses LoopUnrollPass::run(Function &F, 1594 FunctionAnalysisManager &AM) { 1595 auto &LI = AM.getResult<LoopAnalysis>(F); 1596 // There are no loops in the function. Return before computing other expensive 1597 // analyses. 1598 if (LI.empty()) 1599 return PreservedAnalyses::all(); 1600 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1601 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1602 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1603 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1604 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1605 AAResults &AA = AM.getResult<AAManager>(F); 1606 1607 LoopAnalysisManager *LAM = nullptr; 1608 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1609 LAM = &LAMProxy->getManager(); 1610 1611 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 1612 ProfileSummaryInfo *PSI = 1613 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1614 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1615 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1616 1617 bool Changed = false; 1618 1619 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1620 // Since simplification may add new inner loops, it has to run before the 1621 // legality and profitability checks. This means running the loop unroller 1622 // will simplify all loops, regardless of whether anything end up being 1623 // unrolled. 1624 for (const auto &L : LI) { 1625 Changed |= 1626 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1627 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1628 } 1629 1630 // Add the loop nests in the reverse order of LoopInfo. See method 1631 // declaration. 1632 SmallPriorityWorklist<Loop *, 4> Worklist; 1633 appendLoopsToWorklist(LI, Worklist); 1634 1635 while (!Worklist.empty()) { 1636 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1637 // from back to front so that we work forward across the CFG, which 1638 // for unrolling is only needed to get optimization remarks emitted in 1639 // a forward order. 1640 Loop &L = *Worklist.pop_back_val(); 1641 #ifndef NDEBUG 1642 Loop *ParentL = L.getParentLoop(); 1643 #endif 1644 1645 // Check if the profile summary indicates that the profiled application 1646 // has a huge working set size, in which case we disable peeling to avoid 1647 // bloating it further. 1648 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1649 if (PSI && PSI->hasHugeWorkingSetSize()) 1650 LocalAllowPeeling = false; 1651 std::string LoopName = std::string(L.getName()); 1652 // The API here is quite complex to call and we allow to select some 1653 // flavors of unrolling during construction time (by setting UnrollOpts). 1654 LoopUnrollResult Result = tryToUnrollLoop( 1655 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1656 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false, 1657 UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV, 1658 /*Count*/ std::nullopt, 1659 /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial, 1660 UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling, 1661 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount, 1662 &AA); 1663 Changed |= Result != LoopUnrollResult::Unmodified; 1664 1665 // The parent must not be damaged by unrolling! 1666 #ifndef NDEBUG 1667 if (Result != LoopUnrollResult::Unmodified && ParentL) 1668 ParentL->verifyLoop(); 1669 #endif 1670 1671 // Clear any cached analysis results for L if we removed it completely. 1672 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1673 LAM->clear(L, LoopName); 1674 } 1675 1676 if (!Changed) 1677 return PreservedAnalyses::all(); 1678 1679 return getLoopPassPreservedAnalyses(); 1680 } 1681 1682 void LoopUnrollPass::printPipeline( 1683 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1684 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline( 1685 OS, MapClassName2PassName); 1686 OS << '<'; 1687 if (UnrollOpts.AllowPartial != std::nullopt) 1688 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;"; 1689 if (UnrollOpts.AllowPeeling != std::nullopt) 1690 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;"; 1691 if (UnrollOpts.AllowRuntime != std::nullopt) 1692 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;"; 1693 if (UnrollOpts.AllowUpperBound != std::nullopt) 1694 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;"; 1695 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt) 1696 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-") 1697 << "profile-peeling;"; 1698 if (UnrollOpts.FullUnrollMaxCount != std::nullopt) 1699 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';'; 1700 OS << 'O' << UnrollOpts.OptLevel; 1701 OS << '>'; 1702 } 1703