1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/GlobalsModRef.h" 26 #include "llvm/Analysis/GuardUtils.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LazyValueInfo.h" 29 #include "llvm/Analysis/Loads.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/MemoryLocation.h" 32 #include "llvm/Analysis/PostDominators.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/PassManager.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/ProfDataUtils.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/BlockFrequency.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/SSAUpdater.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <memory> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace jumpthreading; 79 80 #define DEBUG_TYPE "jump-threading" 81 82 STATISTIC(NumThreads, "Number of jumps threaded"); 83 STATISTIC(NumFolds, "Number of terminators folded"); 84 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 85 86 static cl::opt<unsigned> 87 BBDuplicateThreshold("jump-threading-threshold", 88 cl::desc("Max block size to duplicate for jump threading"), 89 cl::init(6), cl::Hidden); 90 91 static cl::opt<unsigned> 92 ImplicationSearchThreshold( 93 "jump-threading-implication-search-threshold", 94 cl::desc("The number of predecessors to search for a stronger " 95 "condition to use to thread over a weaker condition"), 96 cl::init(3), cl::Hidden); 97 98 static cl::opt<unsigned> PhiDuplicateThreshold( 99 "jump-threading-phi-threshold", 100 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), 101 cl::Hidden); 102 103 static cl::opt<bool> ThreadAcrossLoopHeaders( 104 "jump-threading-across-loop-headers", 105 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 106 cl::init(false), cl::Hidden); 107 108 JumpThreadingPass::JumpThreadingPass(int T) { 109 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 110 } 111 112 // Update branch probability information according to conditional 113 // branch probability. This is usually made possible for cloned branches 114 // in inline instances by the context specific profile in the caller. 115 // For instance, 116 // 117 // [Block PredBB] 118 // [Branch PredBr] 119 // if (t) { 120 // Block A; 121 // } else { 122 // Block B; 123 // } 124 // 125 // [Block BB] 126 // cond = PN([true, %A], [..., %B]); // PHI node 127 // [Branch CondBr] 128 // if (cond) { 129 // ... // P(cond == true) = 1% 130 // } 131 // 132 // Here we know that when block A is taken, cond must be true, which means 133 // P(cond == true | A) = 1 134 // 135 // Given that P(cond == true) = P(cond == true | A) * P(A) + 136 // P(cond == true | B) * P(B) 137 // we get: 138 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 139 // 140 // which gives us: 141 // P(A) is less than P(cond == true), i.e. 142 // P(t == true) <= P(cond == true) 143 // 144 // In other words, if we know P(cond == true) is unlikely, we know 145 // that P(t == true) is also unlikely. 146 // 147 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 148 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 149 if (!CondBr) 150 return; 151 152 uint64_t TrueWeight, FalseWeight; 153 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight)) 154 return; 155 156 if (TrueWeight + FalseWeight == 0) 157 // Zero branch_weights do not give a hint for getting branch probabilities. 158 // Technically it would result in division by zero denominator, which is 159 // TrueWeight + FalseWeight. 160 return; 161 162 // Returns the outgoing edge of the dominating predecessor block 163 // that leads to the PhiNode's incoming block: 164 auto GetPredOutEdge = 165 [](BasicBlock *IncomingBB, 166 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 167 auto *PredBB = IncomingBB; 168 auto *SuccBB = PhiBB; 169 SmallPtrSet<BasicBlock *, 16> Visited; 170 while (true) { 171 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 172 if (PredBr && PredBr->isConditional()) 173 return {PredBB, SuccBB}; 174 Visited.insert(PredBB); 175 auto *SinglePredBB = PredBB->getSinglePredecessor(); 176 if (!SinglePredBB) 177 return {nullptr, nullptr}; 178 179 // Stop searching when SinglePredBB has been visited. It means we see 180 // an unreachable loop. 181 if (Visited.count(SinglePredBB)) 182 return {nullptr, nullptr}; 183 184 SuccBB = PredBB; 185 PredBB = SinglePredBB; 186 } 187 }; 188 189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 190 Value *PhiOpnd = PN->getIncomingValue(i); 191 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 192 193 if (!CI || !CI->getType()->isIntegerTy(1)) 194 continue; 195 196 BranchProbability BP = 197 (CI->isOne() ? BranchProbability::getBranchProbability( 198 TrueWeight, TrueWeight + FalseWeight) 199 : BranchProbability::getBranchProbability( 200 FalseWeight, TrueWeight + FalseWeight)); 201 202 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 203 if (!PredOutEdge.first) 204 return; 205 206 BasicBlock *PredBB = PredOutEdge.first; 207 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 208 if (!PredBr) 209 return; 210 211 uint64_t PredTrueWeight, PredFalseWeight; 212 // FIXME: We currently only set the profile data when it is missing. 213 // With PGO, this can be used to refine even existing profile data with 214 // context information. This needs to be done after more performance 215 // testing. 216 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight)) 217 continue; 218 219 // We can not infer anything useful when BP >= 50%, because BP is the 220 // upper bound probability value. 221 if (BP >= BranchProbability(50, 100)) 222 continue; 223 224 uint32_t Weights[2]; 225 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 226 Weights[0] = BP.getNumerator(); 227 Weights[1] = BP.getCompl().getNumerator(); 228 } else { 229 Weights[0] = BP.getCompl().getNumerator(); 230 Weights[1] = BP.getNumerator(); 231 } 232 setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr)); 233 } 234 } 235 236 PreservedAnalyses JumpThreadingPass::run(Function &F, 237 FunctionAnalysisManager &AM) { 238 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 239 // Jump Threading has no sense for the targets with divergent CF 240 if (TTI.hasBranchDivergence(&F)) 241 return PreservedAnalyses::all(); 242 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 243 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 244 auto &AA = AM.getResult<AAManager>(F); 245 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 246 247 bool Changed = 248 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA, 249 std::make_unique<DomTreeUpdater>( 250 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy), 251 std::nullopt, std::nullopt); 252 253 if (!Changed) 254 return PreservedAnalyses::all(); 255 256 257 getDomTreeUpdater()->flush(); 258 259 #if defined(EXPENSIVE_CHECKS) 260 assert(getDomTreeUpdater()->getDomTree().verify( 261 DominatorTree::VerificationLevel::Full) && 262 "DT broken after JumpThreading"); 263 assert((!getDomTreeUpdater()->hasPostDomTree() || 264 getDomTreeUpdater()->getPostDomTree().verify( 265 PostDominatorTree::VerificationLevel::Full)) && 266 "PDT broken after JumpThreading"); 267 #else 268 assert(getDomTreeUpdater()->getDomTree().verify( 269 DominatorTree::VerificationLevel::Fast) && 270 "DT broken after JumpThreading"); 271 assert((!getDomTreeUpdater()->hasPostDomTree() || 272 getDomTreeUpdater()->getPostDomTree().verify( 273 PostDominatorTree::VerificationLevel::Fast)) && 274 "PDT broken after JumpThreading"); 275 #endif 276 277 return getPreservedAnalysis(); 278 } 279 280 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_, 281 TargetLibraryInfo *TLI_, 282 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 283 AliasAnalysis *AA_, 284 std::unique_ptr<DomTreeUpdater> DTU_, 285 std::optional<BlockFrequencyInfo *> BFI_, 286 std::optional<BranchProbabilityInfo *> BPI_) { 287 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n"); 288 F = &F_; 289 FAM = FAM_; 290 TLI = TLI_; 291 TTI = TTI_; 292 LVI = LVI_; 293 AA = AA_; 294 DTU = std::move(DTU_); 295 BFI = BFI_; 296 BPI = BPI_; 297 auto *GuardDecl = Intrinsic::getDeclarationIfExists( 298 F->getParent(), Intrinsic::experimental_guard); 299 HasGuards = GuardDecl && !GuardDecl->use_empty(); 300 301 // Reduce the number of instructions duplicated when optimizing strictly for 302 // size. 303 if (BBDuplicateThreshold.getNumOccurrences()) 304 BBDupThreshold = BBDuplicateThreshold; 305 else if (F->hasFnAttribute(Attribute::MinSize)) 306 BBDupThreshold = 3; 307 else 308 BBDupThreshold = DefaultBBDupThreshold; 309 310 // JumpThreading must not processes blocks unreachable from entry. It's a 311 // waste of compute time and can potentially lead to hangs. 312 SmallPtrSet<BasicBlock *, 16> Unreachable; 313 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 314 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 315 DominatorTree &DT = DTU->getDomTree(); 316 for (auto &BB : *F) 317 if (!DT.isReachableFromEntry(&BB)) 318 Unreachable.insert(&BB); 319 320 if (!ThreadAcrossLoopHeaders) 321 findLoopHeaders(*F); 322 323 bool EverChanged = false; 324 bool Changed; 325 do { 326 Changed = false; 327 for (auto &BB : *F) { 328 if (Unreachable.count(&BB)) 329 continue; 330 while (processBlock(&BB)) // Thread all of the branches we can over BB. 331 Changed = ChangedSinceLastAnalysisUpdate = true; 332 333 // Stop processing BB if it's the entry or is now deleted. The following 334 // routines attempt to eliminate BB and locating a suitable replacement 335 // for the entry is non-trivial. 336 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 337 continue; 338 339 if (pred_empty(&BB)) { 340 // When processBlock makes BB unreachable it doesn't bother to fix up 341 // the instructions in it. We must remove BB to prevent invalid IR. 342 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 343 << "' with terminator: " << *BB.getTerminator() 344 << '\n'); 345 LoopHeaders.erase(&BB); 346 LVI->eraseBlock(&BB); 347 DeleteDeadBlock(&BB, DTU.get()); 348 Changed = ChangedSinceLastAnalysisUpdate = true; 349 continue; 350 } 351 352 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 353 // is "almost empty", we attempt to merge BB with its sole successor. 354 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 355 if (BI && BI->isUnconditional()) { 356 BasicBlock *Succ = BI->getSuccessor(0); 357 if ( 358 // The terminator must be the only non-phi instruction in BB. 359 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 360 // Don't alter Loop headers and latches to ensure another pass can 361 // detect and transform nested loops later. 362 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 363 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) { 364 // BB is valid for cleanup here because we passed in DTU. F remains 365 // BB's parent until a DTU->getDomTree() event. 366 LVI->eraseBlock(&BB); 367 Changed = ChangedSinceLastAnalysisUpdate = true; 368 } 369 } 370 } 371 EverChanged |= Changed; 372 } while (Changed); 373 374 // Jump threading may have introduced redundant debug values into F which 375 // should be removed. 376 if (EverChanged) 377 for (auto &BB : *F) { 378 RemoveRedundantDbgInstrs(&BB); 379 } 380 381 LoopHeaders.clear(); 382 return EverChanged; 383 } 384 385 // Replace uses of Cond with ToVal when safe to do so. If all uses are 386 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 387 // because we may incorrectly replace uses when guards/assumes are uses of 388 // of `Cond` and we used the guards/assume to reason about the `Cond` value 389 // at the end of block. RAUW unconditionally replaces all uses 390 // including the guards/assumes themselves and the uses before the 391 // guard/assume. 392 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, 393 BasicBlock *KnownAtEndOfBB) { 394 bool Changed = false; 395 assert(Cond->getType() == ToVal->getType()); 396 // We can unconditionally replace all uses in non-local blocks (i.e. uses 397 // strictly dominated by BB), since LVI information is true from the 398 // terminator of BB. 399 if (Cond->getParent() == KnownAtEndOfBB) 400 Changed |= replaceNonLocalUsesWith(Cond, ToVal); 401 for (Instruction &I : reverse(*KnownAtEndOfBB)) { 402 // Replace any debug-info record users of Cond with ToVal. 403 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 404 DVR.replaceVariableLocationOp(Cond, ToVal, true); 405 406 // Reached the Cond whose uses we are trying to replace, so there are no 407 // more uses. 408 if (&I == Cond) 409 break; 410 // We only replace uses in instructions that are guaranteed to reach the end 411 // of BB, where we know Cond is ToVal. 412 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 413 break; 414 Changed |= I.replaceUsesOfWith(Cond, ToVal); 415 } 416 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) { 417 Cond->eraseFromParent(); 418 Changed = true; 419 } 420 return Changed; 421 } 422 423 /// Return the cost of duplicating a piece of this block from first non-phi 424 /// and before StopAt instruction to thread across it. Stop scanning the block 425 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 426 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 427 BasicBlock *BB, 428 Instruction *StopAt, 429 unsigned Threshold) { 430 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 431 432 // Do not duplicate the BB if it has a lot of PHI nodes. 433 // If a threadable chain is too long then the number of PHI nodes can add up, 434 // leading to a substantial increase in compile time when rewriting the SSA. 435 unsigned PhiCount = 0; 436 Instruction *FirstNonPHI = nullptr; 437 for (Instruction &I : *BB) { 438 if (!isa<PHINode>(&I)) { 439 FirstNonPHI = &I; 440 break; 441 } 442 if (++PhiCount > PhiDuplicateThreshold) 443 return ~0U; 444 } 445 446 /// Ignore PHI nodes, these will be flattened when duplication happens. 447 BasicBlock::const_iterator I(FirstNonPHI); 448 449 // FIXME: THREADING will delete values that are just used to compute the 450 // branch, so they shouldn't count against the duplication cost. 451 452 unsigned Bonus = 0; 453 if (BB->getTerminator() == StopAt) { 454 // Threading through a switch statement is particularly profitable. If this 455 // block ends in a switch, decrease its cost to make it more likely to 456 // happen. 457 if (isa<SwitchInst>(StopAt)) 458 Bonus = 6; 459 460 // The same holds for indirect branches, but slightly more so. 461 if (isa<IndirectBrInst>(StopAt)) 462 Bonus = 8; 463 } 464 465 // Bump the threshold up so the early exit from the loop doesn't skip the 466 // terminator-based Size adjustment at the end. 467 Threshold += Bonus; 468 469 // Sum up the cost of each instruction until we get to the terminator. Don't 470 // include the terminator because the copy won't include it. 471 unsigned Size = 0; 472 for (; &*I != StopAt; ++I) { 473 474 // Stop scanning the block if we've reached the threshold. 475 if (Size > Threshold) 476 return Size; 477 478 // Bail out if this instruction gives back a token type, it is not possible 479 // to duplicate it if it is used outside this BB. 480 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 481 return ~0U; 482 483 // Blocks with NoDuplicate are modelled as having infinite cost, so they 484 // are never duplicated. 485 if (const CallInst *CI = dyn_cast<CallInst>(I)) 486 if (CI->cannotDuplicate() || CI->isConvergent()) 487 return ~0U; 488 489 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) == 490 TargetTransformInfo::TCC_Free) 491 continue; 492 493 // All other instructions count for at least one unit. 494 ++Size; 495 496 // Calls are more expensive. If they are non-intrinsic calls, we model them 497 // as having cost of 4. If they are a non-vector intrinsic, we model them 498 // as having cost of 2 total, and if they are a vector intrinsic, we model 499 // them as having cost 1. 500 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 501 if (!isa<IntrinsicInst>(CI)) 502 Size += 3; 503 else if (!CI->getType()->isVectorTy()) 504 Size += 1; 505 } 506 } 507 508 return Size > Bonus ? Size - Bonus : 0; 509 } 510 511 /// findLoopHeaders - We do not want jump threading to turn proper loop 512 /// structures into irreducible loops. Doing this breaks up the loop nesting 513 /// hierarchy and pessimizes later transformations. To prevent this from 514 /// happening, we first have to find the loop headers. Here we approximate this 515 /// by finding targets of backedges in the CFG. 516 /// 517 /// Note that there definitely are cases when we want to allow threading of 518 /// edges across a loop header. For example, threading a jump from outside the 519 /// loop (the preheader) to an exit block of the loop is definitely profitable. 520 /// It is also almost always profitable to thread backedges from within the loop 521 /// to exit blocks, and is often profitable to thread backedges to other blocks 522 /// within the loop (forming a nested loop). This simple analysis is not rich 523 /// enough to track all of these properties and keep it up-to-date as the CFG 524 /// mutates, so we don't allow any of these transformations. 525 void JumpThreadingPass::findLoopHeaders(Function &F) { 526 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 527 FindFunctionBackedges(F, Edges); 528 529 for (const auto &Edge : Edges) 530 LoopHeaders.insert(Edge.second); 531 } 532 533 /// getKnownConstant - Helper method to determine if we can thread over a 534 /// terminator with the given value as its condition, and if so what value to 535 /// use for that. What kind of value this is depends on whether we want an 536 /// integer or a block address, but an undef is always accepted. 537 /// Returns null if Val is null or not an appropriate constant. 538 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 539 if (!Val) 540 return nullptr; 541 542 // Undef is "known" enough. 543 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 544 return U; 545 546 if (Preference == WantBlockAddress) 547 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 548 549 return dyn_cast<ConstantInt>(Val); 550 } 551 552 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 553 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 554 /// in any of our predecessors. If so, return the known list of value and pred 555 /// BB in the result vector. 556 /// 557 /// This returns true if there were any known values. 558 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 559 Value *V, BasicBlock *BB, PredValueInfo &Result, 560 ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet, 561 Instruction *CxtI) { 562 const DataLayout &DL = BB->getDataLayout(); 563 564 // This method walks up use-def chains recursively. Because of this, we could 565 // get into an infinite loop going around loops in the use-def chain. To 566 // prevent this, keep track of what (value, block) pairs we've already visited 567 // and terminate the search if we loop back to them 568 if (!RecursionSet.insert(V).second) 569 return false; 570 571 // If V is a constant, then it is known in all predecessors. 572 if (Constant *KC = getKnownConstant(V, Preference)) { 573 for (BasicBlock *Pred : predecessors(BB)) 574 Result.emplace_back(KC, Pred); 575 576 return !Result.empty(); 577 } 578 579 // If V is a non-instruction value, or an instruction in a different block, 580 // then it can't be derived from a PHI. 581 Instruction *I = dyn_cast<Instruction>(V); 582 if (!I || I->getParent() != BB) { 583 584 // Okay, if this is a live-in value, see if it has a known value at the any 585 // edge from our predecessors. 586 for (BasicBlock *P : predecessors(BB)) { 587 using namespace PatternMatch; 588 // If the value is known by LazyValueInfo to be a constant in a 589 // predecessor, use that information to try to thread this block. 590 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 591 // If I is a non-local compare-with-constant instruction, use more-rich 592 // 'getPredicateOnEdge' method. This would be able to handle value 593 // inequalities better, for example if the compare is "X < 4" and "X < 3" 594 // is known true but "X < 4" itself is not available. 595 CmpPredicate Pred; 596 Value *Val; 597 Constant *Cst; 598 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) 599 PredCst = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI); 600 if (Constant *KC = getKnownConstant(PredCst, Preference)) 601 Result.emplace_back(KC, P); 602 } 603 604 return !Result.empty(); 605 } 606 607 /// If I is a PHI node, then we know the incoming values for any constants. 608 if (PHINode *PN = dyn_cast<PHINode>(I)) { 609 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 610 Value *InVal = PN->getIncomingValue(i); 611 if (Constant *KC = getKnownConstant(InVal, Preference)) { 612 Result.emplace_back(KC, PN->getIncomingBlock(i)); 613 } else { 614 Constant *CI = LVI->getConstantOnEdge(InVal, 615 PN->getIncomingBlock(i), 616 BB, CxtI); 617 if (Constant *KC = getKnownConstant(CI, Preference)) 618 Result.emplace_back(KC, PN->getIncomingBlock(i)); 619 } 620 } 621 622 return !Result.empty(); 623 } 624 625 // Handle Cast instructions. 626 if (CastInst *CI = dyn_cast<CastInst>(I)) { 627 Value *Source = CI->getOperand(0); 628 PredValueInfoTy Vals; 629 computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference, 630 RecursionSet, CxtI); 631 if (Vals.empty()) 632 return false; 633 634 // Convert the known values. 635 for (auto &Val : Vals) 636 if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first, 637 CI->getType(), DL)) 638 Result.emplace_back(Folded, Val.second); 639 640 return !Result.empty(); 641 } 642 643 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 644 Value *Source = FI->getOperand(0); 645 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 646 RecursionSet, CxtI); 647 648 erase_if(Result, [](auto &Pair) { 649 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 650 }); 651 652 return !Result.empty(); 653 } 654 655 // Handle some boolean conditions. 656 if (I->getType()->getPrimitiveSizeInBits() == 1) { 657 using namespace PatternMatch; 658 if (Preference != WantInteger) 659 return false; 660 // X | true -> true 661 // X & false -> false 662 Value *Op0, *Op1; 663 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 664 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 665 PredValueInfoTy LHSVals, RHSVals; 666 667 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 668 RecursionSet, CxtI); 669 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 670 RecursionSet, CxtI); 671 672 if (LHSVals.empty() && RHSVals.empty()) 673 return false; 674 675 ConstantInt *InterestingVal; 676 if (match(I, m_LogicalOr())) 677 InterestingVal = ConstantInt::getTrue(I->getContext()); 678 else 679 InterestingVal = ConstantInt::getFalse(I->getContext()); 680 681 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 682 683 // Scan for the sentinel. If we find an undef, force it to the 684 // interesting value: x|undef -> true and x&undef -> false. 685 for (const auto &LHSVal : LHSVals) 686 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 687 Result.emplace_back(InterestingVal, LHSVal.second); 688 LHSKnownBBs.insert(LHSVal.second); 689 } 690 for (const auto &RHSVal : RHSVals) 691 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 692 // If we already inferred a value for this block on the LHS, don't 693 // re-add it. 694 if (!LHSKnownBBs.count(RHSVal.second)) 695 Result.emplace_back(InterestingVal, RHSVal.second); 696 } 697 698 return !Result.empty(); 699 } 700 701 // Handle the NOT form of XOR. 702 if (I->getOpcode() == Instruction::Xor && 703 isa<ConstantInt>(I->getOperand(1)) && 704 cast<ConstantInt>(I->getOperand(1))->isOne()) { 705 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 706 WantInteger, RecursionSet, CxtI); 707 if (Result.empty()) 708 return false; 709 710 // Invert the known values. 711 for (auto &R : Result) 712 R.first = ConstantExpr::getNot(R.first); 713 714 return true; 715 } 716 717 // Try to simplify some other binary operator values. 718 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 719 if (Preference != WantInteger) 720 return false; 721 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 722 PredValueInfoTy LHSVals; 723 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 724 WantInteger, RecursionSet, CxtI); 725 726 // Try to use constant folding to simplify the binary operator. 727 for (const auto &LHSVal : LHSVals) { 728 Constant *V = LHSVal.first; 729 Constant *Folded = 730 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL); 731 732 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 733 Result.emplace_back(KC, LHSVal.second); 734 } 735 } 736 737 return !Result.empty(); 738 } 739 740 // Handle compare with phi operand, where the PHI is defined in this block. 741 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 742 if (Preference != WantInteger) 743 return false; 744 Type *CmpType = Cmp->getType(); 745 Value *CmpLHS = Cmp->getOperand(0); 746 Value *CmpRHS = Cmp->getOperand(1); 747 CmpInst::Predicate Pred = Cmp->getPredicate(); 748 749 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 750 if (!PN) 751 PN = dyn_cast<PHINode>(CmpRHS); 752 // Do not perform phi translation across a loop header phi, because this 753 // may result in comparison of values from two different loop iterations. 754 // FIXME: This check is broken if LoopHeaders is not populated. 755 if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) { 756 const DataLayout &DL = PN->getDataLayout(); 757 // We can do this simplification if any comparisons fold to true or false. 758 // See if any do. 759 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 760 BasicBlock *PredBB = PN->getIncomingBlock(i); 761 Value *LHS, *RHS; 762 if (PN == CmpLHS) { 763 LHS = PN->getIncomingValue(i); 764 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 765 } else { 766 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 767 RHS = PN->getIncomingValue(i); 768 } 769 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL}); 770 if (!Res) { 771 if (!isa<Constant>(RHS)) 772 continue; 773 774 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 775 auto LHSInst = dyn_cast<Instruction>(LHS); 776 if (LHSInst && LHSInst->getParent() == BB) 777 continue; 778 779 Res = LVI->getPredicateOnEdge(Pred, LHS, cast<Constant>(RHS), PredBB, 780 BB, CxtI ? CxtI : Cmp); 781 } 782 783 if (Constant *KC = getKnownConstant(Res, WantInteger)) 784 Result.emplace_back(KC, PredBB); 785 } 786 787 return !Result.empty(); 788 } 789 790 // If comparing a live-in value against a constant, see if we know the 791 // live-in value on any predecessors. 792 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 793 Constant *CmpConst = cast<Constant>(CmpRHS); 794 795 if (!isa<Instruction>(CmpLHS) || 796 cast<Instruction>(CmpLHS)->getParent() != BB) { 797 for (BasicBlock *P : predecessors(BB)) { 798 // If the value is known by LazyValueInfo to be a constant in a 799 // predecessor, use that information to try to thread this block. 800 Constant *Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB, 801 CxtI ? CxtI : Cmp); 802 if (Constant *KC = getKnownConstant(Res, WantInteger)) 803 Result.emplace_back(KC, P); 804 } 805 806 return !Result.empty(); 807 } 808 809 // InstCombine can fold some forms of constant range checks into 810 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 811 // x as a live-in. 812 { 813 using namespace PatternMatch; 814 815 Value *AddLHS; 816 ConstantInt *AddConst; 817 if (isa<ConstantInt>(CmpConst) && 818 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 819 if (!isa<Instruction>(AddLHS) || 820 cast<Instruction>(AddLHS)->getParent() != BB) { 821 for (BasicBlock *P : predecessors(BB)) { 822 // If the value is known by LazyValueInfo to be a ConstantRange in 823 // a predecessor, use that information to try to thread this 824 // block. 825 ConstantRange CR = LVI->getConstantRangeOnEdge( 826 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 827 // Propagate the range through the addition. 828 CR = CR.add(AddConst->getValue()); 829 830 // Get the range where the compare returns true. 831 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 832 Pred, cast<ConstantInt>(CmpConst)->getValue()); 833 834 Constant *ResC; 835 if (CmpRange.contains(CR)) 836 ResC = ConstantInt::getTrue(CmpType); 837 else if (CmpRange.inverse().contains(CR)) 838 ResC = ConstantInt::getFalse(CmpType); 839 else 840 continue; 841 842 Result.emplace_back(ResC, P); 843 } 844 845 return !Result.empty(); 846 } 847 } 848 } 849 850 // Try to find a constant value for the LHS of a comparison, 851 // and evaluate it statically if we can. 852 PredValueInfoTy LHSVals; 853 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 854 WantInteger, RecursionSet, CxtI); 855 856 for (const auto &LHSVal : LHSVals) { 857 Constant *V = LHSVal.first; 858 Constant *Folded = 859 ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL); 860 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 861 Result.emplace_back(KC, LHSVal.second); 862 } 863 864 return !Result.empty(); 865 } 866 } 867 868 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 869 // Handle select instructions where at least one operand is a known constant 870 // and we can figure out the condition value for any predecessor block. 871 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 872 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 873 PredValueInfoTy Conds; 874 if ((TrueVal || FalseVal) && 875 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 876 WantInteger, RecursionSet, CxtI)) { 877 for (auto &C : Conds) { 878 Constant *Cond = C.first; 879 880 // Figure out what value to use for the condition. 881 bool KnownCond; 882 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 883 // A known boolean. 884 KnownCond = CI->isOne(); 885 } else { 886 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 887 // Either operand will do, so be sure to pick the one that's a known 888 // constant. 889 // FIXME: Do this more cleverly if both values are known constants? 890 KnownCond = (TrueVal != nullptr); 891 } 892 893 // See if the select has a known constant value for this predecessor. 894 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 895 Result.emplace_back(Val, C.second); 896 } 897 898 return !Result.empty(); 899 } 900 } 901 902 // If all else fails, see if LVI can figure out a constant value for us. 903 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 904 Constant *CI = LVI->getConstant(V, CxtI); 905 if (Constant *KC = getKnownConstant(CI, Preference)) { 906 for (BasicBlock *Pred : predecessors(BB)) 907 Result.emplace_back(KC, Pred); 908 } 909 910 return !Result.empty(); 911 } 912 913 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 914 /// in an undefined jump, decide which block is best to revector to. 915 /// 916 /// Since we can pick an arbitrary destination, we pick the successor with the 917 /// fewest predecessors. This should reduce the in-degree of the others. 918 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 919 Instruction *BBTerm = BB->getTerminator(); 920 unsigned MinSucc = 0; 921 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 922 // Compute the successor with the minimum number of predecessors. 923 unsigned MinNumPreds = pred_size(TestBB); 924 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 925 TestBB = BBTerm->getSuccessor(i); 926 unsigned NumPreds = pred_size(TestBB); 927 if (NumPreds < MinNumPreds) { 928 MinSucc = i; 929 MinNumPreds = NumPreds; 930 } 931 } 932 933 return MinSucc; 934 } 935 936 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 937 if (!BB->hasAddressTaken()) return false; 938 939 // If the block has its address taken, it may be a tree of dead constants 940 // hanging off of it. These shouldn't keep the block alive. 941 BlockAddress *BA = BlockAddress::get(BB); 942 BA->removeDeadConstantUsers(); 943 return !BA->use_empty(); 944 } 945 946 /// processBlock - If there are any predecessors whose control can be threaded 947 /// through to a successor, transform them now. 948 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 949 // If the block is trivially dead, just return and let the caller nuke it. 950 // This simplifies other transformations. 951 if (DTU->isBBPendingDeletion(BB) || 952 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 953 return false; 954 955 // If this block has a single predecessor, and if that pred has a single 956 // successor, merge the blocks. This encourages recursive jump threading 957 // because now the condition in this block can be threaded through 958 // predecessors of our predecessor block. 959 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 960 return true; 961 962 if (tryToUnfoldSelectInCurrBB(BB)) 963 return true; 964 965 // Look if we can propagate guards to predecessors. 966 if (HasGuards && processGuards(BB)) 967 return true; 968 969 // What kind of constant we're looking for. 970 ConstantPreference Preference = WantInteger; 971 972 // Look to see if the terminator is a conditional branch, switch or indirect 973 // branch, if not we can't thread it. 974 Value *Condition; 975 Instruction *Terminator = BB->getTerminator(); 976 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 977 // Can't thread an unconditional jump. 978 if (BI->isUnconditional()) return false; 979 Condition = BI->getCondition(); 980 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 981 Condition = SI->getCondition(); 982 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 983 // Can't thread indirect branch with no successors. 984 if (IB->getNumSuccessors() == 0) return false; 985 Condition = IB->getAddress()->stripPointerCasts(); 986 Preference = WantBlockAddress; 987 } else { 988 return false; // Must be an invoke or callbr. 989 } 990 991 // Keep track if we constant folded the condition in this invocation. 992 bool ConstantFolded = false; 993 994 // Run constant folding to see if we can reduce the condition to a simple 995 // constant. 996 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 997 Value *SimpleVal = 998 ConstantFoldInstruction(I, BB->getDataLayout(), TLI); 999 if (SimpleVal) { 1000 I->replaceAllUsesWith(SimpleVal); 1001 if (isInstructionTriviallyDead(I, TLI)) 1002 I->eraseFromParent(); 1003 Condition = SimpleVal; 1004 ConstantFolded = true; 1005 } 1006 } 1007 1008 // If the terminator is branching on an undef or freeze undef, we can pick any 1009 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1010 auto *FI = dyn_cast<FreezeInst>(Condition); 1011 if (isa<UndefValue>(Condition) || 1012 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1013 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1014 std::vector<DominatorTree::UpdateType> Updates; 1015 1016 // Fold the branch/switch. 1017 Instruction *BBTerm = BB->getTerminator(); 1018 Updates.reserve(BBTerm->getNumSuccessors()); 1019 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1020 if (i == BestSucc) continue; 1021 BasicBlock *Succ = BBTerm->getSuccessor(i); 1022 Succ->removePredecessor(BB, true); 1023 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1024 } 1025 1026 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1027 << "' folding undef terminator: " << *BBTerm << '\n'); 1028 Instruction *NewBI = BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator()); 1029 NewBI->setDebugLoc(BBTerm->getDebugLoc()); 1030 ++NumFolds; 1031 BBTerm->eraseFromParent(); 1032 DTU->applyUpdatesPermissive(Updates); 1033 if (FI) 1034 FI->eraseFromParent(); 1035 return true; 1036 } 1037 1038 // If the terminator of this block is branching on a constant, simplify the 1039 // terminator to an unconditional branch. This can occur due to threading in 1040 // other blocks. 1041 if (getKnownConstant(Condition, Preference)) { 1042 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1043 << "' folding terminator: " << *BB->getTerminator() 1044 << '\n'); 1045 ++NumFolds; 1046 ConstantFoldTerminator(BB, true, nullptr, DTU.get()); 1047 if (auto *BPI = getBPI()) 1048 BPI->eraseBlock(BB); 1049 return true; 1050 } 1051 1052 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1053 1054 // All the rest of our checks depend on the condition being an instruction. 1055 if (!CondInst) { 1056 // FIXME: Unify this with code below. 1057 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1058 return true; 1059 return ConstantFolded; 1060 } 1061 1062 // Some of the following optimization can safely work on the unfrozen cond. 1063 Value *CondWithoutFreeze = CondInst; 1064 if (auto *FI = dyn_cast<FreezeInst>(CondInst)) 1065 CondWithoutFreeze = FI->getOperand(0); 1066 1067 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) { 1068 // If we're branching on a conditional, LVI might be able to determine 1069 // it's value at the branch instruction. We only handle comparisons 1070 // against a constant at this time. 1071 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) { 1072 Constant *Res = 1073 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1074 CondConst, BB->getTerminator(), 1075 /*UseBlockValue=*/false); 1076 if (Res) { 1077 // We can safely replace *some* uses of the CondInst if it has 1078 // exactly one value as returned by LVI. RAUW is incorrect in the 1079 // presence of guards and assumes, that have the `Cond` as the use. This 1080 // is because we use the guards/assume to reason about the `Cond` value 1081 // at the end of block, but RAUW unconditionally replaces all uses 1082 // including the guards/assumes themselves and the uses before the 1083 // guard/assume. 1084 if (replaceFoldableUses(CondCmp, Res, BB)) 1085 return true; 1086 } 1087 1088 // We did not manage to simplify this branch, try to see whether 1089 // CondCmp depends on a known phi-select pattern. 1090 if (tryToUnfoldSelect(CondCmp, BB)) 1091 return true; 1092 } 1093 } 1094 1095 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1096 if (tryToUnfoldSelect(SI, BB)) 1097 return true; 1098 1099 // Check for some cases that are worth simplifying. Right now we want to look 1100 // for loads that are used by a switch or by the condition for the branch. If 1101 // we see one, check to see if it's partially redundant. If so, insert a PHI 1102 // which can then be used to thread the values. 1103 Value *SimplifyValue = CondWithoutFreeze; 1104 1105 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1106 if (isa<Constant>(CondCmp->getOperand(1))) 1107 SimplifyValue = CondCmp->getOperand(0); 1108 1109 // TODO: There are other places where load PRE would be profitable, such as 1110 // more complex comparisons. 1111 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1112 if (simplifyPartiallyRedundantLoad(LoadI)) 1113 return true; 1114 1115 // Before threading, try to propagate profile data backwards: 1116 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1117 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1118 updatePredecessorProfileMetadata(PN, BB); 1119 1120 // Handle a variety of cases where we are branching on something derived from 1121 // a PHI node in the current block. If we can prove that any predecessors 1122 // compute a predictable value based on a PHI node, thread those predecessors. 1123 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1124 return true; 1125 1126 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1127 // the current block, see if we can simplify. 1128 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze); 1129 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1130 return processBranchOnPHI(PN); 1131 1132 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1133 if (CondInst->getOpcode() == Instruction::Xor && 1134 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1135 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1136 1137 // Search for a stronger dominating condition that can be used to simplify a 1138 // conditional branch leaving BB. 1139 if (processImpliedCondition(BB)) 1140 return true; 1141 1142 return false; 1143 } 1144 1145 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1146 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1147 if (!BI || !BI->isConditional()) 1148 return false; 1149 1150 Value *Cond = BI->getCondition(); 1151 // Assuming that predecessor's branch was taken, if pred's branch condition 1152 // (V) implies Cond, Cond can be either true, undef, or poison. In this case, 1153 // freeze(Cond) is either true or a nondeterministic value. 1154 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true 1155 // without affecting other instructions. 1156 auto *FICond = dyn_cast<FreezeInst>(Cond); 1157 if (FICond && FICond->hasOneUse()) 1158 Cond = FICond->getOperand(0); 1159 else 1160 FICond = nullptr; 1161 1162 BasicBlock *CurrentBB = BB; 1163 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1164 unsigned Iter = 0; 1165 1166 auto &DL = BB->getDataLayout(); 1167 1168 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1169 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1170 if (!PBI || !PBI->isConditional()) 1171 return false; 1172 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1173 return false; 1174 1175 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1176 std::optional<bool> Implication = 1177 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1178 1179 // If the branch condition of BB (which is Cond) and CurrentPred are 1180 // exactly the same freeze instruction, Cond can be folded into CondIsTrue. 1181 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) { 1182 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) == 1183 FICond->getOperand(0)) 1184 Implication = CondIsTrue; 1185 } 1186 1187 if (Implication) { 1188 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1189 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1190 RemoveSucc->removePredecessor(BB); 1191 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator()); 1192 UncondBI->setDebugLoc(BI->getDebugLoc()); 1193 ++NumFolds; 1194 BI->eraseFromParent(); 1195 if (FICond) 1196 FICond->eraseFromParent(); 1197 1198 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1199 if (auto *BPI = getBPI()) 1200 BPI->eraseBlock(BB); 1201 return true; 1202 } 1203 CurrentBB = CurrentPred; 1204 CurrentPred = CurrentBB->getSinglePredecessor(); 1205 } 1206 1207 return false; 1208 } 1209 1210 /// Return true if Op is an instruction defined in the given block. 1211 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1212 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1213 if (OpInst->getParent() == BB) 1214 return true; 1215 return false; 1216 } 1217 1218 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1219 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1220 /// This is an important optimization that encourages jump threading, and needs 1221 /// to be run interlaced with other jump threading tasks. 1222 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1223 // Don't hack volatile and ordered loads. 1224 if (!LoadI->isUnordered()) return false; 1225 1226 // If the load is defined in a block with exactly one predecessor, it can't be 1227 // partially redundant. 1228 BasicBlock *LoadBB = LoadI->getParent(); 1229 if (LoadBB->getSinglePredecessor()) 1230 return false; 1231 1232 // If the load is defined in an EH pad, it can't be partially redundant, 1233 // because the edges between the invoke and the EH pad cannot have other 1234 // instructions between them. 1235 if (LoadBB->isEHPad()) 1236 return false; 1237 1238 Value *LoadedPtr = LoadI->getOperand(0); 1239 1240 // If the loaded operand is defined in the LoadBB and its not a phi, 1241 // it can't be available in predecessors. 1242 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1243 return false; 1244 1245 // Scan a few instructions up from the load, to see if it is obviously live at 1246 // the entry to its block. 1247 BasicBlock::iterator BBIt(LoadI); 1248 bool IsLoadCSE; 1249 BatchAAResults BatchAA(*AA); 1250 // The dominator tree is updated lazily and may not be valid at this point. 1251 BatchAA.disableDominatorTree(); 1252 if (Value *AvailableVal = FindAvailableLoadedValue( 1253 LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) { 1254 // If the value of the load is locally available within the block, just use 1255 // it. This frequently occurs for reg2mem'd allocas. 1256 1257 if (IsLoadCSE) { 1258 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1259 combineMetadataForCSE(NLoadI, LoadI, false); 1260 LVI->forgetValue(NLoadI); 1261 }; 1262 1263 // If the returned value is the load itself, replace with poison. This can 1264 // only happen in dead loops. 1265 if (AvailableVal == LoadI) 1266 AvailableVal = PoisonValue::get(LoadI->getType()); 1267 if (AvailableVal->getType() != LoadI->getType()) { 1268 AvailableVal = CastInst::CreateBitOrPointerCast( 1269 AvailableVal, LoadI->getType(), "", LoadI->getIterator()); 1270 cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc()); 1271 } 1272 LoadI->replaceAllUsesWith(AvailableVal); 1273 LoadI->eraseFromParent(); 1274 return true; 1275 } 1276 1277 // Otherwise, if we scanned the whole block and got to the top of the block, 1278 // we know the block is locally transparent to the load. If not, something 1279 // might clobber its value. 1280 if (BBIt != LoadBB->begin()) 1281 return false; 1282 1283 // If all of the loads and stores that feed the value have the same AA tags, 1284 // then we can propagate them onto any newly inserted loads. 1285 AAMDNodes AATags = LoadI->getAAMetadata(); 1286 1287 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1288 1289 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1290 1291 AvailablePredsTy AvailablePreds; 1292 BasicBlock *OneUnavailablePred = nullptr; 1293 SmallVector<LoadInst*, 8> CSELoads; 1294 1295 // If we got here, the loaded value is transparent through to the start of the 1296 // block. Check to see if it is available in any of the predecessor blocks. 1297 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1298 // If we already scanned this predecessor, skip it. 1299 if (!PredsScanned.insert(PredBB).second) 1300 continue; 1301 1302 BBIt = PredBB->end(); 1303 unsigned NumScanedInst = 0; 1304 Value *PredAvailable = nullptr; 1305 // NOTE: We don't CSE load that is volatile or anything stronger than 1306 // unordered, that should have been checked when we entered the function. 1307 assert(LoadI->isUnordered() && 1308 "Attempting to CSE volatile or atomic loads"); 1309 // If this is a load on a phi pointer, phi-translate it and search 1310 // for available load/store to the pointer in predecessors. 1311 Type *AccessTy = LoadI->getType(); 1312 const auto &DL = LoadI->getDataLayout(); 1313 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1314 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1315 AATags); 1316 PredAvailable = findAvailablePtrLoadStore( 1317 Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1318 &BatchAA, &IsLoadCSE, &NumScanedInst); 1319 1320 // If PredBB has a single predecessor, continue scanning through the 1321 // single predecessor. 1322 BasicBlock *SinglePredBB = PredBB; 1323 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1324 NumScanedInst < DefMaxInstsToScan) { 1325 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1326 if (SinglePredBB) { 1327 BBIt = SinglePredBB->end(); 1328 PredAvailable = findAvailablePtrLoadStore( 1329 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1330 (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE, 1331 &NumScanedInst); 1332 } 1333 } 1334 1335 if (!PredAvailable) { 1336 OneUnavailablePred = PredBB; 1337 continue; 1338 } 1339 1340 if (IsLoadCSE) 1341 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1342 1343 // If so, this load is partially redundant. Remember this info so that we 1344 // can create a PHI node. 1345 AvailablePreds.emplace_back(PredBB, PredAvailable); 1346 } 1347 1348 // If the loaded value isn't available in any predecessor, it isn't partially 1349 // redundant. 1350 if (AvailablePreds.empty()) return false; 1351 1352 // Okay, the loaded value is available in at least one (and maybe all!) 1353 // predecessors. If the value is unavailable in more than one unique 1354 // predecessor, we want to insert a merge block for those common predecessors. 1355 // This ensures that we only have to insert one reload, thus not increasing 1356 // code size. 1357 BasicBlock *UnavailablePred = nullptr; 1358 1359 // If the value is unavailable in one of predecessors, we will end up 1360 // inserting a new instruction into them. It is only valid if all the 1361 // instructions before LoadI are guaranteed to pass execution to its 1362 // successor, or if LoadI is safe to speculate. 1363 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1364 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1365 // It requires domination tree analysis, so for this simple case it is an 1366 // overkill. 1367 if (PredsScanned.size() != AvailablePreds.size() && 1368 !isSafeToSpeculativelyExecute(LoadI)) 1369 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1370 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1371 return false; 1372 1373 // If there is exactly one predecessor where the value is unavailable, the 1374 // already computed 'OneUnavailablePred' block is it. If it ends in an 1375 // unconditional branch, we know that it isn't a critical edge. 1376 if (PredsScanned.size() == AvailablePreds.size()+1 && 1377 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1378 UnavailablePred = OneUnavailablePred; 1379 } else if (PredsScanned.size() != AvailablePreds.size()) { 1380 // Otherwise, we had multiple unavailable predecessors or we had a critical 1381 // edge from the one. 1382 SmallVector<BasicBlock*, 8> PredsToSplit; 1383 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1384 1385 for (const auto &AvailablePred : AvailablePreds) 1386 AvailablePredSet.insert(AvailablePred.first); 1387 1388 // Add all the unavailable predecessors to the PredsToSplit list. 1389 for (BasicBlock *P : predecessors(LoadBB)) { 1390 // If the predecessor is an indirect goto, we can't split the edge. 1391 if (isa<IndirectBrInst>(P->getTerminator())) 1392 return false; 1393 1394 if (!AvailablePredSet.count(P)) 1395 PredsToSplit.push_back(P); 1396 } 1397 1398 // Split them out to their own block. 1399 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1400 } 1401 1402 // If the value isn't available in all predecessors, then there will be 1403 // exactly one where it isn't available. Insert a load on that edge and add 1404 // it to the AvailablePreds list. 1405 if (UnavailablePred) { 1406 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1407 "Can't handle critical edge here!"); 1408 LoadInst *NewVal = new LoadInst( 1409 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1410 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1411 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1412 UnavailablePred->getTerminator()->getIterator()); 1413 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1414 if (AATags) 1415 NewVal->setAAMetadata(AATags); 1416 1417 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1418 } 1419 1420 // Now we know that each predecessor of this block has a value in 1421 // AvailablePreds, sort them for efficient access as we're walking the preds. 1422 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1423 1424 // Create a PHI node at the start of the block for the PRE'd load value. 1425 PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), ""); 1426 PN->insertBefore(LoadBB->begin()); 1427 PN->takeName(LoadI); 1428 PN->setDebugLoc(LoadI->getDebugLoc()); 1429 1430 // Insert new entries into the PHI for each predecessor. A single block may 1431 // have multiple entries here. 1432 for (BasicBlock *P : predecessors(LoadBB)) { 1433 AvailablePredsTy::iterator I = 1434 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1435 1436 assert(I != AvailablePreds.end() && I->first == P && 1437 "Didn't find entry for predecessor!"); 1438 1439 // If we have an available predecessor but it requires casting, insert the 1440 // cast in the predecessor and use the cast. Note that we have to update the 1441 // AvailablePreds vector as we go so that all of the PHI entries for this 1442 // predecessor use the same bitcast. 1443 Value *&PredV = I->second; 1444 if (PredV->getType() != LoadI->getType()) 1445 PredV = CastInst::CreateBitOrPointerCast( 1446 PredV, LoadI->getType(), "", P->getTerminator()->getIterator()); 1447 1448 PN->addIncoming(PredV, I->first); 1449 } 1450 1451 for (LoadInst *PredLoadI : CSELoads) { 1452 combineMetadataForCSE(PredLoadI, LoadI, true); 1453 LVI->forgetValue(PredLoadI); 1454 } 1455 1456 LoadI->replaceAllUsesWith(PN); 1457 LoadI->eraseFromParent(); 1458 1459 return true; 1460 } 1461 1462 /// findMostPopularDest - The specified list contains multiple possible 1463 /// threadable destinations. Pick the one that occurs the most frequently in 1464 /// the list. 1465 static BasicBlock * 1466 findMostPopularDest(BasicBlock *BB, 1467 const SmallVectorImpl<std::pair<BasicBlock *, 1468 BasicBlock *>> &PredToDestList) { 1469 assert(!PredToDestList.empty()); 1470 1471 // Determine popularity. If there are multiple possible destinations, we 1472 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1473 // blocks with known and real destinations to threading undef. We'll handle 1474 // them later if interesting. 1475 MapVector<BasicBlock *, unsigned> DestPopularity; 1476 1477 // Populate DestPopularity with the successors in the order they appear in the 1478 // successor list. This way, we ensure determinism by iterating it in the 1479 // same order in llvm::max_element below. We map nullptr to 0 so that we can 1480 // return nullptr when PredToDestList contains nullptr only. 1481 DestPopularity[nullptr] = 0; 1482 for (auto *SuccBB : successors(BB)) 1483 DestPopularity[SuccBB] = 0; 1484 1485 for (const auto &PredToDest : PredToDestList) 1486 if (PredToDest.second) 1487 DestPopularity[PredToDest.second]++; 1488 1489 // Find the most popular dest. 1490 auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second()); 1491 1492 // Okay, we have finally picked the most popular destination. 1493 return MostPopular->first; 1494 } 1495 1496 // Try to evaluate the value of V when the control flows from PredPredBB to 1497 // BB->getSinglePredecessor() and then on to BB. 1498 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1499 BasicBlock *PredPredBB, 1500 Value *V, 1501 const DataLayout &DL) { 1502 BasicBlock *PredBB = BB->getSinglePredecessor(); 1503 assert(PredBB && "Expected a single predecessor"); 1504 1505 if (Constant *Cst = dyn_cast<Constant>(V)) { 1506 return Cst; 1507 } 1508 1509 // Consult LVI if V is not an instruction in BB or PredBB. 1510 Instruction *I = dyn_cast<Instruction>(V); 1511 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1512 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1513 } 1514 1515 // Look into a PHI argument. 1516 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1517 if (PHI->getParent() == PredBB) 1518 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1519 return nullptr; 1520 } 1521 1522 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1523 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1524 if (CondCmp->getParent() == BB) { 1525 Constant *Op0 = 1526 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL); 1527 Constant *Op1 = 1528 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL); 1529 if (Op0 && Op1) { 1530 return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0, 1531 Op1, DL); 1532 } 1533 } 1534 return nullptr; 1535 } 1536 1537 return nullptr; 1538 } 1539 1540 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1541 ConstantPreference Preference, 1542 Instruction *CxtI) { 1543 // If threading this would thread across a loop header, don't even try to 1544 // thread the edge. 1545 if (LoopHeaders.count(BB)) 1546 return false; 1547 1548 PredValueInfoTy PredValues; 1549 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1550 CxtI)) { 1551 // We don't have known values in predecessors. See if we can thread through 1552 // BB and its sole predecessor. 1553 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1554 } 1555 1556 assert(!PredValues.empty() && 1557 "computeValueKnownInPredecessors returned true with no values"); 1558 1559 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1560 for (const auto &PredValue : PredValues) { 1561 dbgs() << " BB '" << BB->getName() 1562 << "': FOUND condition = " << *PredValue.first 1563 << " for pred '" << PredValue.second->getName() << "'.\n"; 1564 }); 1565 1566 // Decide what we want to thread through. Convert our list of known values to 1567 // a list of known destinations for each pred. This also discards duplicate 1568 // predecessors and keeps track of the undefined inputs (which are represented 1569 // as a null dest in the PredToDestList). 1570 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1571 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1572 1573 BasicBlock *OnlyDest = nullptr; 1574 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1575 Constant *OnlyVal = nullptr; 1576 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1577 1578 for (const auto &PredValue : PredValues) { 1579 BasicBlock *Pred = PredValue.second; 1580 if (!SeenPreds.insert(Pred).second) 1581 continue; // Duplicate predecessor entry. 1582 1583 Constant *Val = PredValue.first; 1584 1585 BasicBlock *DestBB; 1586 if (isa<UndefValue>(Val)) 1587 DestBB = nullptr; 1588 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1589 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1590 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1591 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1592 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1593 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1594 } else { 1595 assert(isa<IndirectBrInst>(BB->getTerminator()) 1596 && "Unexpected terminator"); 1597 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1598 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1599 } 1600 1601 // If we have exactly one destination, remember it for efficiency below. 1602 if (PredToDestList.empty()) { 1603 OnlyDest = DestBB; 1604 OnlyVal = Val; 1605 } else { 1606 if (OnlyDest != DestBB) 1607 OnlyDest = MultipleDestSentinel; 1608 // It possible we have same destination, but different value, e.g. default 1609 // case in switchinst. 1610 if (Val != OnlyVal) 1611 OnlyVal = MultipleVal; 1612 } 1613 1614 // If the predecessor ends with an indirect goto, we can't change its 1615 // destination. 1616 if (isa<IndirectBrInst>(Pred->getTerminator())) 1617 continue; 1618 1619 PredToDestList.emplace_back(Pred, DestBB); 1620 } 1621 1622 // If all edges were unthreadable, we fail. 1623 if (PredToDestList.empty()) 1624 return false; 1625 1626 // If all the predecessors go to a single known successor, we want to fold, 1627 // not thread. By doing so, we do not need to duplicate the current block and 1628 // also miss potential opportunities in case we dont/cant duplicate. 1629 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1630 if (BB->hasNPredecessors(PredToDestList.size())) { 1631 bool SeenFirstBranchToOnlyDest = false; 1632 std::vector <DominatorTree::UpdateType> Updates; 1633 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1634 for (BasicBlock *SuccBB : successors(BB)) { 1635 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1636 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1637 } else { 1638 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1639 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1640 } 1641 } 1642 1643 // Finally update the terminator. 1644 Instruction *Term = BB->getTerminator(); 1645 Instruction *NewBI = BranchInst::Create(OnlyDest, Term->getIterator()); 1646 NewBI->setDebugLoc(Term->getDebugLoc()); 1647 ++NumFolds; 1648 Term->eraseFromParent(); 1649 DTU->applyUpdatesPermissive(Updates); 1650 if (auto *BPI = getBPI()) 1651 BPI->eraseBlock(BB); 1652 1653 // If the condition is now dead due to the removal of the old terminator, 1654 // erase it. 1655 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1656 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1657 CondInst->eraseFromParent(); 1658 // We can safely replace *some* uses of the CondInst if it has 1659 // exactly one value as returned by LVI. RAUW is incorrect in the 1660 // presence of guards and assumes, that have the `Cond` as the use. This 1661 // is because we use the guards/assume to reason about the `Cond` value 1662 // at the end of block, but RAUW unconditionally replaces all uses 1663 // including the guards/assumes themselves and the uses before the 1664 // guard/assume. 1665 else if (OnlyVal && OnlyVal != MultipleVal) 1666 replaceFoldableUses(CondInst, OnlyVal, BB); 1667 } 1668 return true; 1669 } 1670 } 1671 1672 // Determine which is the most common successor. If we have many inputs and 1673 // this block is a switch, we want to start by threading the batch that goes 1674 // to the most popular destination first. If we only know about one 1675 // threadable destination (the common case) we can avoid this. 1676 BasicBlock *MostPopularDest = OnlyDest; 1677 1678 if (MostPopularDest == MultipleDestSentinel) { 1679 // Remove any loop headers from the Dest list, threadEdge conservatively 1680 // won't process them, but we might have other destination that are eligible 1681 // and we still want to process. 1682 erase_if(PredToDestList, 1683 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1684 return LoopHeaders.contains(PredToDest.second); 1685 }); 1686 1687 if (PredToDestList.empty()) 1688 return false; 1689 1690 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1691 } 1692 1693 // Now that we know what the most popular destination is, factor all 1694 // predecessors that will jump to it into a single predecessor. 1695 SmallVector<BasicBlock*, 16> PredsToFactor; 1696 for (const auto &PredToDest : PredToDestList) 1697 if (PredToDest.second == MostPopularDest) { 1698 BasicBlock *Pred = PredToDest.first; 1699 1700 // This predecessor may be a switch or something else that has multiple 1701 // edges to the block. Factor each of these edges by listing them 1702 // according to # occurrences in PredsToFactor. 1703 for (BasicBlock *Succ : successors(Pred)) 1704 if (Succ == BB) 1705 PredsToFactor.push_back(Pred); 1706 } 1707 1708 // If the threadable edges are branching on an undefined value, we get to pick 1709 // the destination that these predecessors should get to. 1710 if (!MostPopularDest) 1711 MostPopularDest = BB->getTerminator()-> 1712 getSuccessor(getBestDestForJumpOnUndef(BB)); 1713 1714 // Ok, try to thread it! 1715 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1716 } 1717 1718 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1719 /// a PHI node (or freeze PHI) in the current block. See if there are any 1720 /// simplifications we can do based on inputs to the phi node. 1721 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1722 BasicBlock *BB = PN->getParent(); 1723 1724 // TODO: We could make use of this to do it once for blocks with common PHI 1725 // values. 1726 SmallVector<BasicBlock*, 1> PredBBs; 1727 PredBBs.resize(1); 1728 1729 // If any of the predecessor blocks end in an unconditional branch, we can 1730 // *duplicate* the conditional branch into that block in order to further 1731 // encourage jump threading and to eliminate cases where we have branch on a 1732 // phi of an icmp (branch on icmp is much better). 1733 // This is still beneficial when a frozen phi is used as the branch condition 1734 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1735 // to br(icmp(freeze ...)). 1736 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1737 BasicBlock *PredBB = PN->getIncomingBlock(i); 1738 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1739 if (PredBr->isUnconditional()) { 1740 PredBBs[0] = PredBB; 1741 // Try to duplicate BB into PredBB. 1742 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1743 return true; 1744 } 1745 } 1746 1747 return false; 1748 } 1749 1750 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1751 /// a xor instruction in the current block. See if there are any 1752 /// simplifications we can do based on inputs to the xor. 1753 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1754 BasicBlock *BB = BO->getParent(); 1755 1756 // If either the LHS or RHS of the xor is a constant, don't do this 1757 // optimization. 1758 if (isa<ConstantInt>(BO->getOperand(0)) || 1759 isa<ConstantInt>(BO->getOperand(1))) 1760 return false; 1761 1762 // If the first instruction in BB isn't a phi, we won't be able to infer 1763 // anything special about any particular predecessor. 1764 if (!isa<PHINode>(BB->front())) 1765 return false; 1766 1767 // If this BB is a landing pad, we won't be able to split the edge into it. 1768 if (BB->isEHPad()) 1769 return false; 1770 1771 // If we have a xor as the branch input to this block, and we know that the 1772 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1773 // the condition into the predecessor and fix that value to true, saving some 1774 // logical ops on that path and encouraging other paths to simplify. 1775 // 1776 // This copies something like this: 1777 // 1778 // BB: 1779 // %X = phi i1 [1], [%X'] 1780 // %Y = icmp eq i32 %A, %B 1781 // %Z = xor i1 %X, %Y 1782 // br i1 %Z, ... 1783 // 1784 // Into: 1785 // BB': 1786 // %Y = icmp ne i32 %A, %B 1787 // br i1 %Y, ... 1788 1789 PredValueInfoTy XorOpValues; 1790 bool isLHS = true; 1791 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1792 WantInteger, BO)) { 1793 assert(XorOpValues.empty()); 1794 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1795 WantInteger, BO)) 1796 return false; 1797 isLHS = false; 1798 } 1799 1800 assert(!XorOpValues.empty() && 1801 "computeValueKnownInPredecessors returned true with no values"); 1802 1803 // Scan the information to see which is most popular: true or false. The 1804 // predecessors can be of the set true, false, or undef. 1805 unsigned NumTrue = 0, NumFalse = 0; 1806 for (const auto &XorOpValue : XorOpValues) { 1807 if (isa<UndefValue>(XorOpValue.first)) 1808 // Ignore undefs for the count. 1809 continue; 1810 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1811 ++NumFalse; 1812 else 1813 ++NumTrue; 1814 } 1815 1816 // Determine which value to split on, true, false, or undef if neither. 1817 ConstantInt *SplitVal = nullptr; 1818 if (NumTrue > NumFalse) 1819 SplitVal = ConstantInt::getTrue(BB->getContext()); 1820 else if (NumTrue != 0 || NumFalse != 0) 1821 SplitVal = ConstantInt::getFalse(BB->getContext()); 1822 1823 // Collect all of the blocks that this can be folded into so that we can 1824 // factor this once and clone it once. 1825 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1826 for (const auto &XorOpValue : XorOpValues) { 1827 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1828 continue; 1829 1830 BlocksToFoldInto.push_back(XorOpValue.second); 1831 } 1832 1833 // If we inferred a value for all of the predecessors, then duplication won't 1834 // help us. However, we can just replace the LHS or RHS with the constant. 1835 if (BlocksToFoldInto.size() == 1836 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1837 if (!SplitVal) { 1838 // If all preds provide undef, just nuke the xor, because it is undef too. 1839 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1840 BO->eraseFromParent(); 1841 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) { 1842 // If all preds provide 0, replace the xor with the other input. 1843 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1844 BO->eraseFromParent(); 1845 } else { 1846 // If all preds provide 1, set the computed value to 1. 1847 BO->setOperand(!isLHS, SplitVal); 1848 } 1849 1850 return true; 1851 } 1852 1853 // If any of predecessors end with an indirect goto, we can't change its 1854 // destination. 1855 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1856 return isa<IndirectBrInst>(Pred->getTerminator()); 1857 })) 1858 return false; 1859 1860 // Try to duplicate BB into PredBB. 1861 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1862 } 1863 1864 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1865 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1866 /// NewPred using the entries from OldPred (suitably mapped). 1867 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1868 BasicBlock *OldPred, 1869 BasicBlock *NewPred, 1870 ValueToValueMapTy &ValueMap) { 1871 for (PHINode &PN : PHIBB->phis()) { 1872 // Ok, we have a PHI node. Figure out what the incoming value was for the 1873 // DestBlock. 1874 Value *IV = PN.getIncomingValueForBlock(OldPred); 1875 1876 // Remap the value if necessary. 1877 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1878 ValueToValueMapTy::iterator I = ValueMap.find(Inst); 1879 if (I != ValueMap.end()) 1880 IV = I->second; 1881 } 1882 1883 PN.addIncoming(IV, NewPred); 1884 } 1885 } 1886 1887 /// Merge basic block BB into its sole predecessor if possible. 1888 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1889 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1890 if (!SinglePred) 1891 return false; 1892 1893 const Instruction *TI = SinglePred->getTerminator(); 1894 if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 || 1895 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1896 return false; 1897 1898 // If SinglePred was a loop header, BB becomes one. 1899 if (LoopHeaders.erase(SinglePred)) 1900 LoopHeaders.insert(BB); 1901 1902 LVI->eraseBlock(SinglePred); 1903 MergeBasicBlockIntoOnlyPred(BB, DTU.get()); 1904 1905 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1906 // BB code within one basic block `BB`), we need to invalidate the LVI 1907 // information associated with BB, because the LVI information need not be 1908 // true for all of BB after the merge. For example, 1909 // Before the merge, LVI info and code is as follows: 1910 // SinglePred: <LVI info1 for %p val> 1911 // %y = use of %p 1912 // call @exit() // need not transfer execution to successor. 1913 // assume(%p) // from this point on %p is true 1914 // br label %BB 1915 // BB: <LVI info2 for %p val, i.e. %p is true> 1916 // %x = use of %p 1917 // br label exit 1918 // 1919 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1920 // (info2 and info1 respectively). After the merge and the deletion of the 1921 // LVI info1 for SinglePred. We have the following code: 1922 // BB: <LVI info2 for %p val> 1923 // %y = use of %p 1924 // call @exit() 1925 // assume(%p) 1926 // %x = use of %p <-- LVI info2 is correct from here onwards. 1927 // br label exit 1928 // LVI info2 for BB is incorrect at the beginning of BB. 1929 1930 // Invalidate LVI information for BB if the LVI is not provably true for 1931 // all of BB. 1932 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1933 LVI->eraseBlock(BB); 1934 return true; 1935 } 1936 1937 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1938 /// ValueMapping maps old values in BB to new ones in NewBB. 1939 void JumpThreadingPass::updateSSA(BasicBlock *BB, BasicBlock *NewBB, 1940 ValueToValueMapTy &ValueMapping) { 1941 // If there were values defined in BB that are used outside the block, then we 1942 // now have to update all uses of the value to use either the original value, 1943 // the cloned value, or some PHI derived value. This can require arbitrary 1944 // PHI insertion, of which we are prepared to do, clean these up now. 1945 SSAUpdater SSAUpdate; 1946 SmallVector<Use *, 16> UsesToRename; 1947 SmallVector<DbgValueInst *, 4> DbgValues; 1948 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 1949 1950 for (Instruction &I : *BB) { 1951 // Scan all uses of this instruction to see if it is used outside of its 1952 // block, and if so, record them in UsesToRename. 1953 for (Use &U : I.uses()) { 1954 Instruction *User = cast<Instruction>(U.getUser()); 1955 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1956 if (UserPN->getIncomingBlock(U) == BB) 1957 continue; 1958 } else if (User->getParent() == BB) 1959 continue; 1960 1961 UsesToRename.push_back(&U); 1962 } 1963 1964 // Find debug values outside of the block 1965 findDbgValues(DbgValues, &I, &DbgVariableRecords); 1966 llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) { 1967 return DbgVal->getParent() == BB; 1968 }); 1969 llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) { 1970 return DbgVarRec->getParent() == BB; 1971 }); 1972 1973 // If there are no uses outside the block, we're done with this instruction. 1974 if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty()) 1975 continue; 1976 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1977 1978 // We found a use of I outside of BB. Rename all uses of I that are outside 1979 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1980 // with the two values we know. 1981 SSAUpdate.Initialize(I.getType(), I.getName()); 1982 SSAUpdate.AddAvailableValue(BB, &I); 1983 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1984 1985 while (!UsesToRename.empty()) 1986 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1987 if (!DbgValues.empty() || !DbgVariableRecords.empty()) { 1988 SSAUpdate.UpdateDebugValues(&I, DbgValues); 1989 SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords); 1990 DbgValues.clear(); 1991 DbgVariableRecords.clear(); 1992 } 1993 1994 LLVM_DEBUG(dbgs() << "\n"); 1995 } 1996 } 1997 1998 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 1999 /// arguments that come from PredBB. Return the map from the variables in the 2000 /// source basic block to the variables in the newly created basic block. 2001 2002 void JumpThreadingPass::cloneInstructions(ValueToValueMapTy &ValueMapping, 2003 BasicBlock::iterator BI, 2004 BasicBlock::iterator BE, 2005 BasicBlock *NewBB, 2006 BasicBlock *PredBB) { 2007 // We are going to have to map operands from the source basic block to the new 2008 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2009 // block, evaluate them to account for entry from PredBB. 2010 2011 // Retargets llvm.dbg.value to any renamed variables. 2012 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool { 2013 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst); 2014 if (!DbgInstruction) 2015 return false; 2016 2017 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2018 for (auto DbgOperand : DbgInstruction->location_ops()) { 2019 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand); 2020 if (!DbgOperandInstruction) 2021 continue; 2022 2023 auto I = ValueMapping.find(DbgOperandInstruction); 2024 if (I != ValueMapping.end()) { 2025 OperandsToRemap.insert( 2026 std::pair<Value *, Value *>(DbgOperand, I->second)); 2027 } 2028 } 2029 2030 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2031 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp); 2032 return true; 2033 }; 2034 2035 // Duplicate implementation of the above dbg.value code, using 2036 // DbgVariableRecords instead. 2037 auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) { 2038 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2039 for (auto *Op : DVR->location_ops()) { 2040 Instruction *OpInst = dyn_cast<Instruction>(Op); 2041 if (!OpInst) 2042 continue; 2043 2044 auto I = ValueMapping.find(OpInst); 2045 if (I != ValueMapping.end()) 2046 OperandsToRemap.insert({OpInst, I->second}); 2047 } 2048 2049 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2050 DVR->replaceVariableLocationOp(OldOp, MappedOp); 2051 }; 2052 2053 BasicBlock *RangeBB = BI->getParent(); 2054 2055 // Clone the phi nodes of the source basic block into NewBB. The resulting 2056 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2057 // might need to rewrite the operand of the cloned phi. 2058 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2059 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2060 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2061 ValueMapping[PN] = NewPN; 2062 } 2063 2064 // Clone noalias scope declarations in the threaded block. When threading a 2065 // loop exit, we would otherwise end up with two idential scope declarations 2066 // visible at the same time. 2067 SmallVector<MDNode *> NoAliasScopes; 2068 DenseMap<MDNode *, MDNode *> ClonedScopes; 2069 LLVMContext &Context = PredBB->getContext(); 2070 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2071 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2072 2073 auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) { 2074 auto DVRRange = NewInst->cloneDebugInfoFrom(From); 2075 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange)) 2076 RetargetDbgVariableRecordIfPossible(&DVR); 2077 }; 2078 2079 // Clone the non-phi instructions of the source basic block into NewBB, 2080 // keeping track of the mapping and using it to remap operands in the cloned 2081 // instructions. 2082 for (; BI != BE; ++BI) { 2083 Instruction *New = BI->clone(); 2084 New->setName(BI->getName()); 2085 New->insertInto(NewBB, NewBB->end()); 2086 ValueMapping[&*BI] = New; 2087 adaptNoAliasScopes(New, ClonedScopes, Context); 2088 2089 CloneAndRemapDbgInfo(New, &*BI); 2090 2091 if (RetargetDbgValueIfPossible(New)) 2092 continue; 2093 2094 // Remap operands to patch up intra-block references. 2095 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2096 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2097 ValueToValueMapTy::iterator I = ValueMapping.find(Inst); 2098 if (I != ValueMapping.end()) 2099 New->setOperand(i, I->second); 2100 } 2101 } 2102 2103 // There may be DbgVariableRecords on the terminator, clone directly from 2104 // marker to marker as there isn't an instruction there. 2105 if (BE != RangeBB->end() && BE->hasDbgRecords()) { 2106 // Dump them at the end. 2107 DbgMarker *Marker = RangeBB->getMarker(BE); 2108 DbgMarker *EndMarker = NewBB->createMarker(NewBB->end()); 2109 auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt); 2110 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange)) 2111 RetargetDbgVariableRecordIfPossible(&DVR); 2112 } 2113 } 2114 2115 /// Attempt to thread through two successive basic blocks. 2116 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2117 Value *Cond) { 2118 // Consider: 2119 // 2120 // PredBB: 2121 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2122 // %tobool = icmp eq i32 %cond, 0 2123 // br i1 %tobool, label %BB, label ... 2124 // 2125 // BB: 2126 // %cmp = icmp eq i32* %var, null 2127 // br i1 %cmp, label ..., label ... 2128 // 2129 // We don't know the value of %var at BB even if we know which incoming edge 2130 // we take to BB. However, once we duplicate PredBB for each of its incoming 2131 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2132 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2133 2134 // Require that BB end with a Branch for simplicity. 2135 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2136 if (!CondBr) 2137 return false; 2138 2139 // BB must have exactly one predecessor. 2140 BasicBlock *PredBB = BB->getSinglePredecessor(); 2141 if (!PredBB) 2142 return false; 2143 2144 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2145 // unconditional branch, we should be merging PredBB and BB instead. For 2146 // simplicity, we don't deal with a switch. 2147 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2148 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2149 return false; 2150 2151 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2152 // PredBB. 2153 if (PredBB->getSinglePredecessor()) 2154 return false; 2155 2156 // Don't thread through PredBB if it contains a successor edge to itself, in 2157 // which case we would infinite loop. Suppose we are threading an edge from 2158 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2159 // successor edge to itself. If we allowed jump threading in this case, we 2160 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2161 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2162 // with another jump threading opportunity from PredBB.thread through PredBB 2163 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2164 // would keep peeling one iteration from PredBB. 2165 if (llvm::is_contained(successors(PredBB), PredBB)) 2166 return false; 2167 2168 // Don't thread across a loop header. 2169 if (LoopHeaders.count(PredBB)) 2170 return false; 2171 2172 // Avoid complication with duplicating EH pads. 2173 if (PredBB->isEHPad()) 2174 return false; 2175 2176 // Find a predecessor that we can thread. For simplicity, we only consider a 2177 // successor edge out of BB to which we thread exactly one incoming edge into 2178 // PredBB. 2179 unsigned ZeroCount = 0; 2180 unsigned OneCount = 0; 2181 BasicBlock *ZeroPred = nullptr; 2182 BasicBlock *OnePred = nullptr; 2183 const DataLayout &DL = BB->getDataLayout(); 2184 for (BasicBlock *P : predecessors(PredBB)) { 2185 // If PredPred ends with IndirectBrInst, we can't handle it. 2186 if (isa<IndirectBrInst>(P->getTerminator())) 2187 continue; 2188 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2189 evaluateOnPredecessorEdge(BB, P, Cond, DL))) { 2190 if (CI->isZero()) { 2191 ZeroCount++; 2192 ZeroPred = P; 2193 } else if (CI->isOne()) { 2194 OneCount++; 2195 OnePred = P; 2196 } 2197 } 2198 } 2199 2200 // Disregard complicated cases where we have to thread multiple edges. 2201 BasicBlock *PredPredBB; 2202 if (ZeroCount == 1) { 2203 PredPredBB = ZeroPred; 2204 } else if (OneCount == 1) { 2205 PredPredBB = OnePred; 2206 } else { 2207 return false; 2208 } 2209 2210 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2211 2212 // If threading to the same block as we come from, we would infinite loop. 2213 if (SuccBB == BB) { 2214 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2215 << "' - would thread to self!\n"); 2216 return false; 2217 } 2218 2219 // If threading this would thread across a loop header, don't thread the edge. 2220 // See the comments above findLoopHeaders for justifications and caveats. 2221 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2222 LLVM_DEBUG({ 2223 bool BBIsHeader = LoopHeaders.count(BB); 2224 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2225 dbgs() << " Not threading across " 2226 << (BBIsHeader ? "loop header BB '" : "block BB '") 2227 << BB->getName() << "' to dest " 2228 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2229 << SuccBB->getName() 2230 << "' - it might create an irreducible loop!\n"; 2231 }); 2232 return false; 2233 } 2234 2235 // Compute the cost of duplicating BB and PredBB. 2236 unsigned BBCost = getJumpThreadDuplicationCost( 2237 TTI, BB, BB->getTerminator(), BBDupThreshold); 2238 unsigned PredBBCost = getJumpThreadDuplicationCost( 2239 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2240 2241 // Give up if costs are too high. We need to check BBCost and PredBBCost 2242 // individually before checking their sum because getJumpThreadDuplicationCost 2243 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2244 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2245 BBCost + PredBBCost > BBDupThreshold) { 2246 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2247 << "' - Cost is too high: " << PredBBCost 2248 << " for PredBB, " << BBCost << "for BB\n"); 2249 return false; 2250 } 2251 2252 // Now we are ready to duplicate PredBB. 2253 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2254 return true; 2255 } 2256 2257 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2258 BasicBlock *PredBB, 2259 BasicBlock *BB, 2260 BasicBlock *SuccBB) { 2261 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2262 << BB->getName() << "'\n"); 2263 2264 // Build BPI/BFI before any changes are made to IR. 2265 bool HasProfile = doesBlockHaveProfileData(BB); 2266 auto *BFI = getOrCreateBFI(HasProfile); 2267 auto *BPI = getOrCreateBPI(BFI != nullptr); 2268 2269 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2270 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2271 2272 BasicBlock *NewBB = 2273 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2274 PredBB->getParent(), PredBB); 2275 NewBB->moveAfter(PredBB); 2276 2277 // Set the block frequency of NewBB. 2278 if (BFI) { 2279 assert(BPI && "It's expected BPI to exist along with BFI"); 2280 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2281 BPI->getEdgeProbability(PredPredBB, PredBB); 2282 BFI->setBlockFreq(NewBB, NewBBFreq); 2283 } 2284 2285 // We are going to have to map operands from the original BB block to the new 2286 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2287 // to account for entry from PredPredBB. 2288 ValueToValueMapTy ValueMapping; 2289 cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB, 2290 PredPredBB); 2291 2292 // Copy the edge probabilities from PredBB to NewBB. 2293 if (BPI) 2294 BPI->copyEdgeProbabilities(PredBB, NewBB); 2295 2296 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2297 // This eliminates predecessors from PredPredBB, which requires us to simplify 2298 // any PHI nodes in PredBB. 2299 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2300 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2301 if (PredPredTerm->getSuccessor(i) == PredBB) { 2302 PredBB->removePredecessor(PredPredBB, true); 2303 PredPredTerm->setSuccessor(i, NewBB); 2304 } 2305 2306 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2307 ValueMapping); 2308 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2309 ValueMapping); 2310 2311 DTU->applyUpdatesPermissive( 2312 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2313 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2314 {DominatorTree::Insert, PredPredBB, NewBB}, 2315 {DominatorTree::Delete, PredPredBB, PredBB}}); 2316 2317 updateSSA(PredBB, NewBB, ValueMapping); 2318 2319 // Clean up things like PHI nodes with single operands, dead instructions, 2320 // etc. 2321 SimplifyInstructionsInBlock(NewBB, TLI); 2322 SimplifyInstructionsInBlock(PredBB, TLI); 2323 2324 SmallVector<BasicBlock *, 1> PredsToFactor; 2325 PredsToFactor.push_back(NewBB); 2326 threadEdge(BB, PredsToFactor, SuccBB); 2327 } 2328 2329 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2330 bool JumpThreadingPass::tryThreadEdge( 2331 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2332 BasicBlock *SuccBB) { 2333 // If threading to the same block as we come from, we would infinite loop. 2334 if (SuccBB == BB) { 2335 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2336 << "' - would thread to self!\n"); 2337 return false; 2338 } 2339 2340 // If threading this would thread across a loop header, don't thread the edge. 2341 // See the comments above findLoopHeaders for justifications and caveats. 2342 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2343 LLVM_DEBUG({ 2344 bool BBIsHeader = LoopHeaders.count(BB); 2345 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2346 dbgs() << " Not threading across " 2347 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2348 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2349 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2350 }); 2351 return false; 2352 } 2353 2354 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2355 TTI, BB, BB->getTerminator(), BBDupThreshold); 2356 if (JumpThreadCost > BBDupThreshold) { 2357 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2358 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2359 return false; 2360 } 2361 2362 threadEdge(BB, PredBBs, SuccBB); 2363 return true; 2364 } 2365 2366 /// threadEdge - We have decided that it is safe and profitable to factor the 2367 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2368 /// across BB. Transform the IR to reflect this change. 2369 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2370 const SmallVectorImpl<BasicBlock *> &PredBBs, 2371 BasicBlock *SuccBB) { 2372 assert(SuccBB != BB && "Don't create an infinite loop"); 2373 2374 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2375 "Don't thread across loop headers"); 2376 2377 // Build BPI/BFI before any changes are made to IR. 2378 bool HasProfile = doesBlockHaveProfileData(BB); 2379 auto *BFI = getOrCreateBFI(HasProfile); 2380 auto *BPI = getOrCreateBPI(BFI != nullptr); 2381 2382 // And finally, do it! Start by factoring the predecessors if needed. 2383 BasicBlock *PredBB; 2384 if (PredBBs.size() == 1) 2385 PredBB = PredBBs[0]; 2386 else { 2387 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2388 << " common predecessors.\n"); 2389 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2390 } 2391 2392 // And finally, do it! 2393 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2394 << "' to '" << SuccBB->getName() 2395 << ", across block:\n " << *BB << "\n"); 2396 2397 LVI->threadEdge(PredBB, BB, SuccBB); 2398 2399 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2400 BB->getName()+".thread", 2401 BB->getParent(), BB); 2402 NewBB->moveAfter(PredBB); 2403 2404 // Set the block frequency of NewBB. 2405 if (BFI) { 2406 assert(BPI && "It's expected BPI to exist along with BFI"); 2407 auto NewBBFreq = 2408 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2409 BFI->setBlockFreq(NewBB, NewBBFreq); 2410 } 2411 2412 // Copy all the instructions from BB to NewBB except the terminator. 2413 ValueToValueMapTy ValueMapping; 2414 cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB, 2415 PredBB); 2416 2417 // We didn't copy the terminator from BB over to NewBB, because there is now 2418 // an unconditional jump to SuccBB. Insert the unconditional jump. 2419 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2420 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2421 2422 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2423 // PHI nodes for NewBB now. 2424 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2425 2426 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2427 // eliminates predecessors from BB, which requires us to simplify any PHI 2428 // nodes in BB. 2429 Instruction *PredTerm = PredBB->getTerminator(); 2430 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2431 if (PredTerm->getSuccessor(i) == BB) { 2432 BB->removePredecessor(PredBB, true); 2433 PredTerm->setSuccessor(i, NewBB); 2434 } 2435 2436 // Enqueue required DT updates. 2437 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2438 {DominatorTree::Insert, PredBB, NewBB}, 2439 {DominatorTree::Delete, PredBB, BB}}); 2440 2441 updateSSA(BB, NewBB, ValueMapping); 2442 2443 // At this point, the IR is fully up to date and consistent. Do a quick scan 2444 // over the new instructions and zap any that are constants or dead. This 2445 // frequently happens because of phi translation. 2446 SimplifyInstructionsInBlock(NewBB, TLI); 2447 2448 // Update the edge weight from BB to SuccBB, which should be less than before. 2449 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile); 2450 2451 // Threaded an edge! 2452 ++NumThreads; 2453 } 2454 2455 /// Create a new basic block that will be the predecessor of BB and successor of 2456 /// all blocks in Preds. When profile data is available, update the frequency of 2457 /// this new block. 2458 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2459 ArrayRef<BasicBlock *> Preds, 2460 const char *Suffix) { 2461 SmallVector<BasicBlock *, 2> NewBBs; 2462 2463 // Collect the frequencies of all predecessors of BB, which will be used to 2464 // update the edge weight of the result of splitting predecessors. 2465 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2466 auto *BFI = getBFI(); 2467 if (BFI) { 2468 auto *BPI = getOrCreateBPI(true); 2469 for (auto *Pred : Preds) 2470 FreqMap.insert(std::make_pair( 2471 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2472 } 2473 2474 // In the case when BB is a LandingPad block we create 2 new predecessors 2475 // instead of just one. 2476 if (BB->isLandingPad()) { 2477 std::string NewName = std::string(Suffix) + ".split-lp"; 2478 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2479 } else { 2480 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2481 } 2482 2483 std::vector<DominatorTree::UpdateType> Updates; 2484 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2485 for (auto *NewBB : NewBBs) { 2486 BlockFrequency NewBBFreq(0); 2487 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2488 for (auto *Pred : predecessors(NewBB)) { 2489 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2490 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2491 if (BFI) // Update frequencies between Pred -> NewBB. 2492 NewBBFreq += FreqMap.lookup(Pred); 2493 } 2494 if (BFI) // Apply the summed frequency to NewBB. 2495 BFI->setBlockFreq(NewBB, NewBBFreq); 2496 } 2497 2498 DTU->applyUpdatesPermissive(Updates); 2499 return NewBBs[0]; 2500 } 2501 2502 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2503 const Instruction *TI = BB->getTerminator(); 2504 if (!TI || TI->getNumSuccessors() < 2) 2505 return false; 2506 2507 return hasValidBranchWeightMD(*TI); 2508 } 2509 2510 /// Update the block frequency of BB and branch weight and the metadata on the 2511 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2512 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2513 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2514 BasicBlock *BB, 2515 BasicBlock *NewBB, 2516 BasicBlock *SuccBB, 2517 BlockFrequencyInfo *BFI, 2518 BranchProbabilityInfo *BPI, 2519 bool HasProfile) { 2520 assert(((BFI && BPI) || (!BFI && !BFI)) && 2521 "Both BFI & BPI should either be set or unset"); 2522 2523 if (!BFI) { 2524 assert(!HasProfile && 2525 "It's expected to have BFI/BPI when profile info exists"); 2526 return; 2527 } 2528 2529 // As the edge from PredBB to BB is deleted, we have to update the block 2530 // frequency of BB. 2531 auto BBOrigFreq = BFI->getBlockFreq(BB); 2532 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2533 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2534 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2535 BFI->setBlockFreq(BB, BBNewFreq); 2536 2537 // Collect updated outgoing edges' frequencies from BB and use them to update 2538 // edge probabilities. 2539 SmallVector<uint64_t, 4> BBSuccFreq; 2540 for (BasicBlock *Succ : successors(BB)) { 2541 auto SuccFreq = (Succ == SuccBB) 2542 ? BB2SuccBBFreq - NewBBFreq 2543 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2544 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2545 } 2546 2547 uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq); 2548 2549 SmallVector<BranchProbability, 4> BBSuccProbs; 2550 if (MaxBBSuccFreq == 0) 2551 BBSuccProbs.assign(BBSuccFreq.size(), 2552 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2553 else { 2554 for (uint64_t Freq : BBSuccFreq) 2555 BBSuccProbs.push_back( 2556 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2557 // Normalize edge probabilities so that they sum up to one. 2558 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2559 BBSuccProbs.end()); 2560 } 2561 2562 // Update edge probabilities in BPI. 2563 BPI->setEdgeProbability(BB, BBSuccProbs); 2564 2565 // Update the profile metadata as well. 2566 // 2567 // Don't do this if the profile of the transformed blocks was statically 2568 // estimated. (This could occur despite the function having an entry 2569 // frequency in completely cold parts of the CFG.) 2570 // 2571 // In this case we don't want to suggest to subsequent passes that the 2572 // calculated weights are fully consistent. Consider this graph: 2573 // 2574 // check_1 2575 // 50% / | 2576 // eq_1 | 50% 2577 // \ | 2578 // check_2 2579 // 50% / | 2580 // eq_2 | 50% 2581 // \ | 2582 // check_3 2583 // 50% / | 2584 // eq_3 | 50% 2585 // \ | 2586 // 2587 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2588 // the overall probabilities are inconsistent; the total probability that the 2589 // value is either 1, 2 or 3 is 150%. 2590 // 2591 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2592 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2593 // the loop exit edge. Then based solely on static estimation we would assume 2594 // the loop was extremely hot. 2595 // 2596 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2597 // shouldn't make edges extremely likely or unlikely based solely on static 2598 // estimation. 2599 if (BBSuccProbs.size() >= 2 && HasProfile) { 2600 SmallVector<uint32_t, 4> Weights; 2601 for (auto Prob : BBSuccProbs) 2602 Weights.push_back(Prob.getNumerator()); 2603 2604 auto TI = BB->getTerminator(); 2605 setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI)); 2606 } 2607 } 2608 2609 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2610 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2611 /// If we can duplicate the contents of BB up into PredBB do so now, this 2612 /// improves the odds that the branch will be on an analyzable instruction like 2613 /// a compare. 2614 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2615 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2616 assert(!PredBBs.empty() && "Can't handle an empty set"); 2617 2618 // If BB is a loop header, then duplicating this block outside the loop would 2619 // cause us to transform this into an irreducible loop, don't do this. 2620 // See the comments above findLoopHeaders for justifications and caveats. 2621 if (LoopHeaders.count(BB)) { 2622 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2623 << "' into predecessor block '" << PredBBs[0]->getName() 2624 << "' - it might create an irreducible loop!\n"); 2625 return false; 2626 } 2627 2628 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2629 TTI, BB, BB->getTerminator(), BBDupThreshold); 2630 if (DuplicationCost > BBDupThreshold) { 2631 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2632 << "' - Cost is too high: " << DuplicationCost << "\n"); 2633 return false; 2634 } 2635 2636 // And finally, do it! Start by factoring the predecessors if needed. 2637 std::vector<DominatorTree::UpdateType> Updates; 2638 BasicBlock *PredBB; 2639 if (PredBBs.size() == 1) 2640 PredBB = PredBBs[0]; 2641 else { 2642 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2643 << " common predecessors.\n"); 2644 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2645 } 2646 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2647 2648 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2649 // of PredBB. 2650 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2651 << "' into end of '" << PredBB->getName() 2652 << "' to eliminate branch on phi. Cost: " 2653 << DuplicationCost << " block is:" << *BB << "\n"); 2654 2655 // Unless PredBB ends with an unconditional branch, split the edge so that we 2656 // can just clone the bits from BB into the end of the new PredBB. 2657 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2658 2659 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2660 BasicBlock *OldPredBB = PredBB; 2661 PredBB = SplitEdge(OldPredBB, BB); 2662 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2663 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2664 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2665 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2666 } 2667 2668 // We are going to have to map operands from the original BB block into the 2669 // PredBB block. Evaluate PHI nodes in BB. 2670 ValueToValueMapTy ValueMapping; 2671 2672 BasicBlock::iterator BI = BB->begin(); 2673 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2674 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2675 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2676 // mapping and using it to remap operands in the cloned instructions. 2677 for (; BI != BB->end(); ++BI) { 2678 Instruction *New = BI->clone(); 2679 New->insertInto(PredBB, OldPredBranch->getIterator()); 2680 2681 // Remap operands to patch up intra-block references. 2682 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2683 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2684 ValueToValueMapTy::iterator I = ValueMapping.find(Inst); 2685 if (I != ValueMapping.end()) 2686 New->setOperand(i, I->second); 2687 } 2688 2689 // Remap debug variable operands. 2690 remapDebugVariable(ValueMapping, New); 2691 2692 // If this instruction can be simplified after the operands are updated, 2693 // just use the simplified value instead. This frequently happens due to 2694 // phi translation. 2695 if (Value *IV = simplifyInstruction( 2696 New, 2697 {BB->getDataLayout(), TLI, nullptr, nullptr, New})) { 2698 ValueMapping[&*BI] = IV; 2699 if (!New->mayHaveSideEffects()) { 2700 New->eraseFromParent(); 2701 New = nullptr; 2702 // Clone debug-info on the elided instruction to the destination 2703 // position. 2704 OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true); 2705 } 2706 } else { 2707 ValueMapping[&*BI] = New; 2708 } 2709 if (New) { 2710 // Otherwise, insert the new instruction into the block. 2711 New->setName(BI->getName()); 2712 // Clone across any debug-info attached to the old instruction. 2713 New->cloneDebugInfoFrom(&*BI); 2714 // Update Dominance from simplified New instruction operands. 2715 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2716 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2717 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2718 } 2719 } 2720 2721 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2722 // add entries to the PHI nodes for branch from PredBB now. 2723 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2724 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2725 ValueMapping); 2726 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2727 ValueMapping); 2728 2729 updateSSA(BB, PredBB, ValueMapping); 2730 2731 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2732 // that we nuked. 2733 BB->removePredecessor(PredBB, true); 2734 2735 // Remove the unconditional branch at the end of the PredBB block. 2736 OldPredBranch->eraseFromParent(); 2737 if (auto *BPI = getBPI()) 2738 BPI->copyEdgeProbabilities(BB, PredBB); 2739 DTU->applyUpdatesPermissive(Updates); 2740 2741 ++NumDupes; 2742 return true; 2743 } 2744 2745 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2746 // a Select instruction in Pred. BB has other predecessors and SI is used in 2747 // a PHI node in BB. SI has no other use. 2748 // A new basic block, NewBB, is created and SI is converted to compare and 2749 // conditional branch. SI is erased from parent. 2750 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2751 SelectInst *SI, PHINode *SIUse, 2752 unsigned Idx) { 2753 // Expand the select. 2754 // 2755 // Pred -- 2756 // | v 2757 // | NewBB 2758 // | | 2759 // |----- 2760 // v 2761 // BB 2762 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2763 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2764 BB->getParent(), BB); 2765 // Move the unconditional branch to NewBB. 2766 PredTerm->removeFromParent(); 2767 PredTerm->insertInto(NewBB, NewBB->end()); 2768 // Create a conditional branch and update PHI nodes. 2769 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2770 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2771 BI->copyMetadata(*SI, {LLVMContext::MD_prof}); 2772 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2773 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2774 2775 uint64_t TrueWeight = 1; 2776 uint64_t FalseWeight = 1; 2777 // Copy probabilities from 'SI' to created conditional branch in 'Pred'. 2778 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) && 2779 (TrueWeight + FalseWeight) != 0) { 2780 SmallVector<BranchProbability, 2> BP; 2781 BP.emplace_back(BranchProbability::getBranchProbability( 2782 TrueWeight, TrueWeight + FalseWeight)); 2783 BP.emplace_back(BranchProbability::getBranchProbability( 2784 FalseWeight, TrueWeight + FalseWeight)); 2785 // Update BPI if exists. 2786 if (auto *BPI = getBPI()) 2787 BPI->setEdgeProbability(Pred, BP); 2788 } 2789 // Set the block frequency of NewBB. 2790 if (auto *BFI = getBFI()) { 2791 if ((TrueWeight + FalseWeight) == 0) { 2792 TrueWeight = 1; 2793 FalseWeight = 1; 2794 } 2795 BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability( 2796 TrueWeight, TrueWeight + FalseWeight); 2797 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb; 2798 BFI->setBlockFreq(NewBB, NewBBFreq); 2799 } 2800 2801 // The select is now dead. 2802 SI->eraseFromParent(); 2803 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2804 {DominatorTree::Insert, Pred, NewBB}}); 2805 2806 // Update any other PHI nodes in BB. 2807 for (BasicBlock::iterator BI = BB->begin(); 2808 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2809 if (Phi != SIUse) 2810 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2811 } 2812 2813 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2814 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2815 2816 if (!CondPHI || CondPHI->getParent() != BB) 2817 return false; 2818 2819 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2820 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2821 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2822 2823 // The second and third condition can be potentially relaxed. Currently 2824 // the conditions help to simplify the code and allow us to reuse existing 2825 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2826 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2827 continue; 2828 2829 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2830 if (!PredTerm || !PredTerm->isUnconditional()) 2831 continue; 2832 2833 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2834 return true; 2835 } 2836 return false; 2837 } 2838 2839 /// tryToUnfoldSelect - Look for blocks of the form 2840 /// bb1: 2841 /// %a = select 2842 /// br bb2 2843 /// 2844 /// bb2: 2845 /// %p = phi [%a, %bb1] ... 2846 /// %c = icmp %p 2847 /// br i1 %c 2848 /// 2849 /// And expand the select into a branch structure if one of its arms allows %c 2850 /// to be folded. This later enables threading from bb1 over bb2. 2851 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2852 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2853 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2854 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2855 2856 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2857 CondLHS->getParent() != BB) 2858 return false; 2859 2860 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2861 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2862 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2863 2864 // Look if one of the incoming values is a select in the corresponding 2865 // predecessor. 2866 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2867 continue; 2868 2869 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2870 if (!PredTerm || !PredTerm->isUnconditional()) 2871 continue; 2872 2873 // Now check if one of the select values would allow us to constant fold the 2874 // terminator in BB. We don't do the transform if both sides fold, those 2875 // cases will be threaded in any case. 2876 Constant *LHSRes = 2877 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2878 CondRHS, Pred, BB, CondCmp); 2879 Constant *RHSRes = 2880 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2881 CondRHS, Pred, BB, CondCmp); 2882 if ((LHSRes || RHSRes) && LHSRes != RHSRes) { 2883 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2884 return true; 2885 } 2886 } 2887 return false; 2888 } 2889 2890 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2891 /// same BB in the form 2892 /// bb: 2893 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2894 /// %s = select %p, trueval, falseval 2895 /// 2896 /// or 2897 /// 2898 /// bb: 2899 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2900 /// %c = cmp %p, 0 2901 /// %s = select %c, trueval, falseval 2902 /// 2903 /// And expand the select into a branch structure. This later enables 2904 /// jump-threading over bb in this pass. 2905 /// 2906 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2907 /// select if the associated PHI has at least one constant. If the unfolded 2908 /// select is not jump-threaded, it will be folded again in the later 2909 /// optimizations. 2910 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2911 // This transform would reduce the quality of msan diagnostics. 2912 // Disable this transform under MemorySanitizer. 2913 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2914 return false; 2915 2916 // If threading this would thread across a loop header, don't thread the edge. 2917 // See the comments above findLoopHeaders for justifications and caveats. 2918 if (LoopHeaders.count(BB)) 2919 return false; 2920 2921 for (BasicBlock::iterator BI = BB->begin(); 2922 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2923 // Look for a Phi having at least one constant incoming value. 2924 if (llvm::all_of(PN->incoming_values(), 2925 [](Value *V) { return !isa<ConstantInt>(V); })) 2926 continue; 2927 2928 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2929 using namespace PatternMatch; 2930 2931 // Check if SI is in BB and use V as condition. 2932 if (SI->getParent() != BB) 2933 return false; 2934 Value *Cond = SI->getCondition(); 2935 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2936 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2937 }; 2938 2939 SelectInst *SI = nullptr; 2940 for (Use &U : PN->uses()) { 2941 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2942 // Look for a ICmp in BB that compares PN with a constant and is the 2943 // condition of a Select. 2944 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2945 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2946 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2947 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2948 SI = SelectI; 2949 break; 2950 } 2951 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2952 // Look for a Select in BB that uses PN as condition. 2953 if (isUnfoldCandidate(SelectI, U.get())) { 2954 SI = SelectI; 2955 break; 2956 } 2957 } 2958 } 2959 2960 if (!SI) 2961 continue; 2962 // Expand the select. 2963 Value *Cond = SI->getCondition(); 2964 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) 2965 Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator()); 2966 MDNode *BranchWeights = getBranchWeightMDNode(*SI); 2967 Instruction *Term = 2968 SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights); 2969 BasicBlock *SplitBB = SI->getParent(); 2970 BasicBlock *NewBB = Term->getParent(); 2971 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator()); 2972 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2973 NewPN->addIncoming(SI->getFalseValue(), BB); 2974 NewPN->setDebugLoc(SI->getDebugLoc()); 2975 SI->replaceAllUsesWith(NewPN); 2976 SI->eraseFromParent(); 2977 // NewBB and SplitBB are newly created blocks which require insertion. 2978 std::vector<DominatorTree::UpdateType> Updates; 2979 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2980 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2981 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2982 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2983 // BB's successors were moved to SplitBB, update DTU accordingly. 2984 for (auto *Succ : successors(SplitBB)) { 2985 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2986 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2987 } 2988 DTU->applyUpdatesPermissive(Updates); 2989 return true; 2990 } 2991 return false; 2992 } 2993 2994 /// Try to propagate a guard from the current BB into one of its predecessors 2995 /// in case if another branch of execution implies that the condition of this 2996 /// guard is always true. Currently we only process the simplest case that 2997 /// looks like: 2998 /// 2999 /// Start: 3000 /// %cond = ... 3001 /// br i1 %cond, label %T1, label %F1 3002 /// T1: 3003 /// br label %Merge 3004 /// F1: 3005 /// br label %Merge 3006 /// Merge: 3007 /// %condGuard = ... 3008 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 3009 /// 3010 /// And cond either implies condGuard or !condGuard. In this case all the 3011 /// instructions before the guard can be duplicated in both branches, and the 3012 /// guard is then threaded to one of them. 3013 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 3014 using namespace PatternMatch; 3015 3016 // We only want to deal with two predecessors. 3017 BasicBlock *Pred1, *Pred2; 3018 auto PI = pred_begin(BB), PE = pred_end(BB); 3019 if (PI == PE) 3020 return false; 3021 Pred1 = *PI++; 3022 if (PI == PE) 3023 return false; 3024 Pred2 = *PI++; 3025 if (PI != PE) 3026 return false; 3027 if (Pred1 == Pred2) 3028 return false; 3029 3030 // Try to thread one of the guards of the block. 3031 // TODO: Look up deeper than to immediate predecessor? 3032 auto *Parent = Pred1->getSinglePredecessor(); 3033 if (!Parent || Parent != Pred2->getSinglePredecessor()) 3034 return false; 3035 3036 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 3037 for (auto &I : *BB) 3038 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 3039 return true; 3040 3041 return false; 3042 } 3043 3044 /// Try to propagate the guard from BB which is the lower block of a diamond 3045 /// to one of its branches, in case if diamond's condition implies guard's 3046 /// condition. 3047 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3048 BranchInst *BI) { 3049 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3050 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3051 Value *GuardCond = Guard->getArgOperand(0); 3052 Value *BranchCond = BI->getCondition(); 3053 BasicBlock *TrueDest = BI->getSuccessor(0); 3054 BasicBlock *FalseDest = BI->getSuccessor(1); 3055 3056 auto &DL = BB->getDataLayout(); 3057 bool TrueDestIsSafe = false; 3058 bool FalseDestIsSafe = false; 3059 3060 // True dest is safe if BranchCond => GuardCond. 3061 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3062 if (Impl && *Impl) 3063 TrueDestIsSafe = true; 3064 else { 3065 // False dest is safe if !BranchCond => GuardCond. 3066 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3067 if (Impl && *Impl) 3068 FalseDestIsSafe = true; 3069 } 3070 3071 if (!TrueDestIsSafe && !FalseDestIsSafe) 3072 return false; 3073 3074 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3075 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3076 3077 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3078 Instruction *AfterGuard = Guard->getNextNode(); 3079 unsigned Cost = 3080 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3081 if (Cost > BBDupThreshold) 3082 return false; 3083 // Duplicate all instructions before the guard and the guard itself to the 3084 // branch where implication is not proved. 3085 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3086 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3087 assert(GuardedBlock && "Could not create the guarded block?"); 3088 // Duplicate all instructions before the guard in the unguarded branch. 3089 // Since we have successfully duplicated the guarded block and this block 3090 // has fewer instructions, we expect it to succeed. 3091 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3092 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3093 assert(UnguardedBlock && "Could not create the unguarded block?"); 3094 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3095 << GuardedBlock->getName() << "\n"); 3096 // Some instructions before the guard may still have uses. For them, we need 3097 // to create Phi nodes merging their copies in both guarded and unguarded 3098 // branches. Those instructions that have no uses can be just removed. 3099 SmallVector<Instruction *, 4> ToRemove; 3100 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3101 if (!isa<PHINode>(&*BI)) 3102 ToRemove.push_back(&*BI); 3103 3104 BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt(); 3105 assert(InsertionPoint != BB->end() && "Empty block?"); 3106 // Substitute with Phis & remove. 3107 for (auto *Inst : reverse(ToRemove)) { 3108 if (!Inst->use_empty()) { 3109 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3110 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3111 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3112 NewPN->setDebugLoc(Inst->getDebugLoc()); 3113 NewPN->insertBefore(InsertionPoint); 3114 Inst->replaceAllUsesWith(NewPN); 3115 } 3116 Inst->dropDbgRecords(); 3117 Inst->eraseFromParent(); 3118 } 3119 return true; 3120 } 3121 3122 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const { 3123 PreservedAnalyses PA; 3124 PA.preserve<LazyValueAnalysis>(); 3125 PA.preserve<DominatorTreeAnalysis>(); 3126 3127 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them. 3128 // TODO: Would be nice to verify BPI/BFI consistency as well. 3129 return PA; 3130 } 3131 3132 template <typename AnalysisT> 3133 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() { 3134 assert(FAM && "Can't run external analysis without FunctionAnalysisManager"); 3135 3136 // If there were no changes since last call to 'runExternalAnalysis' then all 3137 // analysis is either up to date or explicitly invalidated. Just go ahead and 3138 // run the "external" analysis. 3139 if (!ChangedSinceLastAnalysisUpdate) { 3140 assert(!DTU->hasPendingUpdates() && 3141 "Lost update of 'ChangedSinceLastAnalysisUpdate'?"); 3142 // Run the "external" analysis. 3143 return &FAM->getResult<AnalysisT>(*F); 3144 } 3145 ChangedSinceLastAnalysisUpdate = false; 3146 3147 auto PA = getPreservedAnalysis(); 3148 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI 3149 // as preserved. 3150 PA.preserve<BranchProbabilityAnalysis>(); 3151 PA.preserve<BlockFrequencyAnalysis>(); 3152 // Report everything except explicitly preserved as invalid. 3153 FAM->invalidate(*F, PA); 3154 // Update DT/PDT. 3155 DTU->flush(); 3156 // Make sure DT/PDT are valid before running "external" analysis. 3157 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast)); 3158 assert((!DTU->hasPostDomTree() || 3159 DTU->getPostDomTree().verify( 3160 PostDominatorTree::VerificationLevel::Fast))); 3161 // Run the "external" analysis. 3162 auto *Result = &FAM->getResult<AnalysisT>(*F); 3163 // Update analysis JumpThreading depends on and not explicitly preserved. 3164 TTI = &FAM->getResult<TargetIRAnalysis>(*F); 3165 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F); 3166 AA = &FAM->getResult<AAManager>(*F); 3167 3168 return Result; 3169 } 3170 3171 BranchProbabilityInfo *JumpThreadingPass::getBPI() { 3172 if (!BPI) { 3173 assert(FAM && "Can't create BPI without FunctionAnalysisManager"); 3174 BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F); 3175 } 3176 return *BPI; 3177 } 3178 3179 BlockFrequencyInfo *JumpThreadingPass::getBFI() { 3180 if (!BFI) { 3181 assert(FAM && "Can't create BFI without FunctionAnalysisManager"); 3182 BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F); 3183 } 3184 return *BFI; 3185 } 3186 3187 // Important note on validity of BPI/BFI. JumpThreading tries to preserve 3188 // BPI/BFI as it goes. Thus if cached instance exists it will be updated. 3189 // Otherwise, new instance of BPI/BFI is created (up to date by definition). 3190 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) { 3191 auto *Res = getBPI(); 3192 if (Res) 3193 return Res; 3194 3195 if (Force) 3196 BPI = runExternalAnalysis<BranchProbabilityAnalysis>(); 3197 3198 return *BPI; 3199 } 3200 3201 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) { 3202 auto *Res = getBFI(); 3203 if (Res) 3204 return Res; 3205 3206 if (Force) 3207 BFI = runExternalAnalysis<BlockFrequencyAnalysis>(); 3208 3209 return *BFI; 3210 } 3211