1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "poison" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `poison` and fix all the uses later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, poison ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the poison in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/Analysis/AssumptionCache.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Analysis/ValueTracking.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Dominators.h" 104 #include "llvm/IR/Function.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InstIterator.h" 107 #include "llvm/IR/Instruction.h" 108 #include "llvm/IR/Instructions.h" 109 #include "llvm/IR/IntrinsicInst.h" 110 #include "llvm/IR/Intrinsics.h" 111 #include "llvm/IR/LLVMContext.h" 112 #include "llvm/IR/Operator.h" 113 #include "llvm/IR/PassManager.h" 114 #include "llvm/IR/Type.h" 115 #include "llvm/IR/Use.h" 116 #include "llvm/IR/User.h" 117 #include "llvm/IR/Value.h" 118 #include "llvm/IR/ValueHandle.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Casting.h" 122 #include "llvm/Support/CommandLine.h" 123 #include "llvm/Support/Debug.h" 124 #include "llvm/Support/ErrorHandling.h" 125 #include "llvm/Support/raw_ostream.h" 126 #include "llvm/Transforms/Scalar.h" 127 #include "llvm/Transforms/Utils/Local.h" 128 #include "llvm/Transforms/Utils/ValueMapper.h" 129 #include <cassert> 130 #include <iterator> 131 #include <limits> 132 #include <utility> 133 #include <vector> 134 135 #define DEBUG_TYPE "infer-address-spaces" 136 137 using namespace llvm; 138 139 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 140 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 141 cl::desc("The default address space is assumed as the flat address space. " 142 "This is mainly for test purpose.")); 143 144 static const unsigned UninitializedAddressSpace = 145 std::numeric_limits<unsigned>::max(); 146 147 namespace { 148 149 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 150 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on 151 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new 152 // addrspace is inferred on the *use* of a pointer. This map is introduced to 153 // infer addrspace from the addrspace predicate assumption built from assume 154 // intrinsic. In that scenario, only specific uses (under valid assumption 155 // context) could be inferred with a new addrspace. 156 using PredicatedAddrSpaceMapTy = 157 DenseMap<std::pair<const Value *, const Value *>, unsigned>; 158 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 159 160 class InferAddressSpaces : public FunctionPass { 161 unsigned FlatAddrSpace = 0; 162 163 public: 164 static char ID; 165 166 InferAddressSpaces() 167 : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) { 168 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 169 } 170 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) { 171 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addPreserved<DominatorTreeWrapperPass>(); 177 AU.addRequired<AssumptionCacheTracker>(); 178 AU.addRequired<TargetTransformInfoWrapperPass>(); 179 } 180 181 bool runOnFunction(Function &F) override; 182 }; 183 184 class InferAddressSpacesImpl { 185 AssumptionCache &AC; 186 Function *F = nullptr; 187 const DominatorTree *DT = nullptr; 188 const TargetTransformInfo *TTI = nullptr; 189 const DataLayout *DL = nullptr; 190 191 /// Target specific address space which uses of should be replaced if 192 /// possible. 193 unsigned FlatAddrSpace = 0; 194 195 // Try to update the address space of V. If V is updated, returns true and 196 // false otherwise. 197 bool updateAddressSpace(const Value &V, 198 ValueToAddrSpaceMapTy &InferredAddrSpace, 199 PredicatedAddrSpaceMapTy &PredicatedAS) const; 200 201 // Tries to infer the specific address space of each address expression in 202 // Postorder. 203 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 204 ValueToAddrSpaceMapTy &InferredAddrSpace, 205 PredicatedAddrSpaceMapTy &PredicatedAS) const; 206 207 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 208 209 Value *cloneInstructionWithNewAddressSpace( 210 Instruction *I, unsigned NewAddrSpace, 211 const ValueToValueMapTy &ValueWithNewAddrSpace, 212 const PredicatedAddrSpaceMapTy &PredicatedAS, 213 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 214 215 void performPointerReplacement( 216 Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace, 217 SmallVectorImpl<Instruction *> &DeadInstructions) const; 218 219 // Changes the flat address expressions in function F to point to specific 220 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 221 // all flat expressions in the use-def graph of function F. 222 bool rewriteWithNewAddressSpaces( 223 ArrayRef<WeakTrackingVH> Postorder, 224 const ValueToAddrSpaceMapTy &InferredAddrSpace, 225 const PredicatedAddrSpaceMapTy &PredicatedAS) const; 226 227 void appendsFlatAddressExpressionToPostorderStack( 228 Value *V, PostorderStackTy &PostorderStack, 229 DenseSet<Value *> &Visited) const; 230 231 bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, 232 Value *NewV) const; 233 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 234 PostorderStackTy &PostorderStack, 235 DenseSet<Value *> &Visited) const; 236 237 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 238 239 Value *cloneValueWithNewAddressSpace( 240 Value *V, unsigned NewAddrSpace, 241 const ValueToValueMapTy &ValueWithNewAddrSpace, 242 const PredicatedAddrSpaceMapTy &PredicatedAS, 243 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 244 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 245 246 unsigned getPredicatedAddrSpace(const Value &PtrV, 247 const Value *UserCtx) const; 248 249 public: 250 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT, 251 const TargetTransformInfo *TTI, unsigned FlatAddrSpace) 252 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} 253 bool run(Function &F); 254 }; 255 256 } // end anonymous namespace 257 258 char InferAddressSpaces::ID = 0; 259 260 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 261 false, false) 262 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 263 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 264 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 265 false, false) 266 267 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) { 268 assert(Ty->isPtrOrPtrVectorTy()); 269 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace); 270 return Ty->getWithNewType(NPT); 271 } 272 273 // Check whether that's no-op pointer bicast using a pair of 274 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 275 // different address spaces. 276 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 277 const TargetTransformInfo *TTI) { 278 assert(I2P->getOpcode() == Instruction::IntToPtr); 279 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 280 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 281 return false; 282 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 283 // no-op cast. Besides checking both of them are no-op casts, as the 284 // reinterpreted pointer may be used in other pointer arithmetic, we also 285 // need to double-check that through the target-specific hook. That ensures 286 // the underlying target also agrees that's a no-op address space cast and 287 // pointer bits are preserved. 288 // The current IR spec doesn't have clear rules on address space casts, 289 // especially a clear definition for pointer bits in non-default address 290 // spaces. It would be undefined if that pointer is dereferenced after an 291 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 292 // bits in non-default address spaces in the current spec, the pointer 293 // arithmetic may also be undefined after invalid pointer reinterpret cast. 294 // However, as we confirm through the target hooks that it's a no-op 295 // addrspacecast, it doesn't matter since the bits should be the same. 296 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace(); 297 unsigned I2PAS = I2P->getType()->getPointerAddressSpace(); 298 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 299 I2P->getOperand(0)->getType(), I2P->getType(), 300 DL) && 301 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 302 P2I->getOperand(0)->getType(), P2I->getType(), 303 DL) && 304 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS)); 305 } 306 307 // Returns true if V is an address expression. 308 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 309 // getelementptr operators. 310 static bool isAddressExpression(const Value &V, const DataLayout &DL, 311 const TargetTransformInfo *TTI) { 312 const Operator *Op = dyn_cast<Operator>(&V); 313 if (!Op) 314 return false; 315 316 switch (Op->getOpcode()) { 317 case Instruction::PHI: 318 assert(Op->getType()->isPtrOrPtrVectorTy()); 319 return true; 320 case Instruction::BitCast: 321 case Instruction::AddrSpaceCast: 322 case Instruction::GetElementPtr: 323 return true; 324 case Instruction::Select: 325 return Op->getType()->isPtrOrPtrVectorTy(); 326 case Instruction::Call: { 327 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 328 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 329 } 330 case Instruction::IntToPtr: 331 return isNoopPtrIntCastPair(Op, DL, TTI); 332 default: 333 // That value is an address expression if it has an assumed address space. 334 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 335 } 336 } 337 338 // Returns the pointer operands of V. 339 // 340 // Precondition: V is an address expression. 341 static SmallVector<Value *, 2> 342 getPointerOperands(const Value &V, const DataLayout &DL, 343 const TargetTransformInfo *TTI) { 344 const Operator &Op = cast<Operator>(V); 345 switch (Op.getOpcode()) { 346 case Instruction::PHI: { 347 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 348 return {IncomingValues.begin(), IncomingValues.end()}; 349 } 350 case Instruction::BitCast: 351 case Instruction::AddrSpaceCast: 352 case Instruction::GetElementPtr: 353 return {Op.getOperand(0)}; 354 case Instruction::Select: 355 return {Op.getOperand(1), Op.getOperand(2)}; 356 case Instruction::Call: { 357 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 358 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 359 "unexpected intrinsic call"); 360 return {II.getArgOperand(0)}; 361 } 362 case Instruction::IntToPtr: { 363 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 364 auto *P2I = cast<Operator>(Op.getOperand(0)); 365 return {P2I->getOperand(0)}; 366 } 367 default: 368 llvm_unreachable("Unexpected instruction type."); 369 } 370 } 371 372 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, 373 Value *OldV, 374 Value *NewV) const { 375 Module *M = II->getParent()->getParent()->getParent(); 376 Intrinsic::ID IID = II->getIntrinsicID(); 377 switch (IID) { 378 case Intrinsic::objectsize: 379 case Intrinsic::masked_load: { 380 Type *DestTy = II->getType(); 381 Type *SrcTy = NewV->getType(); 382 Function *NewDecl = 383 Intrinsic::getOrInsertDeclaration(M, IID, {DestTy, SrcTy}); 384 II->setArgOperand(0, NewV); 385 II->setCalledFunction(NewDecl); 386 return true; 387 } 388 case Intrinsic::ptrmask: 389 // This is handled as an address expression, not as a use memory operation. 390 return false; 391 case Intrinsic::masked_gather: { 392 Type *RetTy = II->getType(); 393 Type *NewPtrTy = NewV->getType(); 394 Function *NewDecl = 395 Intrinsic::getOrInsertDeclaration(M, IID, {RetTy, NewPtrTy}); 396 II->setArgOperand(0, NewV); 397 II->setCalledFunction(NewDecl); 398 return true; 399 } 400 case Intrinsic::masked_store: 401 case Intrinsic::masked_scatter: { 402 Type *ValueTy = II->getOperand(0)->getType(); 403 Type *NewPtrTy = NewV->getType(); 404 Function *NewDecl = Intrinsic::getOrInsertDeclaration( 405 M, II->getIntrinsicID(), {ValueTy, NewPtrTy}); 406 II->setArgOperand(1, NewV); 407 II->setCalledFunction(NewDecl); 408 return true; 409 } 410 case Intrinsic::prefetch: 411 case Intrinsic::is_constant: { 412 Function *NewDecl = Intrinsic::getOrInsertDeclaration( 413 M, II->getIntrinsicID(), {NewV->getType()}); 414 II->setArgOperand(0, NewV); 415 II->setCalledFunction(NewDecl); 416 return true; 417 } 418 case Intrinsic::fake_use: { 419 II->replaceUsesOfWith(OldV, NewV); 420 return true; 421 } 422 default: { 423 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 424 if (!Rewrite) 425 return false; 426 if (Rewrite != II) 427 II->replaceAllUsesWith(Rewrite); 428 return true; 429 } 430 } 431 } 432 433 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( 434 IntrinsicInst *II, PostorderStackTy &PostorderStack, 435 DenseSet<Value *> &Visited) const { 436 auto IID = II->getIntrinsicID(); 437 switch (IID) { 438 case Intrinsic::ptrmask: 439 case Intrinsic::objectsize: 440 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 441 PostorderStack, Visited); 442 break; 443 case Intrinsic::is_constant: { 444 Value *Ptr = II->getArgOperand(0); 445 if (Ptr->getType()->isPtrOrPtrVectorTy()) { 446 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 447 Visited); 448 } 449 450 break; 451 } 452 case Intrinsic::masked_load: 453 case Intrinsic::masked_gather: 454 case Intrinsic::prefetch: 455 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 456 PostorderStack, Visited); 457 break; 458 case Intrinsic::masked_store: 459 case Intrinsic::masked_scatter: 460 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1), 461 PostorderStack, Visited); 462 break; 463 case Intrinsic::fake_use: { 464 for (Value *Op : II->operands()) { 465 if (Op->getType()->isPtrOrPtrVectorTy()) { 466 appendsFlatAddressExpressionToPostorderStack(Op, PostorderStack, 467 Visited); 468 } 469 } 470 471 break; 472 } 473 default: 474 SmallVector<int, 2> OpIndexes; 475 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 476 for (int Idx : OpIndexes) { 477 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 478 PostorderStack, Visited); 479 } 480 } 481 break; 482 } 483 } 484 485 // Returns all flat address expressions in function F. The elements are 486 // If V is an unvisited flat address expression, appends V to PostorderStack 487 // and marks it as visited. 488 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( 489 Value *V, PostorderStackTy &PostorderStack, 490 DenseSet<Value *> &Visited) const { 491 assert(V->getType()->isPtrOrPtrVectorTy()); 492 493 // Generic addressing expressions may be hidden in nested constant 494 // expressions. 495 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 496 // TODO: Look in non-address parts, like icmp operands. 497 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 498 PostorderStack.emplace_back(CE, false); 499 500 return; 501 } 502 503 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 504 isAddressExpression(*V, *DL, TTI)) { 505 if (Visited.insert(V).second) { 506 PostorderStack.emplace_back(V, false); 507 508 Operator *Op = cast<Operator>(V); 509 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 510 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 511 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 512 PostorderStack.emplace_back(CE, false); 513 } 514 } 515 } 516 } 517 } 518 519 // Returns all flat address expressions in function F. The elements are ordered 520 // in postorder. 521 std::vector<WeakTrackingVH> 522 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { 523 // This function implements a non-recursive postorder traversal of a partial 524 // use-def graph of function F. 525 PostorderStackTy PostorderStack; 526 // The set of visited expressions. 527 DenseSet<Value *> Visited; 528 529 auto PushPtrOperand = [&](Value *Ptr) { 530 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited); 531 }; 532 533 // Look at operations that may be interesting accelerate by moving to a known 534 // address space. We aim at generating after loads and stores, but pure 535 // addressing calculations may also be faster. 536 for (Instruction &I : instructions(F)) { 537 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 538 PushPtrOperand(GEP->getPointerOperand()); 539 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 540 PushPtrOperand(LI->getPointerOperand()); 541 else if (auto *SI = dyn_cast<StoreInst>(&I)) 542 PushPtrOperand(SI->getPointerOperand()); 543 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 544 PushPtrOperand(RMW->getPointerOperand()); 545 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 546 PushPtrOperand(CmpX->getPointerOperand()); 547 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 548 // For memset/memcpy/memmove, any pointer operand can be replaced. 549 PushPtrOperand(MI->getRawDest()); 550 551 // Handle 2nd operand for memcpy/memmove. 552 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 553 PushPtrOperand(MTI->getRawSource()); 554 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 555 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 556 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 557 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) { 558 PushPtrOperand(Cmp->getOperand(0)); 559 PushPtrOperand(Cmp->getOperand(1)); 560 } 561 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 562 PushPtrOperand(ASC->getPointerOperand()); 563 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 564 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 565 PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0)); 566 } else if (auto *RI = dyn_cast<ReturnInst>(&I)) { 567 if (auto *RV = RI->getReturnValue(); 568 RV && RV->getType()->isPtrOrPtrVectorTy()) 569 PushPtrOperand(RV); 570 } 571 } 572 573 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 574 while (!PostorderStack.empty()) { 575 Value *TopVal = PostorderStack.back().getPointer(); 576 // If the operands of the expression on the top are already explored, 577 // adds that expression to the resultant postorder. 578 if (PostorderStack.back().getInt()) { 579 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 580 Postorder.push_back(TopVal); 581 PostorderStack.pop_back(); 582 continue; 583 } 584 // Otherwise, adds its operands to the stack and explores them. 585 PostorderStack.back().setInt(true); 586 // Skip values with an assumed address space. 587 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 588 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 589 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 590 Visited); 591 } 592 } 593 } 594 return Postorder; 595 } 596 597 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 598 // of OperandUse.get() in the new address space. If the clone is not ready yet, 599 // returns poison in the new address space as a placeholder. 600 static Value *operandWithNewAddressSpaceOrCreatePoison( 601 const Use &OperandUse, unsigned NewAddrSpace, 602 const ValueToValueMapTy &ValueWithNewAddrSpace, 603 const PredicatedAddrSpaceMapTy &PredicatedAS, 604 SmallVectorImpl<const Use *> *PoisonUsesToFix) { 605 Value *Operand = OperandUse.get(); 606 607 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace); 608 609 if (Constant *C = dyn_cast<Constant>(Operand)) 610 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 611 612 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 613 return NewOperand; 614 615 Instruction *Inst = cast<Instruction>(OperandUse.getUser()); 616 auto I = PredicatedAS.find(std::make_pair(Inst, Operand)); 617 if (I != PredicatedAS.end()) { 618 // Insert an addrspacecast on that operand before the user. 619 unsigned NewAS = I->second; 620 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS); 621 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy); 622 NewI->insertBefore(Inst->getIterator()); 623 NewI->setDebugLoc(Inst->getDebugLoc()); 624 return NewI; 625 } 626 627 PoisonUsesToFix->push_back(&OperandUse); 628 return PoisonValue::get(NewPtrTy); 629 } 630 631 // Returns a clone of `I` with its operands converted to those specified in 632 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 633 // operand whose address space needs to be modified might not exist in 634 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and 635 // adds that operand use to PoisonUsesToFix so that caller can fix them later. 636 // 637 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 638 // from a pointer whose type already matches. Therefore, this function returns a 639 // Value* instead of an Instruction*. 640 // 641 // This may also return nullptr in the case the instruction could not be 642 // rewritten. 643 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( 644 Instruction *I, unsigned NewAddrSpace, 645 const ValueToValueMapTy &ValueWithNewAddrSpace, 646 const PredicatedAddrSpaceMapTy &PredicatedAS, 647 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 648 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace); 649 650 if (I->getOpcode() == Instruction::AddrSpaceCast) { 651 Value *Src = I->getOperand(0); 652 // Because `I` is flat, the source address space must be specific. 653 // Therefore, the inferred address space must be the source space, according 654 // to our algorithm. 655 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 656 if (Src->getType() != NewPtrType) 657 return new BitCastInst(Src, NewPtrType); 658 return Src; 659 } 660 661 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 662 // Technically the intrinsic ID is a pointer typed argument, so specially 663 // handle calls early. 664 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 665 Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison( 666 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 667 PredicatedAS, PoisonUsesToFix); 668 Value *Rewrite = 669 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 670 if (Rewrite) { 671 assert(Rewrite != II && "cannot modify this pointer operation in place"); 672 return Rewrite; 673 } 674 675 return nullptr; 676 } 677 678 unsigned AS = TTI->getAssumedAddrSpace(I); 679 if (AS != UninitializedAddressSpace) { 680 // For the assumed address space, insert an `addrspacecast` to make that 681 // explicit. 682 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS); 683 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 684 NewI->insertAfter(I->getIterator()); 685 NewI->setDebugLoc(I->getDebugLoc()); 686 return NewI; 687 } 688 689 // Computes the converted pointer operands. 690 SmallVector<Value *, 4> NewPointerOperands; 691 for (const Use &OperandUse : I->operands()) { 692 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy()) 693 NewPointerOperands.push_back(nullptr); 694 else 695 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison( 696 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, 697 PoisonUsesToFix)); 698 } 699 700 switch (I->getOpcode()) { 701 case Instruction::BitCast: 702 return new BitCastInst(NewPointerOperands[0], NewPtrType); 703 case Instruction::PHI: { 704 assert(I->getType()->isPtrOrPtrVectorTy()); 705 PHINode *PHI = cast<PHINode>(I); 706 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 707 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 708 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 709 NewPHI->addIncoming(NewPointerOperands[OperandNo], 710 PHI->getIncomingBlock(Index)); 711 } 712 return NewPHI; 713 } 714 case Instruction::GetElementPtr: { 715 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 716 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 717 GEP->getSourceElementType(), NewPointerOperands[0], 718 SmallVector<Value *, 4>(GEP->indices())); 719 NewGEP->setIsInBounds(GEP->isInBounds()); 720 return NewGEP; 721 } 722 case Instruction::Select: 723 assert(I->getType()->isPtrOrPtrVectorTy()); 724 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 725 NewPointerOperands[2], "", nullptr, I); 726 case Instruction::IntToPtr: { 727 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 728 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 729 if (Src->getType() == NewPtrType) 730 return Src; 731 732 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a 733 // source address space from a generic pointer source need to insert a cast 734 // back. 735 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType); 736 } 737 default: 738 llvm_unreachable("Unexpected opcode"); 739 } 740 } 741 742 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 743 // constant expression `CE` with its operands replaced as specified in 744 // ValueWithNewAddrSpace. 745 static Value *cloneConstantExprWithNewAddressSpace( 746 ConstantExpr *CE, unsigned NewAddrSpace, 747 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 748 const TargetTransformInfo *TTI) { 749 Type *TargetType = 750 CE->getType()->isPtrOrPtrVectorTy() 751 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace) 752 : CE->getType(); 753 754 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 755 // Because CE is flat, the source address space must be specific. 756 // Therefore, the inferred address space must be the source space according 757 // to our algorithm. 758 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 759 NewAddrSpace); 760 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 761 } 762 763 if (CE->getOpcode() == Instruction::BitCast) { 764 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 765 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 766 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 767 } 768 769 if (CE->getOpcode() == Instruction::IntToPtr) { 770 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 771 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 772 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 773 return ConstantExpr::getBitCast(Src, TargetType); 774 } 775 776 // Computes the operands of the new constant expression. 777 bool IsNew = false; 778 SmallVector<Constant *, 4> NewOperands; 779 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 780 Constant *Operand = CE->getOperand(Index); 781 // If the address space of `Operand` needs to be modified, the new operand 782 // with the new address space should already be in ValueWithNewAddrSpace 783 // because (1) the constant expressions we consider (i.e. addrspacecast, 784 // bitcast, and getelementptr) do not incur cycles in the data flow graph 785 // and (2) this function is called on constant expressions in postorder. 786 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 787 IsNew = true; 788 NewOperands.push_back(cast<Constant>(NewOperand)); 789 continue; 790 } 791 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand)) 792 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 793 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 794 IsNew = true; 795 NewOperands.push_back(cast<Constant>(NewOperand)); 796 continue; 797 } 798 // Otherwise, reuses the old operand. 799 NewOperands.push_back(Operand); 800 } 801 802 // If !IsNew, we will replace the Value with itself. However, replaced values 803 // are assumed to wrapped in an addrspacecast cast later so drop it now. 804 if (!IsNew) 805 return nullptr; 806 807 if (CE->getOpcode() == Instruction::GetElementPtr) { 808 // Needs to specify the source type while constructing a getelementptr 809 // constant expression. 810 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false, 811 cast<GEPOperator>(CE)->getSourceElementType()); 812 } 813 814 return CE->getWithOperands(NewOperands, TargetType); 815 } 816 817 // Returns a clone of the value `V`, with its operands replaced as specified in 818 // ValueWithNewAddrSpace. This function is called on every flat address 819 // expression whose address space needs to be modified, in postorder. 820 // 821 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix. 822 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( 823 Value *V, unsigned NewAddrSpace, 824 const ValueToValueMapTy &ValueWithNewAddrSpace, 825 const PredicatedAddrSpaceMapTy &PredicatedAS, 826 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 827 // All values in Postorder are flat address expressions. 828 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 829 isAddressExpression(*V, *DL, TTI)); 830 831 if (Instruction *I = dyn_cast<Instruction>(V)) { 832 Value *NewV = cloneInstructionWithNewAddressSpace( 833 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix); 834 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 835 if (NewI->getParent() == nullptr) { 836 NewI->insertBefore(I->getIterator()); 837 NewI->takeName(I); 838 NewI->setDebugLoc(I->getDebugLoc()); 839 } 840 } 841 return NewV; 842 } 843 844 return cloneConstantExprWithNewAddressSpace( 845 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 846 } 847 848 // Defines the join operation on the address space lattice (see the file header 849 // comments). 850 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, 851 unsigned AS2) const { 852 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 853 return FlatAddrSpace; 854 855 if (AS1 == UninitializedAddressSpace) 856 return AS2; 857 if (AS2 == UninitializedAddressSpace) 858 return AS1; 859 860 // The join of two different specific address spaces is flat. 861 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 862 } 863 864 bool InferAddressSpacesImpl::run(Function &CurFn) { 865 F = &CurFn; 866 DL = &F->getDataLayout(); 867 868 if (AssumeDefaultIsFlatAddressSpace) 869 FlatAddrSpace = 0; 870 871 if (FlatAddrSpace == UninitializedAddressSpace) { 872 FlatAddrSpace = TTI->getFlatAddressSpace(); 873 if (FlatAddrSpace == UninitializedAddressSpace) 874 return false; 875 } 876 877 // Collects all flat address expressions in postorder. 878 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(*F); 879 880 // Runs a data-flow analysis to refine the address spaces of every expression 881 // in Postorder. 882 ValueToAddrSpaceMapTy InferredAddrSpace; 883 PredicatedAddrSpaceMapTy PredicatedAS; 884 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS); 885 886 // Changes the address spaces of the flat address expressions who are inferred 887 // to point to a specific address space. 888 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, 889 PredicatedAS); 890 } 891 892 // Constants need to be tracked through RAUW to handle cases with nested 893 // constant expressions, so wrap values in WeakTrackingVH. 894 void InferAddressSpacesImpl::inferAddressSpaces( 895 ArrayRef<WeakTrackingVH> Postorder, 896 ValueToAddrSpaceMapTy &InferredAddrSpace, 897 PredicatedAddrSpaceMapTy &PredicatedAS) const { 898 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 899 // Initially, all expressions are in the uninitialized address space. 900 for (Value *V : Postorder) 901 InferredAddrSpace[V] = UninitializedAddressSpace; 902 903 while (!Worklist.empty()) { 904 Value *V = Worklist.pop_back_val(); 905 906 // Try to update the address space of the stack top according to the 907 // address spaces of its operands. 908 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS)) 909 continue; 910 911 for (Value *User : V->users()) { 912 // Skip if User is already in the worklist. 913 if (Worklist.count(User)) 914 continue; 915 916 auto Pos = InferredAddrSpace.find(User); 917 // Our algorithm only updates the address spaces of flat address 918 // expressions, which are those in InferredAddrSpace. 919 if (Pos == InferredAddrSpace.end()) 920 continue; 921 922 // Function updateAddressSpace moves the address space down a lattice 923 // path. Therefore, nothing to do if User is already inferred as flat (the 924 // bottom element in the lattice). 925 if (Pos->second == FlatAddrSpace) 926 continue; 927 928 Worklist.insert(User); 929 } 930 } 931 } 932 933 unsigned 934 InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr, 935 const Value *UserCtx) const { 936 const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx); 937 if (!UserCtxI) 938 return UninitializedAddressSpace; 939 940 const Value *StrippedPtr = Ptr.stripInBoundsOffsets(); 941 for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) { 942 if (!AssumeVH) 943 continue; 944 CallInst *CI = cast<CallInst>(AssumeVH); 945 if (!isValidAssumeForContext(CI, UserCtxI, DT)) 946 continue; 947 948 const Value *Ptr; 949 unsigned AS; 950 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0)); 951 if (Ptr) 952 return AS; 953 } 954 955 return UninitializedAddressSpace; 956 } 957 958 bool InferAddressSpacesImpl::updateAddressSpace( 959 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace, 960 PredicatedAddrSpaceMapTy &PredicatedAS) const { 961 assert(InferredAddrSpace.count(&V)); 962 963 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n'); 964 965 // The new inferred address space equals the join of the address spaces 966 // of all its pointer operands. 967 unsigned NewAS = UninitializedAddressSpace; 968 969 const Operator &Op = cast<Operator>(V); 970 if (Op.getOpcode() == Instruction::Select) { 971 Value *Src0 = Op.getOperand(1); 972 Value *Src1 = Op.getOperand(2); 973 974 auto I = InferredAddrSpace.find(Src0); 975 unsigned Src0AS = (I != InferredAddrSpace.end()) 976 ? I->second 977 : Src0->getType()->getPointerAddressSpace(); 978 979 auto J = InferredAddrSpace.find(Src1); 980 unsigned Src1AS = (J != InferredAddrSpace.end()) 981 ? J->second 982 : Src1->getType()->getPointerAddressSpace(); 983 984 auto *C0 = dyn_cast<Constant>(Src0); 985 auto *C1 = dyn_cast<Constant>(Src1); 986 987 // If one of the inputs is a constant, we may be able to do a constant 988 // addrspacecast of it. Defer inferring the address space until the input 989 // address space is known. 990 if ((C1 && Src0AS == UninitializedAddressSpace) || 991 (C0 && Src1AS == UninitializedAddressSpace)) 992 return false; 993 994 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 995 NewAS = Src1AS; 996 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 997 NewAS = Src0AS; 998 else 999 NewAS = joinAddressSpaces(Src0AS, Src1AS); 1000 } else { 1001 unsigned AS = TTI->getAssumedAddrSpace(&V); 1002 if (AS != UninitializedAddressSpace) { 1003 // Use the assumed address space directly. 1004 NewAS = AS; 1005 } else { 1006 // Otherwise, infer the address space from its pointer operands. 1007 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 1008 auto I = InferredAddrSpace.find(PtrOperand); 1009 unsigned OperandAS; 1010 if (I == InferredAddrSpace.end()) { 1011 OperandAS = PtrOperand->getType()->getPointerAddressSpace(); 1012 if (OperandAS == FlatAddrSpace) { 1013 // Check AC for assumption dominating V. 1014 unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V); 1015 if (AS != UninitializedAddressSpace) { 1016 LLVM_DEBUG(dbgs() 1017 << " deduce operand AS from the predicate addrspace " 1018 << AS << '\n'); 1019 OperandAS = AS; 1020 // Record this use with the predicated AS. 1021 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS; 1022 } 1023 } 1024 } else 1025 OperandAS = I->second; 1026 1027 // join(flat, *) = flat. So we can break if NewAS is already flat. 1028 NewAS = joinAddressSpaces(NewAS, OperandAS); 1029 if (NewAS == FlatAddrSpace) 1030 break; 1031 } 1032 } 1033 } 1034 1035 unsigned OldAS = InferredAddrSpace.lookup(&V); 1036 assert(OldAS != FlatAddrSpace); 1037 if (OldAS == NewAS) 1038 return false; 1039 1040 // If any updates are made, grabs its users to the worklist because 1041 // their address spaces can also be possibly updated. 1042 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n'); 1043 InferredAddrSpace[&V] = NewAS; 1044 return true; 1045 } 1046 1047 /// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal 1048 /// with \p NewVal. 1049 static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx, 1050 Value *OldVal, Value *NewVal) { 1051 Use &U = Inst->getOperandUse(OpIdx); 1052 if (U.get() == OldVal) { 1053 U.set(NewVal); 1054 return true; 1055 } 1056 1057 return false; 1058 } 1059 1060 template <typename InstrType> 1061 static bool replaceSimplePointerUse(const TargetTransformInfo &TTI, 1062 InstrType *MemInstr, unsigned AddrSpace, 1063 Value *OldV, Value *NewV) { 1064 if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) { 1065 return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(), 1066 OldV, NewV); 1067 } 1068 1069 return false; 1070 } 1071 1072 /// If \p OldV is used as the pointer operand of a compatible memory operation 1073 /// \p Inst, replaces the pointer operand with NewV. 1074 /// 1075 /// This covers memory instructions with a single pointer operand that can have 1076 /// its address space changed by simply mutating the use to a new value. 1077 /// 1078 /// \p returns true the user replacement was made. 1079 static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI, 1080 User *Inst, unsigned AddrSpace, 1081 Value *OldV, Value *NewV) { 1082 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1083 return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV); 1084 1085 if (auto *SI = dyn_cast<StoreInst>(Inst)) 1086 return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV); 1087 1088 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 1089 return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV); 1090 1091 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 1092 return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV); 1093 1094 return false; 1095 } 1096 1097 /// Update memory intrinsic uses that require more complex processing than 1098 /// simple memory instructions. These require re-mangling and may have multiple 1099 /// pointer operands. 1100 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 1101 Value *NewV) { 1102 IRBuilder<> B(MI); 1103 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 1104 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 1105 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 1106 1107 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 1108 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(), 1109 false, // isVolatile 1110 TBAA, ScopeMD, NoAliasMD); 1111 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 1112 Value *Src = MTI->getRawSource(); 1113 Value *Dest = MTI->getRawDest(); 1114 1115 // Be careful in case this is a self-to-self copy. 1116 if (Src == OldV) 1117 Src = NewV; 1118 1119 if (Dest == OldV) 1120 Dest = NewV; 1121 1122 if (isa<MemCpyInlineInst>(MTI)) { 1123 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1124 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src, 1125 MTI->getSourceAlign(), MTI->getLength(), 1126 false, // isVolatile 1127 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1128 } else if (isa<MemCpyInst>(MTI)) { 1129 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1130 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1131 MTI->getLength(), 1132 false, // isVolatile 1133 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1134 } else { 1135 assert(isa<MemMoveInst>(MTI)); 1136 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1137 MTI->getLength(), 1138 false, // isVolatile 1139 TBAA, ScopeMD, NoAliasMD); 1140 } 1141 } else 1142 llvm_unreachable("unhandled MemIntrinsic"); 1143 1144 MI->eraseFromParent(); 1145 return true; 1146 } 1147 1148 // \p returns true if it is OK to change the address space of constant \p C with 1149 // a ConstantExpr addrspacecast. 1150 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, 1151 unsigned NewAS) const { 1152 assert(NewAS != UninitializedAddressSpace); 1153 1154 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 1155 if (SrcAS == NewAS || isa<UndefValue>(C)) 1156 return true; 1157 1158 // Prevent illegal casts between different non-flat address spaces. 1159 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 1160 return false; 1161 1162 if (isa<ConstantPointerNull>(C)) 1163 return true; 1164 1165 if (auto *Op = dyn_cast<Operator>(C)) { 1166 // If we already have a constant addrspacecast, it should be safe to cast it 1167 // off. 1168 if (Op->getOpcode() == Instruction::AddrSpaceCast) 1169 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), 1170 NewAS); 1171 1172 if (Op->getOpcode() == Instruction::IntToPtr && 1173 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 1174 return true; 1175 } 1176 1177 return false; 1178 } 1179 1180 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1181 Value::use_iterator End) { 1182 User *CurUser = I->getUser(); 1183 ++I; 1184 1185 while (I != End && I->getUser() == CurUser) 1186 ++I; 1187 1188 return I; 1189 } 1190 1191 void InferAddressSpacesImpl::performPointerReplacement( 1192 Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace, 1193 SmallVectorImpl<Instruction *> &DeadInstructions) const { 1194 1195 User *CurUser = U.getUser(); 1196 1197 unsigned AddrSpace = V->getType()->getPointerAddressSpace(); 1198 if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV)) 1199 return; 1200 1201 // Skip if the current user is the new value itself. 1202 if (CurUser == NewV) 1203 return; 1204 1205 auto *CurUserI = dyn_cast<Instruction>(CurUser); 1206 if (!CurUserI || CurUserI->getFunction() != F) 1207 return; 1208 1209 // Handle more complex cases like intrinsic that need to be remangled. 1210 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1211 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1212 return; 1213 } 1214 1215 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1216 if (rewriteIntrinsicOperands(II, V, NewV)) 1217 return; 1218 } 1219 1220 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUserI)) { 1221 // If we can infer that both pointers are in the same addrspace, 1222 // transform e.g. 1223 // %cmp = icmp eq float* %p, %q 1224 // into 1225 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1226 1227 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1228 int SrcIdx = U.getOperandNo(); 1229 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1230 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1231 1232 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1233 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1234 Cmp->setOperand(OtherIdx, OtherNewV); 1235 Cmp->setOperand(SrcIdx, NewV); 1236 return; 1237 } 1238 } 1239 1240 // Even if the type mismatches, we can cast the constant. 1241 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1242 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1243 Cmp->setOperand(SrcIdx, NewV); 1244 Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast( 1245 KOtherSrc, NewV->getType())); 1246 return; 1247 } 1248 } 1249 } 1250 1251 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUserI)) { 1252 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1253 if (ASC->getDestAddressSpace() == NewAS) { 1254 ASC->replaceAllUsesWith(NewV); 1255 DeadInstructions.push_back(ASC); 1256 return; 1257 } 1258 } 1259 1260 // Otherwise, replaces the use with flat(NewV). 1261 if (Instruction *VInst = dyn_cast<Instruction>(V)) { 1262 // Don't create a copy of the original addrspacecast. 1263 if (U == V && isa<AddrSpaceCastInst>(V)) 1264 return; 1265 1266 // Insert the addrspacecast after NewV. 1267 BasicBlock::iterator InsertPos; 1268 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) 1269 InsertPos = std::next(NewVInst->getIterator()); 1270 else 1271 InsertPos = std::next(VInst->getIterator()); 1272 1273 while (isa<PHINode>(InsertPos)) 1274 ++InsertPos; 1275 // This instruction may contain multiple uses of V, update them all. 1276 CurUser->replaceUsesOfWith( 1277 V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos)); 1278 } else { 1279 CurUserI->replaceUsesOfWith( 1280 V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), V->getType())); 1281 } 1282 } 1283 1284 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( 1285 ArrayRef<WeakTrackingVH> Postorder, 1286 const ValueToAddrSpaceMapTy &InferredAddrSpace, 1287 const PredicatedAddrSpaceMapTy &PredicatedAS) const { 1288 // For each address expression to be modified, creates a clone of it with its 1289 // pointer operands converted to the new address space. Since the pointer 1290 // operands are converted, the clone is naturally in the new address space by 1291 // construction. 1292 ValueToValueMapTy ValueWithNewAddrSpace; 1293 SmallVector<const Use *, 32> PoisonUsesToFix; 1294 for (Value *V : Postorder) { 1295 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1296 1297 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1298 // not even infer the value to have its original address space. 1299 if (NewAddrSpace == UninitializedAddressSpace) 1300 continue; 1301 1302 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1303 Value *New = 1304 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace, 1305 PredicatedAS, &PoisonUsesToFix); 1306 if (New) 1307 ValueWithNewAddrSpace[V] = New; 1308 } 1309 } 1310 1311 if (ValueWithNewAddrSpace.empty()) 1312 return false; 1313 1314 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace. 1315 for (const Use *PoisonUse : PoisonUsesToFix) { 1316 User *V = PoisonUse->getUser(); 1317 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1318 if (!NewV) 1319 continue; 1320 1321 unsigned OperandNo = PoisonUse->getOperandNo(); 1322 assert(isa<PoisonValue>(NewV->getOperand(OperandNo))); 1323 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get())); 1324 } 1325 1326 SmallVector<Instruction *, 16> DeadInstructions; 1327 ValueToValueMapTy VMap; 1328 ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1329 1330 // Replaces the uses of the old address expressions with the new ones. 1331 for (const WeakTrackingVH &WVH : Postorder) { 1332 assert(WVH && "value was unexpectedly deleted"); 1333 Value *V = WVH; 1334 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1335 if (NewV == nullptr) 1336 continue; 1337 1338 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1339 << *NewV << '\n'); 1340 1341 if (Constant *C = dyn_cast<Constant>(V)) { 1342 Constant *Replace = 1343 ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType()); 1344 if (C != Replace) { 1345 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1346 << ": " << *Replace << '\n'); 1347 SmallVector<User *, 16> WorkList; 1348 for (User *U : make_early_inc_range(C->users())) { 1349 if (auto *I = dyn_cast<Instruction>(U)) { 1350 if (I->getFunction() == F) 1351 I->replaceUsesOfWith(C, Replace); 1352 } else { 1353 WorkList.append(U->user_begin(), U->user_end()); 1354 } 1355 } 1356 if (!WorkList.empty()) { 1357 VMap[C] = Replace; 1358 DenseSet<User *> Visited{WorkList.begin(), WorkList.end()}; 1359 while (!WorkList.empty()) { 1360 User *U = WorkList.pop_back_val(); 1361 if (auto *I = dyn_cast<Instruction>(U)) { 1362 if (I->getFunction() == F) 1363 VMapper.remapInstruction(*I); 1364 continue; 1365 } 1366 for (User *U2 : U->users()) 1367 if (Visited.insert(U2).second) 1368 WorkList.push_back(U2); 1369 } 1370 } 1371 V = Replace; 1372 } 1373 } 1374 1375 Value::use_iterator I, E, Next; 1376 for (I = V->use_begin(), E = V->use_end(); I != E;) { 1377 Use &U = *I; 1378 1379 // Some users may see the same pointer operand in multiple operands. Skip 1380 // to the next instruction. 1381 I = skipToNextUser(I, E); 1382 1383 performPointerReplacement(V, NewV, U, ValueWithNewAddrSpace, 1384 DeadInstructions); 1385 } 1386 1387 if (V->use_empty()) { 1388 if (Instruction *I = dyn_cast<Instruction>(V)) 1389 DeadInstructions.push_back(I); 1390 } 1391 } 1392 1393 for (Instruction *I : DeadInstructions) 1394 RecursivelyDeleteTriviallyDeadInstructions(I); 1395 1396 return true; 1397 } 1398 1399 bool InferAddressSpaces::runOnFunction(Function &F) { 1400 if (skipFunction(F)) 1401 return false; 1402 1403 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1404 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1405 return InferAddressSpacesImpl( 1406 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT, 1407 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1408 FlatAddrSpace) 1409 .run(F); 1410 } 1411 1412 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1413 return new InferAddressSpaces(AddressSpace); 1414 } 1415 1416 InferAddressSpacesPass::InferAddressSpacesPass() 1417 : FlatAddrSpace(UninitializedAddressSpace) {} 1418 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) 1419 : FlatAddrSpace(AddressSpace) {} 1420 1421 PreservedAnalyses InferAddressSpacesPass::run(Function &F, 1422 FunctionAnalysisManager &AM) { 1423 bool Changed = 1424 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F), 1425 AM.getCachedResult<DominatorTreeAnalysis>(F), 1426 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) 1427 .run(F); 1428 if (Changed) { 1429 PreservedAnalyses PA; 1430 PA.preserveSet<CFGAnalyses>(); 1431 PA.preserve<DominatorTreeAnalysis>(); 1432 return PA; 1433 } 1434 return PreservedAnalyses::all(); 1435 } 1436