xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "poison" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `poison` and fix all the uses later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, poison ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the poison in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Debug.h"
124 #include "llvm/Support/ErrorHandling.h"
125 #include "llvm/Support/raw_ostream.h"
126 #include "llvm/Transforms/Scalar.h"
127 #include "llvm/Transforms/Utils/Local.h"
128 #include "llvm/Transforms/Utils/ValueMapper.h"
129 #include <cassert>
130 #include <iterator>
131 #include <limits>
132 #include <utility>
133 #include <vector>
134 
135 #define DEBUG_TYPE "infer-address-spaces"
136 
137 using namespace llvm;
138 
139 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
140     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
141     cl::desc("The default address space is assumed as the flat address space. "
142              "This is mainly for test purpose."));
143 
144 static const unsigned UninitializedAddressSpace =
145     std::numeric_limits<unsigned>::max();
146 
147 namespace {
148 
149 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
150 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
151 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
152 // addrspace is inferred on the *use* of a pointer. This map is introduced to
153 // infer addrspace from the addrspace predicate assumption built from assume
154 // intrinsic. In that scenario, only specific uses (under valid assumption
155 // context) could be inferred with a new addrspace.
156 using PredicatedAddrSpaceMapTy =
157     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
158 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
159 
160 class InferAddressSpaces : public FunctionPass {
161   unsigned FlatAddrSpace = 0;
162 
163 public:
164   static char ID;
165 
166   InferAddressSpaces()
167       : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
168     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
169   }
170   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
171     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
172   }
173 
174   void getAnalysisUsage(AnalysisUsage &AU) const override {
175     AU.setPreservesCFG();
176     AU.addPreserved<DominatorTreeWrapperPass>();
177     AU.addRequired<AssumptionCacheTracker>();
178     AU.addRequired<TargetTransformInfoWrapperPass>();
179   }
180 
181   bool runOnFunction(Function &F) override;
182 };
183 
184 class InferAddressSpacesImpl {
185   AssumptionCache &AC;
186   Function *F = nullptr;
187   const DominatorTree *DT = nullptr;
188   const TargetTransformInfo *TTI = nullptr;
189   const DataLayout *DL = nullptr;
190 
191   /// Target specific address space which uses of should be replaced if
192   /// possible.
193   unsigned FlatAddrSpace = 0;
194 
195   // Try to update the address space of V. If V is updated, returns true and
196   // false otherwise.
197   bool updateAddressSpace(const Value &V,
198                           ValueToAddrSpaceMapTy &InferredAddrSpace,
199                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
200 
201   // Tries to infer the specific address space of each address expression in
202   // Postorder.
203   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
204                           ValueToAddrSpaceMapTy &InferredAddrSpace,
205                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
206 
207   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
208 
209   Value *cloneInstructionWithNewAddressSpace(
210       Instruction *I, unsigned NewAddrSpace,
211       const ValueToValueMapTy &ValueWithNewAddrSpace,
212       const PredicatedAddrSpaceMapTy &PredicatedAS,
213       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
214 
215   void performPointerReplacement(
216       Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
217       SmallVectorImpl<Instruction *> &DeadInstructions) const;
218 
219   // Changes the flat address expressions in function F to point to specific
220   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
221   // all flat expressions in the use-def graph of function F.
222   bool rewriteWithNewAddressSpaces(
223       ArrayRef<WeakTrackingVH> Postorder,
224       const ValueToAddrSpaceMapTy &InferredAddrSpace,
225       const PredicatedAddrSpaceMapTy &PredicatedAS) const;
226 
227   void appendsFlatAddressExpressionToPostorderStack(
228       Value *V, PostorderStackTy &PostorderStack,
229       DenseSet<Value *> &Visited) const;
230 
231   bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
232                                 Value *NewV) const;
233   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
234                                           PostorderStackTy &PostorderStack,
235                                           DenseSet<Value *> &Visited) const;
236 
237   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
238 
239   Value *cloneValueWithNewAddressSpace(
240       Value *V, unsigned NewAddrSpace,
241       const ValueToValueMapTy &ValueWithNewAddrSpace,
242       const PredicatedAddrSpaceMapTy &PredicatedAS,
243       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
244   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
245 
246   unsigned getPredicatedAddrSpace(const Value &PtrV,
247                                   const Value *UserCtx) const;
248 
249 public:
250   InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
251                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
252       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
253   bool run(Function &F);
254 };
255 
256 } // end anonymous namespace
257 
258 char InferAddressSpaces::ID = 0;
259 
260 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
261                       false, false)
262 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
263 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
264 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
265                     false, false)
266 
267 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
268   assert(Ty->isPtrOrPtrVectorTy());
269   PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
270   return Ty->getWithNewType(NPT);
271 }
272 
273 // Check whether that's no-op pointer bicast using a pair of
274 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
275 // different address spaces.
276 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
277                                  const TargetTransformInfo *TTI) {
278   assert(I2P->getOpcode() == Instruction::IntToPtr);
279   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
280   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
281     return false;
282   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
283   // no-op cast. Besides checking both of them are no-op casts, as the
284   // reinterpreted pointer may be used in other pointer arithmetic, we also
285   // need to double-check that through the target-specific hook. That ensures
286   // the underlying target also agrees that's a no-op address space cast and
287   // pointer bits are preserved.
288   // The current IR spec doesn't have clear rules on address space casts,
289   // especially a clear definition for pointer bits in non-default address
290   // spaces. It would be undefined if that pointer is dereferenced after an
291   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
292   // bits in non-default address spaces in the current spec, the pointer
293   // arithmetic may also be undefined after invalid pointer reinterpret cast.
294   // However, as we confirm through the target hooks that it's a no-op
295   // addrspacecast, it doesn't matter since the bits should be the same.
296   unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
297   unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
298   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
299                               I2P->getOperand(0)->getType(), I2P->getType(),
300                               DL) &&
301          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
302                               P2I->getOperand(0)->getType(), P2I->getType(),
303                               DL) &&
304          (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
305 }
306 
307 // Returns true if V is an address expression.
308 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
309 // getelementptr operators.
310 static bool isAddressExpression(const Value &V, const DataLayout &DL,
311                                 const TargetTransformInfo *TTI) {
312   const Operator *Op = dyn_cast<Operator>(&V);
313   if (!Op)
314     return false;
315 
316   switch (Op->getOpcode()) {
317   case Instruction::PHI:
318     assert(Op->getType()->isPtrOrPtrVectorTy());
319     return true;
320   case Instruction::BitCast:
321   case Instruction::AddrSpaceCast:
322   case Instruction::GetElementPtr:
323     return true;
324   case Instruction::Select:
325     return Op->getType()->isPtrOrPtrVectorTy();
326   case Instruction::Call: {
327     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
328     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
329   }
330   case Instruction::IntToPtr:
331     return isNoopPtrIntCastPair(Op, DL, TTI);
332   default:
333     // That value is an address expression if it has an assumed address space.
334     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
335   }
336 }
337 
338 // Returns the pointer operands of V.
339 //
340 // Precondition: V is an address expression.
341 static SmallVector<Value *, 2>
342 getPointerOperands(const Value &V, const DataLayout &DL,
343                    const TargetTransformInfo *TTI) {
344   const Operator &Op = cast<Operator>(V);
345   switch (Op.getOpcode()) {
346   case Instruction::PHI: {
347     auto IncomingValues = cast<PHINode>(Op).incoming_values();
348     return {IncomingValues.begin(), IncomingValues.end()};
349   }
350   case Instruction::BitCast:
351   case Instruction::AddrSpaceCast:
352   case Instruction::GetElementPtr:
353     return {Op.getOperand(0)};
354   case Instruction::Select:
355     return {Op.getOperand(1), Op.getOperand(2)};
356   case Instruction::Call: {
357     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
358     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
359            "unexpected intrinsic call");
360     return {II.getArgOperand(0)};
361   }
362   case Instruction::IntToPtr: {
363     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
364     auto *P2I = cast<Operator>(Op.getOperand(0));
365     return {P2I->getOperand(0)};
366   }
367   default:
368     llvm_unreachable("Unexpected instruction type.");
369   }
370 }
371 
372 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
373                                                       Value *OldV,
374                                                       Value *NewV) const {
375   Module *M = II->getParent()->getParent()->getParent();
376   Intrinsic::ID IID = II->getIntrinsicID();
377   switch (IID) {
378   case Intrinsic::objectsize:
379   case Intrinsic::masked_load: {
380     Type *DestTy = II->getType();
381     Type *SrcTy = NewV->getType();
382     Function *NewDecl =
383         Intrinsic::getOrInsertDeclaration(M, IID, {DestTy, SrcTy});
384     II->setArgOperand(0, NewV);
385     II->setCalledFunction(NewDecl);
386     return true;
387   }
388   case Intrinsic::ptrmask:
389     // This is handled as an address expression, not as a use memory operation.
390     return false;
391   case Intrinsic::masked_gather: {
392     Type *RetTy = II->getType();
393     Type *NewPtrTy = NewV->getType();
394     Function *NewDecl =
395         Intrinsic::getOrInsertDeclaration(M, IID, {RetTy, NewPtrTy});
396     II->setArgOperand(0, NewV);
397     II->setCalledFunction(NewDecl);
398     return true;
399   }
400   case Intrinsic::masked_store:
401   case Intrinsic::masked_scatter: {
402     Type *ValueTy = II->getOperand(0)->getType();
403     Type *NewPtrTy = NewV->getType();
404     Function *NewDecl = Intrinsic::getOrInsertDeclaration(
405         M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
406     II->setArgOperand(1, NewV);
407     II->setCalledFunction(NewDecl);
408     return true;
409   }
410   case Intrinsic::prefetch:
411   case Intrinsic::is_constant: {
412     Function *NewDecl = Intrinsic::getOrInsertDeclaration(
413         M, II->getIntrinsicID(), {NewV->getType()});
414     II->setArgOperand(0, NewV);
415     II->setCalledFunction(NewDecl);
416     return true;
417   }
418   case Intrinsic::fake_use: {
419     II->replaceUsesOfWith(OldV, NewV);
420     return true;
421   }
422   default: {
423     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
424     if (!Rewrite)
425       return false;
426     if (Rewrite != II)
427       II->replaceAllUsesWith(Rewrite);
428     return true;
429   }
430   }
431 }
432 
433 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
434     IntrinsicInst *II, PostorderStackTy &PostorderStack,
435     DenseSet<Value *> &Visited) const {
436   auto IID = II->getIntrinsicID();
437   switch (IID) {
438   case Intrinsic::ptrmask:
439   case Intrinsic::objectsize:
440     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
441                                                  PostorderStack, Visited);
442     break;
443   case Intrinsic::is_constant: {
444     Value *Ptr = II->getArgOperand(0);
445     if (Ptr->getType()->isPtrOrPtrVectorTy()) {
446       appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
447                                                    Visited);
448     }
449 
450     break;
451   }
452   case Intrinsic::masked_load:
453   case Intrinsic::masked_gather:
454   case Intrinsic::prefetch:
455     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
456                                                  PostorderStack, Visited);
457     break;
458   case Intrinsic::masked_store:
459   case Intrinsic::masked_scatter:
460     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
461                                                  PostorderStack, Visited);
462     break;
463   case Intrinsic::fake_use: {
464     for (Value *Op : II->operands()) {
465       if (Op->getType()->isPtrOrPtrVectorTy()) {
466         appendsFlatAddressExpressionToPostorderStack(Op, PostorderStack,
467                                                      Visited);
468       }
469     }
470 
471     break;
472   }
473   default:
474     SmallVector<int, 2> OpIndexes;
475     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
476       for (int Idx : OpIndexes) {
477         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
478                                                      PostorderStack, Visited);
479       }
480     }
481     break;
482   }
483 }
484 
485 // Returns all flat address expressions in function F. The elements are
486 // If V is an unvisited flat address expression, appends V to PostorderStack
487 // and marks it as visited.
488 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
489     Value *V, PostorderStackTy &PostorderStack,
490     DenseSet<Value *> &Visited) const {
491   assert(V->getType()->isPtrOrPtrVectorTy());
492 
493   // Generic addressing expressions may be hidden in nested constant
494   // expressions.
495   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
496     // TODO: Look in non-address parts, like icmp operands.
497     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
498       PostorderStack.emplace_back(CE, false);
499 
500     return;
501   }
502 
503   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
504       isAddressExpression(*V, *DL, TTI)) {
505     if (Visited.insert(V).second) {
506       PostorderStack.emplace_back(V, false);
507 
508       Operator *Op = cast<Operator>(V);
509       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
510         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
511           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
512             PostorderStack.emplace_back(CE, false);
513         }
514       }
515     }
516   }
517 }
518 
519 // Returns all flat address expressions in function F. The elements are ordered
520 // in postorder.
521 std::vector<WeakTrackingVH>
522 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
523   // This function implements a non-recursive postorder traversal of a partial
524   // use-def graph of function F.
525   PostorderStackTy PostorderStack;
526   // The set of visited expressions.
527   DenseSet<Value *> Visited;
528 
529   auto PushPtrOperand = [&](Value *Ptr) {
530     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
531   };
532 
533   // Look at operations that may be interesting accelerate by moving to a known
534   // address space. We aim at generating after loads and stores, but pure
535   // addressing calculations may also be faster.
536   for (Instruction &I : instructions(F)) {
537     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
538       PushPtrOperand(GEP->getPointerOperand());
539     } else if (auto *LI = dyn_cast<LoadInst>(&I))
540       PushPtrOperand(LI->getPointerOperand());
541     else if (auto *SI = dyn_cast<StoreInst>(&I))
542       PushPtrOperand(SI->getPointerOperand());
543     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
544       PushPtrOperand(RMW->getPointerOperand());
545     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
546       PushPtrOperand(CmpX->getPointerOperand());
547     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
548       // For memset/memcpy/memmove, any pointer operand can be replaced.
549       PushPtrOperand(MI->getRawDest());
550 
551       // Handle 2nd operand for memcpy/memmove.
552       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
553         PushPtrOperand(MTI->getRawSource());
554     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
555       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
556     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
557       if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
558         PushPtrOperand(Cmp->getOperand(0));
559         PushPtrOperand(Cmp->getOperand(1));
560       }
561     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
562       PushPtrOperand(ASC->getPointerOperand());
563     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
564       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
565         PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
566     } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
567       if (auto *RV = RI->getReturnValue();
568           RV && RV->getType()->isPtrOrPtrVectorTy())
569         PushPtrOperand(RV);
570     }
571   }
572 
573   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
574   while (!PostorderStack.empty()) {
575     Value *TopVal = PostorderStack.back().getPointer();
576     // If the operands of the expression on the top are already explored,
577     // adds that expression to the resultant postorder.
578     if (PostorderStack.back().getInt()) {
579       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
580         Postorder.push_back(TopVal);
581       PostorderStack.pop_back();
582       continue;
583     }
584     // Otherwise, adds its operands to the stack and explores them.
585     PostorderStack.back().setInt(true);
586     // Skip values with an assumed address space.
587     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
588       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
589         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
590                                                      Visited);
591       }
592     }
593   }
594   return Postorder;
595 }
596 
597 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
598 // of OperandUse.get() in the new address space. If the clone is not ready yet,
599 // returns poison in the new address space as a placeholder.
600 static Value *operandWithNewAddressSpaceOrCreatePoison(
601     const Use &OperandUse, unsigned NewAddrSpace,
602     const ValueToValueMapTy &ValueWithNewAddrSpace,
603     const PredicatedAddrSpaceMapTy &PredicatedAS,
604     SmallVectorImpl<const Use *> *PoisonUsesToFix) {
605   Value *Operand = OperandUse.get();
606 
607   Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
608 
609   if (Constant *C = dyn_cast<Constant>(Operand))
610     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
611 
612   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
613     return NewOperand;
614 
615   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
616   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
617   if (I != PredicatedAS.end()) {
618     // Insert an addrspacecast on that operand before the user.
619     unsigned NewAS = I->second;
620     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
621     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
622     NewI->insertBefore(Inst->getIterator());
623     NewI->setDebugLoc(Inst->getDebugLoc());
624     return NewI;
625   }
626 
627   PoisonUsesToFix->push_back(&OperandUse);
628   return PoisonValue::get(NewPtrTy);
629 }
630 
631 // Returns a clone of `I` with its operands converted to those specified in
632 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
633 // operand whose address space needs to be modified might not exist in
634 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
635 // adds that operand use to PoisonUsesToFix so that caller can fix them later.
636 //
637 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
638 // from a pointer whose type already matches. Therefore, this function returns a
639 // Value* instead of an Instruction*.
640 //
641 // This may also return nullptr in the case the instruction could not be
642 // rewritten.
643 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
644     Instruction *I, unsigned NewAddrSpace,
645     const ValueToValueMapTy &ValueWithNewAddrSpace,
646     const PredicatedAddrSpaceMapTy &PredicatedAS,
647     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
648   Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
649 
650   if (I->getOpcode() == Instruction::AddrSpaceCast) {
651     Value *Src = I->getOperand(0);
652     // Because `I` is flat, the source address space must be specific.
653     // Therefore, the inferred address space must be the source space, according
654     // to our algorithm.
655     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
656     if (Src->getType() != NewPtrType)
657       return new BitCastInst(Src, NewPtrType);
658     return Src;
659   }
660 
661   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
662     // Technically the intrinsic ID is a pointer typed argument, so specially
663     // handle calls early.
664     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
665     Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison(
666         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
667         PredicatedAS, PoisonUsesToFix);
668     Value *Rewrite =
669         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
670     if (Rewrite) {
671       assert(Rewrite != II && "cannot modify this pointer operation in place");
672       return Rewrite;
673     }
674 
675     return nullptr;
676   }
677 
678   unsigned AS = TTI->getAssumedAddrSpace(I);
679   if (AS != UninitializedAddressSpace) {
680     // For the assumed address space, insert an `addrspacecast` to make that
681     // explicit.
682     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
683     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
684     NewI->insertAfter(I->getIterator());
685     NewI->setDebugLoc(I->getDebugLoc());
686     return NewI;
687   }
688 
689   // Computes the converted pointer operands.
690   SmallVector<Value *, 4> NewPointerOperands;
691   for (const Use &OperandUse : I->operands()) {
692     if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
693       NewPointerOperands.push_back(nullptr);
694     else
695       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison(
696           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
697           PoisonUsesToFix));
698   }
699 
700   switch (I->getOpcode()) {
701   case Instruction::BitCast:
702     return new BitCastInst(NewPointerOperands[0], NewPtrType);
703   case Instruction::PHI: {
704     assert(I->getType()->isPtrOrPtrVectorTy());
705     PHINode *PHI = cast<PHINode>(I);
706     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
707     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
708       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
709       NewPHI->addIncoming(NewPointerOperands[OperandNo],
710                           PHI->getIncomingBlock(Index));
711     }
712     return NewPHI;
713   }
714   case Instruction::GetElementPtr: {
715     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
716     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
717         GEP->getSourceElementType(), NewPointerOperands[0],
718         SmallVector<Value *, 4>(GEP->indices()));
719     NewGEP->setIsInBounds(GEP->isInBounds());
720     return NewGEP;
721   }
722   case Instruction::Select:
723     assert(I->getType()->isPtrOrPtrVectorTy());
724     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
725                               NewPointerOperands[2], "", nullptr, I);
726   case Instruction::IntToPtr: {
727     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
728     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
729     if (Src->getType() == NewPtrType)
730       return Src;
731 
732     // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
733     // source address space from a generic pointer source need to insert a cast
734     // back.
735     return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
736   }
737   default:
738     llvm_unreachable("Unexpected opcode");
739   }
740 }
741 
742 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
743 // constant expression `CE` with its operands replaced as specified in
744 // ValueWithNewAddrSpace.
745 static Value *cloneConstantExprWithNewAddressSpace(
746     ConstantExpr *CE, unsigned NewAddrSpace,
747     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
748     const TargetTransformInfo *TTI) {
749   Type *TargetType =
750       CE->getType()->isPtrOrPtrVectorTy()
751           ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
752           : CE->getType();
753 
754   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
755     // Because CE is flat, the source address space must be specific.
756     // Therefore, the inferred address space must be the source space according
757     // to our algorithm.
758     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
759            NewAddrSpace);
760     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
761   }
762 
763   if (CE->getOpcode() == Instruction::BitCast) {
764     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
765       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
766     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
767   }
768 
769   if (CE->getOpcode() == Instruction::IntToPtr) {
770     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
771     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
772     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
773     return ConstantExpr::getBitCast(Src, TargetType);
774   }
775 
776   // Computes the operands of the new constant expression.
777   bool IsNew = false;
778   SmallVector<Constant *, 4> NewOperands;
779   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
780     Constant *Operand = CE->getOperand(Index);
781     // If the address space of `Operand` needs to be modified, the new operand
782     // with the new address space should already be in ValueWithNewAddrSpace
783     // because (1) the constant expressions we consider (i.e. addrspacecast,
784     // bitcast, and getelementptr) do not incur cycles in the data flow graph
785     // and (2) this function is called on constant expressions in postorder.
786     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
787       IsNew = true;
788       NewOperands.push_back(cast<Constant>(NewOperand));
789       continue;
790     }
791     if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
792       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
793               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
794         IsNew = true;
795         NewOperands.push_back(cast<Constant>(NewOperand));
796         continue;
797       }
798     // Otherwise, reuses the old operand.
799     NewOperands.push_back(Operand);
800   }
801 
802   // If !IsNew, we will replace the Value with itself. However, replaced values
803   // are assumed to wrapped in an addrspacecast cast later so drop it now.
804   if (!IsNew)
805     return nullptr;
806 
807   if (CE->getOpcode() == Instruction::GetElementPtr) {
808     // Needs to specify the source type while constructing a getelementptr
809     // constant expression.
810     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
811                                cast<GEPOperator>(CE)->getSourceElementType());
812   }
813 
814   return CE->getWithOperands(NewOperands, TargetType);
815 }
816 
817 // Returns a clone of the value `V`, with its operands replaced as specified in
818 // ValueWithNewAddrSpace. This function is called on every flat address
819 // expression whose address space needs to be modified, in postorder.
820 //
821 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
822 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
823     Value *V, unsigned NewAddrSpace,
824     const ValueToValueMapTy &ValueWithNewAddrSpace,
825     const PredicatedAddrSpaceMapTy &PredicatedAS,
826     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
827   // All values in Postorder are flat address expressions.
828   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
829          isAddressExpression(*V, *DL, TTI));
830 
831   if (Instruction *I = dyn_cast<Instruction>(V)) {
832     Value *NewV = cloneInstructionWithNewAddressSpace(
833         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
834     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
835       if (NewI->getParent() == nullptr) {
836         NewI->insertBefore(I->getIterator());
837         NewI->takeName(I);
838         NewI->setDebugLoc(I->getDebugLoc());
839       }
840     }
841     return NewV;
842   }
843 
844   return cloneConstantExprWithNewAddressSpace(
845       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
846 }
847 
848 // Defines the join operation on the address space lattice (see the file header
849 // comments).
850 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
851                                                    unsigned AS2) const {
852   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
853     return FlatAddrSpace;
854 
855   if (AS1 == UninitializedAddressSpace)
856     return AS2;
857   if (AS2 == UninitializedAddressSpace)
858     return AS1;
859 
860   // The join of two different specific address spaces is flat.
861   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
862 }
863 
864 bool InferAddressSpacesImpl::run(Function &CurFn) {
865   F = &CurFn;
866   DL = &F->getDataLayout();
867 
868   if (AssumeDefaultIsFlatAddressSpace)
869     FlatAddrSpace = 0;
870 
871   if (FlatAddrSpace == UninitializedAddressSpace) {
872     FlatAddrSpace = TTI->getFlatAddressSpace();
873     if (FlatAddrSpace == UninitializedAddressSpace)
874       return false;
875   }
876 
877   // Collects all flat address expressions in postorder.
878   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(*F);
879 
880   // Runs a data-flow analysis to refine the address spaces of every expression
881   // in Postorder.
882   ValueToAddrSpaceMapTy InferredAddrSpace;
883   PredicatedAddrSpaceMapTy PredicatedAS;
884   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
885 
886   // Changes the address spaces of the flat address expressions who are inferred
887   // to point to a specific address space.
888   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace,
889                                      PredicatedAS);
890 }
891 
892 // Constants need to be tracked through RAUW to handle cases with nested
893 // constant expressions, so wrap values in WeakTrackingVH.
894 void InferAddressSpacesImpl::inferAddressSpaces(
895     ArrayRef<WeakTrackingVH> Postorder,
896     ValueToAddrSpaceMapTy &InferredAddrSpace,
897     PredicatedAddrSpaceMapTy &PredicatedAS) const {
898   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
899   // Initially, all expressions are in the uninitialized address space.
900   for (Value *V : Postorder)
901     InferredAddrSpace[V] = UninitializedAddressSpace;
902 
903   while (!Worklist.empty()) {
904     Value *V = Worklist.pop_back_val();
905 
906     // Try to update the address space of the stack top according to the
907     // address spaces of its operands.
908     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
909       continue;
910 
911     for (Value *User : V->users()) {
912       // Skip if User is already in the worklist.
913       if (Worklist.count(User))
914         continue;
915 
916       auto Pos = InferredAddrSpace.find(User);
917       // Our algorithm only updates the address spaces of flat address
918       // expressions, which are those in InferredAddrSpace.
919       if (Pos == InferredAddrSpace.end())
920         continue;
921 
922       // Function updateAddressSpace moves the address space down a lattice
923       // path. Therefore, nothing to do if User is already inferred as flat (the
924       // bottom element in the lattice).
925       if (Pos->second == FlatAddrSpace)
926         continue;
927 
928       Worklist.insert(User);
929     }
930   }
931 }
932 
933 unsigned
934 InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr,
935                                                const Value *UserCtx) const {
936   const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx);
937   if (!UserCtxI)
938     return UninitializedAddressSpace;
939 
940   const Value *StrippedPtr = Ptr.stripInBoundsOffsets();
941   for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) {
942     if (!AssumeVH)
943       continue;
944     CallInst *CI = cast<CallInst>(AssumeVH);
945     if (!isValidAssumeForContext(CI, UserCtxI, DT))
946       continue;
947 
948     const Value *Ptr;
949     unsigned AS;
950     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
951     if (Ptr)
952       return AS;
953   }
954 
955   return UninitializedAddressSpace;
956 }
957 
958 bool InferAddressSpacesImpl::updateAddressSpace(
959     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
960     PredicatedAddrSpaceMapTy &PredicatedAS) const {
961   assert(InferredAddrSpace.count(&V));
962 
963   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
964 
965   // The new inferred address space equals the join of the address spaces
966   // of all its pointer operands.
967   unsigned NewAS = UninitializedAddressSpace;
968 
969   const Operator &Op = cast<Operator>(V);
970   if (Op.getOpcode() == Instruction::Select) {
971     Value *Src0 = Op.getOperand(1);
972     Value *Src1 = Op.getOperand(2);
973 
974     auto I = InferredAddrSpace.find(Src0);
975     unsigned Src0AS = (I != InferredAddrSpace.end())
976                           ? I->second
977                           : Src0->getType()->getPointerAddressSpace();
978 
979     auto J = InferredAddrSpace.find(Src1);
980     unsigned Src1AS = (J != InferredAddrSpace.end())
981                           ? J->second
982                           : Src1->getType()->getPointerAddressSpace();
983 
984     auto *C0 = dyn_cast<Constant>(Src0);
985     auto *C1 = dyn_cast<Constant>(Src1);
986 
987     // If one of the inputs is a constant, we may be able to do a constant
988     // addrspacecast of it. Defer inferring the address space until the input
989     // address space is known.
990     if ((C1 && Src0AS == UninitializedAddressSpace) ||
991         (C0 && Src1AS == UninitializedAddressSpace))
992       return false;
993 
994     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
995       NewAS = Src1AS;
996     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
997       NewAS = Src0AS;
998     else
999       NewAS = joinAddressSpaces(Src0AS, Src1AS);
1000   } else {
1001     unsigned AS = TTI->getAssumedAddrSpace(&V);
1002     if (AS != UninitializedAddressSpace) {
1003       // Use the assumed address space directly.
1004       NewAS = AS;
1005     } else {
1006       // Otherwise, infer the address space from its pointer operands.
1007       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
1008         auto I = InferredAddrSpace.find(PtrOperand);
1009         unsigned OperandAS;
1010         if (I == InferredAddrSpace.end()) {
1011           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
1012           if (OperandAS == FlatAddrSpace) {
1013             // Check AC for assumption dominating V.
1014             unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V);
1015             if (AS != UninitializedAddressSpace) {
1016               LLVM_DEBUG(dbgs()
1017                          << "  deduce operand AS from the predicate addrspace "
1018                          << AS << '\n');
1019               OperandAS = AS;
1020               // Record this use with the predicated AS.
1021               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
1022             }
1023           }
1024         } else
1025           OperandAS = I->second;
1026 
1027         // join(flat, *) = flat. So we can break if NewAS is already flat.
1028         NewAS = joinAddressSpaces(NewAS, OperandAS);
1029         if (NewAS == FlatAddrSpace)
1030           break;
1031       }
1032     }
1033   }
1034 
1035   unsigned OldAS = InferredAddrSpace.lookup(&V);
1036   assert(OldAS != FlatAddrSpace);
1037   if (OldAS == NewAS)
1038     return false;
1039 
1040   // If any updates are made, grabs its users to the worklist because
1041   // their address spaces can also be possibly updated.
1042   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
1043   InferredAddrSpace[&V] = NewAS;
1044   return true;
1045 }
1046 
1047 /// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal
1048 /// with \p NewVal.
1049 static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx,
1050                                  Value *OldVal, Value *NewVal) {
1051   Use &U = Inst->getOperandUse(OpIdx);
1052   if (U.get() == OldVal) {
1053     U.set(NewVal);
1054     return true;
1055   }
1056 
1057   return false;
1058 }
1059 
1060 template <typename InstrType>
1061 static bool replaceSimplePointerUse(const TargetTransformInfo &TTI,
1062                                     InstrType *MemInstr, unsigned AddrSpace,
1063                                     Value *OldV, Value *NewV) {
1064   if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) {
1065     return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(),
1066                                 OldV, NewV);
1067   }
1068 
1069   return false;
1070 }
1071 
1072 /// If \p OldV is used as the pointer operand of a compatible memory operation
1073 /// \p Inst, replaces the pointer operand with NewV.
1074 ///
1075 /// This covers memory instructions with a single pointer operand that can have
1076 /// its address space changed by simply mutating the use to a new value.
1077 ///
1078 /// \p returns true the user replacement was made.
1079 static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI,
1080                                       User *Inst, unsigned AddrSpace,
1081                                       Value *OldV, Value *NewV) {
1082   if (auto *LI = dyn_cast<LoadInst>(Inst))
1083     return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV);
1084 
1085   if (auto *SI = dyn_cast<StoreInst>(Inst))
1086     return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV);
1087 
1088   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1089     return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV);
1090 
1091   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1092     return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV);
1093 
1094   return false;
1095 }
1096 
1097 /// Update memory intrinsic uses that require more complex processing than
1098 /// simple memory instructions. These require re-mangling and may have multiple
1099 /// pointer operands.
1100 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1101                                      Value *NewV) {
1102   IRBuilder<> B(MI);
1103   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1104   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1105   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1106 
1107   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1108     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1109                    false, // isVolatile
1110                    TBAA, ScopeMD, NoAliasMD);
1111   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1112     Value *Src = MTI->getRawSource();
1113     Value *Dest = MTI->getRawDest();
1114 
1115     // Be careful in case this is a self-to-self copy.
1116     if (Src == OldV)
1117       Src = NewV;
1118 
1119     if (Dest == OldV)
1120       Dest = NewV;
1121 
1122     if (isa<MemCpyInlineInst>(MTI)) {
1123       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1124       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1125                            MTI->getSourceAlign(), MTI->getLength(),
1126                            false, // isVolatile
1127                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1128     } else if (isa<MemCpyInst>(MTI)) {
1129       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1130       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1131                      MTI->getLength(),
1132                      false, // isVolatile
1133                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1134     } else {
1135       assert(isa<MemMoveInst>(MTI));
1136       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1137                       MTI->getLength(),
1138                       false, // isVolatile
1139                       TBAA, ScopeMD, NoAliasMD);
1140     }
1141   } else
1142     llvm_unreachable("unhandled MemIntrinsic");
1143 
1144   MI->eraseFromParent();
1145   return true;
1146 }
1147 
1148 // \p returns true if it is OK to change the address space of constant \p C with
1149 // a ConstantExpr addrspacecast.
1150 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1151                                                         unsigned NewAS) const {
1152   assert(NewAS != UninitializedAddressSpace);
1153 
1154   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1155   if (SrcAS == NewAS || isa<UndefValue>(C))
1156     return true;
1157 
1158   // Prevent illegal casts between different non-flat address spaces.
1159   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1160     return false;
1161 
1162   if (isa<ConstantPointerNull>(C))
1163     return true;
1164 
1165   if (auto *Op = dyn_cast<Operator>(C)) {
1166     // If we already have a constant addrspacecast, it should be safe to cast it
1167     // off.
1168     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1169       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1170                                         NewAS);
1171 
1172     if (Op->getOpcode() == Instruction::IntToPtr &&
1173         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1174       return true;
1175   }
1176 
1177   return false;
1178 }
1179 
1180 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1181                                           Value::use_iterator End) {
1182   User *CurUser = I->getUser();
1183   ++I;
1184 
1185   while (I != End && I->getUser() == CurUser)
1186     ++I;
1187 
1188   return I;
1189 }
1190 
1191 void InferAddressSpacesImpl::performPointerReplacement(
1192     Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
1193     SmallVectorImpl<Instruction *> &DeadInstructions) const {
1194 
1195   User *CurUser = U.getUser();
1196 
1197   unsigned AddrSpace = V->getType()->getPointerAddressSpace();
1198   if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV))
1199     return;
1200 
1201   // Skip if the current user is the new value itself.
1202   if (CurUser == NewV)
1203     return;
1204 
1205   auto *CurUserI = dyn_cast<Instruction>(CurUser);
1206   if (!CurUserI || CurUserI->getFunction() != F)
1207     return;
1208 
1209   // Handle more complex cases like intrinsic that need to be remangled.
1210   if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1211     if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1212       return;
1213   }
1214 
1215   if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1216     if (rewriteIntrinsicOperands(II, V, NewV))
1217       return;
1218   }
1219 
1220   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUserI)) {
1221     // If we can infer that both pointers are in the same addrspace,
1222     // transform e.g.
1223     //   %cmp = icmp eq float* %p, %q
1224     // into
1225     //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1226 
1227     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1228     int SrcIdx = U.getOperandNo();
1229     int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1230     Value *OtherSrc = Cmp->getOperand(OtherIdx);
1231 
1232     if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1233       if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1234         Cmp->setOperand(OtherIdx, OtherNewV);
1235         Cmp->setOperand(SrcIdx, NewV);
1236         return;
1237       }
1238     }
1239 
1240     // Even if the type mismatches, we can cast the constant.
1241     if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1242       if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1243         Cmp->setOperand(SrcIdx, NewV);
1244         Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1245                                       KOtherSrc, NewV->getType()));
1246         return;
1247       }
1248     }
1249   }
1250 
1251   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUserI)) {
1252     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1253     if (ASC->getDestAddressSpace() == NewAS) {
1254       ASC->replaceAllUsesWith(NewV);
1255       DeadInstructions.push_back(ASC);
1256       return;
1257     }
1258   }
1259 
1260   // Otherwise, replaces the use with flat(NewV).
1261   if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1262     // Don't create a copy of the original addrspacecast.
1263     if (U == V && isa<AddrSpaceCastInst>(V))
1264       return;
1265 
1266     // Insert the addrspacecast after NewV.
1267     BasicBlock::iterator InsertPos;
1268     if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1269       InsertPos = std::next(NewVInst->getIterator());
1270     else
1271       InsertPos = std::next(VInst->getIterator());
1272 
1273     while (isa<PHINode>(InsertPos))
1274       ++InsertPos;
1275     // This instruction may contain multiple uses of V, update them all.
1276     CurUser->replaceUsesOfWith(
1277         V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1278   } else {
1279     CurUserI->replaceUsesOfWith(
1280         V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), V->getType()));
1281   }
1282 }
1283 
1284 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1285     ArrayRef<WeakTrackingVH> Postorder,
1286     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1287     const PredicatedAddrSpaceMapTy &PredicatedAS) const {
1288   // For each address expression to be modified, creates a clone of it with its
1289   // pointer operands converted to the new address space. Since the pointer
1290   // operands are converted, the clone is naturally in the new address space by
1291   // construction.
1292   ValueToValueMapTy ValueWithNewAddrSpace;
1293   SmallVector<const Use *, 32> PoisonUsesToFix;
1294   for (Value *V : Postorder) {
1295     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1296 
1297     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1298     // not even infer the value to have its original address space.
1299     if (NewAddrSpace == UninitializedAddressSpace)
1300       continue;
1301 
1302     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1303       Value *New =
1304           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1305                                         PredicatedAS, &PoisonUsesToFix);
1306       if (New)
1307         ValueWithNewAddrSpace[V] = New;
1308     }
1309   }
1310 
1311   if (ValueWithNewAddrSpace.empty())
1312     return false;
1313 
1314   // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1315   for (const Use *PoisonUse : PoisonUsesToFix) {
1316     User *V = PoisonUse->getUser();
1317     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1318     if (!NewV)
1319       continue;
1320 
1321     unsigned OperandNo = PoisonUse->getOperandNo();
1322     assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1323     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1324   }
1325 
1326   SmallVector<Instruction *, 16> DeadInstructions;
1327   ValueToValueMapTy VMap;
1328   ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1329 
1330   // Replaces the uses of the old address expressions with the new ones.
1331   for (const WeakTrackingVH &WVH : Postorder) {
1332     assert(WVH && "value was unexpectedly deleted");
1333     Value *V = WVH;
1334     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1335     if (NewV == nullptr)
1336       continue;
1337 
1338     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1339                       << *NewV << '\n');
1340 
1341     if (Constant *C = dyn_cast<Constant>(V)) {
1342       Constant *Replace =
1343           ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1344       if (C != Replace) {
1345         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1346                           << ": " << *Replace << '\n');
1347         SmallVector<User *, 16> WorkList;
1348         for (User *U : make_early_inc_range(C->users())) {
1349           if (auto *I = dyn_cast<Instruction>(U)) {
1350             if (I->getFunction() == F)
1351               I->replaceUsesOfWith(C, Replace);
1352           } else {
1353             WorkList.append(U->user_begin(), U->user_end());
1354           }
1355         }
1356         if (!WorkList.empty()) {
1357           VMap[C] = Replace;
1358           DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1359           while (!WorkList.empty()) {
1360             User *U = WorkList.pop_back_val();
1361             if (auto *I = dyn_cast<Instruction>(U)) {
1362               if (I->getFunction() == F)
1363                 VMapper.remapInstruction(*I);
1364               continue;
1365             }
1366             for (User *U2 : U->users())
1367               if (Visited.insert(U2).second)
1368                 WorkList.push_back(U2);
1369           }
1370         }
1371         V = Replace;
1372       }
1373     }
1374 
1375     Value::use_iterator I, E, Next;
1376     for (I = V->use_begin(), E = V->use_end(); I != E;) {
1377       Use &U = *I;
1378 
1379       // Some users may see the same pointer operand in multiple operands. Skip
1380       // to the next instruction.
1381       I = skipToNextUser(I, E);
1382 
1383       performPointerReplacement(V, NewV, U, ValueWithNewAddrSpace,
1384                                 DeadInstructions);
1385     }
1386 
1387     if (V->use_empty()) {
1388       if (Instruction *I = dyn_cast<Instruction>(V))
1389         DeadInstructions.push_back(I);
1390     }
1391   }
1392 
1393   for (Instruction *I : DeadInstructions)
1394     RecursivelyDeleteTriviallyDeadInstructions(I);
1395 
1396   return true;
1397 }
1398 
1399 bool InferAddressSpaces::runOnFunction(Function &F) {
1400   if (skipFunction(F))
1401     return false;
1402 
1403   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1404   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1405   return InferAddressSpacesImpl(
1406              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1407              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1408              FlatAddrSpace)
1409       .run(F);
1410 }
1411 
1412 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1413   return new InferAddressSpaces(AddressSpace);
1414 }
1415 
1416 InferAddressSpacesPass::InferAddressSpacesPass()
1417     : FlatAddrSpace(UninitializedAddressSpace) {}
1418 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1419     : FlatAddrSpace(AddressSpace) {}
1420 
1421 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1422                                               FunctionAnalysisManager &AM) {
1423   bool Changed =
1424       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1425                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1426                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1427           .run(F);
1428   if (Changed) {
1429     PreservedAnalyses PA;
1430     PA.preserveSet<CFGAnalyses>();
1431     PA.preserve<DominatorTreeAnalysis>();
1432     return PA;
1433   }
1434   return PreservedAnalyses::all();
1435 }
1436