xref: /llvm-project/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp (revision 60d9e6fba884048e1047a208b61f0dfd8baabaaa)
1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges.  It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 //   len = < known positive >
15 //   for (i = 0; i < n; i++) {
16 //     if (0 <= i && i < len) {
17 //       do_something();
18 //     } else {
19 //       throw_out_of_bounds();
20 //     }
21 //   }
22 //
23 // to
24 //
25 //   len = < known positive >
26 //   limit = smin(n, len)
27 //   // no first segment
28 //   for (i = 0; i < limit; i++) {
29 //     if (0 <= i && i < len) { // this check is fully redundant
30 //       do_something();
31 //     } else {
32 //       throw_out_of_bounds();
33 //     }
34 //   }
35 //   for (i = limit; i < n; i++) {
36 //     if (0 <= i && i < len) {
37 //       do_something();
38 //     } else {
39 //       throw_out_of_bounds();
40 //     }
41 //   }
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/PriorityWorklist.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/ADT/Twine.h"
53 #include "llvm/Analysis/BlockFrequencyInfo.h"
54 #include "llvm/Analysis/BranchProbabilityInfo.h"
55 #include "llvm/Analysis/LoopAnalysisManager.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Cloning.h"
84 #include "llvm/Transforms/Utils/LoopConstrainer.h"
85 #include "llvm/Transforms/Utils/LoopSimplify.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Utils/ValueMapper.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <optional>
91 #include <utility>
92 
93 using namespace llvm;
94 using namespace llvm::PatternMatch;
95 
96 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
97                                         cl::init(64));
98 
99 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
100                                        cl::init(false));
101 
102 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
103                                       cl::init(false));
104 
105 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
106                                              cl::Hidden, cl::init(false));
107 
108 static cl::opt<unsigned> MinEliminatedChecks("irce-min-eliminated-checks",
109                                              cl::Hidden, cl::init(10));
110 
111 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
112                                                  cl::Hidden, cl::init(true));
113 
114 static cl::opt<bool> AllowNarrowLatchCondition(
115     "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
116     cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
117              "with narrow latch condition."));
118 
119 static cl::opt<unsigned> MaxTypeSizeForOverflowCheck(
120     "irce-max-type-size-for-overflow-check", cl::Hidden, cl::init(32),
121     cl::desc(
122         "Maximum size of range check type for which can be produced runtime "
123         "overflow check of its limit's computation"));
124 
125 static cl::opt<bool>
126     PrintScaledBoundaryRangeChecks("irce-print-scaled-boundary-range-checks",
127                                    cl::Hidden, cl::init(false));
128 
129 #define DEBUG_TYPE "irce"
130 
131 namespace {
132 
133 /// An inductive range check is conditional branch in a loop with a condition
134 /// that is provably true for some contiguous range of values taken by the
135 /// containing loop's induction variable.
136 ///
137 class InductiveRangeCheck {
138 
139   const SCEV *Begin = nullptr;
140   const SCEV *Step = nullptr;
141   const SCEV *End = nullptr;
142   Use *CheckUse = nullptr;
143 
144   static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
145                                   const SCEVAddRecExpr *&Index,
146                                   const SCEV *&End);
147 
148   static void
149   extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
150                              SmallVectorImpl<InductiveRangeCheck> &Checks,
151                              SmallPtrSetImpl<Value *> &Visited);
152 
153   static bool parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
154                                   ICmpInst::Predicate Pred, ScalarEvolution &SE,
155                                   const SCEVAddRecExpr *&Index,
156                                   const SCEV *&End);
157 
158   static bool reassociateSubLHS(Loop *L, Value *VariantLHS, Value *InvariantRHS,
159                                 ICmpInst::Predicate Pred, ScalarEvolution &SE,
160                                 const SCEVAddRecExpr *&Index, const SCEV *&End);
161 
162 public:
163   const SCEV *getBegin() const { return Begin; }
164   const SCEV *getStep() const { return Step; }
165   const SCEV *getEnd() const { return End; }
166 
167   void print(raw_ostream &OS) const {
168     OS << "InductiveRangeCheck:\n";
169     OS << "  Begin: ";
170     Begin->print(OS);
171     OS << "  Step: ";
172     Step->print(OS);
173     OS << "  End: ";
174     End->print(OS);
175     OS << "\n  CheckUse: ";
176     getCheckUse()->getUser()->print(OS);
177     OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
178   }
179 
180   LLVM_DUMP_METHOD
181   void dump() {
182     print(dbgs());
183   }
184 
185   Use *getCheckUse() const { return CheckUse; }
186 
187   /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
188   /// R.getEnd() le R.getBegin(), then R denotes the empty range.
189 
190   class Range {
191     const SCEV *Begin;
192     const SCEV *End;
193 
194   public:
195     Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
196       assert(Begin->getType() == End->getType() && "ill-typed range!");
197     }
198 
199     Type *getType() const { return Begin->getType(); }
200     const SCEV *getBegin() const { return Begin; }
201     const SCEV *getEnd() const { return End; }
202     bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
203       if (Begin == End)
204         return true;
205       if (IsSigned)
206         return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
207       else
208         return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
209     }
210   };
211 
212   /// This is the value the condition of the branch needs to evaluate to for the
213   /// branch to take the hot successor (see (1) above).
214   bool getPassingDirection() { return true; }
215 
216   /// Computes a range for the induction variable (IndVar) in which the range
217   /// check is redundant and can be constant-folded away.  The induction
218   /// variable is not required to be the canonical {0,+,1} induction variable.
219   std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
220                                                  const SCEVAddRecExpr *IndVar,
221                                                  bool IsLatchSigned) const;
222 
223   /// Parse out a set of inductive range checks from \p BI and append them to \p
224   /// Checks.
225   ///
226   /// NB! There may be conditions feeding into \p BI that aren't inductive range
227   /// checks, and hence don't end up in \p Checks.
228   static void extractRangeChecksFromBranch(
229       BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
230       std::optional<uint64_t> EstimatedTripCount,
231       SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed);
232 };
233 
234 class InductiveRangeCheckElimination {
235   ScalarEvolution &SE;
236   BranchProbabilityInfo *BPI;
237   DominatorTree &DT;
238   LoopInfo &LI;
239 
240   using GetBFIFunc =
241       std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>;
242   GetBFIFunc GetBFI;
243 
244   // Returns the estimated number of iterations based on block frequency info if
245   // available, or on branch probability info. Nullopt is returned if the number
246   // of iterations cannot be estimated.
247   std::optional<uint64_t> estimatedTripCount(const Loop &L);
248 
249 public:
250   InductiveRangeCheckElimination(ScalarEvolution &SE,
251                                  BranchProbabilityInfo *BPI, DominatorTree &DT,
252                                  LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt)
253       : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
254 
255   bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
256 };
257 
258 } // end anonymous namespace
259 
260 /// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
261 /// be interpreted as a range check, return false.  Otherwise set `Index` to the
262 /// SCEV being range checked, and set `End` to the upper or lower limit `Index`
263 /// is being range checked.
264 bool InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
265                                               ScalarEvolution &SE,
266                                               const SCEVAddRecExpr *&Index,
267                                               const SCEV *&End) {
268   auto IsLoopInvariant = [&SE, L](Value *V) {
269     return SE.isLoopInvariant(SE.getSCEV(V), L);
270   };
271 
272   ICmpInst::Predicate Pred = ICI->getPredicate();
273   Value *LHS = ICI->getOperand(0);
274   Value *RHS = ICI->getOperand(1);
275 
276   if (!LHS->getType()->isIntegerTy())
277     return false;
278 
279   // Canonicalize to the `Index Pred Invariant` comparison
280   if (IsLoopInvariant(LHS)) {
281     std::swap(LHS, RHS);
282     Pred = CmpInst::getSwappedPredicate(Pred);
283   } else if (!IsLoopInvariant(RHS))
284     // Both LHS and RHS are loop variant
285     return false;
286 
287   if (parseIvAgaisntLimit(L, LHS, RHS, Pred, SE, Index, End))
288     return true;
289 
290   if (reassociateSubLHS(L, LHS, RHS, Pred, SE, Index, End))
291     return true;
292 
293   // TODO: support ReassociateAddLHS
294   return false;
295 }
296 
297 // Try to parse range check in the form of "IV vs Limit"
298 bool InductiveRangeCheck::parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
299                                               ICmpInst::Predicate Pred,
300                                               ScalarEvolution &SE,
301                                               const SCEVAddRecExpr *&Index,
302                                               const SCEV *&End) {
303 
304   auto SIntMaxSCEV = [&](Type *T) {
305     unsigned BitWidth = cast<IntegerType>(T)->getBitWidth();
306     return SE.getConstant(APInt::getSignedMaxValue(BitWidth));
307   };
308 
309   const auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(LHS));
310   if (!AddRec)
311     return false;
312 
313   // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
314   // We can potentially do much better here.
315   // If we want to adjust upper bound for the unsigned range check as we do it
316   // for signed one, we will need to pick Unsigned max
317   switch (Pred) {
318   default:
319     return false;
320 
321   case ICmpInst::ICMP_SGE:
322     if (match(RHS, m_ConstantInt<0>())) {
323       Index = AddRec;
324       End = SIntMaxSCEV(Index->getType());
325       return true;
326     }
327     return false;
328 
329   case ICmpInst::ICMP_SGT:
330     if (match(RHS, m_ConstantInt<-1>())) {
331       Index = AddRec;
332       End = SIntMaxSCEV(Index->getType());
333       return true;
334     }
335     return false;
336 
337   case ICmpInst::ICMP_SLT:
338   case ICmpInst::ICMP_ULT:
339     Index = AddRec;
340     End = SE.getSCEV(RHS);
341     return true;
342 
343   case ICmpInst::ICMP_SLE:
344   case ICmpInst::ICMP_ULE:
345     const SCEV *One = SE.getOne(RHS->getType());
346     const SCEV *RHSS = SE.getSCEV(RHS);
347     bool Signed = Pred == ICmpInst::ICMP_SLE;
348     if (SE.willNotOverflow(Instruction::BinaryOps::Add, Signed, RHSS, One)) {
349       Index = AddRec;
350       End = SE.getAddExpr(RHSS, One);
351       return true;
352     }
353     return false;
354   }
355 
356   llvm_unreachable("default clause returns!");
357 }
358 
359 // Try to parse range check in the form of "IV - Offset vs Limit" or "Offset -
360 // IV vs Limit"
361 bool InductiveRangeCheck::reassociateSubLHS(
362     Loop *L, Value *VariantLHS, Value *InvariantRHS, ICmpInst::Predicate Pred,
363     ScalarEvolution &SE, const SCEVAddRecExpr *&Index, const SCEV *&End) {
364   Value *LHS, *RHS;
365   if (!match(VariantLHS, m_Sub(m_Value(LHS), m_Value(RHS))))
366     return false;
367 
368   const SCEV *IV = SE.getSCEV(LHS);
369   const SCEV *Offset = SE.getSCEV(RHS);
370   const SCEV *Limit = SE.getSCEV(InvariantRHS);
371 
372   bool OffsetSubtracted = false;
373   if (SE.isLoopInvariant(IV, L))
374     // "Offset - IV vs Limit"
375     std::swap(IV, Offset);
376   else if (SE.isLoopInvariant(Offset, L))
377     // "IV - Offset vs Limit"
378     OffsetSubtracted = true;
379   else
380     return false;
381 
382   const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IV);
383   if (!AddRec)
384     return false;
385 
386   // In order to turn "IV - Offset < Limit" into "IV < Limit + Offset", we need
387   // to be able to freely move values from left side of inequality to right side
388   // (just as in normal linear arithmetics). Overflows make things much more
389   // complicated, so we want to avoid this.
390   //
391   // Let's prove that the initial subtraction doesn't overflow with all IV's
392   // values from the safe range constructed for that check.
393   //
394   // [Case 1] IV - Offset < Limit
395   // It doesn't overflow if:
396   //     SINT_MIN <= IV - Offset <= SINT_MAX
397   // In terms of scaled SINT we need to prove:
398   //     SINT_MIN + Offset <= IV <= SINT_MAX + Offset
399   // Safe range will be constructed:
400   //     0 <= IV < Limit + Offset
401   // It means that 'IV - Offset' doesn't underflow, because:
402   //     SINT_MIN + Offset < 0 <= IV
403   // and doesn't overflow:
404   //     IV < Limit + Offset <= SINT_MAX + Offset
405   //
406   // [Case 2] Offset - IV > Limit
407   // It doesn't overflow if:
408   //     SINT_MIN <= Offset - IV <= SINT_MAX
409   // In terms of scaled SINT we need to prove:
410   //     -SINT_MIN >= IV - Offset >= -SINT_MAX
411   //     Offset - SINT_MIN >= IV >= Offset - SINT_MAX
412   // Safe range will be constructed:
413   //     0 <= IV < Offset - Limit
414   // It means that 'Offset - IV' doesn't underflow, because
415   //     Offset - SINT_MAX < 0 <= IV
416   // and doesn't overflow:
417   //     IV < Offset - Limit <= Offset - SINT_MIN
418   //
419   // For the computed upper boundary of the IV's range (Offset +/- Limit) we
420   // don't know exactly whether it overflows or not. So if we can't prove this
421   // fact at compile time, we scale boundary computations to a wider type with
422   // the intention to add runtime overflow check.
423 
424   auto getExprScaledIfOverflow = [&](Instruction::BinaryOps BinOp,
425                                      const SCEV *LHS,
426                                      const SCEV *RHS) -> const SCEV * {
427     const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
428                                               SCEV::NoWrapFlags, unsigned);
429     switch (BinOp) {
430     default:
431       llvm_unreachable("Unsupported binary op");
432     case Instruction::Add:
433       Operation = &ScalarEvolution::getAddExpr;
434       break;
435     case Instruction::Sub:
436       Operation = &ScalarEvolution::getMinusSCEV;
437       break;
438     }
439 
440     if (SE.willNotOverflow(BinOp, ICmpInst::isSigned(Pred), LHS, RHS,
441                            cast<Instruction>(VariantLHS)))
442       return (SE.*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0);
443 
444     // We couldn't prove that the expression does not overflow.
445     // Than scale it to a wider type to check overflow at runtime.
446     auto *Ty = cast<IntegerType>(LHS->getType());
447     if (Ty->getBitWidth() > MaxTypeSizeForOverflowCheck)
448       return nullptr;
449 
450     auto WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
451     return (SE.*Operation)(SE.getSignExtendExpr(LHS, WideTy),
452                            SE.getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap,
453                            0);
454   };
455 
456   if (OffsetSubtracted)
457     // "IV - Offset < Limit" -> "IV" < Offset + Limit
458     Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Offset, Limit);
459   else {
460     // "Offset - IV > Limit" -> "IV" < Offset - Limit
461     Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Sub, Offset, Limit);
462     Pred = ICmpInst::getSwappedPredicate(Pred);
463   }
464 
465   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
466     // "Expr <= Limit" -> "Expr < Limit + 1"
467     if (Pred == ICmpInst::ICMP_SLE && Limit)
468       Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Limit,
469                                       SE.getOne(Limit->getType()));
470     if (Limit) {
471       Index = AddRec;
472       End = Limit;
473       return true;
474     }
475   }
476   return false;
477 }
478 
479 void InductiveRangeCheck::extractRangeChecksFromCond(
480     Loop *L, ScalarEvolution &SE, Use &ConditionUse,
481     SmallVectorImpl<InductiveRangeCheck> &Checks,
482     SmallPtrSetImpl<Value *> &Visited) {
483   Value *Condition = ConditionUse.get();
484   if (!Visited.insert(Condition).second)
485     return;
486 
487   // TODO: Do the same for OR, XOR, NOT etc?
488   if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
489     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
490                                Checks, Visited);
491     extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
492                                Checks, Visited);
493     return;
494   }
495 
496   ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
497   if (!ICI)
498     return;
499 
500   const SCEV *End = nullptr;
501   const SCEVAddRecExpr *IndexAddRec = nullptr;
502   if (!parseRangeCheckICmp(L, ICI, SE, IndexAddRec, End))
503     return;
504 
505   assert(IndexAddRec && "IndexAddRec was not computed");
506   assert(End && "End was not computed");
507 
508   if ((IndexAddRec->getLoop() != L) || !IndexAddRec->isAffine())
509     return;
510 
511   InductiveRangeCheck IRC;
512   IRC.End = End;
513   IRC.Begin = IndexAddRec->getStart();
514   IRC.Step = IndexAddRec->getStepRecurrence(SE);
515   IRC.CheckUse = &ConditionUse;
516   Checks.push_back(IRC);
517 }
518 
519 void InductiveRangeCheck::extractRangeChecksFromBranch(
520     BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
521     std::optional<uint64_t> EstimatedTripCount,
522     SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed) {
523   if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
524     return;
525 
526   unsigned IndexLoopSucc = L->contains(BI->getSuccessor(0)) ? 0 : 1;
527   assert(L->contains(BI->getSuccessor(IndexLoopSucc)) &&
528          "No edges coming to loop?");
529 
530   if (!SkipProfitabilityChecks && BPI) {
531     auto SuccessProbability =
532         BPI->getEdgeProbability(BI->getParent(), IndexLoopSucc);
533     if (EstimatedTripCount) {
534       auto EstimatedEliminatedChecks =
535           SuccessProbability.scale(*EstimatedTripCount);
536       if (EstimatedEliminatedChecks < MinEliminatedChecks) {
537         LLVM_DEBUG(dbgs() << "irce: could not prove profitability for branch "
538                           << *BI << ": "
539                           << "estimated eliminated checks too low "
540                           << EstimatedEliminatedChecks << "\n";);
541         return;
542       }
543     } else {
544       BranchProbability LikelyTaken(15, 16);
545       if (SuccessProbability < LikelyTaken) {
546         LLVM_DEBUG(dbgs() << "irce: could not prove profitability for branch "
547                           << *BI << ": "
548                           << "could not estimate trip count "
549                           << "and branch success probability too low "
550                           << SuccessProbability << "\n";);
551         return;
552       }
553     }
554   }
555 
556   // IRCE expects branch's true edge comes to loop. Invert branch for opposite
557   // case.
558   if (IndexLoopSucc != 0) {
559     IRBuilder<> Builder(BI);
560     InvertBranch(BI, Builder);
561     if (BPI)
562       BPI->swapSuccEdgesProbabilities(BI->getParent());
563     Changed = true;
564   }
565 
566   SmallPtrSet<Value *, 8> Visited;
567   InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
568                                                   Checks, Visited);
569 }
570 
571 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
572 /// signed or unsigned extension of \p S to type \p Ty.
573 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
574                                 bool Signed) {
575   return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
576 }
577 
578 // Compute a safe set of limits for the main loop to run in -- effectively the
579 // intersection of `Range' and the iteration space of the original loop.
580 // Return std::nullopt if unable to compute the set of subranges.
581 static std::optional<LoopConstrainer::SubRanges>
582 calculateSubRanges(ScalarEvolution &SE, const Loop &L,
583                    InductiveRangeCheck::Range &Range,
584                    const LoopStructure &MainLoopStructure) {
585   auto *RTy = cast<IntegerType>(Range.getType());
586   // We only support wide range checks and narrow latches.
587   if (!AllowNarrowLatchCondition && RTy != MainLoopStructure.ExitCountTy)
588     return std::nullopt;
589   if (RTy->getBitWidth() < MainLoopStructure.ExitCountTy->getBitWidth())
590     return std::nullopt;
591 
592   LoopConstrainer::SubRanges Result;
593 
594   bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
595   // I think we can be more aggressive here and make this nuw / nsw if the
596   // addition that feeds into the icmp for the latch's terminating branch is nuw
597   // / nsw.  In any case, a wrapping 2's complement addition is safe.
598   const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
599                                    RTy, SE, IsSignedPredicate);
600   const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
601                                  SE, IsSignedPredicate);
602 
603   bool Increasing = MainLoopStructure.IndVarIncreasing;
604 
605   // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
606   // [Smallest, GreatestSeen] is the range of values the induction variable
607   // takes.
608 
609   const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
610 
611   const SCEV *One = SE.getOne(RTy);
612   if (Increasing) {
613     Smallest = Start;
614     Greatest = End;
615     // No overflow, because the range [Smallest, GreatestSeen] is not empty.
616     GreatestSeen = SE.getMinusSCEV(End, One);
617   } else {
618     // These two computations may sign-overflow.  Here is why that is okay:
619     //
620     // We know that the induction variable does not sign-overflow on any
621     // iteration except the last one, and it starts at `Start` and ends at
622     // `End`, decrementing by one every time.
623     //
624     //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
625     //    induction variable is decreasing we know that the smallest value
626     //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
627     //
628     //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
629     //    that case, `Clamp` will always return `Smallest` and
630     //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
631     //    will be an empty range.  Returning an empty range is always safe.
632 
633     Smallest = SE.getAddExpr(End, One);
634     Greatest = SE.getAddExpr(Start, One);
635     GreatestSeen = Start;
636   }
637 
638   auto Clamp = [&SE, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
639     return IsSignedPredicate
640                ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
641                : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
642   };
643 
644   // In some cases we can prove that we don't need a pre or post loop.
645   ICmpInst::Predicate PredLE =
646       IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
647   ICmpInst::Predicate PredLT =
648       IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
649 
650   bool ProvablyNoPreloop =
651       SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
652   if (!ProvablyNoPreloop)
653     Result.LowLimit = Clamp(Range.getBegin());
654 
655   bool ProvablyNoPostLoop =
656       SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
657   if (!ProvablyNoPostLoop)
658     Result.HighLimit = Clamp(Range.getEnd());
659 
660   return Result;
661 }
662 
663 /// Computes and returns a range of values for the induction variable (IndVar)
664 /// in which the range check can be safely elided.  If it cannot compute such a
665 /// range, returns std::nullopt.
666 std::optional<InductiveRangeCheck::Range>
667 InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
668                                                const SCEVAddRecExpr *IndVar,
669                                                bool IsLatchSigned) const {
670   // We can deal when types of latch check and range checks don't match in case
671   // if latch check is more narrow.
672   auto *IVType = dyn_cast<IntegerType>(IndVar->getType());
673   auto *RCType = dyn_cast<IntegerType>(getBegin()->getType());
674   auto *EndType = dyn_cast<IntegerType>(getEnd()->getType());
675   // Do not work with pointer types.
676   if (!IVType || !RCType)
677     return std::nullopt;
678   if (IVType->getBitWidth() > RCType->getBitWidth())
679     return std::nullopt;
680 
681   // IndVar is of the form "A + B * I" (where "I" is the canonical induction
682   // variable, that may or may not exist as a real llvm::Value in the loop) and
683   // this inductive range check is a range check on the "C + D * I" ("C" is
684   // getBegin() and "D" is getStep()).  We rewrite the value being range
685   // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
686   //
687   // The actual inequalities we solve are of the form
688   //
689   //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
690   //
691   // Here L stands for upper limit of the safe iteration space.
692   // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
693   // overflows when calculating (0 - M) and (L - M) we, depending on type of
694   // IV's iteration space, limit the calculations by borders of the iteration
695   // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
696   // If we figured out that "anything greater than (-M) is safe", we strengthen
697   // this to "everything greater than 0 is safe", assuming that values between
698   // -M and 0 just do not exist in unsigned iteration space, and we don't want
699   // to deal with overflown values.
700 
701   if (!IndVar->isAffine())
702     return std::nullopt;
703 
704   const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
705   const SCEVConstant *B = dyn_cast<SCEVConstant>(
706       NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
707   if (!B)
708     return std::nullopt;
709   assert(!B->isZero() && "Recurrence with zero step?");
710 
711   const SCEV *C = getBegin();
712   const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
713   if (D != B)
714     return std::nullopt;
715 
716   assert(!D->getValue()->isZero() && "Recurrence with zero step?");
717   unsigned BitWidth = RCType->getBitWidth();
718   const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
719   const SCEV *SIntMin = SE.getConstant(APInt::getSignedMinValue(BitWidth));
720 
721   // Subtract Y from X so that it does not go through border of the IV
722   // iteration space. Mathematically, it is equivalent to:
723   //
724   //    ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX).        [1]
725   //
726   // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
727   // any width of bit grid). But after we take min/max, the result is
728   // guaranteed to be within [INT_MIN, INT_MAX].
729   //
730   // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
731   // values, depending on type of latch condition that defines IV iteration
732   // space.
733   auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
734     // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
735     // This is required to ensure that SINT_MAX - X does not overflow signed and
736     // that X - Y does not overflow unsigned if Y is negative. Can we lift this
737     // restriction and make it work for negative X either?
738     if (IsLatchSigned) {
739       // X is a number from signed range, Y is interpreted as signed.
740       // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
741       // thing we should care about is that we didn't cross SINT_MAX.
742       // So, if Y is positive, we subtract Y safely.
743       //   Rule 1: Y > 0 ---> Y.
744       // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
745       //   Rule 2: Y >=s (X - SINT_MAX) ---> Y.
746       // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
747       //   Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
748       // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
749       const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
750       return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
751                              SCEV::FlagNSW);
752     } else
753       // X is a number from unsigned range, Y is interpreted as signed.
754       // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
755       // thing we should care about is that we didn't cross zero.
756       // So, if Y is negative, we subtract Y safely.
757       //   Rule 1: Y <s 0 ---> Y.
758       // If 0 <= Y <= X, we subtract Y safely.
759       //   Rule 2: Y <=s X ---> Y.
760       // If 0 <= X < Y, we should stop at 0 and can only subtract X.
761       //   Rule 3: Y >s X ---> X.
762       // It gives us smin(X, Y) to subtract in all cases.
763       return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
764   };
765   const SCEV *M = SE.getMinusSCEV(C, A);
766   const SCEV *Zero = SE.getZero(M->getType());
767 
768   // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
769   auto SCEVCheckNonNegative = [&](const SCEV *X) {
770     const Loop *L = IndVar->getLoop();
771     const SCEV *Zero = SE.getZero(X->getType());
772     const SCEV *One = SE.getOne(X->getType());
773     // Can we trivially prove that X is a non-negative or negative value?
774     if (isKnownNonNegativeInLoop(X, L, SE))
775       return One;
776     else if (isKnownNegativeInLoop(X, L, SE))
777       return Zero;
778     // If not, we will have to figure it out during the execution.
779     // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
780     const SCEV *NegOne = SE.getNegativeSCEV(One);
781     return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
782   };
783 
784   // This function returns SCEV equal to 1 if X will not overflow in terms of
785   // range check type, 0 otherwise.
786   auto SCEVCheckWillNotOverflow = [&](const SCEV *X) {
787     // X doesn't overflow if SINT_MAX >= X.
788     // Then if (SINT_MAX - X) >= 0, X doesn't overflow
789     const SCEV *SIntMaxExt = SE.getSignExtendExpr(SIntMax, X->getType());
790     const SCEV *OverflowCheck =
791         SCEVCheckNonNegative(SE.getMinusSCEV(SIntMaxExt, X));
792 
793     // X doesn't underflow if X >= SINT_MIN.
794     // Then if (X - SINT_MIN) >= 0, X doesn't underflow
795     const SCEV *SIntMinExt = SE.getSignExtendExpr(SIntMin, X->getType());
796     const SCEV *UnderflowCheck =
797         SCEVCheckNonNegative(SE.getMinusSCEV(X, SIntMinExt));
798 
799     return SE.getMulExpr(OverflowCheck, UnderflowCheck);
800   };
801 
802   // FIXME: Current implementation of ClampedSubtract implicitly assumes that
803   // X is non-negative (in sense of a signed value). We need to re-implement
804   // this function in a way that it will correctly handle negative X as well.
805   // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
806   // end up with a negative X and produce wrong results. So currently we ensure
807   // that if getEnd() is negative then both ends of the safe range are zero.
808   // Note that this may pessimize elimination of unsigned range checks against
809   // negative values.
810   const SCEV *REnd = getEnd();
811   const SCEV *EndWillNotOverflow = SE.getOne(RCType);
812 
813   auto PrintRangeCheck = [&](raw_ostream &OS) {
814     auto L = IndVar->getLoop();
815     OS << "irce: in function ";
816     OS << L->getHeader()->getParent()->getName();
817     OS << ", in ";
818     L->print(OS);
819     OS << "there is range check with scaled boundary:\n";
820     print(OS);
821   };
822 
823   if (EndType->getBitWidth() > RCType->getBitWidth()) {
824     assert(EndType->getBitWidth() == RCType->getBitWidth() * 2);
825     if (PrintScaledBoundaryRangeChecks)
826       PrintRangeCheck(errs());
827     // End is computed with extended type but will be truncated to a narrow one
828     // type of range check. Therefore we need a check that the result will not
829     // overflow in terms of narrow type.
830     EndWillNotOverflow =
831         SE.getTruncateExpr(SCEVCheckWillNotOverflow(REnd), RCType);
832     REnd = SE.getTruncateExpr(REnd, RCType);
833   }
834 
835   const SCEV *RuntimeChecks =
836       SE.getMulExpr(SCEVCheckNonNegative(REnd), EndWillNotOverflow);
837   const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), RuntimeChecks);
838   const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), RuntimeChecks);
839 
840   return InductiveRangeCheck::Range(Begin, End);
841 }
842 
843 static std::optional<InductiveRangeCheck::Range>
844 IntersectSignedRange(ScalarEvolution &SE,
845                      const std::optional<InductiveRangeCheck::Range> &R1,
846                      const InductiveRangeCheck::Range &R2) {
847   if (R2.isEmpty(SE, /* IsSigned */ true))
848     return std::nullopt;
849   if (!R1)
850     return R2;
851   auto &R1Value = *R1;
852   // We never return empty ranges from this function, and R1 is supposed to be
853   // a result of intersection. Thus, R1 is never empty.
854   assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
855          "We should never have empty R1!");
856 
857   // TODO: we could widen the smaller range and have this work; but for now we
858   // bail out to keep things simple.
859   if (R1Value.getType() != R2.getType())
860     return std::nullopt;
861 
862   const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
863   const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
864 
865   // If the resulting range is empty, just return std::nullopt.
866   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
867   if (Ret.isEmpty(SE, /* IsSigned */ true))
868     return std::nullopt;
869   return Ret;
870 }
871 
872 static std::optional<InductiveRangeCheck::Range>
873 IntersectUnsignedRange(ScalarEvolution &SE,
874                        const std::optional<InductiveRangeCheck::Range> &R1,
875                        const InductiveRangeCheck::Range &R2) {
876   if (R2.isEmpty(SE, /* IsSigned */ false))
877     return std::nullopt;
878   if (!R1)
879     return R2;
880   auto &R1Value = *R1;
881   // We never return empty ranges from this function, and R1 is supposed to be
882   // a result of intersection. Thus, R1 is never empty.
883   assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
884          "We should never have empty R1!");
885 
886   // TODO: we could widen the smaller range and have this work; but for now we
887   // bail out to keep things simple.
888   if (R1Value.getType() != R2.getType())
889     return std::nullopt;
890 
891   const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
892   const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
893 
894   // If the resulting range is empty, just return std::nullopt.
895   auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
896   if (Ret.isEmpty(SE, /* IsSigned */ false))
897     return std::nullopt;
898   return Ret;
899 }
900 
901 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
902   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
903   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
904   // There are no loops in the function. Return before computing other expensive
905   // analyses.
906   if (LI.empty())
907     return PreservedAnalyses::all();
908   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
909   auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
910 
911   // Get BFI analysis result on demand. Please note that modification of
912   // CFG invalidates this analysis and we should handle it.
913   auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
914     return AM.getResult<BlockFrequencyAnalysis>(F);
915   };
916   InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
917 
918   bool Changed = false;
919   {
920     bool CFGChanged = false;
921     for (const auto &L : LI) {
922       CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
923                                  /*PreserveLCSSA=*/false);
924       Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
925     }
926     Changed |= CFGChanged;
927 
928     if (CFGChanged && !SkipProfitabilityChecks) {
929       PreservedAnalyses PA = PreservedAnalyses::all();
930       PA.abandon<BlockFrequencyAnalysis>();
931       AM.invalidate(F, PA);
932     }
933   }
934 
935   SmallPriorityWorklist<Loop *, 4> Worklist;
936   appendLoopsToWorklist(LI, Worklist);
937   auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
938     if (!IsSubloop)
939       appendLoopsToWorklist(*NL, Worklist);
940   };
941 
942   while (!Worklist.empty()) {
943     Loop *L = Worklist.pop_back_val();
944     if (IRCE.run(L, LPMAddNewLoop)) {
945       Changed = true;
946       if (!SkipProfitabilityChecks) {
947         PreservedAnalyses PA = PreservedAnalyses::all();
948         PA.abandon<BlockFrequencyAnalysis>();
949         AM.invalidate(F, PA);
950       }
951     }
952   }
953 
954   if (!Changed)
955     return PreservedAnalyses::all();
956   return getLoopPassPreservedAnalyses();
957 }
958 
959 std::optional<uint64_t>
960 InductiveRangeCheckElimination::estimatedTripCount(const Loop &L) {
961   if (GetBFI) {
962     BlockFrequencyInfo &BFI = (*GetBFI)();
963     uint64_t hFreq = BFI.getBlockFreq(L.getHeader()).getFrequency();
964     uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
965     if (phFreq == 0 || hFreq == 0)
966       return std::nullopt;
967     return {hFreq / phFreq};
968   }
969 
970   if (!BPI)
971     return std::nullopt;
972 
973   auto *Latch = L.getLoopLatch();
974   if (!Latch)
975     return std::nullopt;
976   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
977   if (!LatchBr)
978     return std::nullopt;
979 
980   auto LatchBrExitIdx = LatchBr->getSuccessor(0) == L.getHeader() ? 1 : 0;
981   BranchProbability ExitProbability =
982       BPI->getEdgeProbability(Latch, LatchBrExitIdx);
983   if (ExitProbability.isUnknown() || ExitProbability.isZero())
984     return std::nullopt;
985 
986   return {ExitProbability.scaleByInverse(1)};
987 }
988 
989 bool InductiveRangeCheckElimination::run(
990     Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
991   if (L->getBlocks().size() >= LoopSizeCutoff) {
992     LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
993     return false;
994   }
995 
996   BasicBlock *Preheader = L->getLoopPreheader();
997   if (!Preheader) {
998     LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
999     return false;
1000   }
1001 
1002   auto EstimatedTripCount = estimatedTripCount(*L);
1003   if (!SkipProfitabilityChecks && EstimatedTripCount &&
1004       *EstimatedTripCount < MinEliminatedChecks) {
1005     LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1006                       << "the estimated number of iterations is "
1007                       << *EstimatedTripCount << "\n");
1008     return false;
1009   }
1010 
1011   LLVMContext &Context = Preheader->getContext();
1012   SmallVector<InductiveRangeCheck, 16> RangeChecks;
1013   bool Changed = false;
1014 
1015   for (auto *BBI : L->getBlocks())
1016     if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1017       InductiveRangeCheck::extractRangeChecksFromBranch(
1018           TBI, L, SE, BPI, EstimatedTripCount, RangeChecks, Changed);
1019 
1020   if (RangeChecks.empty())
1021     return Changed;
1022 
1023   auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1024     OS << "irce: looking at loop "; L->print(OS);
1025     OS << "irce: loop has " << RangeChecks.size()
1026        << " inductive range checks: \n";
1027     for (InductiveRangeCheck &IRC : RangeChecks)
1028       IRC.print(OS);
1029   };
1030 
1031   LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1032 
1033   if (PrintRangeChecks)
1034     PrintRecognizedRangeChecks(errs());
1035 
1036   const char *FailureReason = nullptr;
1037   std::optional<LoopStructure> MaybeLoopStructure =
1038       LoopStructure::parseLoopStructure(SE, *L, AllowUnsignedLatchCondition,
1039                                         FailureReason);
1040   if (!MaybeLoopStructure) {
1041     LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1042                       << FailureReason << "\n";);
1043     return Changed;
1044   }
1045   LoopStructure LS = *MaybeLoopStructure;
1046   const SCEVAddRecExpr *IndVar =
1047       cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1048 
1049   std::optional<InductiveRangeCheck::Range> SafeIterRange;
1050 
1051   SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1052   // Basing on the type of latch predicate, we interpret the IV iteration range
1053   // as signed or unsigned range. We use different min/max functions (signed or
1054   // unsigned) when intersecting this range with safe iteration ranges implied
1055   // by range checks.
1056   auto IntersectRange =
1057       LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1058 
1059   for (InductiveRangeCheck &IRC : RangeChecks) {
1060     auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1061                                                 LS.IsSignedPredicate);
1062     if (Result) {
1063       auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result);
1064       if (MaybeSafeIterRange) {
1065         assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) &&
1066                "We should never return empty ranges!");
1067         RangeChecksToEliminate.push_back(IRC);
1068         SafeIterRange = *MaybeSafeIterRange;
1069       }
1070     }
1071   }
1072 
1073   if (!SafeIterRange)
1074     return Changed;
1075 
1076   std::optional<LoopConstrainer::SubRanges> MaybeSR =
1077       calculateSubRanges(SE, *L, *SafeIterRange, LS);
1078   if (!MaybeSR) {
1079     LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1080     return false;
1081   }
1082 
1083   LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1084                      SafeIterRange->getBegin()->getType(), *MaybeSR);
1085 
1086   if (LC.run()) {
1087     Changed = true;
1088 
1089     auto PrintConstrainedLoopInfo = [L]() {
1090       dbgs() << "irce: in function ";
1091       dbgs() << L->getHeader()->getParent()->getName() << ": ";
1092       dbgs() << "constrained ";
1093       L->print(dbgs());
1094     };
1095 
1096     LLVM_DEBUG(PrintConstrainedLoopInfo());
1097 
1098     if (PrintChangedLoops)
1099       PrintConstrainedLoopInfo();
1100 
1101     // Optimize away the now-redundant range checks.
1102 
1103     for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1104       ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1105                                           ? ConstantInt::getTrue(Context)
1106                                           : ConstantInt::getFalse(Context);
1107       IRC.getCheckUse()->set(FoldedRangeCheck);
1108     }
1109   }
1110 
1111   return Changed;
1112 }
1113