xref: /llvm-project/llvm/lib/Transforms/Scalar/GuardWidening.cpp (revision 4a0d53a0b0a58a3c6980a7c551357ac71ba3db10)
1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the guard widening pass.  The semantics of the
10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11 // more often that it did before the transform.  This optimization is called
12 // "widening" and can be used hoist and common runtime checks in situations like
13 // these:
14 //
15 //    %cmp0 = 7 u< Length
16 //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17 //    call @unknown_side_effects()
18 //    %cmp1 = 9 u< Length
19 //    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20 //    ...
21 //
22 // =>
23 //
24 //    %cmp0 = 9 u< Length
25 //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26 //    call @unknown_side_effects()
27 //    ...
28 //
29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30 // generic implementation of the same function, which will have the correct
31 // semantics from that point onward.  It is always _legal_ to deoptimize (so
32 // replacing %cmp0 with false is "correct"), though it may not always be
33 // profitable to do so.
34 //
35 // NB! This pass is a work in progress.  It hasn't been tuned to be "production
36 // ready" yet.  It is known to have quadriatic running time and will not scale
37 // to large numbers of guards
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/Transforms/Scalar/GuardWidening.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/AssumptionCache.h"
46 #include "llvm/Analysis/GuardUtils.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/ConstantRange.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/GuardUtils.h"
61 #include "llvm/Transforms/Utils/LoopUtils.h"
62 #include <functional>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "guard-widening"
67 
68 STATISTIC(GuardsEliminated, "Number of eliminated guards");
69 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
70 STATISTIC(FreezeAdded, "Number of freeze instruction introduced");
71 
72 static cl::opt<bool>
73     WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
74                       cl::desc("Whether or not we should widen guards  "
75                                "expressed as branches by widenable conditions"),
76                       cl::init(true));
77 
78 namespace {
79 
80 // Get the condition of \p I. It can either be a guard or a conditional branch.
81 static Value *getCondition(Instruction *I) {
82   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
83     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
84            "Bad guard intrinsic?");
85     return GI->getArgOperand(0);
86   }
87   Value *Cond, *WC;
88   BasicBlock *IfTrueBB, *IfFalseBB;
89   if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
90     return Cond;
91 
92   return cast<BranchInst>(I)->getCondition();
93 }
94 
95 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
96 // conditional branch.
97 static void setCondition(Instruction *I, Value *NewCond) {
98   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
99     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
100            "Bad guard intrinsic?");
101     GI->setArgOperand(0, NewCond);
102     return;
103   }
104   cast<BranchInst>(I)->setCondition(NewCond);
105 }
106 
107 // Eliminates the guard instruction properly.
108 static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
109   GuardInst->eraseFromParent();
110   if (MSSAU)
111     MSSAU->removeMemoryAccess(GuardInst);
112   ++GuardsEliminated;
113 }
114 
115 /// Find a point at which the widened condition of \p Guard should be inserted.
116 /// When it is represented as intrinsic call, we can do it right before the call
117 /// instruction. However, when we are dealing with widenable branch, we must
118 /// account for the following situation: widening should not turn a
119 /// loop-invariant condition into a loop-variant. It means that if
120 /// widenable.condition() call is invariant (w.r.t. any loop), the new wide
121 /// condition should stay invariant. Otherwise there can be a miscompile, like
122 /// the one described at https://github.com/llvm/llvm-project/issues/60234. The
123 /// safest way to do it is to expand the new condition at WC's block.
124 static std::optional<BasicBlock::iterator>
125 findInsertionPointForWideCondition(Instruction *WCOrGuard) {
126   if (isGuard(WCOrGuard))
127     return WCOrGuard->getIterator();
128   if (auto WC = extractWidenableCondition(WCOrGuard))
129     return cast<Instruction>(WC)->getIterator();
130   return std::nullopt;
131 }
132 
133 class GuardWideningImpl {
134   DominatorTree &DT;
135   PostDominatorTree *PDT;
136   LoopInfo &LI;
137   AssumptionCache &AC;
138   MemorySSAUpdater *MSSAU;
139 
140   /// Together, these describe the region of interest.  This might be all of
141   /// the blocks within a function, or only a given loop's blocks and preheader.
142   DomTreeNode *Root;
143   std::function<bool(BasicBlock*)> BlockFilter;
144 
145   /// The set of guards and conditional branches whose conditions have been
146   /// widened into dominating guards.
147   SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
148 
149   /// The set of guards which have been widened to include conditions to other
150   /// guards.
151   DenseSet<Instruction *> WidenedGuards;
152 
153   /// Try to eliminate instruction \p Instr by widening it into an earlier
154   /// dominating guard.  \p DFSI is the DFS iterator on the dominator tree that
155   /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
156   /// maps BasicBlocks to the set of guards seen in that block.
157   bool eliminateInstrViaWidening(
158       Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
159       const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
160           &GuardsPerBlock);
161 
162   /// Used to keep track of which widening potential is more effective.
163   enum WideningScore {
164     /// Don't widen.
165     WS_IllegalOrNegative,
166 
167     /// Widening is performance neutral as far as the cycles spent in check
168     /// conditions goes (but can still help, e.g., code layout, having less
169     /// deopt state).
170     WS_Neutral,
171 
172     /// Widening is profitable.
173     WS_Positive,
174 
175     /// Widening is very profitable.  Not significantly different from \c
176     /// WS_Positive, except by the order.
177     WS_VeryPositive
178   };
179 
180   static StringRef scoreTypeToString(WideningScore WS);
181 
182   /// Compute the score for widening the condition in \p DominatedInstr
183   /// into \p WideningPoint.
184   WideningScore computeWideningScore(Instruction *DominatedInstr,
185                                      Instruction *ToWiden,
186                                      BasicBlock::iterator WideningPoint,
187                                      SmallVectorImpl<Value *> &ChecksToHoist,
188                                      SmallVectorImpl<Value *> &ChecksToWiden);
189 
190   /// Helper to check if \p V can be hoisted to \p InsertPos.
191   bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos) const {
192     SmallPtrSet<const Instruction *, 8> Visited;
193     return canBeHoistedTo(V, InsertPos, Visited);
194   }
195 
196   bool canBeHoistedTo(const Value *V, BasicBlock::iterator InsertPos,
197                       SmallPtrSetImpl<const Instruction *> &Visited) const;
198 
199   bool canBeHoistedTo(const SmallVectorImpl<Value *> &Checks,
200                       BasicBlock::iterator InsertPos) const {
201     return all_of(Checks,
202                   [&](const Value *V) { return canBeHoistedTo(V, InsertPos); });
203   }
204   /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
205   /// canBeHoistedTo returned true.
206   void makeAvailableAt(Value *V, BasicBlock::iterator InsertPos) const;
207 
208   void makeAvailableAt(const SmallVectorImpl<Value *> &Checks,
209                        BasicBlock::iterator InsertPos) const {
210     for (Value *V : Checks)
211       makeAvailableAt(V, InsertPos);
212   }
213 
214   /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
215   /// to generate an expression computing the logical AND of \p ChecksToHoist
216   /// and \p ChecksToWiden. Return true if the expression computing the AND is
217   /// only as expensive as computing one of the set of expressions. If \p
218   /// InsertPt is true then actually generate the resulting expression, make it
219   /// available at \p InsertPt and return it in \p Result (else no change to the
220   /// IR is made).
221   std::optional<Value *>
222   mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
223               SmallVectorImpl<Value *> &ChecksToWiden,
224               std::optional<BasicBlock::iterator> InsertPt);
225 
226   /// Generate the logical AND of \p ChecksToHoist and \p OldCondition and make
227   /// it available at InsertPt
228   Value *hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
229                      Value *OldCondition, BasicBlock::iterator InsertPt);
230 
231   /// Adds freeze to Orig and push it as far as possible very aggressively.
232   /// Also replaces all uses of frozen instruction with frozen version.
233   Value *freezeAndPush(Value *Orig, BasicBlock::iterator InsertPt);
234 
235   /// Represents a range check of the form \c Base + \c Offset u< \c Length,
236   /// with the constraint that \c Length is not negative.  \c CheckInst is the
237   /// pre-existing instruction in the IR that computes the result of this range
238   /// check.
239   class RangeCheck {
240     const Value *Base;
241     const ConstantInt *Offset;
242     const Value *Length;
243     ICmpInst *CheckInst;
244 
245   public:
246     explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
247                         const Value *Length, ICmpInst *CheckInst)
248         : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
249 
250     void setBase(const Value *NewBase) { Base = NewBase; }
251     void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
252 
253     const Value *getBase() const { return Base; }
254     const ConstantInt *getOffset() const { return Offset; }
255     const APInt &getOffsetValue() const { return getOffset()->getValue(); }
256     const Value *getLength() const { return Length; };
257     ICmpInst *getCheckInst() const { return CheckInst; }
258 
259     void print(raw_ostream &OS, bool PrintTypes = false) {
260       OS << "Base: ";
261       Base->printAsOperand(OS, PrintTypes);
262       OS << " Offset: ";
263       Offset->printAsOperand(OS, PrintTypes);
264       OS << " Length: ";
265       Length->printAsOperand(OS, PrintTypes);
266     }
267 
268     LLVM_DUMP_METHOD void dump() {
269       print(dbgs());
270       dbgs() << "\n";
271     }
272   };
273 
274   /// Parse \p ToParse into a conjunction (logical-and) of range checks; and
275   /// append them to \p Checks.  Returns true on success, may clobber \c Checks
276   /// on failure.
277   bool parseRangeChecks(SmallVectorImpl<Value *> &ToParse,
278                         SmallVectorImpl<RangeCheck> &Checks) {
279     for (auto CheckCond : ToParse) {
280       if (!parseRangeChecks(CheckCond, Checks))
281         return false;
282     }
283     return true;
284   }
285 
286   bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks);
287 
288   /// Combine the checks in \p Checks into a smaller set of checks and append
289   /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
290   /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
291   /// and \p CombinedChecks on success and on failure.
292   bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
293                           SmallVectorImpl<RangeCheck> &CombinedChecks) const;
294 
295   /// Can we compute the logical AND of \p ChecksToHoist and \p ChecksToWiden
296   /// for the price of computing only one of the set of expressions?
297   bool isWideningCondProfitable(SmallVectorImpl<Value *> &ChecksToHoist,
298                                 SmallVectorImpl<Value *> &ChecksToWiden) {
299     return mergeChecks(ChecksToHoist, ChecksToWiden, /*InsertPt=*/std::nullopt)
300         .has_value();
301   }
302 
303   /// Widen \p ChecksToWiden to fail if any of \p ChecksToHoist is false
304   void widenGuard(SmallVectorImpl<Value *> &ChecksToHoist,
305                   SmallVectorImpl<Value *> &ChecksToWiden,
306                   Instruction *ToWiden) {
307     auto InsertPt = findInsertionPointForWideCondition(ToWiden);
308     auto MergedCheck = mergeChecks(ChecksToHoist, ChecksToWiden, InsertPt);
309     Value *Result = MergedCheck ? *MergedCheck
310                                 : hoistChecks(ChecksToHoist,
311                                               getCondition(ToWiden), *InsertPt);
312 
313     if (isGuardAsWidenableBranch(ToWiden)) {
314       setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
315       return;
316     }
317     setCondition(ToWiden, Result);
318   }
319 
320 public:
321   explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
322                              LoopInfo &LI, AssumptionCache &AC,
323                              MemorySSAUpdater *MSSAU, DomTreeNode *Root,
324                              std::function<bool(BasicBlock *)> BlockFilter)
325       : DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
326         BlockFilter(BlockFilter) {}
327 
328   /// The entry point for this pass.
329   bool run();
330 };
331 }
332 
333 static bool isSupportedGuardInstruction(const Instruction *Insn) {
334   if (isGuard(Insn))
335     return true;
336   if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
337     return true;
338   return false;
339 }
340 
341 bool GuardWideningImpl::run() {
342   DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
343   bool Changed = false;
344   for (auto DFI = df_begin(Root), DFE = df_end(Root);
345        DFI != DFE; ++DFI) {
346     auto *BB = (*DFI)->getBlock();
347     if (!BlockFilter(BB))
348       continue;
349 
350     auto &CurrentList = GuardsInBlock[BB];
351 
352     for (auto &I : *BB)
353       if (isSupportedGuardInstruction(&I))
354         CurrentList.push_back(cast<Instruction>(&I));
355 
356     for (auto *II : CurrentList)
357       Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
358   }
359 
360   assert(EliminatedGuardsAndBranches.empty() || Changed);
361   for (auto *I : EliminatedGuardsAndBranches)
362     if (!WidenedGuards.count(I)) {
363       assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
364       if (isSupportedGuardInstruction(I))
365         eliminateGuard(I, MSSAU);
366       else {
367         assert(isa<BranchInst>(I) &&
368                "Eliminated something other than guard or branch?");
369         ++CondBranchEliminated;
370       }
371     }
372 
373   return Changed;
374 }
375 
376 bool GuardWideningImpl::eliminateInstrViaWidening(
377     Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
378     const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
379         &GuardsInBlock) {
380   SmallVector<Value *> ChecksToHoist;
381   parseWidenableGuard(Instr, ChecksToHoist);
382   // Ignore trivial true or false conditions. These instructions will be
383   // trivially eliminated by any cleanup pass. Do not erase them because other
384   // guards can possibly be widened into them.
385   if (ChecksToHoist.empty() ||
386       (ChecksToHoist.size() == 1 && isa<ConstantInt>(ChecksToHoist.front())))
387     return false;
388 
389   Instruction *BestSoFar = nullptr;
390   auto BestScoreSoFar = WS_IllegalOrNegative;
391 
392   // In the set of dominating guards, find the one we can merge GuardInst with
393   // for the most profit.
394   for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
395     auto *CurBB = DFSI.getPath(i)->getBlock();
396     if (!BlockFilter(CurBB))
397       break;
398     assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
399     const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
400 
401     auto I = GuardsInCurBB.begin();
402     auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
403                                          : GuardsInCurBB.end();
404 
405 #ifndef NDEBUG
406     {
407       unsigned Index = 0;
408       for (auto &I : *CurBB) {
409         if (Index == GuardsInCurBB.size())
410           break;
411         if (GuardsInCurBB[Index] == &I)
412           Index++;
413       }
414       assert(Index == GuardsInCurBB.size() &&
415              "Guards expected to be in order!");
416     }
417 #endif
418 
419     assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
420 
421     for (auto *Candidate : make_range(I, E)) {
422       auto WideningPoint = findInsertionPointForWideCondition(Candidate);
423       if (!WideningPoint)
424         continue;
425       SmallVector<Value *> CandidateChecks;
426       parseWidenableGuard(Candidate, CandidateChecks);
427       auto Score = computeWideningScore(Instr, Candidate, *WideningPoint,
428                                         ChecksToHoist, CandidateChecks);
429       LLVM_DEBUG(dbgs() << "Score between " << *Instr << " and " << *Candidate
430                         << " is " << scoreTypeToString(Score) << "\n");
431       if (Score > BestScoreSoFar) {
432         BestScoreSoFar = Score;
433         BestSoFar = Candidate;
434       }
435     }
436   }
437 
438   if (BestScoreSoFar == WS_IllegalOrNegative) {
439     LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
440     return false;
441   }
442 
443   assert(BestSoFar != Instr && "Should have never visited same guard!");
444   assert(DT.dominates(BestSoFar, Instr) && "Should be!");
445 
446   LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
447                     << " with score " << scoreTypeToString(BestScoreSoFar)
448                     << "\n");
449   SmallVector<Value *> ChecksToWiden;
450   parseWidenableGuard(BestSoFar, ChecksToWiden);
451   widenGuard(ChecksToHoist, ChecksToWiden, BestSoFar);
452   auto NewGuardCondition = ConstantInt::getTrue(Instr->getContext());
453   setCondition(Instr, NewGuardCondition);
454   EliminatedGuardsAndBranches.push_back(Instr);
455   WidenedGuards.insert(BestSoFar);
456   return true;
457 }
458 
459 GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
460     Instruction *DominatedInstr, Instruction *ToWiden,
461     BasicBlock::iterator WideningPoint, SmallVectorImpl<Value *> &ChecksToHoist,
462     SmallVectorImpl<Value *> &ChecksToWiden) {
463   Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
464   Loop *DominatingGuardLoop = LI.getLoopFor(WideningPoint->getParent());
465   bool HoistingOutOfLoop = false;
466 
467   if (DominatingGuardLoop != DominatedInstrLoop) {
468     // Be conservative and don't widen into a sibling loop.  TODO: If the
469     // sibling is colder, we should consider allowing this.
470     if (DominatingGuardLoop &&
471         !DominatingGuardLoop->contains(DominatedInstrLoop))
472       return WS_IllegalOrNegative;
473 
474     HoistingOutOfLoop = true;
475   }
476 
477   if (!canBeHoistedTo(ChecksToHoist, WideningPoint))
478     return WS_IllegalOrNegative;
479   // Further in the GuardWideningImpl::hoistChecks the entire condition might be
480   // widened, not the parsed list of checks. So we need to check the possibility
481   // of that condition hoisting.
482   if (!canBeHoistedTo(getCondition(ToWiden), WideningPoint))
483     return WS_IllegalOrNegative;
484 
485   // If the guard was conditional executed, it may never be reached
486   // dynamically.  There are two potential downsides to hoisting it out of the
487   // conditionally executed region: 1) we may spuriously deopt without need and
488   // 2) we have the extra cost of computing the guard condition in the common
489   // case.  At the moment, we really only consider the second in our heuristic
490   // here.  TODO: evaluate cost model for spurious deopt
491   // NOTE: As written, this also lets us hoist right over another guard which
492   // is essentially just another spelling for control flow.
493   if (isWideningCondProfitable(ChecksToHoist, ChecksToWiden))
494     return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
495 
496   if (HoistingOutOfLoop)
497     return WS_Positive;
498 
499   // For a given basic block \p BB, return its successor which is guaranteed or
500   // highly likely will be taken as its successor.
501   auto GetLikelySuccessor = [](const BasicBlock * BB)->const BasicBlock * {
502     if (auto *UniqueSucc = BB->getUniqueSuccessor())
503       return UniqueSucc;
504     auto *Term = BB->getTerminator();
505     Value *Cond = nullptr;
506     const BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
507     using namespace PatternMatch;
508     if (!match(Term, m_Br(m_Value(Cond), m_BasicBlock(IfTrue),
509                           m_BasicBlock(IfFalse))))
510       return nullptr;
511     // For constant conditions, only one dynamical successor is possible
512     if (auto *ConstCond = dyn_cast<ConstantInt>(Cond))
513       return ConstCond->isAllOnesValue() ? IfTrue : IfFalse;
514     // If one of successors ends with deopt, another one is likely.
515     if (IfFalse->getPostdominatingDeoptimizeCall())
516       return IfTrue;
517     if (IfTrue->getPostdominatingDeoptimizeCall())
518       return IfFalse;
519     // TODO: Use branch frequency metatada to allow hoisting through non-deopt
520     // branches?
521     return nullptr;
522   };
523 
524   // Returns true if we might be hoisting above explicit control flow into a
525   // considerably hotter block.  Note that this completely ignores implicit
526   // control flow (guards, calls which throw, etc...).  That choice appears
527   // arbitrary (we assume that implicit control flow exits are all rare).
528   auto MaybeHoistingToHotterBlock = [&]() {
529     const auto *DominatingBlock = WideningPoint->getParent();
530     const auto *DominatedBlock = DominatedInstr->getParent();
531 
532     // Descend as low as we can, always taking the likely successor.
533     assert(DT.isReachableFromEntry(DominatingBlock) && "Unreached code");
534     assert(DT.isReachableFromEntry(DominatedBlock) && "Unreached code");
535     assert(DT.dominates(DominatingBlock, DominatedBlock) && "No dominance");
536     while (DominatedBlock != DominatingBlock) {
537       auto *LikelySucc = GetLikelySuccessor(DominatingBlock);
538       // No likely successor?
539       if (!LikelySucc)
540         break;
541       // Only go down the dominator tree.
542       if (!DT.properlyDominates(DominatingBlock, LikelySucc))
543         break;
544       DominatingBlock = LikelySucc;
545     }
546 
547     // Found?
548     if (DominatedBlock == DominatingBlock)
549       return false;
550     // We followed the likely successor chain and went past the dominated
551     // block. It means that the dominated guard is in dead/very cold code.
552     if (!DT.dominates(DominatingBlock, DominatedBlock))
553       return true;
554     // TODO: diamond, triangle cases
555     if (!PDT)
556       return true;
557     return !PDT->dominates(DominatedBlock, DominatingBlock);
558   };
559 
560   return MaybeHoistingToHotterBlock() ? WS_IllegalOrNegative : WS_Neutral;
561 }
562 
563 bool GuardWideningImpl::canBeHoistedTo(
564     const Value *V, BasicBlock::iterator Loc,
565     SmallPtrSetImpl<const Instruction *> &Visited) const {
566   auto *Inst = dyn_cast<Instruction>(V);
567   if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
568     return true;
569 
570   if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
571       Inst->mayReadFromMemory())
572     return false;
573 
574   Visited.insert(Inst);
575 
576   // We only want to go _up_ the dominance chain when recursing.
577   assert(!isa<PHINode>(Loc) &&
578          "PHIs should return false for isSafeToSpeculativelyExecute");
579   assert(DT.isReachableFromEntry(Inst->getParent()) &&
580          "We did a DFS from the block entry!");
581   return all_of(Inst->operands(),
582                 [&](Value *Op) { return canBeHoistedTo(Op, Loc, Visited); });
583 }
584 
585 void GuardWideningImpl::makeAvailableAt(Value *V,
586                                         BasicBlock::iterator Loc) const {
587   auto *Inst = dyn_cast<Instruction>(V);
588   if (!Inst || DT.dominates(Inst, Loc))
589     return;
590 
591   assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
592          !Inst->mayReadFromMemory() &&
593          "Should've checked with canBeHoistedTo!");
594 
595   for (Value *Op : Inst->operands())
596     makeAvailableAt(Op, Loc);
597 
598   Inst->moveBefore(*Loc->getParent(), Loc);
599 }
600 
601 // Return Instruction before which we can insert freeze for the value V as close
602 // to def as possible. If there is no place to add freeze, return empty.
603 static std::optional<BasicBlock::iterator>
604 getFreezeInsertPt(Value *V, const DominatorTree &DT) {
605   auto *I = dyn_cast<Instruction>(V);
606   if (!I)
607     return DT.getRoot()->getFirstNonPHIOrDbgOrAlloca()->getIterator();
608 
609   std::optional<BasicBlock::iterator> Res = I->getInsertionPointAfterDef();
610   // If there is no place to add freeze - return nullptr.
611   if (!Res || !DT.dominates(I, &**Res))
612     return std::nullopt;
613 
614   Instruction *ResInst = &**Res;
615 
616   // If there is a User dominated by original I, then it should be dominated
617   // by Freeze instruction as well.
618   if (any_of(I->users(), [&](User *U) {
619         Instruction *User = cast<Instruction>(U);
620         return ResInst != User && DT.dominates(I, User) &&
621                !DT.dominates(ResInst, User);
622       }))
623     return std::nullopt;
624   return Res;
625 }
626 
627 Value *GuardWideningImpl::freezeAndPush(Value *Orig,
628                                         BasicBlock::iterator InsertPt) {
629   if (isGuaranteedNotToBePoison(Orig, nullptr, InsertPt, &DT))
630     return Orig;
631   std::optional<BasicBlock::iterator> InsertPtAtDef =
632       getFreezeInsertPt(Orig, DT);
633   if (!InsertPtAtDef) {
634     FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
635     FI->insertBefore(*InsertPt->getParent(), InsertPt);
636     return FI;
637   }
638   if (isa<Constant>(Orig) || isa<GlobalValue>(Orig)) {
639     BasicBlock::iterator InsertPt = *InsertPtAtDef;
640     FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
641     FI->insertBefore(*InsertPt->getParent(), InsertPt);
642     return FI;
643   }
644 
645   SmallSet<Value *, 16> Visited;
646   SmallVector<Value *, 16> Worklist;
647   SmallSet<Instruction *, 16> DropPoisonFlags;
648   SmallVector<Value *, 16> NeedFreeze;
649   DenseMap<Value *, FreezeInst *> CacheOfFreezes;
650 
651   // A bit overloaded data structures. Visited contains constant/GV
652   // if we already met it. In this case CacheOfFreezes has a freeze if it is
653   // required.
654   auto handleConstantOrGlobal = [&](Use &U) {
655     Value *Def = U.get();
656     if (!isa<Constant>(Def) && !isa<GlobalValue>(Def))
657       return false;
658 
659     if (Visited.insert(Def).second) {
660       if (isGuaranteedNotToBePoison(Def, nullptr, InsertPt, &DT))
661         return true;
662       BasicBlock::iterator InsertPt = *getFreezeInsertPt(Def, DT);
663       FreezeInst *FI = new FreezeInst(Def, Def->getName() + ".gw.fr");
664       FI->insertBefore(*InsertPt->getParent(), InsertPt);
665       CacheOfFreezes[Def] = FI;
666     }
667 
668     if (CacheOfFreezes.count(Def))
669       U.set(CacheOfFreezes[Def]);
670     return true;
671   };
672 
673   Worklist.push_back(Orig);
674   while (!Worklist.empty()) {
675     Value *V = Worklist.pop_back_val();
676     if (!Visited.insert(V).second)
677       continue;
678 
679     if (isGuaranteedNotToBePoison(V, nullptr, InsertPt, &DT))
680       continue;
681 
682     Instruction *I = dyn_cast<Instruction>(V);
683     if (!I || canCreateUndefOrPoison(cast<Operator>(I),
684                                      /*ConsiderFlagsAndMetadata*/ false)) {
685       NeedFreeze.push_back(V);
686       continue;
687     }
688     // Check all operands. If for any of them we cannot insert Freeze,
689     // stop here. Otherwise, iterate.
690     if (any_of(I->operands(), [&](Value *Op) {
691           return isa<Instruction>(Op) && !getFreezeInsertPt(Op, DT);
692         })) {
693       NeedFreeze.push_back(I);
694       continue;
695     }
696     DropPoisonFlags.insert(I);
697     for (Use &U : I->operands())
698       if (!handleConstantOrGlobal(U))
699         Worklist.push_back(U.get());
700   }
701   for (Instruction *I : DropPoisonFlags)
702     I->dropPoisonGeneratingAnnotations();
703 
704   Value *Result = Orig;
705   for (Value *V : NeedFreeze) {
706     BasicBlock::iterator FreezeInsertPt = *getFreezeInsertPt(V, DT);
707     FreezeInst *FI = new FreezeInst(V, V->getName() + ".gw.fr");
708     FI->insertBefore(*FreezeInsertPt->getParent(), FreezeInsertPt);
709     ++FreezeAdded;
710     if (V == Orig)
711       Result = FI;
712     V->replaceUsesWithIf(
713         FI, [&](const Use & U)->bool { return U.getUser() != FI; });
714   }
715 
716   return Result;
717 }
718 
719 std::optional<Value *>
720 GuardWideningImpl::mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
721                                SmallVectorImpl<Value *> &ChecksToWiden,
722                                std::optional<BasicBlock::iterator> InsertPt) {
723   using namespace llvm::PatternMatch;
724 
725   Value *Result = nullptr;
726   {
727     // L >u C0 && L >u C1  ->  L >u max(C0, C1)
728     ConstantInt *RHS0, *RHS1;
729     Value *LHS;
730     CmpPredicate Pred0, Pred1;
731     // TODO: Support searching for pairs to merge from both whole lists of
732     // ChecksToHoist and ChecksToWiden.
733     if (ChecksToWiden.size() == 1 && ChecksToHoist.size() == 1 &&
734         match(ChecksToWiden.front(),
735               m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
736         match(ChecksToHoist.front(),
737               m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
738 
739       ConstantRange CR0 =
740           ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
741       ConstantRange CR1 =
742           ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
743 
744       // Given what we're doing here and the semantics of guards, it would
745       // be correct to use a subset intersection, but that may be too
746       // aggressive in cases we care about.
747       if (std::optional<ConstantRange> Intersect =
748               CR0.exactIntersectWith(CR1)) {
749         APInt NewRHSAP;
750         CmpInst::Predicate Pred;
751         if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
752           if (InsertPt) {
753             ConstantInt *NewRHS =
754                 ConstantInt::get((*InsertPt)->getContext(), NewRHSAP);
755             assert(canBeHoistedTo(LHS, *InsertPt) && "must be");
756             makeAvailableAt(LHS, *InsertPt);
757             Result = new ICmpInst(*InsertPt, Pred, LHS, NewRHS, "wide.chk");
758           }
759           return Result;
760         }
761       }
762     }
763   }
764 
765   {
766     SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
767     if (parseRangeChecks(ChecksToWiden, Checks) &&
768         parseRangeChecks(ChecksToHoist, Checks) &&
769         combineRangeChecks(Checks, CombinedChecks)) {
770       if (InsertPt) {
771         for (auto &RC : CombinedChecks) {
772           makeAvailableAt(RC.getCheckInst(), *InsertPt);
773           if (Result)
774             Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
775                                                *InsertPt);
776           else
777             Result = RC.getCheckInst();
778         }
779         assert(Result && "Failed to find result value");
780         Result->setName("wide.chk");
781         Result = freezeAndPush(Result, *InsertPt);
782       }
783       return Result;
784     }
785   }
786   // We were not able to compute ChecksToHoist AND ChecksToWiden for the price
787   // of one.
788   return std::nullopt;
789 }
790 
791 Value *GuardWideningImpl::hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
792                                       Value *OldCondition,
793                                       BasicBlock::iterator InsertPt) {
794   assert(!ChecksToHoist.empty());
795   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
796   makeAvailableAt(ChecksToHoist, InsertPt);
797   makeAvailableAt(OldCondition, InsertPt);
798   Value *Result = Builder.CreateAnd(ChecksToHoist);
799   Result = freezeAndPush(Result, InsertPt);
800   Result = Builder.CreateAnd(OldCondition, Result);
801   Result->setName("wide.chk");
802   return Result;
803 }
804 
805 bool GuardWideningImpl::parseRangeChecks(
806     Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks) {
807   using namespace llvm::PatternMatch;
808 
809   auto *IC = dyn_cast<ICmpInst>(CheckCond);
810   if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
811       (IC->getPredicate() != ICmpInst::ICMP_ULT &&
812        IC->getPredicate() != ICmpInst::ICMP_UGT))
813     return false;
814 
815   const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
816   if (IC->getPredicate() == ICmpInst::ICMP_UGT)
817     std::swap(CmpLHS, CmpRHS);
818 
819   auto &DL = IC->getDataLayout();
820 
821   GuardWideningImpl::RangeCheck Check(
822       CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
823       CmpRHS, IC);
824 
825   if (!isKnownNonNegative(Check.getLength(), DL))
826     return false;
827 
828   // What we have in \c Check now is a correct interpretation of \p CheckCond.
829   // Try to see if we can move some constant offsets into the \c Offset field.
830 
831   bool Changed;
832   auto &Ctx = CheckCond->getContext();
833 
834   do {
835     Value *OpLHS;
836     ConstantInt *OpRHS;
837     Changed = false;
838 
839 #ifndef NDEBUG
840     auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
841     assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
842            "Unreachable instruction?");
843 #endif
844 
845     if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
846       Check.setBase(OpLHS);
847       APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
848       Check.setOffset(ConstantInt::get(Ctx, NewOffset));
849       Changed = true;
850     } else if (match(Check.getBase(),
851                      m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
852       KnownBits Known = computeKnownBits(OpLHS, DL);
853       if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
854         Check.setBase(OpLHS);
855         APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
856         Check.setOffset(ConstantInt::get(Ctx, NewOffset));
857         Changed = true;
858       }
859     }
860   } while (Changed);
861 
862   Checks.push_back(Check);
863   return true;
864 }
865 
866 bool GuardWideningImpl::combineRangeChecks(
867     SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
868     SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
869   unsigned OldCount = Checks.size();
870   while (!Checks.empty()) {
871     // Pick all of the range checks with a specific base and length, and try to
872     // merge them.
873     const Value *CurrentBase = Checks.front().getBase();
874     const Value *CurrentLength = Checks.front().getLength();
875 
876     SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
877 
878     auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
879       return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
880     };
881 
882     copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
883     erase_if(Checks, IsCurrentCheck);
884 
885     assert(CurrentChecks.size() != 0 && "We know we have at least one!");
886 
887     if (CurrentChecks.size() < 3) {
888       llvm::append_range(RangeChecksOut, CurrentChecks);
889       continue;
890     }
891 
892     // CurrentChecks.size() will typically be 3 here, but so far there has been
893     // no need to hard-code that fact.
894 
895     llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
896                                   const GuardWideningImpl::RangeCheck &RHS) {
897       return LHS.getOffsetValue().slt(RHS.getOffsetValue());
898     });
899 
900     // Note: std::sort should not invalidate the ChecksStart iterator.
901 
902     const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
903     const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
904 
905     unsigned BitWidth = MaxOffset->getValue().getBitWidth();
906     if ((MaxOffset->getValue() - MinOffset->getValue())
907             .ugt(APInt::getSignedMinValue(BitWidth)))
908       return false;
909 
910     APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
911     const APInt &HighOffset = MaxOffset->getValue();
912     auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
913       return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
914     };
915 
916     if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
917       return false;
918 
919     // We have a series of f+1 checks as:
920     //
921     //   I+k_0 u< L   ... Chk_0
922     //   I+k_1 u< L   ... Chk_1
923     //   ...
924     //   I+k_f u< L   ... Chk_f
925     //
926     //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
927     //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
928     //          k_f != k_0                             ... Precond_2
929     //
930     // Claim:
931     //   Chk_0 AND Chk_f  implies all the other checks
932     //
933     // Informal proof sketch:
934     //
935     // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
936     // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
937     // thus I+k_f is the greatest unsigned value in that range.
938     //
939     // This combined with Ckh_(f+1) shows that everything in that range is u< L.
940     // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
941     // lie in [I+k_0,I+k_f], this proving our claim.
942     //
943     // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
944     // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
945     // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
946     // range by definition, and the latter case is impossible:
947     //
948     //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
949     //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
950     //
951     // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
952     // with 'x' above) to be at least >u INT_MIN.
953 
954     RangeChecksOut.emplace_back(CurrentChecks.front());
955     RangeChecksOut.emplace_back(CurrentChecks.back());
956   }
957 
958   assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
959   return RangeChecksOut.size() != OldCount;
960 }
961 
962 #ifndef NDEBUG
963 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
964   switch (WS) {
965   case WS_IllegalOrNegative:
966     return "IllegalOrNegative";
967   case WS_Neutral:
968     return "Neutral";
969   case WS_Positive:
970     return "Positive";
971   case WS_VeryPositive:
972     return "VeryPositive";
973   }
974 
975   llvm_unreachable("Fully covered switch above!");
976 }
977 #endif
978 
979 PreservedAnalyses GuardWideningPass::run(Function &F,
980                                          FunctionAnalysisManager &AM) {
981   // Avoid requesting analyses if there are no guards or widenable conditions.
982   auto *GuardDecl = Intrinsic::getDeclarationIfExists(
983       F.getParent(), Intrinsic::experimental_guard);
984   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
985   auto *WCDecl = Intrinsic::getDeclarationIfExists(
986       F.getParent(), Intrinsic::experimental_widenable_condition);
987   bool HasWidenableConditions = WCDecl && !WCDecl->use_empty();
988   if (!HasIntrinsicGuards && !HasWidenableConditions)
989     return PreservedAnalyses::all();
990   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
991   auto &LI = AM.getResult<LoopAnalysis>(F);
992   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
993   auto &AC = AM.getResult<AssumptionAnalysis>(F);
994   auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
995   std::unique_ptr<MemorySSAUpdater> MSSAU;
996   if (MSSAA)
997     MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
998   if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
999                          DT.getRootNode(), [](BasicBlock *) { return true; })
1000            .run())
1001     return PreservedAnalyses::all();
1002 
1003   PreservedAnalyses PA;
1004   PA.preserveSet<CFGAnalyses>();
1005   PA.preserve<MemorySSAAnalysis>();
1006   return PA;
1007 }
1008 
1009 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
1010                                          LoopStandardAnalysisResults &AR,
1011                                          LPMUpdater &U) {
1012   BasicBlock *RootBB = L.getLoopPredecessor();
1013   if (!RootBB)
1014     RootBB = L.getHeader();
1015   auto BlockFilter = [&](BasicBlock *BB) {
1016     return BB == RootBB || L.contains(BB);
1017   };
1018   std::unique_ptr<MemorySSAUpdater> MSSAU;
1019   if (AR.MSSA)
1020     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
1021   if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
1022                          MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
1023                          BlockFilter)
1024            .run())
1025     return PreservedAnalyses::all();
1026 
1027   auto PA = getLoopPassPreservedAnalyses();
1028   if (AR.MSSA)
1029     PA.preserve<MemorySSAAnalysis>();
1030   return PA;
1031 }
1032