1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists expressions from branches to a common dominator. It uses 10 // GVN (global value numbering) to discover expressions computing the same 11 // values. The primary goals of code-hoisting are: 12 // 1. To reduce the code size. 13 // 2. In some cases reduce critical path (by exposing more ILP). 14 // 15 // The algorithm factors out the reachability of values such that multiple 16 // queries to find reachability of values are fast. This is based on finding the 17 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points 18 // are basically the dominance-frontiers in the inverse graph. So we introduce a 19 // data structure (CHI nodes) to keep track of values flowing out of a basic 20 // block. We only do this for values with multiple occurrences in the function 21 // as they are the potential hoistable candidates. This approach allows us to 22 // hoist instructions to a basic block with more than two successors, as well as 23 // deal with infinite loops in a trivial way. 24 // 25 // Limitations: This pass does not hoist fully redundant expressions because 26 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before 27 // and after gvn-pre because gvn-pre creates opportunities for more instructions 28 // to be hoisted. 29 // 30 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 31 // is disabled in the following cases. 32 // 1. Scalars across calls. 33 // 2. geps when corresponding load/store cannot be hoisted. 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/DenseSet.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/iterator_range.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/GlobalsModRef.h" 45 #include "llvm/Analysis/IteratedDominanceFrontier.h" 46 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/PostDominators.h" 50 #include "llvm/Analysis/ValueTracking.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar/GVN.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <memory> 74 #include <utility> 75 #include <vector> 76 77 using namespace llvm; 78 79 #define DEBUG_TYPE "gvn-hoist" 80 81 STATISTIC(NumHoisted, "Number of instructions hoisted"); 82 STATISTIC(NumRemoved, "Number of instructions removed"); 83 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 84 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 85 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 86 STATISTIC(NumStoresRemoved, "Number of stores removed"); 87 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 88 STATISTIC(NumCallsRemoved, "Number of calls removed"); 89 90 static cl::opt<int> 91 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 92 cl::desc("Max number of instructions to hoist " 93 "(default unlimited = -1)")); 94 95 static cl::opt<int> MaxNumberOfBBSInPath( 96 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 97 cl::desc("Max number of basic blocks on the path between " 98 "hoisting locations (default = 4, unlimited = -1)")); 99 100 static cl::opt<int> MaxDepthInBB( 101 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 102 cl::desc("Hoist instructions from the beginning of the BB up to the " 103 "maximum specified depth (default = 100, unlimited = -1)")); 104 105 static cl::opt<int> 106 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 107 cl::desc("Maximum length of dependent chains to hoist " 108 "(default = 10, unlimited = -1)")); 109 110 namespace llvm { 111 112 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>; 113 using SmallVecInsn = SmallVector<Instruction *, 4>; 114 using SmallVecImplInsn = SmallVectorImpl<Instruction *>; 115 116 // Each element of a hoisting list contains the basic block where to hoist and 117 // a list of instructions to be hoisted. 118 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>; 119 120 using HoistingPointList = SmallVector<HoistingPointInfo, 4>; 121 122 // A map from a pair of VNs to all the instructions with those VNs. 123 using VNType = std::pair<unsigned, uintptr_t>; 124 125 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>; 126 127 // CHI keeps information about values flowing out of a basic block. It is 128 // similar to PHI but in the inverse graph, and used for outgoing values on each 129 // edge. For conciseness, it is computed only for instructions with multiple 130 // occurrences in the CFG because they are the only hoistable candidates. 131 // A (CHI[{V, B, I1}, {V, C, I2}] 132 // / \ 133 // / \ 134 // B(I1) C (I2) 135 // The Value number for both I1 and I2 is V, the CHI node will save the 136 // instruction as well as the edge where the value is flowing to. 137 struct CHIArg { 138 VNType VN; 139 140 // Edge destination (shows the direction of flow), may not be where the I is. 141 BasicBlock *Dest; 142 143 // The instruction (VN) which uses the values flowing out of CHI. 144 Instruction *I; 145 146 bool operator==(const CHIArg &A) const { return VN == A.VN; } 147 bool operator!=(const CHIArg &A) const { return !(*this == A); } 148 }; 149 150 using CHIIt = SmallVectorImpl<CHIArg>::iterator; 151 using CHIArgs = iterator_range<CHIIt>; 152 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>; 153 using InValuesType = 154 DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>; 155 156 // An invalid value number Used when inserting a single value number into 157 // VNtoInsns. 158 enum : uintptr_t { InvalidVN = ~(uintptr_t)2 }; 159 160 // Records all scalar instructions candidate for code hoisting. 161 class InsnInfo { 162 VNtoInsns VNtoScalars; 163 164 public: 165 // Inserts I and its value number in VNtoScalars. 166 void insert(Instruction *I, GVNPass::ValueTable &VN) { 167 // Scalar instruction. 168 unsigned V = VN.lookupOrAdd(I); 169 VNtoScalars[{V, InvalidVN}].push_back(I); 170 } 171 172 const VNtoInsns &getVNTable() const { return VNtoScalars; } 173 }; 174 175 // Records all load instructions candidate for code hoisting. 176 class LoadInfo { 177 VNtoInsns VNtoLoads; 178 179 public: 180 // Insert Load and the value number of its memory address in VNtoLoads. 181 void insert(LoadInst *Load, GVNPass::ValueTable &VN) { 182 if (Load->isSimple()) { 183 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 184 // With opaque pointers we may have loads from the same pointer with 185 // different result types, which should be disambiguated. 186 VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load); 187 } 188 } 189 190 const VNtoInsns &getVNTable() const { return VNtoLoads; } 191 }; 192 193 // Records all store instructions candidate for code hoisting. 194 class StoreInfo { 195 VNtoInsns VNtoStores; 196 197 public: 198 // Insert the Store and a hash number of the store address and the stored 199 // value in VNtoStores. 200 void insert(StoreInst *Store, GVNPass::ValueTable &VN) { 201 if (!Store->isSimple()) 202 return; 203 // Hash the store address and the stored value. 204 Value *Ptr = Store->getPointerOperand(); 205 Value *Val = Store->getValueOperand(); 206 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 207 } 208 209 const VNtoInsns &getVNTable() const { return VNtoStores; } 210 }; 211 212 // Records all call instructions candidate for code hoisting. 213 class CallInfo { 214 VNtoInsns VNtoCallsScalars; 215 VNtoInsns VNtoCallsLoads; 216 VNtoInsns VNtoCallsStores; 217 218 public: 219 // Insert Call and its value numbering in one of the VNtoCalls* containers. 220 void insert(CallInst *Call, GVNPass::ValueTable &VN) { 221 // A call that doesNotAccessMemory is handled as a Scalar, 222 // onlyReadsMemory will be handled as a Load instruction, 223 // all other calls will be handled as stores. 224 unsigned V = VN.lookupOrAdd(Call); 225 auto Entry = std::make_pair(V, InvalidVN); 226 227 if (Call->doesNotAccessMemory()) 228 VNtoCallsScalars[Entry].push_back(Call); 229 else if (Call->onlyReadsMemory()) 230 VNtoCallsLoads[Entry].push_back(Call); 231 else 232 VNtoCallsStores[Entry].push_back(Call); 233 } 234 235 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 236 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 237 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 238 }; 239 240 // This pass hoists common computations across branches sharing common 241 // dominator. The primary goal is to reduce the code size, and in some 242 // cases reduce critical path (by exposing more ILP). 243 class GVNHoist { 244 public: 245 GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, 246 MemoryDependenceResults *MD, MemorySSA *MSSA) 247 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA), 248 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) { 249 MSSA->ensureOptimizedUses(); 250 } 251 252 bool run(Function &F); 253 254 // Copied from NewGVN.cpp 255 // This function provides global ranking of operations so that we can place 256 // them in a canonical order. Note that rank alone is not necessarily enough 257 // for a complete ordering, as constants all have the same rank. However, 258 // generally, we will simplify an operation with all constants so that it 259 // doesn't matter what order they appear in. 260 unsigned int rank(const Value *V) const; 261 262 private: 263 GVNPass::ValueTable VN; 264 DominatorTree *DT; 265 PostDominatorTree *PDT; 266 AliasAnalysis *AA; 267 MemoryDependenceResults *MD; 268 MemorySSA *MSSA; 269 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 270 DenseMap<const Value *, unsigned> DFSNumber; 271 BBSideEffectsSet BBSideEffects; 272 DenseSet<const BasicBlock *> HoistBarrier; 273 SmallVector<BasicBlock *, 32> IDFBlocks; 274 unsigned NumFuncArgs; 275 const bool HoistingGeps = false; 276 277 enum InsKind { Unknown, Scalar, Load, Store }; 278 279 // Return true when there are exception handling in BB. 280 bool hasEH(const BasicBlock *BB); 281 282 // Return true when I1 appears before I2 in the instructions of BB. 283 bool firstInBB(const Instruction *I1, const Instruction *I2) { 284 assert(I1->getParent() == I2->getParent()); 285 unsigned I1DFS = DFSNumber.lookup(I1); 286 unsigned I2DFS = DFSNumber.lookup(I2); 287 assert(I1DFS && I2DFS); 288 return I1DFS < I2DFS; 289 } 290 291 // Return true when there are memory uses of Def in BB. 292 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 293 const BasicBlock *BB); 294 295 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 296 int &NBBsOnAllPaths); 297 298 // Return true when there are exception handling or loads of memory Def 299 // between Def and NewPt. This function is only called for stores: Def is 300 // the MemoryDef of the store to be hoisted. 301 302 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 303 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 304 // initialized to -1 which is unlimited. 305 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 306 int &NBBsOnAllPaths); 307 308 // Return true when there are exception handling between HoistPt and BB. 309 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 310 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 311 // initialized to -1 which is unlimited. 312 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 313 int &NBBsOnAllPaths); 314 315 // Return true when it is safe to hoist a memory load or store U from OldPt 316 // to NewPt. 317 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 318 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths); 319 320 // Return true when it is safe to hoist scalar instructions from all blocks in 321 // WL to HoistBB. 322 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB, 323 int &NBBsOnAllPaths) { 324 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths); 325 } 326 327 // In the inverse CFG, the dominance frontier of basic block (BB) is the 328 // point where ANTIC needs to be computed for instructions which are going 329 // to be hoisted. Since this point does not change during gvn-hoist, 330 // we compute it only once (on demand). 331 // The ides is inspired from: 332 // "Partial Redundancy Elimination in SSA Form" 333 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW 334 // They use similar idea in the forward graph to find fully redundant and 335 // partially redundant expressions, here it is used in the inverse graph to 336 // find fully anticipable instructions at merge point (post-dominator in 337 // the inverse CFG). 338 // Returns the edge via which an instruction in BB will get the values from. 339 340 // Returns true when the values are flowing out to each edge. 341 bool valueAnticipable(CHIArgs C, Instruction *TI) const; 342 343 // Check if it is safe to hoist values tracked by CHI in the range 344 // [Begin, End) and accumulate them in Safe. 345 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K, 346 SmallVectorImpl<CHIArg> &Safe); 347 348 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>; 349 350 // Push all the VNs corresponding to BB into RenameStack. 351 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 352 RenameStackType &RenameStack); 353 354 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 355 RenameStackType &RenameStack); 356 357 // Walk the post-dominator tree top-down and use a stack for each value to 358 // store the last value you see. When you hit a CHI from a given edge, the 359 // value to use as the argument is at the top of the stack, add the value to 360 // CHI and pop. 361 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) { 362 auto Root = PDT->getNode(nullptr); 363 if (!Root) 364 return; 365 // Depth first walk on PDom tree to fill the CHIargs at each PDF. 366 for (auto *Node : depth_first(Root)) { 367 BasicBlock *BB = Node->getBlock(); 368 if (!BB) 369 continue; 370 371 RenameStackType RenameStack; 372 // Collect all values in BB and push to stack. 373 fillRenameStack(BB, ValueBBs, RenameStack); 374 375 // Fill outgoing values in each CHI corresponding to BB. 376 fillChiArgs(BB, CHIBBs, RenameStack); 377 } 378 } 379 380 // Walk all the CHI-nodes to find ones which have a empty-entry and remove 381 // them Then collect all the instructions which are safe to hoist and see if 382 // they form a list of anticipable values. OutValues contains CHIs 383 // corresponding to each basic block. 384 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K, 385 HoistingPointList &HPL); 386 387 // Compute insertion points for each values which can be fully anticipated at 388 // a dominator. HPL contains all such values. 389 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 390 InsKind K) { 391 // Sort VNs based on their rankings 392 std::vector<VNType> Ranks; 393 for (const auto &Entry : Map) { 394 Ranks.push_back(Entry.first); 395 } 396 397 // TODO: Remove fully-redundant expressions. 398 // Get instruction from the Map, assume that all the Instructions 399 // with same VNs have same rank (this is an approximation). 400 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) { 401 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin())); 402 }); 403 404 // - Sort VNs according to their rank, and start with lowest ranked VN 405 // - Take a VN and for each instruction with same VN 406 // - Find the dominance frontier in the inverse graph (PDF) 407 // - Insert the chi-node at PDF 408 // - Remove the chi-nodes with missing entries 409 // - Remove values from CHI-nodes which do not truly flow out, e.g., 410 // modified along the path. 411 // - Collect the remaining values that are still anticipable 412 SmallVector<BasicBlock *, 2> IDFBlocks; 413 ReverseIDFCalculator IDFs(*PDT); 414 OutValuesType OutValue; 415 InValuesType InValue; 416 for (const auto &R : Ranks) { 417 const SmallVecInsn &V = Map.lookup(R); 418 if (V.size() < 2) 419 continue; 420 const VNType &VN = R; 421 SmallPtrSet<BasicBlock *, 2> VNBlocks; 422 for (const auto &I : V) { 423 BasicBlock *BBI = I->getParent(); 424 if (!hasEH(BBI)) 425 VNBlocks.insert(BBI); 426 } 427 // Compute the Post Dominance Frontiers of each basic block 428 // The dominance frontier of a live block X in the reverse 429 // control graph is the set of blocks upon which X is control 430 // dependent. The following sequence computes the set of blocks 431 // which currently have dead terminators that are control 432 // dependence sources of a block which is in NewLiveBlocks. 433 IDFs.setDefiningBlocks(VNBlocks); 434 IDFBlocks.clear(); 435 IDFs.calculate(IDFBlocks); 436 437 // Make a map of BB vs instructions to be hoisted. 438 for (unsigned i = 0; i < V.size(); ++i) { 439 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i])); 440 } 441 // Insert empty CHI node for this VN. This is used to factor out 442 // basic blocks where the ANTIC can potentially change. 443 CHIArg EmptyChi = {VN, nullptr, nullptr}; 444 for (auto *IDFBB : IDFBlocks) { 445 for (unsigned i = 0; i < V.size(); ++i) { 446 // Ignore spurious PDFs. 447 if (DT->properlyDominates(IDFBB, V[i]->getParent())) { 448 OutValue[IDFBB].push_back(EmptyChi); 449 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: " 450 << IDFBB->getName() << ", for Insn: " << *V[i]); 451 } 452 } 453 } 454 } 455 456 // Insert CHI args at each PDF to iterate on factored graph of 457 // control dependence. 458 insertCHI(InValue, OutValue); 459 // Using the CHI args inserted at each PDF, find fully anticipable values. 460 findHoistableCandidates(OutValue, K, HPL); 461 } 462 463 // Return true when all operands of Instr are available at insertion point 464 // HoistPt. When limiting the number of hoisted expressions, one could hoist 465 // a load without hoisting its access function. So before hoisting any 466 // expression, make sure that all its operands are available at insert point. 467 bool allOperandsAvailable(const Instruction *I, 468 const BasicBlock *HoistPt) const; 469 470 // Same as allOperandsAvailable with recursive check for GEP operands. 471 bool allGepOperandsAvailable(const Instruction *I, 472 const BasicBlock *HoistPt) const; 473 474 // Make all operands of the GEP available. 475 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 476 const SmallVecInsn &InstructionsToHoist, 477 Instruction *Gep) const; 478 479 void updateAlignment(Instruction *I, Instruction *Repl); 480 481 // Remove all the instructions in Candidates and replace their usage with 482 // Repl. Returns the number of instructions removed. 483 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl, 484 MemoryUseOrDef *NewMemAcc); 485 486 // Replace all Memory PHI usage with NewMemAcc. 487 void raMPHIuw(MemoryUseOrDef *NewMemAcc); 488 489 // Remove all other instructions and replace them with Repl. 490 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl, 491 BasicBlock *DestBB, bool MoveAccess); 492 493 // In the case Repl is a load or a store, we make all their GEPs 494 // available: GEPs are not hoisted by default to avoid the address 495 // computations to be hoisted without the associated load or store. 496 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 497 const SmallVecInsn &InstructionsToHoist) const; 498 499 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL); 500 501 // Hoist all expressions. Returns Number of scalars hoisted 502 // and number of non-scalars hoisted. 503 std::pair<unsigned, unsigned> hoistExpressions(Function &F); 504 }; 505 506 bool GVNHoist::run(Function &F) { 507 NumFuncArgs = F.arg_size(); 508 VN.setDomTree(DT); 509 VN.setAliasAnalysis(AA); 510 VN.setMemDep(MD); 511 bool Res = false; 512 // Perform DFS Numbering of instructions. 513 unsigned BBI = 0; 514 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 515 DFSNumber[BB] = ++BBI; 516 unsigned I = 0; 517 for (const auto &Inst : *BB) 518 DFSNumber[&Inst] = ++I; 519 } 520 521 int ChainLength = 0; 522 523 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 524 while (true) { 525 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 526 return Res; 527 528 auto HoistStat = hoistExpressions(F); 529 if (HoistStat.first + HoistStat.second == 0) 530 return Res; 531 532 if (HoistStat.second > 0) 533 // To address a limitation of the current GVN, we need to rerun the 534 // hoisting after we hoisted loads or stores in order to be able to 535 // hoist all scalars dependent on the hoisted ld/st. 536 VN.clear(); 537 538 Res = true; 539 } 540 541 return Res; 542 } 543 544 unsigned int GVNHoist::rank(const Value *V) const { 545 // Prefer constants to undef to anything else 546 // Undef is a constant, have to check it first. 547 // Prefer smaller constants to constantexprs 548 if (isa<ConstantExpr>(V)) 549 return 2; 550 if (isa<UndefValue>(V)) 551 return 1; 552 if (isa<Constant>(V)) 553 return 0; 554 else if (auto *A = dyn_cast<Argument>(V)) 555 return 3 + A->getArgNo(); 556 557 // Need to shift the instruction DFS by number of arguments + 3 to account 558 // for the constant and argument ranking above. 559 auto Result = DFSNumber.lookup(V); 560 if (Result > 0) 561 return 4 + NumFuncArgs + Result; 562 // Unreachable or something else, just return a really large number. 563 return ~0; 564 } 565 566 bool GVNHoist::hasEH(const BasicBlock *BB) { 567 auto It = BBSideEffects.find(BB); 568 if (It != BBSideEffects.end()) 569 return It->second; 570 571 if (BB->isEHPad() || BB->hasAddressTaken()) { 572 BBSideEffects[BB] = true; 573 return true; 574 } 575 576 if (BB->getTerminator()->mayThrow()) { 577 BBSideEffects[BB] = true; 578 return true; 579 } 580 581 BBSideEffects[BB] = false; 582 return false; 583 } 584 585 bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 586 const BasicBlock *BB) { 587 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 588 if (!Acc) 589 return false; 590 591 Instruction *OldPt = Def->getMemoryInst(); 592 const BasicBlock *OldBB = OldPt->getParent(); 593 const BasicBlock *NewBB = NewPt->getParent(); 594 bool ReachedNewPt = false; 595 596 for (const MemoryAccess &MA : *Acc) 597 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 598 Instruction *Insn = MU->getMemoryInst(); 599 600 // Do not check whether MU aliases Def when MU occurs after OldPt. 601 if (BB == OldBB && firstInBB(OldPt, Insn)) 602 break; 603 604 // Do not check whether MU aliases Def when MU occurs before NewPt. 605 if (BB == NewBB) { 606 if (!ReachedNewPt) { 607 if (firstInBB(Insn, NewPt)) 608 continue; 609 ReachedNewPt = true; 610 } 611 } 612 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA)) 613 return true; 614 } 615 616 return false; 617 } 618 619 bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB, 620 int &NBBsOnAllPaths) { 621 // Stop walk once the limit is reached. 622 if (NBBsOnAllPaths == 0) 623 return true; 624 625 // Impossible to hoist with exceptions on the path. 626 if (hasEH(BB)) 627 return true; 628 629 // No such instruction after HoistBarrier in a basic block was 630 // selected for hoisting so instructions selected within basic block with 631 // a hoist barrier can be hoisted. 632 if ((BB != SrcBB) && HoistBarrier.count(BB)) 633 return true; 634 635 return false; 636 } 637 638 bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 639 int &NBBsOnAllPaths) { 640 const BasicBlock *NewBB = NewPt->getParent(); 641 const BasicBlock *OldBB = Def->getBlock(); 642 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 643 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 644 "def does not dominate new hoisting point"); 645 646 // Walk all basic blocks reachable in depth-first iteration on the inverse 647 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 648 // executed between the execution of NewBB and OldBB. Hoisting an expression 649 // from OldBB into NewBB has to be safe on all execution paths. 650 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 651 const BasicBlock *BB = *I; 652 if (BB == NewBB) { 653 // Stop traversal when reaching HoistPt. 654 I.skipChildren(); 655 continue; 656 } 657 658 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths)) 659 return true; 660 661 // Check that we do not move a store past loads. 662 if (hasMemoryUse(NewPt, Def, BB)) 663 return true; 664 665 // -1 is unlimited number of blocks on all paths. 666 if (NBBsOnAllPaths != -1) 667 --NBBsOnAllPaths; 668 669 ++I; 670 } 671 672 return false; 673 } 674 675 bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB, 676 int &NBBsOnAllPaths) { 677 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path"); 678 679 // Walk all basic blocks reachable in depth-first iteration on 680 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 681 // blocks that may be executed between the execution of NewHoistPt and 682 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 683 // on all execution paths. 684 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) { 685 const BasicBlock *BB = *I; 686 if (BB == HoistPt) { 687 // Stop traversal when reaching NewHoistPt. 688 I.skipChildren(); 689 continue; 690 } 691 692 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths)) 693 return true; 694 695 // -1 is unlimited number of blocks on all paths. 696 if (NBBsOnAllPaths != -1) 697 --NBBsOnAllPaths; 698 699 ++I; 700 } 701 702 return false; 703 } 704 705 bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt, 706 const Instruction *OldPt, MemoryUseOrDef *U, 707 GVNHoist::InsKind K, int &NBBsOnAllPaths) { 708 // In place hoisting is safe. 709 if (NewPt == OldPt) 710 return true; 711 712 const BasicBlock *NewBB = NewPt->getParent(); 713 const BasicBlock *OldBB = OldPt->getParent(); 714 const BasicBlock *UBB = U->getBlock(); 715 716 // Check for dependences on the Memory SSA. 717 MemoryAccess *D = U->getDefiningAccess(); 718 BasicBlock *DBB = D->getBlock(); 719 if (DT->properlyDominates(NewBB, DBB)) 720 // Cannot move the load or store to NewBB above its definition in DBB. 721 return false; 722 723 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 724 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 725 if (!firstInBB(UD->getMemoryInst(), NewPt)) 726 // Cannot move the load or store to NewPt above its definition in D. 727 return false; 728 729 // Check for unsafe hoistings due to side effects. 730 if (K == InsKind::Store) { 731 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths)) 732 return false; 733 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 734 return false; 735 736 if (UBB == NewBB) { 737 if (DT->properlyDominates(DBB, NewBB)) 738 return true; 739 assert(UBB == DBB); 740 assert(MSSA->locallyDominates(D, U)); 741 } 742 743 // No side effects: it is safe to hoist. 744 return true; 745 } 746 747 bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const { 748 if (TI->getNumSuccessors() > (unsigned)size(C)) 749 return false; // Not enough args in this CHI. 750 751 for (auto CHI : C) { 752 // Find if all the edges have values flowing out of BB. 753 if (!llvm::is_contained(successors(TI), CHI.Dest)) 754 return false; 755 } 756 return true; 757 } 758 759 void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K, 760 SmallVectorImpl<CHIArg> &Safe) { 761 int NumBBsOnAllPaths = MaxNumberOfBBSInPath; 762 const Instruction *T = BB->getTerminator(); 763 for (auto CHI : C) { 764 Instruction *Insn = CHI.I; 765 if (!Insn) // No instruction was inserted in this CHI. 766 continue; 767 // If the Terminator is some kind of "exotic terminator" that produces a 768 // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI 769 // uses, it is not safe to hoist the use above the def. 770 if (!T->use_empty() && is_contained(Insn->operands(), cast<const Value>(T))) 771 continue; 772 if (K == InsKind::Scalar) { 773 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths)) 774 Safe.push_back(CHI); 775 } else { 776 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn)) 777 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths)) 778 Safe.push_back(CHI); 779 } 780 } 781 } 782 783 void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs, 784 GVNHoist::RenameStackType &RenameStack) { 785 auto it1 = ValueBBs.find(BB); 786 if (it1 != ValueBBs.end()) { 787 // Iterate in reverse order to keep lower ranked values on the top. 788 LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName() 789 << " for pushing instructions on stack";); 790 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) { 791 // Get the value of instruction I 792 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second); 793 RenameStack[VI.first].push_back(VI.second); 794 } 795 } 796 } 797 798 void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs, 799 GVNHoist::RenameStackType &RenameStack) { 800 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI 801 for (auto *Pred : predecessors(BB)) { 802 auto P = CHIBBs.find(Pred); 803 if (P == CHIBBs.end()) { 804 continue; 805 } 806 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName();); 807 // A CHI is found (BB -> Pred is an edge in the CFG) 808 // Pop the stack until Top(V) = Ve. 809 auto &VCHI = P->second; 810 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) { 811 CHIArg &C = *It; 812 if (!C.Dest) { 813 auto si = RenameStack.find(C.VN); 814 // The Basic Block where CHI is must dominate the value we want to 815 // track in a CHI. In the PDom walk, there can be values in the 816 // stack which are not control dependent e.g., nested loop. 817 if (si != RenameStack.end() && si->second.size() && 818 DT->properlyDominates(Pred, si->second.back()->getParent())) { 819 C.Dest = BB; // Assign the edge 820 C.I = si->second.pop_back_val(); // Assign the argument 821 LLVM_DEBUG(dbgs() 822 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I 823 << ", VN: " << C.VN.first << ", " << C.VN.second); 824 } 825 // Move to next CHI of a different value 826 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; }); 827 } else 828 ++It; 829 } 830 } 831 } 832 833 void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs, 834 GVNHoist::InsKind K, 835 HoistingPointList &HPL) { 836 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; }; 837 838 // CHIArgs now have the outgoing values, so check for anticipability and 839 // accumulate hoistable candidates in HPL. 840 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) { 841 BasicBlock *BB = A.first; 842 SmallVectorImpl<CHIArg> &CHIs = A.second; 843 // Vector of PHIs contains PHIs for different instructions. 844 // Sort the args according to their VNs, such that identical 845 // instructions are together. 846 llvm::stable_sort(CHIs, cmpVN); 847 auto TI = BB->getTerminator(); 848 auto B = CHIs.begin(); 849 // [PreIt, PHIIt) form a range of CHIs which have identical VNs. 850 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; }); 851 auto PrevIt = CHIs.begin(); 852 while (PrevIt != PHIIt) { 853 // Collect values which satisfy safety checks. 854 SmallVector<CHIArg, 2> Safe; 855 // We check for safety first because there might be multiple values in 856 // the same path, some of which are not safe to be hoisted, but overall 857 // each edge has at least one value which can be hoisted, making the 858 // value anticipable along that path. 859 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe); 860 861 // List of safe values should be anticipable at TI. 862 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) { 863 HPL.push_back({BB, SmallVecInsn()}); 864 SmallVecInsn &V = HPL.back().second; 865 for (auto B : Safe) 866 V.push_back(B.I); 867 } 868 869 // Check other VNs 870 PrevIt = PHIIt; 871 PHIIt = std::find_if(PrevIt, CHIs.end(), 872 [PrevIt](CHIArg &A) { return A != *PrevIt; }); 873 } 874 } 875 } 876 877 bool GVNHoist::allOperandsAvailable(const Instruction *I, 878 const BasicBlock *HoistPt) const { 879 for (const Use &Op : I->operands()) 880 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 881 if (!DT->dominates(Inst->getParent(), HoistPt)) 882 return false; 883 884 return true; 885 } 886 887 bool GVNHoist::allGepOperandsAvailable(const Instruction *I, 888 const BasicBlock *HoistPt) const { 889 for (const Use &Op : I->operands()) 890 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 891 if (!DT->dominates(Inst->getParent(), HoistPt)) { 892 if (const GetElementPtrInst *GepOp = 893 dyn_cast<GetElementPtrInst>(Inst)) { 894 if (!allGepOperandsAvailable(GepOp, HoistPt)) 895 return false; 896 // Gep is available if all operands of GepOp are available. 897 } else { 898 // Gep is not available if it has operands other than GEPs that are 899 // defined in blocks not dominating HoistPt. 900 return false; 901 } 902 } 903 return true; 904 } 905 906 void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 907 const SmallVecInsn &InstructionsToHoist, 908 Instruction *Gep) const { 909 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); 910 911 Instruction *ClonedGep = Gep->clone(); 912 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 913 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 914 // Check whether the operand is already available. 915 if (DT->dominates(Op->getParent(), HoistPt)) 916 continue; 917 918 // As a GEP can refer to other GEPs, recursively make all the operands 919 // of this GEP available at HoistPt. 920 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 921 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 922 } 923 924 // Copy Gep and replace its uses in Repl with ClonedGep. 925 ClonedGep->insertBefore(HoistPt->getTerminator()->getIterator()); 926 927 // Conservatively discard any optimization hints, they may differ on the 928 // other paths. 929 ClonedGep->dropUnknownNonDebugMetadata(); 930 931 // If we have optimization hints which agree with each other along different 932 // paths, preserve them. 933 for (const Instruction *OtherInst : InstructionsToHoist) { 934 const GetElementPtrInst *OtherGep; 935 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 936 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 937 else 938 OtherGep = cast<GetElementPtrInst>( 939 cast<StoreInst>(OtherInst)->getPointerOperand()); 940 ClonedGep->andIRFlags(OtherGep); 941 942 // Merge debug locations of GEPs, because the hoisted GEP replaces those 943 // in branches. When cloning, ClonedGep preserves the debug location of 944 // Gepd, so Gep is skipped to avoid merging it twice. 945 if (OtherGep != Gep) { 946 ClonedGep->applyMergedLocation(ClonedGep->getDebugLoc(), 947 OtherGep->getDebugLoc()); 948 } 949 } 950 951 // Replace uses of Gep with ClonedGep in Repl. 952 Repl->replaceUsesOfWith(Gep, ClonedGep); 953 } 954 955 void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) { 956 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 957 ReplacementLoad->setAlignment( 958 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign())); 959 ++NumLoadsRemoved; 960 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 961 ReplacementStore->setAlignment( 962 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign())); 963 ++NumStoresRemoved; 964 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 965 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(), 966 cast<AllocaInst>(I)->getAlign())); 967 } else if (isa<CallInst>(Repl)) { 968 ++NumCallsRemoved; 969 } 970 } 971 972 unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl, 973 MemoryUseOrDef *NewMemAcc) { 974 unsigned NR = 0; 975 for (Instruction *I : Candidates) { 976 if (I != Repl) { 977 ++NR; 978 updateAlignment(I, Repl); 979 if (NewMemAcc) { 980 // Update the uses of the old MSSA access with NewMemAcc. 981 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 982 OldMA->replaceAllUsesWith(NewMemAcc); 983 MSSAUpdater->removeMemoryAccess(OldMA); 984 } 985 986 combineMetadataForCSE(Repl, I, true); 987 Repl->andIRFlags(I); 988 I->replaceAllUsesWith(Repl); 989 // Also invalidate the Alias Analysis cache. 990 MD->removeInstruction(I); 991 I->eraseFromParent(); 992 } 993 } 994 return NR; 995 } 996 997 void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) { 998 SmallPtrSet<MemoryPhi *, 4> UsePhis; 999 for (User *U : NewMemAcc->users()) 1000 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 1001 UsePhis.insert(Phi); 1002 1003 for (MemoryPhi *Phi : UsePhis) { 1004 auto In = Phi->incoming_values(); 1005 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 1006 Phi->replaceAllUsesWith(NewMemAcc); 1007 MSSAUpdater->removeMemoryAccess(Phi); 1008 } 1009 } 1010 } 1011 1012 unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates, 1013 Instruction *Repl, BasicBlock *DestBB, 1014 bool MoveAccess) { 1015 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl); 1016 if (MoveAccess && NewMemAcc) { 1017 // The definition of this ld/st will not change: ld/st hoisting is 1018 // legal when the ld/st is not moved past its current definition. 1019 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator); 1020 } 1021 1022 // Replace all other instructions with Repl with memory access NewMemAcc. 1023 unsigned NR = rauw(Candidates, Repl, NewMemAcc); 1024 1025 // Remove MemorySSA phi nodes with the same arguments. 1026 if (NewMemAcc) 1027 raMPHIuw(NewMemAcc); 1028 return NR; 1029 } 1030 1031 bool GVNHoist::makeGepOperandsAvailable( 1032 Instruction *Repl, BasicBlock *HoistPt, 1033 const SmallVecInsn &InstructionsToHoist) const { 1034 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 1035 GetElementPtrInst *Gep = nullptr; 1036 Instruction *Val = nullptr; 1037 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 1038 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 1039 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 1040 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 1041 Val = dyn_cast<Instruction>(St->getValueOperand()); 1042 // Check that the stored value is available. 1043 if (Val) { 1044 if (isa<GetElementPtrInst>(Val)) { 1045 // Check whether we can compute the GEP at HoistPt. 1046 if (!allGepOperandsAvailable(Val, HoistPt)) 1047 return false; 1048 } else if (!DT->dominates(Val->getParent(), HoistPt)) 1049 return false; 1050 } 1051 } 1052 1053 // Check whether we can compute the Gep at HoistPt. 1054 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 1055 return false; 1056 1057 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 1058 1059 if (Val && isa<GetElementPtrInst>(Val)) 1060 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 1061 1062 return true; 1063 } 1064 1065 std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) { 1066 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 1067 for (const HoistingPointInfo &HP : HPL) { 1068 // Find out whether we already have one of the instructions in HoistPt, 1069 // in which case we do not have to move it. 1070 BasicBlock *DestBB = HP.first; 1071 const SmallVecInsn &InstructionsToHoist = HP.second; 1072 Instruction *Repl = nullptr; 1073 for (Instruction *I : InstructionsToHoist) 1074 if (I->getParent() == DestBB) 1075 // If there are two instructions in HoistPt to be hoisted in place: 1076 // update Repl to be the first one, such that we can rename the uses 1077 // of the second based on the first. 1078 if (!Repl || firstInBB(I, Repl)) 1079 Repl = I; 1080 1081 // Keep track of whether we moved the instruction so we know whether we 1082 // should move the MemoryAccess. 1083 bool MoveAccess = true; 1084 if (Repl) { 1085 // Repl is already in HoistPt: it remains in place. 1086 assert(allOperandsAvailable(Repl, DestBB) && 1087 "instruction depends on operands that are not available"); 1088 MoveAccess = false; 1089 } else { 1090 // When we do not find Repl in HoistPt, select the first in the list 1091 // and move it to HoistPt. 1092 Repl = InstructionsToHoist.front(); 1093 1094 // We can move Repl in HoistPt only when all operands are available. 1095 // The order in which hoistings are done may influence the availability 1096 // of operands. 1097 if (!allOperandsAvailable(Repl, DestBB)) { 1098 // When HoistingGeps there is nothing more we can do to make the 1099 // operands available: just continue. 1100 if (HoistingGeps) 1101 continue; 1102 1103 // When not HoistingGeps we need to copy the GEPs. 1104 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist)) 1105 continue; 1106 } 1107 1108 // Move the instruction at the end of HoistPt. 1109 Instruction *Last = DestBB->getTerminator(); 1110 MD->removeInstruction(Repl); 1111 Repl->moveBefore(Last->getIterator()); 1112 1113 DFSNumber[Repl] = DFSNumber[Last]++; 1114 } 1115 1116 // Drop debug location as per debug info update guide. 1117 Repl->dropLocation(); 1118 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess); 1119 1120 if (isa<LoadInst>(Repl)) 1121 ++NL; 1122 else if (isa<StoreInst>(Repl)) 1123 ++NS; 1124 else if (isa<CallInst>(Repl)) 1125 ++NC; 1126 else // Scalar 1127 ++NI; 1128 } 1129 1130 if (MSSA && VerifyMemorySSA) 1131 MSSA->verifyMemorySSA(); 1132 1133 NumHoisted += NL + NS + NC + NI; 1134 NumRemoved += NR; 1135 NumLoadsHoisted += NL; 1136 NumStoresHoisted += NS; 1137 NumCallsHoisted += NC; 1138 return {NI, NL + NC + NS}; 1139 } 1140 1141 std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) { 1142 InsnInfo II; 1143 LoadInfo LI; 1144 StoreInfo SI; 1145 CallInfo CI; 1146 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 1147 int InstructionNb = 0; 1148 for (Instruction &I1 : *BB) { 1149 // If I1 cannot guarantee progress, subsequent instructions 1150 // in BB cannot be hoisted anyways. 1151 if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) { 1152 HoistBarrier.insert(BB); 1153 break; 1154 } 1155 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 1156 // deeper may increase the register pressure and compilation time. 1157 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 1158 break; 1159 1160 // Do not value number terminator instructions. 1161 if (I1.isTerminator()) 1162 break; 1163 1164 if (auto *Load = dyn_cast<LoadInst>(&I1)) 1165 LI.insert(Load, VN); 1166 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 1167 SI.insert(Store, VN); 1168 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 1169 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 1170 if (isa<DbgInfoIntrinsic>(Intr) || 1171 Intr->getIntrinsicID() == Intrinsic::assume || 1172 Intr->getIntrinsicID() == Intrinsic::sideeffect) 1173 continue; 1174 } 1175 if (Call->mayHaveSideEffects()) 1176 break; 1177 1178 if (Call->isConvergent()) 1179 break; 1180 1181 CI.insert(Call, VN); 1182 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 1183 // Do not hoist scalars past calls that may write to memory because 1184 // that could result in spills later. geps are handled separately. 1185 // TODO: We can relax this for targets like AArch64 as they have more 1186 // registers than X86. 1187 II.insert(&I1, VN); 1188 } 1189 } 1190 1191 HoistingPointList HPL; 1192 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 1193 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 1194 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 1195 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 1196 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 1197 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 1198 return hoist(HPL); 1199 } 1200 1201 } // end namespace llvm 1202 1203 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 1204 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 1205 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1206 AliasAnalysis &AA = AM.getResult<AAManager>(F); 1207 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1208 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 1209 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA); 1210 if (!G.run(F)) 1211 return PreservedAnalyses::all(); 1212 1213 PreservedAnalyses PA; 1214 PA.preserve<DominatorTreeAnalysis>(); 1215 PA.preserve<MemorySSAAnalysis>(); 1216 return PA; 1217 } 1218