xref: /llvm-project/llvm/lib/Transforms/Scalar/Float2Int.cpp (revision 9128077c88f0112b4a5b1f64922247793250001b)
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/Float2Int.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <deque>
27 
28 #define DEBUG_TYPE "float2int"
29 
30 using namespace llvm;
31 
32 // The algorithm is simple. Start at instructions that convert from the
33 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
34 // graph, using an equivalence datastructure to unify graphs that interfere.
35 //
36 // Mappable instructions are those with an integer corrollary that, given
37 // integer domain inputs, produce an integer output; fadd, for example.
38 //
39 // If a non-mappable instruction is seen, this entire def-use graph is marked
40 // as non-transformable. If we see an instruction that converts from the
41 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
42 
43 /// The largest integer type worth dealing with.
44 static cl::opt<unsigned>
45 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
46              cl::desc("Max integer bitwidth to consider in float2int"
47                       "(default=64)"));
48 
49 // Given a FCmp predicate, return a matching ICmp predicate if one
50 // exists, otherwise return BAD_ICMP_PREDICATE.
51 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
52   switch (P) {
53   case CmpInst::FCMP_OEQ:
54   case CmpInst::FCMP_UEQ:
55     return CmpInst::ICMP_EQ;
56   case CmpInst::FCMP_OGT:
57   case CmpInst::FCMP_UGT:
58     return CmpInst::ICMP_SGT;
59   case CmpInst::FCMP_OGE:
60   case CmpInst::FCMP_UGE:
61     return CmpInst::ICMP_SGE;
62   case CmpInst::FCMP_OLT:
63   case CmpInst::FCMP_ULT:
64     return CmpInst::ICMP_SLT;
65   case CmpInst::FCMP_OLE:
66   case CmpInst::FCMP_ULE:
67     return CmpInst::ICMP_SLE;
68   case CmpInst::FCMP_ONE:
69   case CmpInst::FCMP_UNE:
70     return CmpInst::ICMP_NE;
71   default:
72     return CmpInst::BAD_ICMP_PREDICATE;
73   }
74 }
75 
76 // Given a floating point binary operator, return the matching
77 // integer version.
78 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
79   switch (Opcode) {
80   default: llvm_unreachable("Unhandled opcode!");
81   case Instruction::FAdd: return Instruction::Add;
82   case Instruction::FSub: return Instruction::Sub;
83   case Instruction::FMul: return Instruction::Mul;
84   }
85 }
86 
87 // Find the roots - instructions that convert from the FP domain to
88 // integer domain.
89 void Float2IntPass::findRoots(Function &F, const DominatorTree &DT) {
90   for (BasicBlock &BB : F) {
91     // Unreachable code can take on strange forms that we are not prepared to
92     // handle. For example, an instruction may have itself as an operand.
93     if (!DT.isReachableFromEntry(&BB))
94       continue;
95 
96     for (Instruction &I : BB) {
97       if (isa<VectorType>(I.getType()))
98         continue;
99       switch (I.getOpcode()) {
100       default: break;
101       case Instruction::FPToUI:
102       case Instruction::FPToSI:
103         Roots.insert(&I);
104         break;
105       case Instruction::FCmp:
106         if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
107             CmpInst::BAD_ICMP_PREDICATE)
108           Roots.insert(&I);
109         break;
110       }
111     }
112   }
113 }
114 
115 // Helper - mark I as having been traversed, having range R.
116 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
117   LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
118   SeenInsts.insert_or_assign(I, std::move(R));
119 }
120 
121 // Helper - get a range representing a poison value.
122 ConstantRange Float2IntPass::badRange() {
123   return ConstantRange::getFull(MaxIntegerBW + 1);
124 }
125 ConstantRange Float2IntPass::unknownRange() {
126   return ConstantRange::getEmpty(MaxIntegerBW + 1);
127 }
128 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
129   if (R.getBitWidth() > MaxIntegerBW + 1)
130     return badRange();
131   return R;
132 }
133 
134 // The most obvious way to structure the search is a depth-first, eager
135 // search from each root. However, that require direct recursion and so
136 // can only handle small instruction sequences. Instead, we split the search
137 // up into two phases:
138 //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
139 //                     the roots. Populate "SeenInsts" with interesting
140 //                     instructions and poison values if they're obvious and
141 //                     cheap to compute. Calculate the equivalance set structure
142 //                     while we're here too.
143 //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
144 //                     defs before their uses. Calculate the real range info.
145 
146 // Breadth-first walk of the use-def graph; determine the set of nodes
147 // we care about and eagerly determine if some of them are poisonous.
148 void Float2IntPass::walkBackwards() {
149   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
150   while (!Worklist.empty()) {
151     Instruction *I = Worklist.back();
152     Worklist.pop_back();
153 
154     if (SeenInsts.contains(I))
155       // Seen already.
156       continue;
157 
158     switch (I->getOpcode()) {
159       // FIXME: Handle select and phi nodes.
160     default:
161       // Path terminated uncleanly.
162       seen(I, badRange());
163       break;
164 
165     case Instruction::UIToFP:
166     case Instruction::SIToFP: {
167       // Path terminated cleanly - use the type of the integer input to seed
168       // the analysis.
169       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
170       auto Input = ConstantRange::getFull(BW);
171       auto CastOp = (Instruction::CastOps)I->getOpcode();
172       seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
173       continue;
174     }
175 
176     case Instruction::FNeg:
177     case Instruction::FAdd:
178     case Instruction::FSub:
179     case Instruction::FMul:
180     case Instruction::FPToUI:
181     case Instruction::FPToSI:
182     case Instruction::FCmp:
183       seen(I, unknownRange());
184       break;
185     }
186 
187     for (Value *O : I->operands()) {
188       if (Instruction *OI = dyn_cast<Instruction>(O)) {
189         // Unify def-use chains if they interfere.
190         ECs.unionSets(I, OI);
191         if (SeenInsts.find(I)->second != badRange())
192           Worklist.push_back(OI);
193       } else if (!isa<ConstantFP>(O)) {
194         // Not an instruction or ConstantFP? we can't do anything.
195         seen(I, badRange());
196       }
197     }
198   }
199 }
200 
201 // Calculate result range from operand ranges.
202 // Return std::nullopt if the range cannot be calculated yet.
203 std::optional<ConstantRange> Float2IntPass::calcRange(Instruction *I) {
204   SmallVector<ConstantRange, 4> OpRanges;
205   for (Value *O : I->operands()) {
206     if (Instruction *OI = dyn_cast<Instruction>(O)) {
207       auto OpIt = SeenInsts.find(OI);
208       assert(OpIt != SeenInsts.end() && "def not seen before use!");
209       if (OpIt->second == unknownRange())
210         return std::nullopt; // Wait until operand range has been calculated.
211       OpRanges.push_back(OpIt->second);
212     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
213       // Work out if the floating point number can be losslessly represented
214       // as an integer.
215       // APFloat::convertToInteger(&Exact) purports to do what we want, but
216       // the exactness can be too precise. For example, negative zero can
217       // never be exactly converted to an integer.
218       //
219       // Instead, we ask APFloat to round itself to an integral value - this
220       // preserves sign-of-zero - then compare the result with the original.
221       //
222       const APFloat &F = CF->getValueAPF();
223 
224       // First, weed out obviously incorrect values. Non-finite numbers
225       // can't be represented and neither can negative zero, unless
226       // we're in fast math mode.
227       if (!F.isFinite() ||
228           (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
229            !I->hasNoSignedZeros()))
230         return badRange();
231 
232       APFloat NewF = F;
233       auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
234       if (Res != APFloat::opOK || NewF != F)
235         return badRange();
236 
237       // OK, it's representable. Now get it.
238       APSInt Int(MaxIntegerBW+1, false);
239       bool Exact;
240       CF->getValueAPF().convertToInteger(Int,
241                                          APFloat::rmNearestTiesToEven,
242                                          &Exact);
243       OpRanges.push_back(ConstantRange(Int));
244     } else {
245       llvm_unreachable("Should have already marked this as badRange!");
246     }
247   }
248 
249   switch (I->getOpcode()) {
250   // FIXME: Handle select and phi nodes.
251   default:
252   case Instruction::UIToFP:
253   case Instruction::SIToFP:
254     llvm_unreachable("Should have been handled in walkForwards!");
255 
256   case Instruction::FNeg: {
257     assert(OpRanges.size() == 1 && "FNeg is a unary operator!");
258     unsigned Size = OpRanges[0].getBitWidth();
259     auto Zero = ConstantRange(APInt::getZero(Size));
260     return Zero.sub(OpRanges[0]);
261   }
262 
263   case Instruction::FAdd:
264   case Instruction::FSub:
265   case Instruction::FMul: {
266     assert(OpRanges.size() == 2 && "its a binary operator!");
267     auto BinOp = (Instruction::BinaryOps) I->getOpcode();
268     return OpRanges[0].binaryOp(BinOp, OpRanges[1]);
269   }
270 
271   //
272   // Root-only instructions - we'll only see these if they're the
273   //                          first node in a walk.
274   //
275   case Instruction::FPToUI:
276   case Instruction::FPToSI: {
277     assert(OpRanges.size() == 1 && "FPTo[US]I is a unary operator!");
278     // Note: We're ignoring the casts output size here as that's what the
279     // caller expects.
280     auto CastOp = (Instruction::CastOps)I->getOpcode();
281     return OpRanges[0].castOp(CastOp, MaxIntegerBW+1);
282   }
283 
284   case Instruction::FCmp:
285     assert(OpRanges.size() == 2 && "FCmp is a binary operator!");
286     return OpRanges[0].unionWith(OpRanges[1]);
287   }
288 }
289 
290 // Walk forwards down the list of seen instructions, so we visit defs before
291 // uses.
292 void Float2IntPass::walkForwards() {
293   std::deque<Instruction *> Worklist;
294   for (const auto &Pair : SeenInsts)
295     if (Pair.second == unknownRange())
296       Worklist.push_back(Pair.first);
297 
298   while (!Worklist.empty()) {
299     Instruction *I = Worklist.back();
300     Worklist.pop_back();
301 
302     if (std::optional<ConstantRange> Range = calcRange(I))
303       seen(I, *Range);
304     else
305       Worklist.push_front(I); // Reprocess later.
306   }
307 }
308 
309 // If there is a valid transform to be done, do it.
310 bool Float2IntPass::validateAndTransform(const DataLayout &DL) {
311   bool MadeChange = false;
312 
313   // Iterate over every disjoint partition of the def-use graph.
314   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
315     ConstantRange R(MaxIntegerBW + 1, false);
316     bool Fail = false;
317     Type *ConvertedToTy = nullptr;
318 
319     // For every member of the partition, union all the ranges together.
320     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
321          MI != ME; ++MI) {
322       Instruction *I = *MI;
323       auto SeenI = SeenInsts.find(I);
324       if (SeenI == SeenInsts.end())
325         continue;
326 
327       R = R.unionWith(SeenI->second);
328       // We need to ensure I has no users that have not been seen.
329       // If it does, transformation would be illegal.
330       //
331       // Don't count the roots, as they terminate the graphs.
332       if (!Roots.contains(I)) {
333         // Set the type of the conversion while we're here.
334         if (!ConvertedToTy)
335           ConvertedToTy = I->getType();
336         for (User *U : I->users()) {
337           Instruction *UI = dyn_cast<Instruction>(U);
338           if (!UI || !SeenInsts.contains(UI)) {
339             LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
340             Fail = true;
341             break;
342           }
343         }
344       }
345       if (Fail)
346         break;
347     }
348 
349     // If the set was empty, or we failed, or the range is poisonous,
350     // bail out.
351     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
352         R.isFullSet() || R.isSignWrappedSet())
353       continue;
354     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
355 
356     // The number of bits required is the maximum of the upper and
357     // lower limits, plus one so it can be signed.
358     unsigned MinBW = R.getMinSignedBits() + 1;
359     LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
360 
361     // If we've run off the realms of the exactly representable integers,
362     // the floating point result will differ from an integer approximation.
363 
364     // Do we need more bits than are in the mantissa of the type we converted
365     // to? semanticsPrecision returns the number of mantissa bits plus one
366     // for the sign bit.
367     unsigned MaxRepresentableBits
368       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
369     if (MinBW > MaxRepresentableBits) {
370       LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
371       continue;
372     }
373 
374     // OK, R is known to be representable.
375     // Pick the smallest legal type that will fit.
376     Type *Ty = DL.getSmallestLegalIntType(*Ctx, MinBW);
377     if (!Ty) {
378       // Every supported target supports 64-bit and 32-bit integers,
379       // so fallback to a 32 or 64-bit integer if the value fits.
380       if (MinBW <= 32) {
381         Ty = Type::getInt32Ty(*Ctx);
382       } else if (MinBW <= 64) {
383         Ty = Type::getInt64Ty(*Ctx);
384       } else {
385         LLVM_DEBUG(dbgs() << "F2I: Value requires more bits to represent than "
386                              "the target supports!\n");
387         continue;
388       }
389     }
390 
391     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
392          MI != ME; ++MI)
393       convert(*MI, Ty);
394     MadeChange = true;
395   }
396 
397   return MadeChange;
398 }
399 
400 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
401   if (auto It = ConvertedInsts.find(I); It != ConvertedInsts.end())
402     // Already converted this instruction.
403     return It->second;
404 
405   SmallVector<Value*,4> NewOperands;
406   for (Value *V : I->operands()) {
407     // Don't recurse if we're an instruction that terminates the path.
408     if (I->getOpcode() == Instruction::UIToFP ||
409         I->getOpcode() == Instruction::SIToFP) {
410       NewOperands.push_back(V);
411     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
412       NewOperands.push_back(convert(VI, ToTy));
413     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
414       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
415       bool Exact;
416       CF->getValueAPF().convertToInteger(Val,
417                                          APFloat::rmNearestTiesToEven,
418                                          &Exact);
419       NewOperands.push_back(ConstantInt::get(ToTy, Val));
420     } else {
421       llvm_unreachable("Unhandled operand type?");
422     }
423   }
424 
425   // Now create a new instruction.
426   IRBuilder<> IRB(I);
427   Value *NewV = nullptr;
428   switch (I->getOpcode()) {
429   default: llvm_unreachable("Unhandled instruction!");
430 
431   case Instruction::FPToUI:
432     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
433     break;
434 
435   case Instruction::FPToSI:
436     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
437     break;
438 
439   case Instruction::FCmp: {
440     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
441     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
442     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
443     break;
444   }
445 
446   case Instruction::UIToFP:
447     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
448     break;
449 
450   case Instruction::SIToFP:
451     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
452     break;
453 
454   case Instruction::FNeg:
455     NewV = IRB.CreateNeg(NewOperands[0], I->getName());
456     break;
457 
458   case Instruction::FAdd:
459   case Instruction::FSub:
460   case Instruction::FMul:
461     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
462                            NewOperands[0], NewOperands[1],
463                            I->getName());
464     break;
465   }
466 
467   // If we're a root instruction, RAUW.
468   if (Roots.count(I))
469     I->replaceAllUsesWith(NewV);
470 
471   ConvertedInsts[I] = NewV;
472   return NewV;
473 }
474 
475 // Perform dead code elimination on the instructions we just modified.
476 void Float2IntPass::cleanup() {
477   for (auto &I : reverse(ConvertedInsts))
478     I.first->eraseFromParent();
479 }
480 
481 bool Float2IntPass::runImpl(Function &F, const DominatorTree &DT) {
482   LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
483   // Clear out all state.
484   ECs = EquivalenceClasses<Instruction*>();
485   SeenInsts.clear();
486   ConvertedInsts.clear();
487   Roots.clear();
488 
489   Ctx = &F.getParent()->getContext();
490 
491   findRoots(F, DT);
492 
493   walkBackwards();
494   walkForwards();
495 
496   const DataLayout &DL = F.getDataLayout();
497   bool Modified = validateAndTransform(DL);
498   if (Modified)
499     cleanup();
500   return Modified;
501 }
502 
503 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &AM) {
504   const DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
505   if (!runImpl(F, DT))
506     return PreservedAnalyses::all();
507 
508   PreservedAnalyses PA;
509   PA.preserveSet<CFGAnalyses>();
510   return PA;
511 }
512