xref: /llvm-project/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp (revision b7db403e701029c801fd990dceeb219de9fb800c)
1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Correlated Value Propagation pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
14 #include "llvm/ADT/DepthFirstIterator.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include <cassert>
43 #include <optional>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "correlated-value-propagation"
49 
50 STATISTIC(NumPhis,      "Number of phis propagated");
51 STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
52 STATISTIC(NumSelects,   "Number of selects propagated");
53 STATISTIC(NumCmps,      "Number of comparisons propagated");
54 STATISTIC(NumReturns,   "Number of return values propagated");
55 STATISTIC(NumDeadCases, "Number of switch cases removed");
56 STATISTIC(NumSDivSRemsNarrowed,
57           "Number of sdivs/srems whose width was decreased");
58 STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
59 STATISTIC(NumUDivURemsNarrowed,
60           "Number of udivs/urems whose width was decreased");
61 STATISTIC(NumAShrsConverted, "Number of ashr converted to lshr");
62 STATISTIC(NumAShrsRemoved, "Number of ashr removed");
63 STATISTIC(NumSRems,     "Number of srem converted to urem");
64 STATISTIC(NumSExt,      "Number of sext converted to zext");
65 STATISTIC(NumSIToFP,    "Number of sitofp converted to uitofp");
66 STATISTIC(NumSICmps,    "Number of signed icmp preds simplified to unsigned");
67 STATISTIC(NumAnd,       "Number of ands removed");
68 STATISTIC(NumNW,        "Number of no-wrap deductions");
69 STATISTIC(NumNSW,       "Number of no-signed-wrap deductions");
70 STATISTIC(NumNUW,       "Number of no-unsigned-wrap deductions");
71 STATISTIC(NumAddNW,     "Number of no-wrap deductions for add");
72 STATISTIC(NumAddNSW,    "Number of no-signed-wrap deductions for add");
73 STATISTIC(NumAddNUW,    "Number of no-unsigned-wrap deductions for add");
74 STATISTIC(NumSubNW,     "Number of no-wrap deductions for sub");
75 STATISTIC(NumSubNSW,    "Number of no-signed-wrap deductions for sub");
76 STATISTIC(NumSubNUW,    "Number of no-unsigned-wrap deductions for sub");
77 STATISTIC(NumMulNW,     "Number of no-wrap deductions for mul");
78 STATISTIC(NumMulNSW,    "Number of no-signed-wrap deductions for mul");
79 STATISTIC(NumMulNUW,    "Number of no-unsigned-wrap deductions for mul");
80 STATISTIC(NumShlNW,     "Number of no-wrap deductions for shl");
81 STATISTIC(NumShlNSW,    "Number of no-signed-wrap deductions for shl");
82 STATISTIC(NumShlNUW,    "Number of no-unsigned-wrap deductions for shl");
83 STATISTIC(NumAbs,       "Number of llvm.abs intrinsics removed");
84 STATISTIC(NumOverflows, "Number of overflow checks removed");
85 STATISTIC(NumSaturating,
86     "Number of saturating arithmetics converted to normal arithmetics");
87 STATISTIC(NumNonNull, "Number of function pointer arguments marked non-null");
88 STATISTIC(NumCmpIntr, "Number of llvm.[us]cmp intrinsics removed");
89 STATISTIC(NumMinMax, "Number of llvm.[us]{min,max} intrinsics removed");
90 STATISTIC(NumSMinMax,
91           "Number of llvm.s{min,max} intrinsics simplified to unsigned");
92 STATISTIC(NumUDivURemsNarrowedExpanded,
93           "Number of bound udiv's/urem's expanded");
94 STATISTIC(NumNNeg, "Number of zext/uitofp non-negative deductions");
95 
96 static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
97   if (Constant *C = LVI->getConstant(V, At))
98     return C;
99 
100   // TODO: The following really should be sunk inside LVI's core algorithm, or
101   // at least the outer shims around such.
102   auto *C = dyn_cast<CmpInst>(V);
103   if (!C)
104     return nullptr;
105 
106   Value *Op0 = C->getOperand(0);
107   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
108   if (!Op1)
109     return nullptr;
110 
111   return LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At,
112                              /*UseBlockValue=*/false);
113 }
114 
115 static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
116   if (S->getType()->isVectorTy() || isa<Constant>(S->getCondition()))
117     return false;
118 
119   bool Changed = false;
120   for (Use &U : make_early_inc_range(S->uses())) {
121     auto *I = cast<Instruction>(U.getUser());
122     Constant *C;
123     if (auto *PN = dyn_cast<PHINode>(I))
124       C = LVI->getConstantOnEdge(S->getCondition(), PN->getIncomingBlock(U),
125                                  I->getParent(), I);
126     else
127       C = getConstantAt(S->getCondition(), I, LVI);
128 
129     auto *CI = dyn_cast_or_null<ConstantInt>(C);
130     if (!CI)
131       continue;
132 
133     U.set(CI->isOne() ? S->getTrueValue() : S->getFalseValue());
134     Changed = true;
135     ++NumSelects;
136   }
137 
138   if (Changed && S->use_empty())
139     S->eraseFromParent();
140 
141   return Changed;
142 }
143 
144 /// Try to simplify a phi with constant incoming values that match the edge
145 /// values of a non-constant value on all other edges:
146 /// bb0:
147 ///   %isnull = icmp eq i8* %x, null
148 ///   br i1 %isnull, label %bb2, label %bb1
149 /// bb1:
150 ///   br label %bb2
151 /// bb2:
152 ///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
153 /// -->
154 ///   %r = %x
155 static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
156                                    DominatorTree *DT) {
157   // Collect incoming constants and initialize possible common value.
158   SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
159   Value *CommonValue = nullptr;
160   for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
161     Value *Incoming = P->getIncomingValue(i);
162     if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
163       IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
164     } else if (!CommonValue) {
165       // The potential common value is initialized to the first non-constant.
166       CommonValue = Incoming;
167     } else if (Incoming != CommonValue) {
168       // There can be only one non-constant common value.
169       return false;
170     }
171   }
172 
173   if (!CommonValue || IncomingConstants.empty())
174     return false;
175 
176   // The common value must be valid in all incoming blocks.
177   BasicBlock *ToBB = P->getParent();
178   if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
179     if (!DT->dominates(CommonInst, ToBB))
180       return false;
181 
182   // We have a phi with exactly 1 variable incoming value and 1 or more constant
183   // incoming values. See if all constant incoming values can be mapped back to
184   // the same incoming variable value.
185   for (auto &IncomingConstant : IncomingConstants) {
186     Constant *C = IncomingConstant.first;
187     BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
188     if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
189       return false;
190   }
191 
192   // LVI only guarantees that the value matches a certain constant if the value
193   // is not poison. Make sure we don't replace a well-defined value with poison.
194   // This is usually satisfied due to a prior branch on the value.
195   if (!isGuaranteedNotToBePoison(CommonValue, nullptr, P, DT))
196     return false;
197 
198   // All constant incoming values map to the same variable along the incoming
199   // edges of the phi. The phi is unnecessary.
200   P->replaceAllUsesWith(CommonValue);
201   P->eraseFromParent();
202   ++NumPhiCommon;
203   return true;
204 }
205 
206 static Value *getValueOnEdge(LazyValueInfo *LVI, Value *Incoming,
207                              BasicBlock *From, BasicBlock *To,
208                              Instruction *CxtI) {
209   if (Constant *C = LVI->getConstantOnEdge(Incoming, From, To, CxtI))
210     return C;
211 
212   // Look if the incoming value is a select with a scalar condition for which
213   // LVI can tells us the value. In that case replace the incoming value with
214   // the appropriate value of the select. This often allows us to remove the
215   // select later.
216   auto *SI = dyn_cast<SelectInst>(Incoming);
217   if (!SI)
218     return nullptr;
219 
220   // Once LVI learns to handle vector types, we could also add support
221   // for vector type constants that are not all zeroes or all ones.
222   Value *Condition = SI->getCondition();
223   if (!Condition->getType()->isVectorTy()) {
224     if (Constant *C = LVI->getConstantOnEdge(Condition, From, To, CxtI)) {
225       if (C->isOneValue())
226         return SI->getTrueValue();
227       if (C->isZeroValue())
228         return SI->getFalseValue();
229     }
230   }
231 
232   // Look if the select has a constant but LVI tells us that the incoming
233   // value can never be that constant. In that case replace the incoming
234   // value with the other value of the select. This often allows us to
235   // remove the select later.
236 
237   // The "false" case
238   if (auto *C = dyn_cast<Constant>(SI->getFalseValue()))
239     if (auto *Res = dyn_cast_or_null<ConstantInt>(
240             LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI));
241         Res && Res->isZero())
242       return SI->getTrueValue();
243 
244   // The "true" case,
245   // similar to the select "false" case, but try the select "true" value
246   if (auto *C = dyn_cast<Constant>(SI->getTrueValue()))
247     if (auto *Res = dyn_cast_or_null<ConstantInt>(
248             LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI));
249         Res && Res->isZero())
250       return SI->getFalseValue();
251 
252   return nullptr;
253 }
254 
255 static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
256                        const SimplifyQuery &SQ) {
257   bool Changed = false;
258 
259   BasicBlock *BB = P->getParent();
260   for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
261     Value *Incoming = P->getIncomingValue(i);
262     if (isa<Constant>(Incoming)) continue;
263 
264     Value *V = getValueOnEdge(LVI, Incoming, P->getIncomingBlock(i), BB, P);
265     if (V) {
266       P->setIncomingValue(i, V);
267       Changed = true;
268     }
269   }
270 
271   if (Value *V = simplifyInstruction(P, SQ)) {
272     P->replaceAllUsesWith(V);
273     P->eraseFromParent();
274     Changed = true;
275   }
276 
277   if (!Changed)
278     Changed = simplifyCommonValuePhi(P, LVI, DT);
279 
280   if (Changed)
281     ++NumPhis;
282 
283   return Changed;
284 }
285 
286 static bool processICmp(ICmpInst *Cmp, LazyValueInfo *LVI) {
287   // Only for signed relational comparisons of integers.
288   if (!Cmp->getOperand(0)->getType()->isIntOrIntVectorTy())
289     return false;
290 
291   if (!Cmp->isSigned() && (!Cmp->isUnsigned() || Cmp->hasSameSign()))
292     return false;
293 
294   bool Changed = false;
295 
296   ConstantRange CR1 = LVI->getConstantRangeAtUse(Cmp->getOperandUse(0),
297                                                  /*UndefAllowed=*/false),
298                 CR2 = LVI->getConstantRangeAtUse(Cmp->getOperandUse(1),
299                                                  /*UndefAllowed=*/false);
300 
301   if (Cmp->isSigned()) {
302     ICmpInst::Predicate UnsignedPred =
303         ConstantRange::getEquivalentPredWithFlippedSignedness(
304             Cmp->getPredicate(), CR1, CR2);
305 
306     if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
307       return false;
308 
309     ++NumSICmps;
310     Cmp->setPredicate(UnsignedPred);
311     Changed = true;
312   }
313 
314   if (ConstantRange::areInsensitiveToSignednessOfICmpPredicate(CR1, CR2)) {
315     Cmp->setSameSign();
316     Changed = true;
317   }
318 
319   return Changed;
320 }
321 
322 /// See if LazyValueInfo's ability to exploit edge conditions or range
323 /// information is sufficient to prove this comparison. Even for local
324 /// conditions, this can sometimes prove conditions instcombine can't by
325 /// exploiting range information.
326 static bool constantFoldCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
327   Value *Op0 = Cmp->getOperand(0);
328   Value *Op1 = Cmp->getOperand(1);
329   Constant *Res = LVI->getPredicateAt(Cmp->getPredicate(), Op0, Op1, Cmp,
330                                       /*UseBlockValue=*/true);
331   if (!Res)
332     return false;
333 
334   ++NumCmps;
335   Cmp->replaceAllUsesWith(Res);
336   Cmp->eraseFromParent();
337   return true;
338 }
339 
340 static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
341   if (constantFoldCmp(Cmp, LVI))
342     return true;
343 
344   if (auto *ICmp = dyn_cast<ICmpInst>(Cmp))
345     if (processICmp(ICmp, LVI))
346       return true;
347 
348   return false;
349 }
350 
351 /// Simplify a switch instruction by removing cases which can never fire. If the
352 /// uselessness of a case could be determined locally then constant propagation
353 /// would already have figured it out. Instead, walk the predecessors and
354 /// statically evaluate cases based on information available on that edge. Cases
355 /// that cannot fire no matter what the incoming edge can safely be removed. If
356 /// a case fires on every incoming edge then the entire switch can be removed
357 /// and replaced with a branch to the case destination.
358 static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
359                           DominatorTree *DT) {
360   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
361   Value *Cond = I->getCondition();
362   BasicBlock *BB = I->getParent();
363 
364   // Analyse each switch case in turn.
365   bool Changed = false;
366   DenseMap<BasicBlock*, int> SuccessorsCount;
367   for (auto *Succ : successors(BB))
368     SuccessorsCount[Succ]++;
369 
370   { // Scope for SwitchInstProfUpdateWrapper. It must not live during
371     // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
372     SwitchInstProfUpdateWrapper SI(*I);
373     unsigned ReachableCaseCount = 0;
374 
375     for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
376       ConstantInt *Case = CI->getCaseValue();
377       auto *Res = dyn_cast_or_null<ConstantInt>(
378           LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
379                               /* UseBlockValue */ true));
380 
381       if (Res && Res->isZero()) {
382         // This case never fires - remove it.
383         BasicBlock *Succ = CI->getCaseSuccessor();
384         Succ->removePredecessor(BB);
385         CI = SI.removeCase(CI);
386         CE = SI->case_end();
387 
388         // The condition can be modified by removePredecessor's PHI simplification
389         // logic.
390         Cond = SI->getCondition();
391 
392         ++NumDeadCases;
393         Changed = true;
394         if (--SuccessorsCount[Succ] == 0)
395           DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
396         continue;
397       }
398       if (Res && Res->isOne()) {
399         // This case always fires.  Arrange for the switch to be turned into an
400         // unconditional branch by replacing the switch condition with the case
401         // value.
402         SI->setCondition(Case);
403         NumDeadCases += SI->getNumCases();
404         Changed = true;
405         break;
406       }
407 
408       // Increment the case iterator since we didn't delete it.
409       ++CI;
410       ++ReachableCaseCount;
411     }
412 
413     BasicBlock *DefaultDest = SI->getDefaultDest();
414     if (ReachableCaseCount > 1 &&
415         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())) {
416       ConstantRange CR = LVI->getConstantRangeAtUse(I->getOperandUse(0),
417                                                     /*UndefAllowed*/ false);
418       // The default dest is unreachable if all cases are covered.
419       if (!CR.isSizeLargerThan(ReachableCaseCount)) {
420         BasicBlock *NewUnreachableBB =
421             BasicBlock::Create(BB->getContext(), "default.unreachable",
422                                BB->getParent(), DefaultDest);
423         new UnreachableInst(BB->getContext(), NewUnreachableBB);
424 
425         DefaultDest->removePredecessor(BB);
426         SI->setDefaultDest(NewUnreachableBB);
427 
428         if (SuccessorsCount[DefaultDest] == 1)
429           DTU.applyUpdates({{DominatorTree::Delete, BB, DefaultDest}});
430         DTU.applyUpdates({{DominatorTree::Insert, BB, NewUnreachableBB}});
431 
432         ++NumDeadCases;
433         Changed = true;
434       }
435     }
436   }
437 
438   if (Changed)
439     // If the switch has been simplified to the point where it can be replaced
440     // by a branch then do so now.
441     ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
442                            /*TLI = */ nullptr, &DTU);
443   return Changed;
444 }
445 
446 // See if we can prove that the given binary op intrinsic will not overflow.
447 static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
448   ConstantRange LRange =
449       LVI->getConstantRangeAtUse(BO->getOperandUse(0), /*UndefAllowed*/ false);
450   ConstantRange RRange =
451       LVI->getConstantRangeAtUse(BO->getOperandUse(1), /*UndefAllowed*/ false);
452   ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
453       BO->getBinaryOp(), RRange, BO->getNoWrapKind());
454   return NWRegion.contains(LRange);
455 }
456 
457 static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
458                                        bool NewNSW, bool NewNUW) {
459   Statistic *OpcNW, *OpcNSW, *OpcNUW;
460   switch (Opcode) {
461   case Instruction::Add:
462     OpcNW = &NumAddNW;
463     OpcNSW = &NumAddNSW;
464     OpcNUW = &NumAddNUW;
465     break;
466   case Instruction::Sub:
467     OpcNW = &NumSubNW;
468     OpcNSW = &NumSubNSW;
469     OpcNUW = &NumSubNUW;
470     break;
471   case Instruction::Mul:
472     OpcNW = &NumMulNW;
473     OpcNSW = &NumMulNSW;
474     OpcNUW = &NumMulNUW;
475     break;
476   case Instruction::Shl:
477     OpcNW = &NumShlNW;
478     OpcNSW = &NumShlNSW;
479     OpcNUW = &NumShlNUW;
480     break;
481   default:
482     llvm_unreachable("Will not be called with other binops");
483   }
484 
485   auto *Inst = dyn_cast<Instruction>(V);
486   if (NewNSW) {
487     ++NumNW;
488     ++*OpcNW;
489     ++NumNSW;
490     ++*OpcNSW;
491     if (Inst)
492       Inst->setHasNoSignedWrap();
493   }
494   if (NewNUW) {
495     ++NumNW;
496     ++*OpcNW;
497     ++NumNUW;
498     ++*OpcNUW;
499     if (Inst)
500       Inst->setHasNoUnsignedWrap();
501   }
502 }
503 
504 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
505 
506 // See if @llvm.abs argument is alays positive/negative, and simplify.
507 // Notably, INT_MIN can belong to either range, regardless of the NSW,
508 // because it is negation-invariant.
509 static bool processAbsIntrinsic(IntrinsicInst *II, LazyValueInfo *LVI) {
510   Value *X = II->getArgOperand(0);
511   bool IsIntMinPoison = cast<ConstantInt>(II->getArgOperand(1))->isOne();
512   APInt IntMin = APInt::getSignedMinValue(X->getType()->getScalarSizeInBits());
513   ConstantRange Range = LVI->getConstantRangeAtUse(
514       II->getOperandUse(0), /*UndefAllowed*/ IsIntMinPoison);
515 
516   // Is X in [0, IntMin]?  NOTE: INT_MIN is fine!
517   if (Range.icmp(CmpInst::ICMP_ULE, IntMin)) {
518     ++NumAbs;
519     II->replaceAllUsesWith(X);
520     II->eraseFromParent();
521     return true;
522   }
523 
524   // Is X in [IntMin, 0]?  NOTE: INT_MIN is fine!
525   if (Range.getSignedMax().isNonPositive()) {
526     IRBuilder<> B(II);
527     Value *NegX = B.CreateNeg(X, II->getName(),
528                               /*HasNSW=*/IsIntMinPoison);
529     ++NumAbs;
530     II->replaceAllUsesWith(NegX);
531     II->eraseFromParent();
532 
533     // See if we can infer some no-wrap flags.
534     if (auto *BO = dyn_cast<BinaryOperator>(NegX))
535       processBinOp(BO, LVI);
536 
537     return true;
538   }
539 
540   // Argument's range crosses zero.
541   // Can we at least tell that the argument is never INT_MIN?
542   if (!IsIntMinPoison && !Range.contains(IntMin)) {
543     ++NumNSW;
544     ++NumSubNSW;
545     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
546     return true;
547   }
548   return false;
549 }
550 
551 static bool processCmpIntrinsic(CmpIntrinsic *CI, LazyValueInfo *LVI) {
552   ConstantRange LHS_CR =
553       LVI->getConstantRangeAtUse(CI->getOperandUse(0), /*UndefAllowed*/ false);
554   ConstantRange RHS_CR =
555       LVI->getConstantRangeAtUse(CI->getOperandUse(1), /*UndefAllowed*/ false);
556 
557   if (LHS_CR.icmp(CI->getGTPredicate(), RHS_CR)) {
558     ++NumCmpIntr;
559     CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
560     CI->eraseFromParent();
561     return true;
562   }
563   if (LHS_CR.icmp(CI->getLTPredicate(), RHS_CR)) {
564     ++NumCmpIntr;
565     CI->replaceAllUsesWith(ConstantInt::getSigned(CI->getType(), -1));
566     CI->eraseFromParent();
567     return true;
568   }
569   if (LHS_CR.icmp(ICmpInst::ICMP_EQ, RHS_CR)) {
570     ++NumCmpIntr;
571     CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 0));
572     CI->eraseFromParent();
573     return true;
574   }
575 
576   return false;
577 }
578 
579 // See if this min/max intrinsic always picks it's one specific operand.
580 // If not, check whether we can canonicalize signed minmax into unsigned version
581 static bool processMinMaxIntrinsic(MinMaxIntrinsic *MM, LazyValueInfo *LVI) {
582   CmpInst::Predicate Pred = CmpInst::getNonStrictPredicate(MM->getPredicate());
583   ConstantRange LHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(0),
584                                                     /*UndefAllowed*/ false);
585   ConstantRange RHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(1),
586                                                     /*UndefAllowed*/ false);
587   if (LHS_CR.icmp(Pred, RHS_CR)) {
588     ++NumMinMax;
589     MM->replaceAllUsesWith(MM->getLHS());
590     MM->eraseFromParent();
591     return true;
592   }
593   if (RHS_CR.icmp(Pred, LHS_CR)) {
594     ++NumMinMax;
595     MM->replaceAllUsesWith(MM->getRHS());
596     MM->eraseFromParent();
597     return true;
598   }
599 
600   if (MM->isSigned() &&
601       ConstantRange::areInsensitiveToSignednessOfICmpPredicate(LHS_CR,
602                                                                RHS_CR)) {
603     ++NumSMinMax;
604     IRBuilder<> B(MM);
605     MM->replaceAllUsesWith(B.CreateBinaryIntrinsic(
606         MM->getIntrinsicID() == Intrinsic::smin ? Intrinsic::umin
607                                                 : Intrinsic::umax,
608         MM->getLHS(), MM->getRHS()));
609     MM->eraseFromParent();
610     return true;
611   }
612 
613   return false;
614 }
615 
616 // Rewrite this with.overflow intrinsic as non-overflowing.
617 static bool processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
618   IRBuilder<> B(WO);
619   Instruction::BinaryOps Opcode = WO->getBinaryOp();
620   bool NSW = WO->isSigned();
621   bool NUW = !WO->isSigned();
622 
623   Value *NewOp =
624       B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
625   setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
626 
627   StructType *ST = cast<StructType>(WO->getType());
628   Constant *Struct = ConstantStruct::get(ST,
629       { PoisonValue::get(ST->getElementType(0)),
630         ConstantInt::getFalse(ST->getElementType(1)) });
631   Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
632   WO->replaceAllUsesWith(NewI);
633   WO->eraseFromParent();
634   ++NumOverflows;
635 
636   // See if we can infer the other no-wrap too.
637   if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
638     processBinOp(BO, LVI);
639 
640   return true;
641 }
642 
643 static bool processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
644   Instruction::BinaryOps Opcode = SI->getBinaryOp();
645   bool NSW = SI->isSigned();
646   bool NUW = !SI->isSigned();
647   BinaryOperator *BinOp = BinaryOperator::Create(
648       Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI->getIterator());
649   BinOp->setDebugLoc(SI->getDebugLoc());
650   setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
651 
652   SI->replaceAllUsesWith(BinOp);
653   SI->eraseFromParent();
654   ++NumSaturating;
655 
656   // See if we can infer the other no-wrap too.
657   if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
658     processBinOp(BO, LVI);
659 
660   return true;
661 }
662 
663 /// Infer nonnull attributes for the arguments at the specified callsite.
664 static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
665 
666   if (CB.getIntrinsicID() == Intrinsic::abs) {
667     return processAbsIntrinsic(&cast<IntrinsicInst>(CB), LVI);
668   }
669 
670   if (auto *CI = dyn_cast<CmpIntrinsic>(&CB)) {
671     return processCmpIntrinsic(CI, LVI);
672   }
673 
674   if (auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
675     return processMinMaxIntrinsic(MM, LVI);
676   }
677 
678   if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
679     if (willNotOverflow(WO, LVI))
680       return processOverflowIntrinsic(WO, LVI);
681   }
682 
683   if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
684     if (willNotOverflow(SI, LVI))
685       return processSaturatingInst(SI, LVI);
686   }
687 
688   bool Changed = false;
689 
690   // Deopt bundle operands are intended to capture state with minimal
691   // perturbance of the code otherwise.  If we can find a constant value for
692   // any such operand and remove a use of the original value, that's
693   // desireable since it may allow further optimization of that value (e.g. via
694   // single use rules in instcombine).  Since deopt uses tend to,
695   // idiomatically, appear along rare conditional paths, it's reasonable likely
696   // we may have a conditional fact with which LVI can fold.
697   if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
698     for (const Use &ConstU : DeoptBundle->Inputs) {
699       Use &U = const_cast<Use&>(ConstU);
700       Value *V = U.get();
701       if (V->getType()->isVectorTy()) continue;
702       if (isa<Constant>(V)) continue;
703 
704       Constant *C = LVI->getConstant(V, &CB);
705       if (!C) continue;
706       U.set(C);
707       Changed = true;
708     }
709   }
710 
711   SmallVector<unsigned, 4> ArgNos;
712   unsigned ArgNo = 0;
713 
714   for (Value *V : CB.args()) {
715     PointerType *Type = dyn_cast<PointerType>(V->getType());
716     // Try to mark pointer typed parameters as non-null.  We skip the
717     // relatively expensive analysis for constants which are obviously either
718     // null or non-null to start with.
719     if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
720         !isa<Constant>(V))
721       if (auto *Res = dyn_cast_or_null<ConstantInt>(LVI->getPredicateAt(
722               ICmpInst::ICMP_EQ, V, ConstantPointerNull::get(Type), &CB,
723               /*UseBlockValue=*/false));
724           Res && Res->isZero())
725         ArgNos.push_back(ArgNo);
726     ArgNo++;
727   }
728 
729   assert(ArgNo == CB.arg_size() && "Call arguments not processed correctly.");
730 
731   if (ArgNos.empty())
732     return Changed;
733 
734   NumNonNull += ArgNos.size();
735   AttributeList AS = CB.getAttributes();
736   LLVMContext &Ctx = CB.getContext();
737   AS = AS.addParamAttribute(Ctx, ArgNos,
738                             Attribute::get(Ctx, Attribute::NonNull));
739   CB.setAttributes(AS);
740 
741   return true;
742 }
743 
744 enum class Domain { NonNegative, NonPositive, Unknown };
745 
746 static Domain getDomain(const ConstantRange &CR) {
747   if (CR.isAllNonNegative())
748     return Domain::NonNegative;
749   if (CR.icmp(ICmpInst::ICMP_SLE, APInt::getZero(CR.getBitWidth())))
750     return Domain::NonPositive;
751   return Domain::Unknown;
752 }
753 
754 /// Try to shrink a sdiv/srem's width down to the smallest power of two that's
755 /// sufficient to contain its operands.
756 static bool narrowSDivOrSRem(BinaryOperator *Instr, const ConstantRange &LCR,
757                              const ConstantRange &RCR) {
758   assert(Instr->getOpcode() == Instruction::SDiv ||
759          Instr->getOpcode() == Instruction::SRem);
760 
761   // Find the smallest power of two bitwidth that's sufficient to hold Instr's
762   // operands.
763   unsigned OrigWidth = Instr->getType()->getScalarSizeInBits();
764 
765   // What is the smallest bit width that can accommodate the entire value ranges
766   // of both of the operands?
767   unsigned MinSignedBits =
768       std::max(LCR.getMinSignedBits(), RCR.getMinSignedBits());
769 
770   // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
771   // prove that such a combination is impossible, we need to bump the bitwidth.
772   if (RCR.contains(APInt::getAllOnes(OrigWidth)) &&
773       LCR.contains(APInt::getSignedMinValue(MinSignedBits).sext(OrigWidth)))
774     ++MinSignedBits;
775 
776   // Don't shrink below 8 bits wide.
777   unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);
778 
779   // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
780   // two.
781   if (NewWidth >= OrigWidth)
782     return false;
783 
784   ++NumSDivSRemsNarrowed;
785   IRBuilder<> B{Instr};
786   auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
787   auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
788                                      Instr->getName() + ".lhs.trunc");
789   auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
790                                      Instr->getName() + ".rhs.trunc");
791   auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
792   auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
793   if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
794     if (BinOp->getOpcode() == Instruction::SDiv)
795       BinOp->setIsExact(Instr->isExact());
796 
797   Instr->replaceAllUsesWith(Sext);
798   Instr->eraseFromParent();
799   return true;
800 }
801 
802 static bool expandUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
803                              const ConstantRange &YCR) {
804   Type *Ty = Instr->getType();
805   assert(Instr->getOpcode() == Instruction::UDiv ||
806          Instr->getOpcode() == Instruction::URem);
807   bool IsRem = Instr->getOpcode() == Instruction::URem;
808 
809   Value *X = Instr->getOperand(0);
810   Value *Y = Instr->getOperand(1);
811 
812   // X u/ Y -> 0  iff X u< Y
813   // X u% Y -> X  iff X u< Y
814   if (XCR.icmp(ICmpInst::ICMP_ULT, YCR)) {
815     Instr->replaceAllUsesWith(IsRem ? X : Constant::getNullValue(Ty));
816     Instr->eraseFromParent();
817     ++NumUDivURemsNarrowedExpanded;
818     return true;
819   }
820 
821   // Given
822   //   R  = X u% Y
823   // We can represent the modulo operation as a loop/self-recursion:
824   //   urem_rec(X, Y):
825   //     Z = X - Y
826   //     if X u< Y
827   //       ret X
828   //     else
829   //       ret urem_rec(Z, Y)
830   // which isn't better, but if we only need a single iteration
831   // to compute the answer, this becomes quite good:
832   //   R  = X < Y ? X : X - Y    iff X u< 2*Y (w/ unsigned saturation)
833   // Now, we do not care about all full multiples of Y in X, they do not change
834   // the answer, thus we could rewrite the expression as:
835   //   X* = X - (Y * |_ X / Y _|)
836   //   R  = X* % Y
837   // so we don't need the *first* iteration to return, we just need to
838   // know *which* iteration will always return, so we could also rewrite it as:
839   //   X* = X - (Y * |_ X / Y _|)
840   //   R  = X* % Y                 iff X* u< 2*Y (w/ unsigned saturation)
841   // but that does not seem profitable here.
842 
843   // Even if we don't know X's range, the divisor may be so large, X can't ever
844   // be 2x larger than that. I.e. if divisor is always negative.
845   if (!XCR.icmp(ICmpInst::ICMP_ULT, YCR.uadd_sat(YCR)) && !YCR.isAllNegative())
846     return false;
847 
848   IRBuilder<> B(Instr);
849   Value *ExpandedOp;
850   if (XCR.icmp(ICmpInst::ICMP_UGE, YCR)) {
851     // If X is between Y and 2*Y the result is known.
852     if (IsRem)
853       ExpandedOp = B.CreateNUWSub(X, Y);
854     else
855       ExpandedOp = ConstantInt::get(Instr->getType(), 1);
856   } else if (IsRem) {
857     // NOTE: this transformation introduces two uses of X,
858     //       but it may be undef so we must freeze it first.
859     Value *FrozenX = X;
860     if (!isGuaranteedNotToBeUndef(X))
861       FrozenX = B.CreateFreeze(X, X->getName() + ".frozen");
862     Value *FrozenY = Y;
863     if (!isGuaranteedNotToBeUndef(Y))
864       FrozenY = B.CreateFreeze(Y, Y->getName() + ".frozen");
865     auto *AdjX = B.CreateNUWSub(FrozenX, FrozenY, Instr->getName() + ".urem");
866     auto *Cmp = B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX, FrozenY,
867                              Instr->getName() + ".cmp");
868     ExpandedOp = B.CreateSelect(Cmp, FrozenX, AdjX);
869   } else {
870     auto *Cmp =
871         B.CreateICmp(ICmpInst::ICMP_UGE, X, Y, Instr->getName() + ".cmp");
872     ExpandedOp = B.CreateZExt(Cmp, Ty, Instr->getName() + ".udiv");
873   }
874   ExpandedOp->takeName(Instr);
875   Instr->replaceAllUsesWith(ExpandedOp);
876   Instr->eraseFromParent();
877   ++NumUDivURemsNarrowedExpanded;
878   return true;
879 }
880 
881 /// Try to shrink a udiv/urem's width down to the smallest power of two that's
882 /// sufficient to contain its operands.
883 static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
884                              const ConstantRange &YCR) {
885   assert(Instr->getOpcode() == Instruction::UDiv ||
886          Instr->getOpcode() == Instruction::URem);
887 
888   // Find the smallest power of two bitwidth that's sufficient to hold Instr's
889   // operands.
890 
891   // What is the smallest bit width that can accommodate the entire value ranges
892   // of both of the operands?
893   unsigned MaxActiveBits = std::max(XCR.getActiveBits(), YCR.getActiveBits());
894   // Don't shrink below 8 bits wide.
895   unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);
896 
897   // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
898   // two.
899   if (NewWidth >= Instr->getType()->getScalarSizeInBits())
900     return false;
901 
902   ++NumUDivURemsNarrowed;
903   IRBuilder<> B{Instr};
904   auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
905   auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
906                                      Instr->getName() + ".lhs.trunc");
907   auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
908                                      Instr->getName() + ".rhs.trunc");
909   auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
910   auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
911   if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
912     if (BinOp->getOpcode() == Instruction::UDiv)
913       BinOp->setIsExact(Instr->isExact());
914 
915   Instr->replaceAllUsesWith(Zext);
916   Instr->eraseFromParent();
917   return true;
918 }
919 
920 static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
921   assert(Instr->getOpcode() == Instruction::UDiv ||
922          Instr->getOpcode() == Instruction::URem);
923   ConstantRange XCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(0),
924                                                  /*UndefAllowed*/ false);
925   // Allow undef for RHS, as we can assume it is division by zero UB.
926   ConstantRange YCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(1),
927                                                  /*UndefAllowed*/ true);
928   if (expandUDivOrURem(Instr, XCR, YCR))
929     return true;
930 
931   return narrowUDivOrURem(Instr, XCR, YCR);
932 }
933 
934 static bool processSRem(BinaryOperator *SDI, const ConstantRange &LCR,
935                         const ConstantRange &RCR, LazyValueInfo *LVI) {
936   assert(SDI->getOpcode() == Instruction::SRem);
937 
938   if (LCR.abs().icmp(CmpInst::ICMP_ULT, RCR.abs())) {
939     SDI->replaceAllUsesWith(SDI->getOperand(0));
940     SDI->eraseFromParent();
941     return true;
942   }
943 
944   struct Operand {
945     Value *V;
946     Domain D;
947   };
948   std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
949                                  {SDI->getOperand(1), getDomain(RCR)}}};
950   if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
951     return false;
952 
953   // We know domains of both of the operands!
954   ++NumSRems;
955 
956   // We need operands to be non-negative, so negate each one that isn't.
957   for (Operand &Op : Ops) {
958     if (Op.D == Domain::NonNegative)
959       continue;
960     auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg",
961                                          SDI->getIterator());
962     BO->setDebugLoc(SDI->getDebugLoc());
963     Op.V = BO;
964   }
965 
966   auto *URem = BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(),
967                                           SDI->getIterator());
968   URem->setDebugLoc(SDI->getDebugLoc());
969 
970   auto *Res = URem;
971 
972   // If the divident was non-positive, we need to negate the result.
973   if (Ops[0].D == Domain::NonPositive) {
974     Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg",
975                                     SDI->getIterator());
976     Res->setDebugLoc(SDI->getDebugLoc());
977   }
978 
979   SDI->replaceAllUsesWith(Res);
980   SDI->eraseFromParent();
981 
982   // Try to simplify our new urem.
983   processUDivOrURem(URem, LVI);
984 
985   return true;
986 }
987 
988 /// See if LazyValueInfo's ability to exploit edge conditions or range
989 /// information is sufficient to prove the signs of both operands of this SDiv.
990 /// If this is the case, replace the SDiv with a UDiv. Even for local
991 /// conditions, this can sometimes prove conditions instcombine can't by
992 /// exploiting range information.
993 static bool processSDiv(BinaryOperator *SDI, const ConstantRange &LCR,
994                         const ConstantRange &RCR, LazyValueInfo *LVI) {
995   assert(SDI->getOpcode() == Instruction::SDiv);
996 
997   // Check whether the division folds to a constant.
998   ConstantRange DivCR = LCR.sdiv(RCR);
999   if (const APInt *Elem = DivCR.getSingleElement()) {
1000     SDI->replaceAllUsesWith(ConstantInt::get(SDI->getType(), *Elem));
1001     SDI->eraseFromParent();
1002     return true;
1003   }
1004 
1005   struct Operand {
1006     Value *V;
1007     Domain D;
1008   };
1009   std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
1010                                  {SDI->getOperand(1), getDomain(RCR)}}};
1011   if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
1012     return false;
1013 
1014   // We know domains of both of the operands!
1015   ++NumSDivs;
1016 
1017   // We need operands to be non-negative, so negate each one that isn't.
1018   for (Operand &Op : Ops) {
1019     if (Op.D == Domain::NonNegative)
1020       continue;
1021     auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg",
1022                                          SDI->getIterator());
1023     BO->setDebugLoc(SDI->getDebugLoc());
1024     Op.V = BO;
1025   }
1026 
1027   auto *UDiv = BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(),
1028                                           SDI->getIterator());
1029   UDiv->setDebugLoc(SDI->getDebugLoc());
1030   UDiv->setIsExact(SDI->isExact());
1031 
1032   auto *Res = UDiv;
1033 
1034   // If the operands had two different domains, we need to negate the result.
1035   if (Ops[0].D != Ops[1].D) {
1036     Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg",
1037                                     SDI->getIterator());
1038     Res->setDebugLoc(SDI->getDebugLoc());
1039   }
1040 
1041   SDI->replaceAllUsesWith(Res);
1042   SDI->eraseFromParent();
1043 
1044   // Try to simplify our new udiv.
1045   processUDivOrURem(UDiv, LVI);
1046 
1047   return true;
1048 }
1049 
1050 static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
1051   assert(Instr->getOpcode() == Instruction::SDiv ||
1052          Instr->getOpcode() == Instruction::SRem);
1053   ConstantRange LCR =
1054       LVI->getConstantRangeAtUse(Instr->getOperandUse(0), /*AllowUndef*/ false);
1055   // Allow undef for RHS, as we can assume it is division by zero UB.
1056   ConstantRange RCR =
1057       LVI->getConstantRangeAtUse(Instr->getOperandUse(1), /*AlloweUndef*/ true);
1058   if (Instr->getOpcode() == Instruction::SDiv)
1059     if (processSDiv(Instr, LCR, RCR, LVI))
1060       return true;
1061 
1062   if (Instr->getOpcode() == Instruction::SRem) {
1063     if (processSRem(Instr, LCR, RCR, LVI))
1064       return true;
1065   }
1066 
1067   return narrowSDivOrSRem(Instr, LCR, RCR);
1068 }
1069 
1070 static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
1071   ConstantRange LRange =
1072       LVI->getConstantRangeAtUse(SDI->getOperandUse(0), /*UndefAllowed*/ false);
1073   unsigned OrigWidth = SDI->getType()->getScalarSizeInBits();
1074   ConstantRange NegOneOrZero =
1075       ConstantRange(APInt(OrigWidth, (uint64_t)-1, true), APInt(OrigWidth, 1));
1076   if (NegOneOrZero.contains(LRange)) {
1077     // ashr of -1 or 0 never changes the value, so drop the whole instruction
1078     ++NumAShrsRemoved;
1079     SDI->replaceAllUsesWith(SDI->getOperand(0));
1080     SDI->eraseFromParent();
1081     return true;
1082   }
1083 
1084   if (!LRange.isAllNonNegative())
1085     return false;
1086 
1087   ++NumAShrsConverted;
1088   auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
1089                                         "", SDI->getIterator());
1090   BO->takeName(SDI);
1091   BO->setDebugLoc(SDI->getDebugLoc());
1092   BO->setIsExact(SDI->isExact());
1093   SDI->replaceAllUsesWith(BO);
1094   SDI->eraseFromParent();
1095 
1096   return true;
1097 }
1098 
1099 static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
1100   const Use &Base = SDI->getOperandUse(0);
1101   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1102            .isAllNonNegative())
1103     return false;
1104 
1105   ++NumSExt;
1106   auto *ZExt = CastInst::CreateZExtOrBitCast(Base, SDI->getType(), "",
1107                                              SDI->getIterator());
1108   ZExt->takeName(SDI);
1109   ZExt->setDebugLoc(SDI->getDebugLoc());
1110   ZExt->setNonNeg();
1111   SDI->replaceAllUsesWith(ZExt);
1112   SDI->eraseFromParent();
1113 
1114   return true;
1115 }
1116 
1117 static bool processPossibleNonNeg(PossiblyNonNegInst *I, LazyValueInfo *LVI) {
1118   if (I->hasNonNeg())
1119     return false;
1120 
1121   const Use &Base = I->getOperandUse(0);
1122   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1123            .isAllNonNegative())
1124     return false;
1125 
1126   ++NumNNeg;
1127   I->setNonNeg();
1128 
1129   return true;
1130 }
1131 
1132 static bool processZExt(ZExtInst *ZExt, LazyValueInfo *LVI) {
1133   return processPossibleNonNeg(cast<PossiblyNonNegInst>(ZExt), LVI);
1134 }
1135 
1136 static bool processUIToFP(UIToFPInst *UIToFP, LazyValueInfo *LVI) {
1137   return processPossibleNonNeg(cast<PossiblyNonNegInst>(UIToFP), LVI);
1138 }
1139 
1140 static bool processSIToFP(SIToFPInst *SIToFP, LazyValueInfo *LVI) {
1141   const Use &Base = SIToFP->getOperandUse(0);
1142   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1143            .isAllNonNegative())
1144     return false;
1145 
1146   ++NumSIToFP;
1147   auto *UIToFP = CastInst::Create(Instruction::UIToFP, Base, SIToFP->getType(),
1148                                   "", SIToFP->getIterator());
1149   UIToFP->takeName(SIToFP);
1150   UIToFP->setDebugLoc(SIToFP->getDebugLoc());
1151   UIToFP->setNonNeg();
1152   SIToFP->replaceAllUsesWith(UIToFP);
1153   SIToFP->eraseFromParent();
1154 
1155   return true;
1156 }
1157 
1158 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1159   using OBO = OverflowingBinaryOperator;
1160 
1161   bool NSW = BinOp->hasNoSignedWrap();
1162   bool NUW = BinOp->hasNoUnsignedWrap();
1163   if (NSW && NUW)
1164     return false;
1165 
1166   Instruction::BinaryOps Opcode = BinOp->getOpcode();
1167   ConstantRange LRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(0),
1168                                                     /*UndefAllowed=*/false);
1169   ConstantRange RRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(1),
1170                                                     /*UndefAllowed=*/false);
1171 
1172   bool Changed = false;
1173   bool NewNUW = false, NewNSW = false;
1174   if (!NUW) {
1175     ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1176         Opcode, RRange, OBO::NoUnsignedWrap);
1177     NewNUW = NUWRange.contains(LRange);
1178     Changed |= NewNUW;
1179   }
1180   if (!NSW) {
1181     ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1182         Opcode, RRange, OBO::NoSignedWrap);
1183     NewNSW = NSWRange.contains(LRange);
1184     Changed |= NewNSW;
1185   }
1186 
1187   setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
1188 
1189   return Changed;
1190 }
1191 
1192 static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1193   using namespace llvm::PatternMatch;
1194 
1195   // Pattern match (and lhs, C) where C includes a superset of bits which might
1196   // be set in lhs.  This is a common truncation idiom created by instcombine.
1197   const Use &LHS = BinOp->getOperandUse(0);
1198   const APInt *RHS;
1199   if (!match(BinOp->getOperand(1), m_LowBitMask(RHS)))
1200     return false;
1201 
1202   // We can only replace the AND with LHS based on range info if the range does
1203   // not include undef.
1204   ConstantRange LRange =
1205       LVI->getConstantRangeAtUse(LHS, /*UndefAllowed=*/false);
1206   if (!LRange.getUnsignedMax().ule(*RHS))
1207     return false;
1208 
1209   BinOp->replaceAllUsesWith(LHS);
1210   BinOp->eraseFromParent();
1211   NumAnd++;
1212   return true;
1213 }
1214 
1215 static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
1216                     const SimplifyQuery &SQ) {
1217   bool FnChanged = false;
1218   std::optional<ConstantRange> RetRange;
1219   if (F.hasExactDefinition() && F.getReturnType()->isIntOrIntVectorTy())
1220     RetRange =
1221         ConstantRange::getEmpty(F.getReturnType()->getScalarSizeInBits());
1222 
1223   // Visiting in a pre-order depth-first traversal causes us to simplify early
1224   // blocks before querying later blocks (which require us to analyze early
1225   // blocks).  Eagerly simplifying shallow blocks means there is strictly less
1226   // work to do for deep blocks.  This also means we don't visit unreachable
1227   // blocks.
1228   for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1229     bool BBChanged = false;
1230     for (Instruction &II : llvm::make_early_inc_range(*BB)) {
1231       switch (II.getOpcode()) {
1232       case Instruction::Select:
1233         BBChanged |= processSelect(cast<SelectInst>(&II), LVI);
1234         break;
1235       case Instruction::PHI:
1236         BBChanged |= processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1237         break;
1238       case Instruction::ICmp:
1239       case Instruction::FCmp:
1240         BBChanged |= processCmp(cast<CmpInst>(&II), LVI);
1241         break;
1242       case Instruction::Call:
1243       case Instruction::Invoke:
1244         BBChanged |= processCallSite(cast<CallBase>(II), LVI);
1245         break;
1246       case Instruction::SRem:
1247       case Instruction::SDiv:
1248         BBChanged |= processSDivOrSRem(cast<BinaryOperator>(&II), LVI);
1249         break;
1250       case Instruction::UDiv:
1251       case Instruction::URem:
1252         BBChanged |= processUDivOrURem(cast<BinaryOperator>(&II), LVI);
1253         break;
1254       case Instruction::AShr:
1255         BBChanged |= processAShr(cast<BinaryOperator>(&II), LVI);
1256         break;
1257       case Instruction::SExt:
1258         BBChanged |= processSExt(cast<SExtInst>(&II), LVI);
1259         break;
1260       case Instruction::ZExt:
1261         BBChanged |= processZExt(cast<ZExtInst>(&II), LVI);
1262         break;
1263       case Instruction::UIToFP:
1264         BBChanged |= processUIToFP(cast<UIToFPInst>(&II), LVI);
1265         break;
1266       case Instruction::SIToFP:
1267         BBChanged |= processSIToFP(cast<SIToFPInst>(&II), LVI);
1268         break;
1269       case Instruction::Add:
1270       case Instruction::Sub:
1271       case Instruction::Mul:
1272       case Instruction::Shl:
1273         BBChanged |= processBinOp(cast<BinaryOperator>(&II), LVI);
1274         break;
1275       case Instruction::And:
1276         BBChanged |= processAnd(cast<BinaryOperator>(&II), LVI);
1277         break;
1278       }
1279     }
1280 
1281     Instruction *Term = BB->getTerminator();
1282     switch (Term->getOpcode()) {
1283     case Instruction::Switch:
1284       BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
1285       break;
1286     case Instruction::Ret: {
1287       auto *RI = cast<ReturnInst>(Term);
1288       // Try to determine the return value if we can.  This is mainly here to
1289       // simplify the writing of unit tests, but also helps to enable IPO by
1290       // constant folding the return values of callees.
1291       auto *RetVal = RI->getReturnValue();
1292       if (!RetVal) break; // handle "ret void"
1293       if (RetRange && !RetRange->isFullSet())
1294         RetRange =
1295             RetRange->unionWith(LVI->getConstantRange(RetVal, RI,
1296                                                       /*UndefAllowed=*/false));
1297 
1298       if (isa<Constant>(RetVal)) break; // nothing to do
1299       if (auto *C = getConstantAt(RetVal, RI, LVI)) {
1300         ++NumReturns;
1301         RI->replaceUsesOfWith(RetVal, C);
1302         BBChanged = true;
1303       }
1304     }
1305     }
1306 
1307     FnChanged |= BBChanged;
1308   }
1309 
1310   // Infer range attribute on return value.
1311   if (RetRange && !RetRange->isFullSet()) {
1312     Attribute RangeAttr = F.getRetAttribute(Attribute::Range);
1313     if (RangeAttr.isValid())
1314       RetRange = RetRange->intersectWith(RangeAttr.getRange());
1315     // Don't add attribute for constant integer returns to reduce noise. These
1316     // are propagated across functions by IPSCCP.
1317     if (!RetRange->isEmptySet() && !RetRange->isSingleElement()) {
1318       F.addRangeRetAttr(*RetRange);
1319       FnChanged = true;
1320     }
1321   }
1322   return FnChanged;
1323 }
1324 
1325 PreservedAnalyses
1326 CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
1327   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
1328   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1329 
1330   bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
1331 
1332   PreservedAnalyses PA;
1333   if (!Changed) {
1334     PA = PreservedAnalyses::all();
1335   } else {
1336 #if defined(EXPENSIVE_CHECKS)
1337     assert(DT->verify(DominatorTree::VerificationLevel::Full));
1338 #else
1339     assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1340 #endif // EXPENSIVE_CHECKS
1341 
1342     PA.preserve<DominatorTreeAnalysis>();
1343     PA.preserve<LazyValueAnalysis>();
1344   }
1345 
1346   // Keeping LVI alive is expensive, both because it uses a lot of memory, and
1347   // because invalidating values in LVI is expensive. While CVP does preserve
1348   // LVI, we know that passes after JumpThreading+CVP will not need the result
1349   // of this analysis, so we forcefully discard it early.
1350   PA.abandon<LazyValueAnalysis>();
1351   return PA;
1352 }
1353