xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/DebugCounter.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/ValueMapper.h"
42 
43 #include <cmath>
44 #include <optional>
45 #include <string>
46 
47 using namespace llvm;
48 using namespace PatternMatch;
49 
50 #define DEBUG_TYPE "constraint-elimination"
51 
52 STATISTIC(NumCondsRemoved, "Number of instructions removed");
53 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
54               "Controls which conditions are eliminated");
55 
56 static cl::opt<unsigned>
57     MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
58             cl::desc("Maximum number of rows to keep in constraint system"));
59 
60 static cl::opt<bool> DumpReproducers(
61     "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
62     cl::desc("Dump IR to reproduce successful transformations."));
63 
64 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
65 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
66 
67 // A helper to multiply 2 signed integers where overflowing is allowed.
68 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
69   int64_t Result;
70   MulOverflow(A, B, Result);
71   return Result;
72 }
73 
74 // A helper to add 2 signed integers where overflowing is allowed.
75 static int64_t addWithOverflow(int64_t A, int64_t B) {
76   int64_t Result;
77   AddOverflow(A, B, Result);
78   return Result;
79 }
80 
81 static Instruction *getContextInstForUse(Use &U) {
82   Instruction *UserI = cast<Instruction>(U.getUser());
83   if (auto *Phi = dyn_cast<PHINode>(UserI))
84     UserI = Phi->getIncomingBlock(U)->getTerminator();
85   return UserI;
86 }
87 
88 namespace {
89 /// Struct to express a condition of the form %Op0 Pred %Op1.
90 struct ConditionTy {
91   CmpPredicate Pred;
92   Value *Op0 = nullptr;
93   Value *Op1 = nullptr;
94 
95   ConditionTy() = default;
96   ConditionTy(CmpPredicate Pred, Value *Op0, Value *Op1)
97       : Pred(Pred), Op0(Op0), Op1(Op1) {}
98 };
99 
100 /// Represents either
101 ///  * a condition that holds on entry to a block (=condition fact)
102 ///  * an assume (=assume fact)
103 ///  * a use of a compare instruction to simplify.
104 /// It also tracks the Dominator DFS in and out numbers for each entry.
105 struct FactOrCheck {
106   enum class EntryTy {
107     ConditionFact, /// A condition that holds on entry to a block.
108     InstFact,      /// A fact that holds after Inst executed (e.g. an assume or
109                    /// min/mix intrinsic.
110     InstCheck,     /// An instruction to simplify (e.g. an overflow math
111                    /// intrinsics).
112     UseCheck       /// An use of a compare instruction to simplify.
113   };
114 
115   union {
116     Instruction *Inst;
117     Use *U;
118     ConditionTy Cond;
119   };
120 
121   /// A pre-condition that must hold for the current fact to be added to the
122   /// system.
123   ConditionTy DoesHold;
124 
125   unsigned NumIn;
126   unsigned NumOut;
127   EntryTy Ty;
128 
129   FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
130       : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
131         Ty(Ty) {}
132 
133   FactOrCheck(DomTreeNode *DTN, Use *U)
134       : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
135         Ty(EntryTy::UseCheck) {}
136 
137   FactOrCheck(DomTreeNode *DTN, CmpPredicate Pred, Value *Op0, Value *Op1,
138               ConditionTy Precond = {})
139       : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
140         NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
141 
142   static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpPredicate Pred,
143                                       Value *Op0, Value *Op1,
144                                       ConditionTy Precond = {}) {
145     return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
146   }
147 
148   static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
149     return FactOrCheck(EntryTy::InstFact, DTN, Inst);
150   }
151 
152   static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
153     return FactOrCheck(DTN, U);
154   }
155 
156   static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
157     return FactOrCheck(EntryTy::InstCheck, DTN, CI);
158   }
159 
160   bool isCheck() const {
161     return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
162   }
163 
164   Instruction *getContextInst() const {
165     assert(!isConditionFact());
166     if (Ty == EntryTy::UseCheck)
167       return getContextInstForUse(*U);
168     return Inst;
169   }
170 
171   Instruction *getInstructionToSimplify() const {
172     assert(isCheck());
173     if (Ty == EntryTy::InstCheck)
174       return Inst;
175     // The use may have been simplified to a constant already.
176     return dyn_cast<Instruction>(*U);
177   }
178 
179   bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
180 };
181 
182 /// Keep state required to build worklist.
183 struct State {
184   DominatorTree &DT;
185   LoopInfo &LI;
186   ScalarEvolution &SE;
187   SmallVector<FactOrCheck, 64> WorkList;
188 
189   State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
190       : DT(DT), LI(LI), SE(SE) {}
191 
192   /// Process block \p BB and add known facts to work-list.
193   void addInfoFor(BasicBlock &BB);
194 
195   /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
196   /// controlling the loop header.
197   void addInfoForInductions(BasicBlock &BB);
198 
199   /// Returns true if we can add a known condition from BB to its successor
200   /// block Succ.
201   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
202     return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
203   }
204 };
205 
206 class ConstraintInfo;
207 
208 struct StackEntry {
209   unsigned NumIn;
210   unsigned NumOut;
211   bool IsSigned = false;
212   /// Variables that can be removed from the system once the stack entry gets
213   /// removed.
214   SmallVector<Value *, 2> ValuesToRelease;
215 
216   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
217              SmallVector<Value *, 2> ValuesToRelease)
218       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
219         ValuesToRelease(std::move(ValuesToRelease)) {}
220 };
221 
222 struct ConstraintTy {
223   SmallVector<int64_t, 8> Coefficients;
224   SmallVector<ConditionTy, 2> Preconditions;
225 
226   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
227 
228   bool IsSigned = false;
229 
230   ConstraintTy() = default;
231 
232   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
233                bool IsNe)
234       : Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
235         IsNe(IsNe) {}
236 
237   unsigned size() const { return Coefficients.size(); }
238 
239   unsigned empty() const { return Coefficients.empty(); }
240 
241   /// Returns true if all preconditions for this list of constraints are
242   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
243   bool isValid(const ConstraintInfo &Info) const;
244 
245   bool isEq() const { return IsEq; }
246 
247   bool isNe() const { return IsNe; }
248 
249   /// Check if the current constraint is implied by the given ConstraintSystem.
250   ///
251   /// \return true or false if the constraint is proven to be respectively true,
252   /// or false. When the constraint cannot be proven to be either true or false,
253   /// std::nullopt is returned.
254   std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
255 
256 private:
257   bool IsEq = false;
258   bool IsNe = false;
259 };
260 
261 /// Wrapper encapsulating separate constraint systems and corresponding value
262 /// mappings for both unsigned and signed information. Facts are added to and
263 /// conditions are checked against the corresponding system depending on the
264 /// signed-ness of their predicates. While the information is kept separate
265 /// based on signed-ness, certain conditions can be transferred between the two
266 /// systems.
267 class ConstraintInfo {
268 
269   ConstraintSystem UnsignedCS;
270   ConstraintSystem SignedCS;
271 
272   const DataLayout &DL;
273 
274 public:
275   ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
276       : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
277     auto &Value2Index = getValue2Index(false);
278     // Add Arg > -1 constraints to unsigned system for all function arguments.
279     for (Value *Arg : FunctionArgs) {
280       ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
281                           false, false, false);
282       VarPos.Coefficients[Value2Index[Arg]] = -1;
283       UnsignedCS.addVariableRow(VarPos.Coefficients);
284     }
285   }
286 
287   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
288     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
289   }
290   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
291     return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
292   }
293 
294   ConstraintSystem &getCS(bool Signed) {
295     return Signed ? SignedCS : UnsignedCS;
296   }
297   const ConstraintSystem &getCS(bool Signed) const {
298     return Signed ? SignedCS : UnsignedCS;
299   }
300 
301   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
302   void popLastNVariables(bool Signed, unsigned N) {
303     getCS(Signed).popLastNVariables(N);
304   }
305 
306   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
307 
308   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
309                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
310 
311   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
312   /// constraints, using indices from the corresponding constraint system.
313   /// New variables that need to be added to the system are collected in
314   /// \p NewVariables.
315   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
316                              SmallVectorImpl<Value *> &NewVariables,
317                              bool ForceSignedSystem = false) const;
318 
319   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
320   /// constraints using getConstraint. Returns an empty constraint if the result
321   /// cannot be used to query the existing constraint system, e.g. because it
322   /// would require adding new variables. Also tries to convert signed
323   /// predicates to unsigned ones if possible to allow using the unsigned system
324   /// which increases the effectiveness of the signed <-> unsigned transfer
325   /// logic.
326   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
327                                        Value *Op1) const;
328 
329   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
330   /// system if \p Pred is signed/unsigned.
331   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
332                              unsigned NumIn, unsigned NumOut,
333                              SmallVectorImpl<StackEntry> &DFSInStack);
334 
335 private:
336   /// Adds facts into constraint system. \p ForceSignedSystem can be set when
337   /// the \p Pred is eq/ne, and signed constraint system is used when it's
338   /// specified.
339   void addFactImpl(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
340                    unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack,
341                    bool ForceSignedSystem);
342 };
343 
344 /// Represents a (Coefficient * Variable) entry after IR decomposition.
345 struct DecompEntry {
346   int64_t Coefficient;
347   Value *Variable;
348   /// True if the variable is known positive in the current constraint.
349   bool IsKnownNonNegative;
350 
351   DecompEntry(int64_t Coefficient, Value *Variable,
352               bool IsKnownNonNegative = false)
353       : Coefficient(Coefficient), Variable(Variable),
354         IsKnownNonNegative(IsKnownNonNegative) {}
355 };
356 
357 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
358 struct Decomposition {
359   int64_t Offset = 0;
360   SmallVector<DecompEntry, 3> Vars;
361 
362   Decomposition(int64_t Offset) : Offset(Offset) {}
363   Decomposition(Value *V, bool IsKnownNonNegative = false) {
364     Vars.emplace_back(1, V, IsKnownNonNegative);
365   }
366   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
367       : Offset(Offset), Vars(Vars) {}
368 
369   void add(int64_t OtherOffset) {
370     Offset = addWithOverflow(Offset, OtherOffset);
371   }
372 
373   void add(const Decomposition &Other) {
374     add(Other.Offset);
375     append_range(Vars, Other.Vars);
376   }
377 
378   void sub(const Decomposition &Other) {
379     Decomposition Tmp = Other;
380     Tmp.mul(-1);
381     add(Tmp.Offset);
382     append_range(Vars, Tmp.Vars);
383   }
384 
385   void mul(int64_t Factor) {
386     Offset = multiplyWithOverflow(Offset, Factor);
387     for (auto &Var : Vars)
388       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
389   }
390 };
391 
392 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
393 struct OffsetResult {
394   Value *BasePtr;
395   APInt ConstantOffset;
396   SmallMapVector<Value *, APInt, 4> VariableOffsets;
397   GEPNoWrapFlags NW;
398 
399   OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
400 
401   OffsetResult(GEPOperator &GEP, const DataLayout &DL)
402       : BasePtr(GEP.getPointerOperand()), NW(GEP.getNoWrapFlags()) {
403     ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
404   }
405 };
406 } // namespace
407 
408 // Try to collect variable and constant offsets for \p GEP, partly traversing
409 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
410 // the offset fails.
411 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
412   OffsetResult Result(GEP, DL);
413   unsigned BitWidth = Result.ConstantOffset.getBitWidth();
414   if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
415                          Result.ConstantOffset))
416     return {};
417 
418   // If we have a nested GEP, check if we can combine the constant offset of the
419   // inner GEP with the outer GEP.
420   if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
421     SmallMapVector<Value *, APInt, 4> VariableOffsets2;
422     APInt ConstantOffset2(BitWidth, 0);
423     bool CanCollectInner = InnerGEP->collectOffset(
424         DL, BitWidth, VariableOffsets2, ConstantOffset2);
425     // TODO: Support cases with more than 1 variable offset.
426     if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
427         VariableOffsets2.size() > 1 ||
428         (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
429       // More than 1 variable index, use outer result.
430       return Result;
431     }
432     Result.BasePtr = InnerGEP->getPointerOperand();
433     Result.ConstantOffset += ConstantOffset2;
434     if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
435       Result.VariableOffsets = VariableOffsets2;
436     Result.NW &= InnerGEP->getNoWrapFlags();
437   }
438   return Result;
439 }
440 
441 static Decomposition decompose(Value *V,
442                                SmallVectorImpl<ConditionTy> &Preconditions,
443                                bool IsSigned, const DataLayout &DL);
444 
445 static bool canUseSExt(ConstantInt *CI) {
446   const APInt &Val = CI->getValue();
447   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
448 }
449 
450 static Decomposition decomposeGEP(GEPOperator &GEP,
451                                   SmallVectorImpl<ConditionTy> &Preconditions,
452                                   bool IsSigned, const DataLayout &DL) {
453   // Do not reason about pointers where the index size is larger than 64 bits,
454   // as the coefficients used to encode constraints are 64 bit integers.
455   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
456     return &GEP;
457 
458   assert(!IsSigned && "The logic below only supports decomposition for "
459                       "unsigned predicates at the moment.");
460   const auto &[BasePtr, ConstantOffset, VariableOffsets, NW] =
461       collectOffsets(GEP, DL);
462   // We support either plain gep nuw, or gep nusw with non-negative offset,
463   // which implies gep nuw.
464   if (!BasePtr || NW == GEPNoWrapFlags::none())
465     return &GEP;
466 
467   Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
468   for (auto [Index, Scale] : VariableOffsets) {
469     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
470     IdxResult.mul(Scale.getSExtValue());
471     Result.add(IdxResult);
472 
473     if (!NW.hasNoUnsignedWrap()) {
474       // Try to prove nuw from nusw and nneg.
475       assert(NW.hasNoUnsignedSignedWrap() && "Must have nusw flag");
476       if (!isKnownNonNegative(Index, DL))
477         Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
478                                    ConstantInt::get(Index->getType(), 0));
479     }
480   }
481   return Result;
482 }
483 
484 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
485 // Variable } where Coefficient * Variable. The sum of the constant offset and
486 // pairs equals \p V.
487 static Decomposition decompose(Value *V,
488                                SmallVectorImpl<ConditionTy> &Preconditions,
489                                bool IsSigned, const DataLayout &DL) {
490 
491   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
492                                                       bool IsSignedB) {
493     auto ResA = decompose(A, Preconditions, IsSigned, DL);
494     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
495     ResA.add(ResB);
496     return ResA;
497   };
498 
499   Type *Ty = V->getType()->getScalarType();
500   if (Ty->isPointerTy() && !IsSigned) {
501     if (auto *GEP = dyn_cast<GEPOperator>(V))
502       return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
503     if (isa<ConstantPointerNull>(V))
504       return int64_t(0);
505 
506     return V;
507   }
508 
509   // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
510   // coefficient add/mul may wrap, while the operation in the full bit width
511   // would not.
512   if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
513     return V;
514 
515   bool IsKnownNonNegative = false;
516 
517   // Decompose \p V used with a signed predicate.
518   if (IsSigned) {
519     if (auto *CI = dyn_cast<ConstantInt>(V)) {
520       if (canUseSExt(CI))
521         return CI->getSExtValue();
522     }
523     Value *Op0;
524     Value *Op1;
525 
526     if (match(V, m_SExt(m_Value(Op0))))
527       V = Op0;
528     else if (match(V, m_NNegZExt(m_Value(Op0)))) {
529       V = Op0;
530       IsKnownNonNegative = true;
531     } else if (match(V, m_NSWTrunc(m_Value(Op0)))) {
532       if (Op0->getType()->getScalarSizeInBits() <= 64)
533         V = Op0;
534     }
535 
536     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
537       return MergeResults(Op0, Op1, IsSigned);
538 
539     if (match(V, m_NSWSub(m_Value(Op0), m_Value(Op1)))) {
540       auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
541       auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
542       ResA.sub(ResB);
543       return ResA;
544     }
545 
546     ConstantInt *CI;
547     if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
548       auto Result = decompose(Op0, Preconditions, IsSigned, DL);
549       Result.mul(CI->getSExtValue());
550       return Result;
551     }
552 
553     // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
554     // shift == bw-1.
555     if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
556       uint64_t Shift = CI->getValue().getLimitedValue();
557       if (Shift < Ty->getIntegerBitWidth() - 1) {
558         assert(Shift < 64 && "Would overflow");
559         auto Result = decompose(Op0, Preconditions, IsSigned, DL);
560         Result.mul(int64_t(1) << Shift);
561         return Result;
562       }
563     }
564 
565     return {V, IsKnownNonNegative};
566   }
567 
568   if (auto *CI = dyn_cast<ConstantInt>(V)) {
569     if (CI->uge(MaxConstraintValue))
570       return V;
571     return int64_t(CI->getZExtValue());
572   }
573 
574   Value *Op0;
575   if (match(V, m_ZExt(m_Value(Op0)))) {
576     IsKnownNonNegative = true;
577     V = Op0;
578   } else if (match(V, m_SExt(m_Value(Op0)))) {
579     V = Op0;
580     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
581                                ConstantInt::get(Op0->getType(), 0));
582   } else if (auto *Trunc = dyn_cast<TruncInst>(V)) {
583     if (Trunc->getSrcTy()->getScalarSizeInBits() <= 64) {
584       if (Trunc->hasNoUnsignedWrap() || Trunc->hasNoSignedWrap()) {
585         V = Trunc->getOperand(0);
586         if (!Trunc->hasNoUnsignedWrap())
587           Preconditions.emplace_back(CmpInst::ICMP_SGE, V,
588                                      ConstantInt::get(V->getType(), 0));
589       }
590     }
591   }
592 
593   Value *Op1;
594   ConstantInt *CI;
595   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
596     return MergeResults(Op0, Op1, IsSigned);
597   }
598   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
599     if (!isKnownNonNegative(Op0, DL))
600       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
601                                  ConstantInt::get(Op0->getType(), 0));
602     if (!isKnownNonNegative(Op1, DL))
603       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
604                                  ConstantInt::get(Op1->getType(), 0));
605 
606     return MergeResults(Op0, Op1, IsSigned);
607   }
608 
609   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
610       canUseSExt(CI)) {
611     Preconditions.emplace_back(
612         CmpInst::ICMP_UGE, Op0,
613         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
614     return MergeResults(Op0, CI, true);
615   }
616 
617   // Decompose or as an add if there are no common bits between the operands.
618   if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
619     return MergeResults(Op0, CI, IsSigned);
620 
621   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
622     if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
623       return {V, IsKnownNonNegative};
624     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
625     Result.mul(int64_t{1} << CI->getSExtValue());
626     return Result;
627   }
628 
629   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
630       (!CI->isNegative())) {
631     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
632     Result.mul(CI->getSExtValue());
633     return Result;
634   }
635 
636   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
637     auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
638     auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
639     ResA.sub(ResB);
640     return ResA;
641   }
642 
643   return {V, IsKnownNonNegative};
644 }
645 
646 ConstraintTy
647 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
648                               SmallVectorImpl<Value *> &NewVariables,
649                               bool ForceSignedSystem) const {
650   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
651   assert((!ForceSignedSystem || CmpInst::isEquality(Pred)) &&
652          "signed system can only be forced on eq/ne");
653 
654   bool IsEq = false;
655   bool IsNe = false;
656 
657   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
658   switch (Pred) {
659   case CmpInst::ICMP_UGT:
660   case CmpInst::ICMP_UGE:
661   case CmpInst::ICMP_SGT:
662   case CmpInst::ICMP_SGE: {
663     Pred = CmpInst::getSwappedPredicate(Pred);
664     std::swap(Op0, Op1);
665     break;
666   }
667   case CmpInst::ICMP_EQ:
668     if (!ForceSignedSystem && match(Op1, m_Zero())) {
669       Pred = CmpInst::ICMP_ULE;
670     } else {
671       IsEq = true;
672       Pred = CmpInst::ICMP_ULE;
673     }
674     break;
675   case CmpInst::ICMP_NE:
676     if (!ForceSignedSystem && match(Op1, m_Zero())) {
677       Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
678       std::swap(Op0, Op1);
679     } else {
680       IsNe = true;
681       Pred = CmpInst::ICMP_ULE;
682     }
683     break;
684   default:
685     break;
686   }
687 
688   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
689       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
690     return {};
691 
692   SmallVector<ConditionTy, 4> Preconditions;
693   bool IsSigned = ForceSignedSystem || CmpInst::isSigned(Pred);
694   auto &Value2Index = getValue2Index(IsSigned);
695   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
696                         Preconditions, IsSigned, DL);
697   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
698                         Preconditions, IsSigned, DL);
699   int64_t Offset1 = ADec.Offset;
700   int64_t Offset2 = BDec.Offset;
701   Offset1 *= -1;
702 
703   auto &VariablesA = ADec.Vars;
704   auto &VariablesB = BDec.Vars;
705 
706   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
707   // new entry to NewVariables.
708   SmallDenseMap<Value *, unsigned> NewIndexMap;
709   auto GetOrAddIndex = [&Value2Index, &NewVariables,
710                         &NewIndexMap](Value *V) -> unsigned {
711     auto V2I = Value2Index.find(V);
712     if (V2I != Value2Index.end())
713       return V2I->second;
714     auto Insert =
715         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
716     if (Insert.second)
717       NewVariables.push_back(V);
718     return Insert.first->second;
719   };
720 
721   // Make sure all variables have entries in Value2Index or NewVariables.
722   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
723     GetOrAddIndex(KV.Variable);
724 
725   // Build result constraint, by first adding all coefficients from A and then
726   // subtracting all coefficients from B.
727   ConstraintTy Res(
728       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
729       IsSigned, IsEq, IsNe);
730   // Collect variables that are known to be positive in all uses in the
731   // constraint.
732   SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
733   auto &R = Res.Coefficients;
734   for (const auto &KV : VariablesA) {
735     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
736     auto I =
737         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
738     I.first->second &= KV.IsKnownNonNegative;
739   }
740 
741   for (const auto &KV : VariablesB) {
742     auto &Coeff = R[GetOrAddIndex(KV.Variable)];
743     if (SubOverflow(Coeff, KV.Coefficient, Coeff))
744       return {};
745     auto I =
746         KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
747     I.first->second &= KV.IsKnownNonNegative;
748   }
749 
750   int64_t OffsetSum;
751   if (AddOverflow(Offset1, Offset2, OffsetSum))
752     return {};
753   if (Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_ULT)
754     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
755       return {};
756   R[0] = OffsetSum;
757   Res.Preconditions = std::move(Preconditions);
758 
759   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
760   // variables.
761   while (!NewVariables.empty()) {
762     int64_t Last = R.back();
763     if (Last != 0)
764       break;
765     R.pop_back();
766     Value *RemovedV = NewVariables.pop_back_val();
767     NewIndexMap.erase(RemovedV);
768   }
769 
770   // Add extra constraints for variables that are known positive.
771   for (auto &KV : KnownNonNegativeVariables) {
772     if (!KV.second ||
773         (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
774       continue;
775     auto &C = Res.ExtraInfo.emplace_back(
776         Value2Index.size() + NewVariables.size() + 1, 0);
777     C[GetOrAddIndex(KV.first)] = -1;
778   }
779   return Res;
780 }
781 
782 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
783                                                      Value *Op0,
784                                                      Value *Op1) const {
785   Constant *NullC = Constant::getNullValue(Op0->getType());
786   // Handle trivially true compares directly to avoid adding V UGE 0 constraints
787   // for all variables in the unsigned system.
788   if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
789       (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
790     auto &Value2Index = getValue2Index(false);
791     // Return constraint that's trivially true.
792     return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
793                         false, false);
794   }
795 
796   // If both operands are known to be non-negative, change signed predicates to
797   // unsigned ones. This increases the reasoning effectiveness in combination
798   // with the signed <-> unsigned transfer logic.
799   if (CmpInst::isSigned(Pred) &&
800       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
801       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
802     Pred = ICmpInst::getUnsignedPredicate(Pred);
803 
804   SmallVector<Value *> NewVariables;
805   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
806   if (!NewVariables.empty())
807     return {};
808   return R;
809 }
810 
811 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
812   return Coefficients.size() > 0 &&
813          all_of(Preconditions, [&Info](const ConditionTy &C) {
814            return Info.doesHold(C.Pred, C.Op0, C.Op1);
815          });
816 }
817 
818 std::optional<bool>
819 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
820   bool IsConditionImplied = CS.isConditionImplied(Coefficients);
821 
822   if (IsEq || IsNe) {
823     auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
824     bool IsNegatedOrEqualImplied =
825         !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
826 
827     // In order to check that `%a == %b` is true (equality), both conditions `%a
828     // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
829     // is true), we return true if they both hold, false in the other cases.
830     if (IsConditionImplied && IsNegatedOrEqualImplied)
831       return IsEq;
832 
833     auto Negated = ConstraintSystem::negate(Coefficients);
834     bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
835 
836     auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
837     bool IsStrictLessThanImplied =
838         !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
839 
840     // In order to check that `%a != %b` is true (non-equality), either
841     // condition `%a > %b` or `%a < %b` must hold true. When checking for
842     // non-equality (`IsNe` is true), we return true if one of the two holds,
843     // false in the other cases.
844     if (IsNegatedImplied || IsStrictLessThanImplied)
845       return IsNe;
846 
847     return std::nullopt;
848   }
849 
850   if (IsConditionImplied)
851     return true;
852 
853   auto Negated = ConstraintSystem::negate(Coefficients);
854   auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
855   if (IsNegatedImplied)
856     return false;
857 
858   // Neither the condition nor its negated holds, did not prove anything.
859   return std::nullopt;
860 }
861 
862 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
863                               Value *B) const {
864   auto R = getConstraintForSolving(Pred, A, B);
865   return R.isValid(*this) &&
866          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
867 }
868 
869 void ConstraintInfo::transferToOtherSystem(
870     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
871     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
872   auto IsKnownNonNegative = [this](Value *V) {
873     return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
874            isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
875   };
876   // Check if we can combine facts from the signed and unsigned systems to
877   // derive additional facts.
878   if (!A->getType()->isIntegerTy())
879     return;
880   // FIXME: This currently depends on the order we add facts. Ideally we
881   // would first add all known facts and only then try to add additional
882   // facts.
883   switch (Pred) {
884   default:
885     break;
886   case CmpInst::ICMP_ULT:
887   case CmpInst::ICMP_ULE:
888     //  If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
889     if (IsKnownNonNegative(B)) {
890       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
891               NumOut, DFSInStack);
892       addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
893               DFSInStack);
894     }
895     break;
896   case CmpInst::ICMP_UGE:
897   case CmpInst::ICMP_UGT:
898     //  If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
899     if (IsKnownNonNegative(A)) {
900       addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
901               NumOut, DFSInStack);
902       addFact(ICmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
903               DFSInStack);
904     }
905     break;
906   case CmpInst::ICMP_SLT:
907     if (IsKnownNonNegative(A))
908       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
909     break;
910   case CmpInst::ICMP_SGT: {
911     if (doesHold(CmpInst::ICMP_SGE, B, Constant::getAllOnesValue(B->getType())))
912       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
913               NumOut, DFSInStack);
914     if (IsKnownNonNegative(B))
915       addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
916 
917     break;
918   }
919   case CmpInst::ICMP_SGE:
920     if (IsKnownNonNegative(B))
921       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
922     break;
923   }
924 }
925 
926 #ifndef NDEBUG
927 
928 static void dumpConstraint(ArrayRef<int64_t> C,
929                            const DenseMap<Value *, unsigned> &Value2Index) {
930   ConstraintSystem CS(Value2Index);
931   CS.addVariableRowFill(C);
932   CS.dump();
933 }
934 #endif
935 
936 void State::addInfoForInductions(BasicBlock &BB) {
937   auto *L = LI.getLoopFor(&BB);
938   if (!L || L->getHeader() != &BB)
939     return;
940 
941   Value *A;
942   Value *B;
943   CmpPredicate Pred;
944 
945   if (!match(BB.getTerminator(),
946              m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
947     return;
948   PHINode *PN = dyn_cast<PHINode>(A);
949   if (!PN) {
950     Pred = CmpInst::getSwappedPredicate(Pred);
951     std::swap(A, B);
952     PN = dyn_cast<PHINode>(A);
953   }
954 
955   if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
956       !SE.isSCEVable(PN->getType()))
957     return;
958 
959   BasicBlock *InLoopSucc = nullptr;
960   if (Pred == CmpInst::ICMP_NE)
961     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
962   else if (Pred == CmpInst::ICMP_EQ)
963     InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
964   else
965     return;
966 
967   if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
968     return;
969 
970   auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
971   BasicBlock *LoopPred = L->getLoopPredecessor();
972   if (!AR || AR->getLoop() != L || !LoopPred)
973     return;
974 
975   const SCEV *StartSCEV = AR->getStart();
976   Value *StartValue = nullptr;
977   if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
978     StartValue = C->getValue();
979   } else {
980     StartValue = PN->getIncomingValueForBlock(LoopPred);
981     assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
982   }
983 
984   DomTreeNode *DTN = DT.getNode(InLoopSucc);
985   auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
986   auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
987   bool MonotonicallyIncreasingUnsigned =
988       IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
989   bool MonotonicallyIncreasingSigned =
990       IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
991   // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
992   // unconditionally.
993   if (MonotonicallyIncreasingUnsigned)
994     WorkList.push_back(
995         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
996   if (MonotonicallyIncreasingSigned)
997     WorkList.push_back(
998         FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
999 
1000   APInt StepOffset;
1001   if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
1002     StepOffset = C->getAPInt();
1003   else
1004     return;
1005 
1006   // Make sure the bound B is loop-invariant.
1007   if (!L->isLoopInvariant(B))
1008     return;
1009 
1010   // Handle negative steps.
1011   if (StepOffset.isNegative()) {
1012     // TODO: Extend to allow steps > -1.
1013     if (!(-StepOffset).isOne())
1014       return;
1015 
1016     // AR may wrap.
1017     // Add StartValue >= PN conditional on B <= StartValue which guarantees that
1018     // the loop exits before wrapping with a step of -1.
1019     WorkList.push_back(FactOrCheck::getConditionFact(
1020         DTN, CmpInst::ICMP_UGE, StartValue, PN,
1021         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1022     WorkList.push_back(FactOrCheck::getConditionFact(
1023         DTN, CmpInst::ICMP_SGE, StartValue, PN,
1024         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1025     // Add PN > B conditional on B <= StartValue which guarantees that the loop
1026     // exits when reaching B with a step of -1.
1027     WorkList.push_back(FactOrCheck::getConditionFact(
1028         DTN, CmpInst::ICMP_UGT, PN, B,
1029         ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
1030     WorkList.push_back(FactOrCheck::getConditionFact(
1031         DTN, CmpInst::ICMP_SGT, PN, B,
1032         ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
1033     return;
1034   }
1035 
1036   // Make sure AR either steps by 1 or that the value we compare against is a
1037   // GEP based on the same start value and all offsets are a multiple of the
1038   // step size, to guarantee that the induction will reach the value.
1039   if (StepOffset.isZero() || StepOffset.isNegative())
1040     return;
1041 
1042   if (!StepOffset.isOne()) {
1043     // Check whether B-Start is known to be a multiple of StepOffset.
1044     const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
1045     if (isa<SCEVCouldNotCompute>(BMinusStart) ||
1046         !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
1047       return;
1048   }
1049 
1050   // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1051   // guarantees that the loop exits before wrapping in combination with the
1052   // restrictions on B and the step above.
1053   if (!MonotonicallyIncreasingUnsigned)
1054     WorkList.push_back(FactOrCheck::getConditionFact(
1055         DTN, CmpInst::ICMP_UGE, PN, StartValue,
1056         ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1057   if (!MonotonicallyIncreasingSigned)
1058     WorkList.push_back(FactOrCheck::getConditionFact(
1059         DTN, CmpInst::ICMP_SGE, PN, StartValue,
1060         ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1061 
1062   WorkList.push_back(FactOrCheck::getConditionFact(
1063       DTN, CmpInst::ICMP_ULT, PN, B,
1064       ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1065   WorkList.push_back(FactOrCheck::getConditionFact(
1066       DTN, CmpInst::ICMP_SLT, PN, B,
1067       ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1068 
1069   // Try to add condition from header to the dedicated exit blocks. When exiting
1070   // either with EQ or NE in the header, we know that the induction value must
1071   // be u<= B, as other exits may only exit earlier.
1072   assert(!StepOffset.isNegative() && "induction must be increasing");
1073   assert((Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) &&
1074          "unsupported predicate");
1075   ConditionTy Precond = {CmpInst::ICMP_ULE, StartValue, B};
1076   SmallVector<BasicBlock *> ExitBBs;
1077   L->getExitBlocks(ExitBBs);
1078   for (BasicBlock *EB : ExitBBs) {
1079     // Bail out on non-dedicated exits.
1080     if (DT.dominates(&BB, EB)) {
1081       WorkList.emplace_back(FactOrCheck::getConditionFact(
1082           DT.getNode(EB), CmpInst::ICMP_ULE, A, B, Precond));
1083     }
1084   }
1085 }
1086 
1087 void State::addInfoFor(BasicBlock &BB) {
1088   addInfoForInductions(BB);
1089 
1090   // True as long as long as the current instruction is guaranteed to execute.
1091   bool GuaranteedToExecute = true;
1092   // Queue conditions and assumes.
1093   for (Instruction &I : BB) {
1094     if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1095       for (Use &U : Cmp->uses()) {
1096         auto *UserI = getContextInstForUse(U);
1097         auto *DTN = DT.getNode(UserI->getParent());
1098         if (!DTN)
1099           continue;
1100         WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1101       }
1102       continue;
1103     }
1104 
1105     auto *II = dyn_cast<IntrinsicInst>(&I);
1106     Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1107     switch (ID) {
1108     case Intrinsic::assume: {
1109       Value *A, *B;
1110       CmpPredicate Pred;
1111       if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1112         break;
1113       if (GuaranteedToExecute) {
1114         // The assume is guaranteed to execute when BB is entered, hence Cond
1115         // holds on entry to BB.
1116         WorkList.emplace_back(FactOrCheck::getConditionFact(
1117             DT.getNode(I.getParent()), Pred, A, B));
1118       } else {
1119         WorkList.emplace_back(
1120             FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1121       }
1122       break;
1123     }
1124     // Enqueue ssub_with_overflow for simplification.
1125     case Intrinsic::ssub_with_overflow:
1126     case Intrinsic::ucmp:
1127     case Intrinsic::scmp:
1128       WorkList.push_back(
1129           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1130       break;
1131     // Enqueue the intrinsics to add extra info.
1132     case Intrinsic::umin:
1133     case Intrinsic::umax:
1134     case Intrinsic::smin:
1135     case Intrinsic::smax:
1136       // TODO: handle llvm.abs as well
1137       WorkList.push_back(
1138           FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1139       // TODO: Check if it is possible to instead only added the min/max facts
1140       // when simplifying uses of the min/max intrinsics.
1141       if (!isGuaranteedNotToBePoison(&I))
1142         break;
1143       [[fallthrough]];
1144     case Intrinsic::abs:
1145       WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1146       break;
1147     }
1148 
1149     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1150   }
1151 
1152   if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1153     for (auto &Case : Switch->cases()) {
1154       BasicBlock *Succ = Case.getCaseSuccessor();
1155       Value *V = Case.getCaseValue();
1156       if (!canAddSuccessor(BB, Succ))
1157         continue;
1158       WorkList.emplace_back(FactOrCheck::getConditionFact(
1159           DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1160     }
1161     return;
1162   }
1163 
1164   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1165   if (!Br || !Br->isConditional())
1166     return;
1167 
1168   Value *Cond = Br->getCondition();
1169 
1170   // If the condition is a chain of ORs/AND and the successor only has the
1171   // current block as predecessor, queue conditions for the successor.
1172   Value *Op0, *Op1;
1173   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1174       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1175     bool IsOr = match(Cond, m_LogicalOr());
1176     bool IsAnd = match(Cond, m_LogicalAnd());
1177     // If there's a select that matches both AND and OR, we need to commit to
1178     // one of the options. Arbitrarily pick OR.
1179     if (IsOr && IsAnd)
1180       IsAnd = false;
1181 
1182     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1183     if (canAddSuccessor(BB, Successor)) {
1184       SmallVector<Value *> CondWorkList;
1185       SmallPtrSet<Value *, 8> SeenCond;
1186       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1187         if (SeenCond.insert(V).second)
1188           CondWorkList.push_back(V);
1189       };
1190       QueueValue(Op1);
1191       QueueValue(Op0);
1192       while (!CondWorkList.empty()) {
1193         Value *Cur = CondWorkList.pop_back_val();
1194         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1195           WorkList.emplace_back(FactOrCheck::getConditionFact(
1196               DT.getNode(Successor),
1197               IsOr ? Cmp->getInverseCmpPredicate() : Cmp->getCmpPredicate(),
1198               Cmp->getOperand(0), Cmp->getOperand(1)));
1199           continue;
1200         }
1201         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1202           QueueValue(Op1);
1203           QueueValue(Op0);
1204           continue;
1205         }
1206         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1207           QueueValue(Op1);
1208           QueueValue(Op0);
1209           continue;
1210         }
1211       }
1212     }
1213     return;
1214   }
1215 
1216   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1217   if (!CmpI)
1218     return;
1219   if (canAddSuccessor(BB, Br->getSuccessor(0)))
1220     WorkList.emplace_back(FactOrCheck::getConditionFact(
1221         DT.getNode(Br->getSuccessor(0)), CmpI->getCmpPredicate(),
1222         CmpI->getOperand(0), CmpI->getOperand(1)));
1223   if (canAddSuccessor(BB, Br->getSuccessor(1)))
1224     WorkList.emplace_back(FactOrCheck::getConditionFact(
1225         DT.getNode(Br->getSuccessor(1)), CmpI->getInverseCmpPredicate(),
1226         CmpI->getOperand(0), CmpI->getOperand(1)));
1227 }
1228 
1229 #ifndef NDEBUG
1230 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1231                              Value *LHS, Value *RHS) {
1232   OS << "icmp " << Pred << ' ';
1233   LHS->printAsOperand(OS, /*PrintType=*/true);
1234   OS << ", ";
1235   RHS->printAsOperand(OS, /*PrintType=*/false);
1236 }
1237 #endif
1238 
1239 namespace {
1240 /// Helper to keep track of a condition and if it should be treated as negated
1241 /// for reproducer construction.
1242 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1243 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1244 struct ReproducerEntry {
1245   ICmpInst::Predicate Pred;
1246   Value *LHS;
1247   Value *RHS;
1248 
1249   ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1250       : Pred(Pred), LHS(LHS), RHS(RHS) {}
1251 };
1252 } // namespace
1253 
1254 /// Helper function to generate a reproducer function for simplifying \p Cond.
1255 /// The reproducer function contains a series of @llvm.assume calls, one for
1256 /// each condition in \p Stack. For each condition, the operand instruction are
1257 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1258 /// will then be added as function arguments. \p DT is used to order cloned
1259 /// instructions. The reproducer function will get added to \p M, if it is
1260 /// non-null. Otherwise no reproducer function is generated.
1261 static void generateReproducer(CmpInst *Cond, Module *M,
1262                                ArrayRef<ReproducerEntry> Stack,
1263                                ConstraintInfo &Info, DominatorTree &DT) {
1264   if (!M)
1265     return;
1266 
1267   LLVMContext &Ctx = Cond->getContext();
1268 
1269   LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1270 
1271   ValueToValueMapTy Old2New;
1272   SmallVector<Value *> Args;
1273   SmallPtrSet<Value *, 8> Seen;
1274   // Traverse Cond and its operands recursively until we reach a value that's in
1275   // Value2Index or not an instruction, or not a operation that
1276   // ConstraintElimination can decompose. Such values will be considered as
1277   // external inputs to the reproducer, they are collected and added as function
1278   // arguments later.
1279   auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1280     auto &Value2Index = Info.getValue2Index(IsSigned);
1281     SmallVector<Value *, 4> WorkList(Ops);
1282     while (!WorkList.empty()) {
1283       Value *V = WorkList.pop_back_val();
1284       if (!Seen.insert(V).second)
1285         continue;
1286       if (Old2New.find(V) != Old2New.end())
1287         continue;
1288       if (isa<Constant>(V))
1289         continue;
1290 
1291       auto *I = dyn_cast<Instruction>(V);
1292       if (Value2Index.contains(V) || !I ||
1293           !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1294         Old2New[V] = V;
1295         Args.push_back(V);
1296         LLVM_DEBUG(dbgs() << "  found external input " << *V << "\n");
1297       } else {
1298         append_range(WorkList, I->operands());
1299       }
1300     }
1301   };
1302 
1303   for (auto &Entry : Stack)
1304     if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1305       CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1306   CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1307 
1308   SmallVector<Type *> ParamTys;
1309   for (auto *P : Args)
1310     ParamTys.push_back(P->getType());
1311 
1312   FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1313                                         /*isVarArg=*/false);
1314   Function *F = Function::Create(FTy, Function::ExternalLinkage,
1315                                  Cond->getModule()->getName() +
1316                                      Cond->getFunction()->getName() + "repro",
1317                                  M);
1318   // Add arguments to the reproducer function for each external value collected.
1319   for (unsigned I = 0; I < Args.size(); ++I) {
1320     F->getArg(I)->setName(Args[I]->getName());
1321     Old2New[Args[I]] = F->getArg(I);
1322   }
1323 
1324   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1325   IRBuilder<> Builder(Entry);
1326   Builder.CreateRet(Builder.getTrue());
1327   Builder.SetInsertPoint(Entry->getTerminator());
1328 
1329   // Clone instructions in \p Ops and their operands recursively until reaching
1330   // an value in Value2Index (external input to the reproducer). Update Old2New
1331   // mapping for the original and cloned instructions. Sort instructions to
1332   // clone by dominance, then insert the cloned instructions in the function.
1333   auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1334     SmallVector<Value *, 4> WorkList(Ops);
1335     SmallVector<Instruction *> ToClone;
1336     auto &Value2Index = Info.getValue2Index(IsSigned);
1337     while (!WorkList.empty()) {
1338       Value *V = WorkList.pop_back_val();
1339       if (Old2New.find(V) != Old2New.end())
1340         continue;
1341 
1342       auto *I = dyn_cast<Instruction>(V);
1343       if (!Value2Index.contains(V) && I) {
1344         Old2New[V] = nullptr;
1345         ToClone.push_back(I);
1346         append_range(WorkList, I->operands());
1347       }
1348     }
1349 
1350     sort(ToClone,
1351          [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1352     for (Instruction *I : ToClone) {
1353       Instruction *Cloned = I->clone();
1354       Old2New[I] = Cloned;
1355       Old2New[I]->setName(I->getName());
1356       Cloned->insertBefore(Builder.GetInsertPoint());
1357       Cloned->dropUnknownNonDebugMetadata();
1358       Cloned->setDebugLoc({});
1359     }
1360   };
1361 
1362   // Materialize the assumptions for the reproducer using the entries in Stack.
1363   // That is, first clone the operands of the condition recursively until we
1364   // reach an external input to the reproducer and add them to the reproducer
1365   // function. Then add an ICmp for the condition (with the inverse predicate if
1366   // the entry is negated) and an assert using the ICmp.
1367   for (auto &Entry : Stack) {
1368     if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1369       continue;
1370 
1371     LLVM_DEBUG(dbgs() << "  Materializing assumption ";
1372                dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1373                dbgs() << "\n");
1374     CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1375 
1376     auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1377     Builder.CreateAssumption(Cmp);
1378   }
1379 
1380   // Finally, clone the condition to reproduce and remap instruction operands in
1381   // the reproducer using Old2New.
1382   CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1383   Entry->getTerminator()->setOperand(0, Cond);
1384   remapInstructionsInBlocks({Entry}, Old2New);
1385 
1386   assert(!verifyFunction(*F, &dbgs()));
1387 }
1388 
1389 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1390                                           Value *B, Instruction *CheckInst,
1391                                           ConstraintInfo &Info) {
1392   LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1393 
1394   auto R = Info.getConstraintForSolving(Pred, A, B);
1395   if (R.empty() || !R.isValid(Info)){
1396     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
1397     return std::nullopt;
1398   }
1399 
1400   auto &CSToUse = Info.getCS(R.IsSigned);
1401 
1402   // If there was extra information collected during decomposition, apply
1403   // it now and remove it immediately once we are done with reasoning
1404   // about the constraint.
1405   for (auto &Row : R.ExtraInfo)
1406     CSToUse.addVariableRow(Row);
1407   auto InfoRestorer = make_scope_exit([&]() {
1408     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1409       CSToUse.popLastConstraint();
1410   });
1411 
1412   if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1413     if (!DebugCounter::shouldExecute(EliminatedCounter))
1414       return std::nullopt;
1415 
1416     LLVM_DEBUG({
1417       dbgs() << "Condition ";
1418       dumpUnpackedICmp(
1419           dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1420           A, B);
1421       dbgs() << " implied by dominating constraints\n";
1422       CSToUse.dump();
1423     });
1424     return ImpliedCondition;
1425   }
1426 
1427   return std::nullopt;
1428 }
1429 
1430 static bool checkAndReplaceCondition(
1431     CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1432     Instruction *ContextInst, Module *ReproducerModule,
1433     ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1434     SmallVectorImpl<Instruction *> &ToRemove) {
1435   auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1436     generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1437     Constant *ConstantC = ConstantInt::getBool(
1438         CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1439     Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1440                                        ContextInst](Use &U) {
1441       auto *UserI = getContextInstForUse(U);
1442       auto *DTN = DT.getNode(UserI->getParent());
1443       if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1444         return false;
1445       if (UserI->getParent() == ContextInst->getParent() &&
1446           UserI->comesBefore(ContextInst))
1447         return false;
1448 
1449       // Conditions in an assume trivially simplify to true. Skip uses
1450       // in assume calls to not destroy the available information.
1451       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1452       return !II || II->getIntrinsicID() != Intrinsic::assume;
1453     });
1454     NumCondsRemoved++;
1455     if (Cmp->use_empty())
1456       ToRemove.push_back(Cmp);
1457     return true;
1458   };
1459 
1460   if (auto ImpliedCondition =
1461           checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1462                          Cmp->getOperand(1), Cmp, Info))
1463     return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1464   return false;
1465 }
1466 
1467 static bool checkAndReplaceMinMax(MinMaxIntrinsic *MinMax, ConstraintInfo &Info,
1468                                   SmallVectorImpl<Instruction *> &ToRemove) {
1469   auto ReplaceMinMaxWithOperand = [&](MinMaxIntrinsic *MinMax, bool UseLHS) {
1470     // TODO: generate reproducer for min/max.
1471     MinMax->replaceAllUsesWith(MinMax->getOperand(UseLHS ? 0 : 1));
1472     ToRemove.push_back(MinMax);
1473     return true;
1474   };
1475 
1476   ICmpInst::Predicate Pred =
1477       ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1478   if (auto ImpliedCondition = checkCondition(
1479           Pred, MinMax->getOperand(0), MinMax->getOperand(1), MinMax, Info))
1480     return ReplaceMinMaxWithOperand(MinMax, *ImpliedCondition);
1481   if (auto ImpliedCondition = checkCondition(
1482           Pred, MinMax->getOperand(1), MinMax->getOperand(0), MinMax, Info))
1483     return ReplaceMinMaxWithOperand(MinMax, !*ImpliedCondition);
1484   return false;
1485 }
1486 
1487 static bool checkAndReplaceCmp(CmpIntrinsic *I, ConstraintInfo &Info,
1488                                SmallVectorImpl<Instruction *> &ToRemove) {
1489   Value *LHS = I->getOperand(0);
1490   Value *RHS = I->getOperand(1);
1491   if (checkCondition(I->getGTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1492     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 1));
1493     ToRemove.push_back(I);
1494     return true;
1495   }
1496   if (checkCondition(I->getLTPredicate(), LHS, RHS, I, Info).value_or(false)) {
1497     I->replaceAllUsesWith(ConstantInt::getSigned(I->getType(), -1));
1498     ToRemove.push_back(I);
1499     return true;
1500   }
1501   if (checkCondition(ICmpInst::ICMP_EQ, LHS, RHS, I, Info).value_or(false)) {
1502     I->replaceAllUsesWith(ConstantInt::get(I->getType(), 0));
1503     ToRemove.push_back(I);
1504     return true;
1505   }
1506   return false;
1507 }
1508 
1509 static void
1510 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1511                      Module *ReproducerModule,
1512                      SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1513                      SmallVectorImpl<StackEntry> &DFSInStack) {
1514   Info.popLastConstraint(E.IsSigned);
1515   // Remove variables in the system that went out of scope.
1516   auto &Mapping = Info.getValue2Index(E.IsSigned);
1517   for (Value *V : E.ValuesToRelease)
1518     Mapping.erase(V);
1519   Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1520   DFSInStack.pop_back();
1521   if (ReproducerModule)
1522     ReproducerCondStack.pop_back();
1523 }
1524 
1525 /// Check if either the first condition of an AND or OR is implied by the
1526 /// (negated in case of OR) second condition or vice versa.
1527 static bool checkOrAndOpImpliedByOther(
1528     FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1529     SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1530     SmallVectorImpl<StackEntry> &DFSInStack) {
1531   Instruction *JoinOp = CB.getContextInst();
1532   CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1533   unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1534 
1535   // Don't try to simplify the first condition of a select by the second, as
1536   // this may make the select more poisonous than the original one.
1537   // TODO: check if the first operand may be poison.
1538   if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1539     return false;
1540 
1541   unsigned OldSize = DFSInStack.size();
1542   auto InfoRestorer = make_scope_exit([&]() {
1543     // Remove entries again.
1544     while (OldSize < DFSInStack.size()) {
1545       StackEntry E = DFSInStack.back();
1546       removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1547                            DFSInStack);
1548     }
1549   });
1550   bool IsOr = match(JoinOp, m_LogicalOr());
1551   SmallVector<Value *, 4> Worklist({JoinOp->getOperand(OtherOpIdx)});
1552   // Do a traversal of the AND/OR tree to add facts from leaf compares.
1553   while (!Worklist.empty()) {
1554     Value *Val = Worklist.pop_back_val();
1555     Value *LHS, *RHS;
1556     CmpPredicate Pred;
1557     if (match(Val, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) {
1558       // For OR, check if the negated condition implies CmpToCheck.
1559       if (IsOr)
1560         Pred = CmpInst::getInversePredicate(Pred);
1561       // Optimistically add fact from the other compares in the AND/OR.
1562       Info.addFact(Pred, LHS, RHS, CB.NumIn, CB.NumOut, DFSInStack);
1563       continue;
1564     }
1565     if (IsOr ? match(Val, m_LogicalOr(m_Value(LHS), m_Value(RHS)))
1566              : match(Val, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) {
1567       Worklist.push_back(LHS);
1568       Worklist.push_back(RHS);
1569     }
1570   }
1571   if (OldSize == DFSInStack.size())
1572     return false;
1573 
1574   // Check if the second condition can be simplified now.
1575   if (auto ImpliedCondition =
1576           checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1577                          CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1578     if (IsOr && isa<SelectInst>(JoinOp)) {
1579       JoinOp->setOperand(
1580           OtherOpIdx == 0 ? 2 : 0,
1581           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1582     } else
1583       JoinOp->setOperand(
1584           1 - OtherOpIdx,
1585           ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1586 
1587     return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1594                              unsigned NumIn, unsigned NumOut,
1595                              SmallVectorImpl<StackEntry> &DFSInStack) {
1596   addFactImpl(Pred, A, B, NumIn, NumOut, DFSInStack, false);
1597   // If the Pred is eq/ne, also add the fact to signed system.
1598   if (CmpInst::isEquality(Pred))
1599     addFactImpl(Pred, A, B, NumIn, NumOut, DFSInStack, true);
1600 }
1601 
1602 void ConstraintInfo::addFactImpl(CmpInst::Predicate Pred, Value *A, Value *B,
1603                                  unsigned NumIn, unsigned NumOut,
1604                                  SmallVectorImpl<StackEntry> &DFSInStack,
1605                                  bool ForceSignedSystem) {
1606   // If the constraint has a pre-condition, skip the constraint if it does not
1607   // hold.
1608   SmallVector<Value *> NewVariables;
1609   auto R = getConstraint(Pred, A, B, NewVariables, ForceSignedSystem);
1610 
1611   // TODO: Support non-equality for facts as well.
1612   if (!R.isValid(*this) || R.isNe())
1613     return;
1614 
1615   LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1616              dbgs() << "'\n");
1617   auto &CSToUse = getCS(R.IsSigned);
1618   if (R.Coefficients.empty())
1619     return;
1620 
1621   bool Added = CSToUse.addVariableRowFill(R.Coefficients);
1622   if (!Added)
1623     return;
1624 
1625   // If R has been added to the system, add the new variables and queue it for
1626   // removal once it goes out-of-scope.
1627   SmallVector<Value *, 2> ValuesToRelease;
1628   auto &Value2Index = getValue2Index(R.IsSigned);
1629   for (Value *V : NewVariables) {
1630     Value2Index.insert({V, Value2Index.size() + 1});
1631     ValuesToRelease.push_back(V);
1632   }
1633 
1634   LLVM_DEBUG({
1635     dbgs() << "  constraint: ";
1636     dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1637     dbgs() << "\n";
1638   });
1639 
1640   DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1641                           std::move(ValuesToRelease));
1642 
1643   if (!R.IsSigned) {
1644     for (Value *V : NewVariables) {
1645       ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1646                           false, false, false);
1647       VarPos.Coefficients[Value2Index[V]] = -1;
1648       CSToUse.addVariableRow(VarPos.Coefficients);
1649       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1650                               SmallVector<Value *, 2>());
1651     }
1652   }
1653 
1654   if (R.isEq()) {
1655     // Also add the inverted constraint for equality constraints.
1656     for (auto &Coeff : R.Coefficients)
1657       Coeff *= -1;
1658     CSToUse.addVariableRowFill(R.Coefficients);
1659 
1660     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1661                             SmallVector<Value *, 2>());
1662   }
1663 }
1664 
1665 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1666                                    SmallVectorImpl<Instruction *> &ToRemove) {
1667   bool Changed = false;
1668   IRBuilder<> Builder(II->getParent(), II->getIterator());
1669   Value *Sub = nullptr;
1670   for (User *U : make_early_inc_range(II->users())) {
1671     if (match(U, m_ExtractValue<0>(m_Value()))) {
1672       if (!Sub)
1673         Sub = Builder.CreateSub(A, B);
1674       U->replaceAllUsesWith(Sub);
1675       Changed = true;
1676     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1677       U->replaceAllUsesWith(Builder.getFalse());
1678       Changed = true;
1679     } else
1680       continue;
1681 
1682     if (U->use_empty()) {
1683       auto *I = cast<Instruction>(U);
1684       ToRemove.push_back(I);
1685       I->setOperand(0, PoisonValue::get(II->getType()));
1686       Changed = true;
1687     }
1688   }
1689 
1690   if (II->use_empty()) {
1691     II->eraseFromParent();
1692     Changed = true;
1693   }
1694   return Changed;
1695 }
1696 
1697 static bool
1698 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1699                           SmallVectorImpl<Instruction *> &ToRemove) {
1700   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1701                               ConstraintInfo &Info) {
1702     auto R = Info.getConstraintForSolving(Pred, A, B);
1703     if (R.size() < 2 || !R.isValid(Info))
1704       return false;
1705 
1706     auto &CSToUse = Info.getCS(R.IsSigned);
1707     return CSToUse.isConditionImplied(R.Coefficients);
1708   };
1709 
1710   bool Changed = false;
1711   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1712     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1713     // can be simplified to a regular sub.
1714     Value *A = II->getArgOperand(0);
1715     Value *B = II->getArgOperand(1);
1716     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1717         !DoesConditionHold(CmpInst::ICMP_SGE, B,
1718                            ConstantInt::get(A->getType(), 0), Info))
1719       return false;
1720     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1721   }
1722   return Changed;
1723 }
1724 
1725 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1726                                  ScalarEvolution &SE,
1727                                  OptimizationRemarkEmitter &ORE) {
1728   bool Changed = false;
1729   DT.updateDFSNumbers();
1730   SmallVector<Value *> FunctionArgs;
1731   for (Value &Arg : F.args())
1732     FunctionArgs.push_back(&Arg);
1733   ConstraintInfo Info(F.getDataLayout(), FunctionArgs);
1734   State S(DT, LI, SE);
1735   std::unique_ptr<Module> ReproducerModule(
1736       DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1737 
1738   // First, collect conditions implied by branches and blocks with their
1739   // Dominator DFS in and out numbers.
1740   for (BasicBlock &BB : F) {
1741     if (!DT.getNode(&BB))
1742       continue;
1743     S.addInfoFor(BB);
1744   }
1745 
1746   // Next, sort worklist by dominance, so that dominating conditions to check
1747   // and facts come before conditions and facts dominated by them. If a
1748   // condition to check and a fact have the same numbers, conditional facts come
1749   // first. Assume facts and checks are ordered according to their relative
1750   // order in the containing basic block. Also make sure conditions with
1751   // constant operands come before conditions without constant operands. This
1752   // increases the effectiveness of the current signed <-> unsigned fact
1753   // transfer logic.
1754   stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1755     auto HasNoConstOp = [](const FactOrCheck &B) {
1756       Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1757       Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1758       return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1759     };
1760     // If both entries have the same In numbers, conditional facts come first.
1761     // Otherwise use the relative order in the basic block.
1762     if (A.NumIn == B.NumIn) {
1763       if (A.isConditionFact() && B.isConditionFact()) {
1764         bool NoConstOpA = HasNoConstOp(A);
1765         bool NoConstOpB = HasNoConstOp(B);
1766         return NoConstOpA < NoConstOpB;
1767       }
1768       if (A.isConditionFact())
1769         return true;
1770       if (B.isConditionFact())
1771         return false;
1772       auto *InstA = A.getContextInst();
1773       auto *InstB = B.getContextInst();
1774       return InstA->comesBefore(InstB);
1775     }
1776     return A.NumIn < B.NumIn;
1777   });
1778 
1779   SmallVector<Instruction *> ToRemove;
1780 
1781   // Finally, process ordered worklist and eliminate implied conditions.
1782   SmallVector<StackEntry, 16> DFSInStack;
1783   SmallVector<ReproducerEntry> ReproducerCondStack;
1784   for (FactOrCheck &CB : S.WorkList) {
1785     // First, pop entries from the stack that are out-of-scope for CB. Remove
1786     // the corresponding entry from the constraint system.
1787     while (!DFSInStack.empty()) {
1788       auto &E = DFSInStack.back();
1789       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1790                         << "\n");
1791       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1792       assert(E.NumIn <= CB.NumIn);
1793       if (CB.NumOut <= E.NumOut)
1794         break;
1795       LLVM_DEBUG({
1796         dbgs() << "Removing ";
1797         dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1798                        Info.getValue2Index(E.IsSigned));
1799         dbgs() << "\n";
1800       });
1801       removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1802                            DFSInStack);
1803     }
1804 
1805     // For a block, check if any CmpInsts become known based on the current set
1806     // of constraints.
1807     if (CB.isCheck()) {
1808       Instruction *Inst = CB.getInstructionToSimplify();
1809       if (!Inst)
1810         continue;
1811       LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1812                         << "\n");
1813       if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1814         Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1815       } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1816         bool Simplified = checkAndReplaceCondition(
1817             Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1818             ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1819         if (!Simplified &&
1820             match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1821           Simplified =
1822               checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1823                                          ReproducerCondStack, DFSInStack);
1824         }
1825         Changed |= Simplified;
1826       } else if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(Inst)) {
1827         Changed |= checkAndReplaceMinMax(MinMax, Info, ToRemove);
1828       } else if (auto *CmpIntr = dyn_cast<CmpIntrinsic>(Inst)) {
1829         Changed |= checkAndReplaceCmp(CmpIntr, Info, ToRemove);
1830       }
1831       continue;
1832     }
1833 
1834     auto AddFact = [&](CmpPredicate Pred, Value *A, Value *B) {
1835       LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1836                  dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1837       if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1838         LLVM_DEBUG(
1839             dbgs()
1840             << "Skip adding constraint because system has too many rows.\n");
1841         return;
1842       }
1843 
1844       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1845       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1846         ReproducerCondStack.emplace_back(Pred, A, B);
1847 
1848       if (ICmpInst::isRelational(Pred)) {
1849         // If samesign is present on the ICmp, simply flip the sign of the
1850         // predicate, transferring the information from the signed system to the
1851         // unsigned system, and viceversa.
1852         if (Pred.hasSameSign())
1853           Info.addFact(ICmpInst::getFlippedSignednessPredicate(Pred), A, B,
1854                        CB.NumIn, CB.NumOut, DFSInStack);
1855         else
1856           Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut,
1857                                      DFSInStack);
1858       }
1859 
1860       if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1861         // Add dummy entries to ReproducerCondStack to keep it in sync with
1862         // DFSInStack.
1863         for (unsigned I = 0,
1864                       E = (DFSInStack.size() - ReproducerCondStack.size());
1865              I < E; ++I) {
1866           ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1867                                            nullptr, nullptr);
1868         }
1869       }
1870     };
1871 
1872     CmpPredicate Pred;
1873     if (!CB.isConditionFact()) {
1874       Value *X;
1875       if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1876         // If is_int_min_poison is true then we may assume llvm.abs >= 0.
1877         if (cast<ConstantInt>(CB.Inst->getOperand(1))->isOne())
1878           AddFact(CmpInst::ICMP_SGE, CB.Inst,
1879                   ConstantInt::get(CB.Inst->getType(), 0));
1880         AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1881         continue;
1882       }
1883 
1884       if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1885         Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1886         AddFact(Pred, MinMax, MinMax->getLHS());
1887         AddFact(Pred, MinMax, MinMax->getRHS());
1888         continue;
1889       }
1890     }
1891 
1892     Value *A = nullptr, *B = nullptr;
1893     if (CB.isConditionFact()) {
1894       Pred = CB.Cond.Pred;
1895       A = CB.Cond.Op0;
1896       B = CB.Cond.Op1;
1897       if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1898           !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1899         LLVM_DEBUG({
1900           dbgs() << "Not adding fact ";
1901           dumpUnpackedICmp(dbgs(), Pred, A, B);
1902           dbgs() << " because precondition ";
1903           dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1904                            CB.DoesHold.Op1);
1905           dbgs() << " does not hold.\n";
1906         });
1907         continue;
1908       }
1909     } else {
1910       bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1911                                         m_ICmp(Pred, m_Value(A), m_Value(B))));
1912       (void)Matched;
1913       assert(Matched && "Must have an assume intrinsic with a icmp operand");
1914     }
1915     AddFact(Pred, A, B);
1916   }
1917 
1918   if (ReproducerModule && !ReproducerModule->functions().empty()) {
1919     std::string S;
1920     raw_string_ostream StringS(S);
1921     ReproducerModule->print(StringS, nullptr);
1922     OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1923     Rem << ore::NV("module") << S;
1924     ORE.emit(Rem);
1925   }
1926 
1927 #ifndef NDEBUG
1928   unsigned SignedEntries =
1929       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1930   assert(Info.getCS(false).size() - FunctionArgs.size() ==
1931              DFSInStack.size() - SignedEntries &&
1932          "updates to CS and DFSInStack are out of sync");
1933   assert(Info.getCS(true).size() == SignedEntries &&
1934          "updates to CS and DFSInStack are out of sync");
1935 #endif
1936 
1937   for (Instruction *I : ToRemove)
1938     I->eraseFromParent();
1939   return Changed;
1940 }
1941 
1942 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1943                                                  FunctionAnalysisManager &AM) {
1944   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1945   auto &LI = AM.getResult<LoopAnalysis>(F);
1946   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1947   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1948   if (!eliminateConstraints(F, DT, LI, SE, ORE))
1949     return PreservedAnalyses::all();
1950 
1951   PreservedAnalyses PA;
1952   PA.preserve<DominatorTreeAnalysis>();
1953   PA.preserve<LoopAnalysis>();
1954   PA.preserve<ScalarEvolutionAnalysis>();
1955   PA.preserveSet<CFGAnalyses>();
1956   return PA;
1957 }
1958