1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass identifies expensive constants to hoist and coalesces them to 10 // better prepare it for SelectionDAG-based code generation. This works around 11 // the limitations of the basic-block-at-a-time approach. 12 // 13 // First it scans all instructions for integer constants and calculates its 14 // cost. If the constant can be folded into the instruction (the cost is 15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't 16 // consider it expensive and leave it alone. This is the default behavior and 17 // the default implementation of getIntImmCostInst will always return TCC_Free. 18 // 19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded 20 // into the instruction and it might be beneficial to hoist the constant. 21 // Similar constants are coalesced to reduce register pressure and 22 // materialization code. 23 // 24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to 25 // be live-out of the basic block. Otherwise the constant would be just 26 // duplicated and each basic block would have its own copy in the SelectionDAG. 27 // The SelectionDAG recognizes such constants as opaque and doesn't perform 28 // certain transformations on them, which would create a new expensive constant. 29 // 30 // This optimization is only applied to integer constants in instructions and 31 // simple (this means not nested) constant cast expressions. For example: 32 // %0 = load i64* inttoptr (i64 big_constant to i64*) 33 //===----------------------------------------------------------------------===// 34 35 #include "llvm/Transforms/Scalar/ConstantHoisting.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/ADT/Statistic.h" 41 #include "llvm/Analysis/BlockFrequencyInfo.h" 42 #include "llvm/Analysis/ProfileSummaryInfo.h" 43 #include "llvm/Analysis/TargetTransformInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/Local.h" 65 #include "llvm/Transforms/Utils/SizeOpts.h" 66 #include <cassert> 67 #include <iterator> 68 #include <tuple> 69 #include <utility> 70 71 using namespace llvm; 72 using namespace consthoist; 73 74 #define DEBUG_TYPE "consthoist" 75 76 STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); 77 STATISTIC(NumConstantsRebased, "Number of constants rebased"); 78 79 static cl::opt<bool> ConstHoistWithBlockFrequency( 80 "consthoist-with-block-frequency", cl::init(true), cl::Hidden, 81 cl::desc("Enable the use of the block frequency analysis to reduce the " 82 "chance to execute const materialization more frequently than " 83 "without hoisting.")); 84 85 static cl::opt<bool> ConstHoistGEP( 86 "consthoist-gep", cl::init(false), cl::Hidden, 87 cl::desc("Try hoisting constant gep expressions")); 88 89 static cl::opt<unsigned> 90 MinNumOfDependentToRebase("consthoist-min-num-to-rebase", 91 cl::desc("Do not rebase if number of dependent constants of a Base is less " 92 "than this number."), 93 cl::init(0), cl::Hidden); 94 95 namespace { 96 97 /// The constant hoisting pass. 98 class ConstantHoistingLegacyPass : public FunctionPass { 99 public: 100 static char ID; // Pass identification, replacement for typeid 101 102 ConstantHoistingLegacyPass() : FunctionPass(ID) { 103 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnFunction(Function &Fn) override; 107 108 StringRef getPassName() const override { return "Constant Hoisting"; } 109 110 void getAnalysisUsage(AnalysisUsage &AU) const override { 111 AU.setPreservesCFG(); 112 if (ConstHoistWithBlockFrequency) 113 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 114 AU.addRequired<DominatorTreeWrapperPass>(); 115 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 116 AU.addRequired<TargetTransformInfoWrapperPass>(); 117 } 118 119 private: 120 ConstantHoistingPass Impl; 121 }; 122 123 } // end anonymous namespace 124 125 char ConstantHoistingLegacyPass::ID = 0; 126 127 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", 128 "Constant Hoisting", false, false) 129 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 131 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 132 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 133 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", 134 "Constant Hoisting", false, false) 135 136 FunctionPass *llvm::createConstantHoistingPass() { 137 return new ConstantHoistingLegacyPass(); 138 } 139 140 /// Perform the constant hoisting optimization for the given function. 141 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { 142 if (skipFunction(Fn)) 143 return false; 144 145 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); 146 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); 147 148 bool MadeChange = 149 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), 150 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 151 ConstHoistWithBlockFrequency 152 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() 153 : nullptr, 154 Fn.getEntryBlock(), 155 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); 156 157 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); 158 159 return MadeChange; 160 } 161 162 void ConstantHoistingPass::collectMatInsertPts( 163 const RebasedConstantListType &RebasedConstants, 164 SmallVectorImpl<BasicBlock::iterator> &MatInsertPts) const { 165 for (const RebasedConstantInfo &RCI : RebasedConstants) 166 for (const ConstantUser &U : RCI.Uses) 167 MatInsertPts.emplace_back(findMatInsertPt(U.Inst, U.OpndIdx)); 168 } 169 170 /// Find the constant materialization insertion point. 171 BasicBlock::iterator ConstantHoistingPass::findMatInsertPt(Instruction *Inst, 172 unsigned Idx) const { 173 // If the operand is a cast instruction, then we have to materialize the 174 // constant before the cast instruction. 175 if (Idx != ~0U) { 176 Value *Opnd = Inst->getOperand(Idx); 177 if (auto CastInst = dyn_cast<Instruction>(Opnd)) 178 if (CastInst->isCast()) 179 return CastInst->getIterator(); 180 } 181 182 // The simple and common case. This also includes constant expressions. 183 if (!isa<PHINode>(Inst) && !Inst->isEHPad()) 184 return Inst->getIterator(); 185 186 // We can't insert directly before a phi node or an eh pad. Insert before 187 // the terminator of the incoming or dominating block. 188 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); 189 BasicBlock *InsertionBlock = nullptr; 190 if (Idx != ~0U && isa<PHINode>(Inst)) { 191 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx); 192 if (!InsertionBlock->isEHPad()) { 193 return InsertionBlock->getTerminator()->getIterator(); 194 } 195 } else { 196 InsertionBlock = Inst->getParent(); 197 } 198 199 // This must be an EH pad. Iterate over immediate dominators until we find a 200 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads 201 // and terminators. 202 auto *IDom = DT->getNode(InsertionBlock)->getIDom(); 203 while (IDom->getBlock()->isEHPad()) { 204 assert(Entry != IDom->getBlock() && "eh pad in entry block"); 205 IDom = IDom->getIDom(); 206 } 207 208 return IDom->getBlock()->getTerminator()->getIterator(); 209 } 210 211 /// Given \p BBs as input, find another set of BBs which collectively 212 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB 213 /// set found in \p BBs. 214 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, 215 BasicBlock *Entry, 216 SetVector<BasicBlock *> &BBs) { 217 assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); 218 // Nodes on the current path to the root. 219 SmallPtrSet<BasicBlock *, 8> Path; 220 // Candidates includes any block 'BB' in set 'BBs' that is not strictly 221 // dominated by any other blocks in set 'BBs', and all nodes in the path 222 // in the dominator tree from Entry to 'BB'. 223 SmallPtrSet<BasicBlock *, 16> Candidates; 224 for (auto *BB : BBs) { 225 // Ignore unreachable basic blocks. 226 if (!DT.isReachableFromEntry(BB)) 227 continue; 228 Path.clear(); 229 // Walk up the dominator tree until Entry or another BB in BBs 230 // is reached. Insert the nodes on the way to the Path. 231 BasicBlock *Node = BB; 232 // The "Path" is a candidate path to be added into Candidates set. 233 bool isCandidate = false; 234 do { 235 Path.insert(Node); 236 if (Node == Entry || Candidates.count(Node)) { 237 isCandidate = true; 238 break; 239 } 240 assert(DT.getNode(Node)->getIDom() && 241 "Entry doens't dominate current Node"); 242 Node = DT.getNode(Node)->getIDom()->getBlock(); 243 } while (!BBs.count(Node)); 244 245 // If isCandidate is false, Node is another Block in BBs dominating 246 // current 'BB'. Drop the nodes on the Path. 247 if (!isCandidate) 248 continue; 249 250 // Add nodes on the Path into Candidates. 251 Candidates.insert(Path.begin(), Path.end()); 252 } 253 254 // Sort the nodes in Candidates in top-down order and save the nodes 255 // in Orders. 256 unsigned Idx = 0; 257 SmallVector<BasicBlock *, 16> Orders; 258 Orders.push_back(Entry); 259 while (Idx != Orders.size()) { 260 BasicBlock *Node = Orders[Idx++]; 261 for (auto *ChildDomNode : DT.getNode(Node)->children()) { 262 if (Candidates.count(ChildDomNode->getBlock())) 263 Orders.push_back(ChildDomNode->getBlock()); 264 } 265 } 266 267 // Visit Orders in bottom-up order. 268 using InsertPtsCostPair = 269 std::pair<SetVector<BasicBlock *>, BlockFrequency>; 270 271 // InsertPtsMap is a map from a BB to the best insertion points for the 272 // subtree of BB (subtree not including the BB itself). 273 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; 274 InsertPtsMap.reserve(Orders.size() + 1); 275 for (BasicBlock *Node : llvm::reverse(Orders)) { 276 bool NodeInBBs = BBs.count(Node); 277 auto &InsertPts = InsertPtsMap[Node].first; 278 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; 279 280 // Return the optimal insert points in BBs. 281 if (Node == Entry) { 282 BBs.clear(); 283 if (InsertPtsFreq > BFI.getBlockFreq(Node) || 284 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) 285 BBs.insert(Entry); 286 else 287 BBs.insert(InsertPts.begin(), InsertPts.end()); 288 break; 289 } 290 291 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); 292 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child 293 // will update its parent's ParentInsertPts and ParentPtsFreq. 294 auto &ParentInsertPts = InsertPtsMap[Parent].first; 295 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; 296 // Choose to insert in Node or in subtree of Node. 297 // Don't hoist to EHPad because we may not find a proper place to insert 298 // in EHPad. 299 // If the total frequency of InsertPts is the same as the frequency of the 300 // target Node, and InsertPts contains more than one nodes, choose hoisting 301 // to reduce code size. 302 if (NodeInBBs || 303 (!Node->isEHPad() && 304 (InsertPtsFreq > BFI.getBlockFreq(Node) || 305 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { 306 ParentInsertPts.insert(Node); 307 ParentPtsFreq += BFI.getBlockFreq(Node); 308 } else { 309 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); 310 ParentPtsFreq += InsertPtsFreq; 311 } 312 } 313 } 314 315 /// Find an insertion point that dominates all uses. 316 SetVector<BasicBlock::iterator> 317 ConstantHoistingPass::findConstantInsertionPoint( 318 const ConstantInfo &ConstInfo, 319 const ArrayRef<BasicBlock::iterator> MatInsertPts) const { 320 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); 321 // Collect all basic blocks. 322 SetVector<BasicBlock *> BBs; 323 SetVector<BasicBlock::iterator> InsertPts; 324 325 for (BasicBlock::iterator MatInsertPt : MatInsertPts) 326 BBs.insert(MatInsertPt->getParent()); 327 328 if (BBs.count(Entry)) { 329 InsertPts.insert(Entry->begin()); 330 return InsertPts; 331 } 332 333 if (BFI) { 334 findBestInsertionSet(*DT, *BFI, Entry, BBs); 335 for (BasicBlock *BB : BBs) 336 InsertPts.insert(BB->getFirstInsertionPt()); 337 return InsertPts; 338 } 339 340 while (BBs.size() >= 2) { 341 BasicBlock *BB, *BB1, *BB2; 342 BB1 = BBs.pop_back_val(); 343 BB2 = BBs.pop_back_val(); 344 BB = DT->findNearestCommonDominator(BB1, BB2); 345 if (BB == Entry) { 346 InsertPts.insert(Entry->begin()); 347 return InsertPts; 348 } 349 BBs.insert(BB); 350 } 351 assert((BBs.size() == 1) && "Expected only one element."); 352 Instruction &FirstInst = (*BBs.begin())->front(); 353 InsertPts.insert(findMatInsertPt(&FirstInst)); 354 return InsertPts; 355 } 356 357 /// Record constant integer ConstInt for instruction Inst at operand 358 /// index Idx. 359 /// 360 /// The operand at index Idx is not necessarily the constant integer itself. It 361 /// could also be a cast instruction or a constant expression that uses the 362 /// constant integer. 363 void ConstantHoistingPass::collectConstantCandidates( 364 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 365 ConstantInt *ConstInt) { 366 if (ConstInt->getType()->isVectorTy()) 367 return; 368 369 InstructionCost Cost; 370 // Ask the target about the cost of materializing the constant for the given 371 // instruction and operand index. 372 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) 373 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, 374 ConstInt->getValue(), ConstInt->getType(), 375 TargetTransformInfo::TCK_SizeAndLatency); 376 else 377 Cost = TTI->getIntImmCostInst( 378 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(), 379 TargetTransformInfo::TCK_SizeAndLatency, Inst); 380 381 // Ignore cheap integer constants. 382 if (Cost > TargetTransformInfo::TCC_Basic) { 383 ConstCandMapType::iterator Itr; 384 bool Inserted; 385 ConstPtrUnionType Cand = ConstInt; 386 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 387 if (Inserted) { 388 ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); 389 Itr->second = ConstIntCandVec.size() - 1; 390 } 391 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 392 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() 393 << "Collect constant " << *ConstInt << " from " << *Inst 394 << " with cost " << Cost << '\n'; 395 else dbgs() << "Collect constant " << *ConstInt 396 << " indirectly from " << *Inst << " via " 397 << *Inst->getOperand(Idx) << " with cost " << Cost 398 << '\n';); 399 } 400 } 401 402 /// Record constant GEP expression for instruction Inst at operand index Idx. 403 void ConstantHoistingPass::collectConstantCandidates( 404 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, 405 ConstantExpr *ConstExpr) { 406 // TODO: Handle vector GEPs 407 if (ConstExpr->getType()->isVectorTy()) 408 return; 409 410 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); 411 if (!BaseGV) 412 return; 413 414 // Get offset from the base GV. 415 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); 416 IntegerType *OffsetTy = DL->getIndexType(*Ctx, GVPtrTy->getAddressSpace()); 417 APInt Offset(DL->getTypeSizeInBits(OffsetTy), /*val*/ 0, /*isSigned*/ true); 418 auto *GEPO = cast<GEPOperator>(ConstExpr); 419 420 // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a 421 // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to 422 // inbounds GEP for now -- alternatively, we could drop inbounds from the 423 // constant expression, 424 if (!GEPO->isInBounds()) 425 return; 426 427 if (!GEPO->accumulateConstantOffset(*DL, Offset)) 428 return; 429 430 if (!Offset.isIntN(32)) 431 return; 432 433 // A constant GEP expression that has a GlobalVariable as base pointer is 434 // usually lowered to a load from constant pool. Such operation is unlikely 435 // to be cheaper than compute it by <Base + Offset>, which can be lowered to 436 // an ADD instruction or folded into Load/Store instruction. 437 InstructionCost Cost = 438 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, OffsetTy, 439 TargetTransformInfo::TCK_SizeAndLatency, Inst); 440 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; 441 ConstCandMapType::iterator Itr; 442 bool Inserted; 443 ConstPtrUnionType Cand = ConstExpr; 444 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); 445 if (Inserted) { 446 ExprCandVec.push_back(ConstantCandidate( 447 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), 448 ConstExpr)); 449 Itr->second = ExprCandVec.size() - 1; 450 } 451 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue()); 452 } 453 454 /// Check the operand for instruction Inst at index Idx. 455 void ConstantHoistingPass::collectConstantCandidates( 456 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { 457 Value *Opnd = Inst->getOperand(Idx); 458 459 // Visit constant integers. 460 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { 461 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 462 return; 463 } 464 465 // Visit cast instructions that have constant integers. 466 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 467 // Only visit cast instructions, which have been skipped. All other 468 // instructions should have already been visited. 469 if (!CastInst->isCast()) 470 return; 471 472 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { 473 // Pretend the constant is directly used by the instruction and ignore 474 // the cast instruction. 475 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 476 return; 477 } 478 } 479 480 // Visit constant expressions that have constant integers. 481 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 482 // Handle constant gep expressions. 483 if (ConstHoistGEP && isa<GEPOperator>(ConstExpr)) 484 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); 485 486 // Only visit constant cast expressions. 487 if (!ConstExpr->isCast()) 488 return; 489 490 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { 491 // Pretend the constant is directly used by the instruction and ignore 492 // the constant expression. 493 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); 494 return; 495 } 496 } 497 } 498 499 /// Scan the instruction for expensive integer constants and record them 500 /// in the constant candidate vector. 501 void ConstantHoistingPass::collectConstantCandidates( 502 ConstCandMapType &ConstCandMap, Instruction *Inst) { 503 // Skip all cast instructions. They are visited indirectly later on. 504 if (Inst->isCast()) 505 return; 506 507 // Scan all operands. 508 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { 509 // The cost of materializing the constants (defined in 510 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only 511 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. 512 // So it's safe for us to collect constant candidates from all 513 // IntrinsicInsts. 514 if (canReplaceOperandWithVariable(Inst, Idx)) { 515 collectConstantCandidates(ConstCandMap, Inst, Idx); 516 } 517 } // end of for all operands 518 } 519 520 /// Collect all integer constants in the function that cannot be folded 521 /// into an instruction itself. 522 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { 523 ConstCandMapType ConstCandMap; 524 for (BasicBlock &BB : Fn) { 525 // Ignore unreachable basic blocks. 526 if (!DT->isReachableFromEntry(&BB)) 527 continue; 528 for (Instruction &Inst : BB) 529 if (!TTI->preferToKeepConstantsAttached(Inst, Fn)) 530 collectConstantCandidates(ConstCandMap, &Inst); 531 } 532 } 533 534 // From a list of constants, one needs to picked as the base and the other 535 // constants will be transformed into an offset from that base constant. The 536 // question is which we can pick best? For example, consider these constants 537 // and their number of uses: 538 // 539 // Constants| 2 | 4 | 12 | 42 | 540 // NumUses | 3 | 2 | 8 | 7 | 541 // 542 // Selecting constant 12 because it has the most uses will generate negative 543 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative 544 // offsets lead to less optimal code generation, then there might be better 545 // solutions. Suppose immediates in the range of 0..35 are most optimally 546 // supported by the architecture, then selecting constant 2 is most optimal 547 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in 548 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would 549 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in 550 // selecting the base constant the range of the offsets is a very important 551 // factor too that we take into account here. This algorithm calculates a total 552 // costs for selecting a constant as the base and substract the costs if 553 // immediates are out of range. It has quadratic complexity, so we call this 554 // function only when we're optimising for size and there are less than 100 555 // constants, we fall back to the straightforward algorithm otherwise 556 // which does not do all the offset calculations. 557 unsigned 558 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, 559 ConstCandVecType::iterator E, 560 ConstCandVecType::iterator &MaxCostItr) { 561 unsigned NumUses = 0; 562 563 if (!OptForSize || std::distance(S,E) > 100) { 564 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 565 NumUses += ConstCand->Uses.size(); 566 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) 567 MaxCostItr = ConstCand; 568 } 569 return NumUses; 570 } 571 572 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); 573 InstructionCost MaxCost = -1; 574 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 575 auto Value = ConstCand->ConstInt->getValue(); 576 Type *Ty = ConstCand->ConstInt->getType(); 577 InstructionCost Cost = 0; 578 NumUses += ConstCand->Uses.size(); 579 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() 580 << "\n"); 581 582 for (auto User : ConstCand->Uses) { 583 unsigned Opcode = User.Inst->getOpcode(); 584 unsigned OpndIdx = User.OpndIdx; 585 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, 586 TargetTransformInfo::TCK_SizeAndLatency); 587 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); 588 589 for (auto C2 = S; C2 != E; ++C2) { 590 APInt Diff = C2->ConstInt->getValue() - ConstCand->ConstInt->getValue(); 591 const InstructionCost ImmCosts = 592 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff, Ty); 593 Cost -= ImmCosts; 594 LLVM_DEBUG(dbgs() << "Offset " << Diff << " " 595 << "has penalty: " << ImmCosts << "\n" 596 << "Adjusted cost: " << Cost << "\n"); 597 } 598 } 599 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); 600 if (Cost > MaxCost) { 601 MaxCost = Cost; 602 MaxCostItr = ConstCand; 603 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() 604 << "\n"); 605 } 606 } 607 return NumUses; 608 } 609 610 /// Find the base constant within the given range and rebase all other 611 /// constants with respect to the base constant. 612 void ConstantHoistingPass::findAndMakeBaseConstant( 613 ConstCandVecType::iterator S, ConstCandVecType::iterator E, 614 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { 615 auto MaxCostItr = S; 616 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); 617 618 // Don't hoist constants that have only one use. 619 if (NumUses <= 1) 620 return; 621 622 ConstantInt *ConstInt = MaxCostItr->ConstInt; 623 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; 624 ConstantInfo ConstInfo; 625 ConstInfo.BaseInt = ConstInt; 626 ConstInfo.BaseExpr = ConstExpr; 627 Type *Ty = ConstInt->getType(); 628 629 // Rebase the constants with respect to the base constant. 630 for (auto ConstCand = S; ConstCand != E; ++ConstCand) { 631 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); 632 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); 633 Type *ConstTy = 634 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; 635 ConstInfo.RebasedConstants.push_back( 636 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); 637 } 638 ConstInfoVec.push_back(std::move(ConstInfo)); 639 } 640 641 /// Finds and combines constant candidates that can be easily 642 /// rematerialized with an add from a common base constant. 643 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { 644 // If BaseGV is nullptr, find base among candidate constant integers; 645 // Otherwise find base among constant GEPs that share the same BaseGV. 646 ConstCandVecType &ConstCandVec = BaseGV ? 647 ConstGEPCandMap[BaseGV] : ConstIntCandVec; 648 ConstInfoVecType &ConstInfoVec = BaseGV ? 649 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 650 651 // Sort the constants by value and type. This invalidates the mapping! 652 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, 653 const ConstantCandidate &RHS) { 654 if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) 655 return LHS.ConstInt->getBitWidth() < RHS.ConstInt->getBitWidth(); 656 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); 657 }); 658 659 // Simple linear scan through the sorted constant candidate vector for viable 660 // merge candidates. 661 auto MinValItr = ConstCandVec.begin(); 662 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); 663 CC != E; ++CC) { 664 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { 665 Type *MemUseValTy = nullptr; 666 for (auto &U : CC->Uses) { 667 auto *UI = U.Inst; 668 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { 669 MemUseValTy = LI->getType(); 670 break; 671 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 672 // Make sure the constant is used as pointer operand of the StoreInst. 673 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { 674 MemUseValTy = SI->getValueOperand()->getType(); 675 break; 676 } 677 } 678 } 679 680 // Check if the constant is in range of an add with immediate. 681 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); 682 if ((Diff.getBitWidth() <= 64) && 683 TTI->isLegalAddImmediate(Diff.getSExtValue()) && 684 // Check if Diff can be used as offset in addressing mode of the user 685 // memory instruction. 686 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, 687 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), 688 /*HasBaseReg*/true, /*Scale*/0))) 689 continue; 690 } 691 // We either have now a different constant type or the constant is not in 692 // range of an add with immediate anymore. 693 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); 694 // Start a new base constant search. 695 MinValItr = CC; 696 } 697 // Finalize the last base constant search. 698 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); 699 } 700 701 /// Updates the operand at Idx in instruction Inst with the result of 702 /// instruction Mat. If the instruction is a PHI node then special 703 /// handling for duplicate values from the same incoming basic block is 704 /// required. 705 /// \return The update will always succeed, but the return value indicated if 706 /// Mat was used for the update or not. 707 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { 708 if (auto PHI = dyn_cast<PHINode>(Inst)) { 709 // Check if any previous operand of the PHI node has the same incoming basic 710 // block. This is a very odd case that happens when the incoming basic block 711 // has a switch statement. In this case use the same value as the previous 712 // operand(s), otherwise we will fail verification due to different values. 713 // The values are actually the same, but the variable names are different 714 // and the verifier doesn't like that. 715 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); 716 for (unsigned i = 0; i < Idx; ++i) { 717 if (PHI->getIncomingBlock(i) == IncomingBB) { 718 Value *IncomingVal = PHI->getIncomingValue(i); 719 Inst->setOperand(Idx, IncomingVal); 720 return false; 721 } 722 } 723 } 724 725 Inst->setOperand(Idx, Mat); 726 return true; 727 } 728 729 /// Emit materialization code for all rebased constants and update their 730 /// users. 731 void ConstantHoistingPass::emitBaseConstants(Instruction *Base, 732 UserAdjustment *Adj) { 733 Instruction *Mat = Base; 734 735 // The same offset can be dereferenced to different types in nested struct. 736 if (!Adj->Offset && Adj->Ty && Adj->Ty != Base->getType()) 737 Adj->Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); 738 739 if (Adj->Offset) { 740 if (Adj->Ty) { 741 // Constant being rebased is a ConstantExpr. 742 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Adj->Offset, 743 "mat_gep", Adj->MatInsertPt); 744 // Hide it behind a bitcast. 745 Mat = new BitCastInst(Mat, Adj->Ty, "mat_bitcast", 746 Adj->MatInsertPt->getIterator()); 747 } else 748 // Constant being rebased is a ConstantInt. 749 Mat = 750 BinaryOperator::Create(Instruction::Add, Base, Adj->Offset, 751 "const_mat", Adj->MatInsertPt->getIterator()); 752 753 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) 754 << " + " << *Adj->Offset << ") in BB " 755 << Mat->getParent()->getName() << '\n' 756 << *Mat << '\n'); 757 Mat->setDebugLoc(Adj->User.Inst->getDebugLoc()); 758 } 759 Value *Opnd = Adj->User.Inst->getOperand(Adj->User.OpndIdx); 760 761 // Visit constant integer. 762 if (isa<ConstantInt>(Opnd)) { 763 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n'); 764 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat) && Adj->Offset) 765 Mat->eraseFromParent(); 766 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n'); 767 return; 768 } 769 770 // Visit cast instruction. 771 if (auto CastInst = dyn_cast<Instruction>(Opnd)) { 772 assert(CastInst->isCast() && "Expected an cast instruction!"); 773 // Check if we already have visited this cast instruction before to avoid 774 // unnecessary cloning. 775 Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; 776 if (!ClonedCastInst) { 777 ClonedCastInst = CastInst->clone(); 778 ClonedCastInst->setOperand(0, Mat); 779 ClonedCastInst->insertAfter(CastInst->getIterator()); 780 // Use the same debug location as the original cast instruction. 781 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); 782 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' 783 << "To : " << *ClonedCastInst << '\n'); 784 } 785 786 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n'); 787 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ClonedCastInst); 788 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n'); 789 return; 790 } 791 792 // Visit constant expression. 793 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { 794 if (isa<GEPOperator>(ConstExpr)) { 795 // Operand is a ConstantGEP, replace it. 796 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat); 797 return; 798 } 799 800 // Aside from constant GEPs, only constant cast expressions are collected. 801 assert(ConstExpr->isCast() && "ConstExpr should be a cast"); 802 Instruction *ConstExprInst = ConstExpr->getAsInstruction(); 803 ConstExprInst->insertBefore(Adj->MatInsertPt); 804 ConstExprInst->setOperand(0, Mat); 805 806 // Use the same debug location as the instruction we are about to update. 807 ConstExprInst->setDebugLoc(Adj->User.Inst->getDebugLoc()); 808 809 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' 810 << "From : " << *ConstExpr << '\n'); 811 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n'); 812 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ConstExprInst)) { 813 ConstExprInst->eraseFromParent(); 814 if (Adj->Offset) 815 Mat->eraseFromParent(); 816 } 817 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n'); 818 return; 819 } 820 } 821 822 /// Hoist and hide the base constant behind a bitcast and emit 823 /// materialization code for derived constants. 824 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { 825 bool MadeChange = false; 826 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = 827 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; 828 for (const consthoist::ConstantInfo &ConstInfo : ConstInfoVec) { 829 SmallVector<BasicBlock::iterator, 4> MatInsertPts; 830 collectMatInsertPts(ConstInfo.RebasedConstants, MatInsertPts); 831 SetVector<BasicBlock::iterator> IPSet = 832 findConstantInsertionPoint(ConstInfo, MatInsertPts); 833 // We can have an empty set if the function contains unreachable blocks. 834 if (IPSet.empty()) 835 continue; 836 837 unsigned UsesNum = 0; 838 unsigned ReBasesNum = 0; 839 unsigned NotRebasedNum = 0; 840 for (const BasicBlock::iterator &IP : IPSet) { 841 // First, collect constants depending on this IP of the base. 842 UsesNum = 0; 843 SmallVector<UserAdjustment, 4> ToBeRebased; 844 unsigned MatCtr = 0; 845 for (auto const &RCI : ConstInfo.RebasedConstants) { 846 UsesNum += RCI.Uses.size(); 847 for (auto const &U : RCI.Uses) { 848 const BasicBlock::iterator &MatInsertPt = MatInsertPts[MatCtr++]; 849 BasicBlock *OrigMatInsertBB = MatInsertPt->getParent(); 850 // If Base constant is to be inserted in multiple places, 851 // generate rebase for U using the Base dominating U. 852 if (IPSet.size() == 1 || 853 DT->dominates(IP->getParent(), OrigMatInsertBB)) 854 ToBeRebased.emplace_back(RCI.Offset, RCI.Ty, MatInsertPt, U); 855 } 856 } 857 858 // If only few constants depend on this IP of base, skip rebasing, 859 // assuming the base and the rebased have the same materialization cost. 860 if (ToBeRebased.size() < MinNumOfDependentToRebase) { 861 NotRebasedNum += ToBeRebased.size(); 862 continue; 863 } 864 865 // Emit an instance of the base at this IP. 866 Instruction *Base = nullptr; 867 // Hoist and hide the base constant behind a bitcast. 868 if (ConstInfo.BaseExpr) { 869 assert(BaseGV && "A base constant expression must have an base GV"); 870 Type *Ty = ConstInfo.BaseExpr->getType(); 871 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); 872 } else { 873 IntegerType *Ty = ConstInfo.BaseInt->getIntegerType(); 874 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); 875 } 876 877 Base->setDebugLoc(IP->getDebugLoc()); 878 879 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt 880 << ") to BB " << IP->getParent()->getName() << '\n' 881 << *Base << '\n'); 882 883 // Emit materialization code for rebased constants depending on this IP. 884 for (UserAdjustment &R : ToBeRebased) { 885 emitBaseConstants(Base, &R); 886 ReBasesNum++; 887 // Use the same debug location as the last user of the constant. 888 Base->setDebugLoc(DILocation::getMergedLocation( 889 Base->getDebugLoc(), R.User.Inst->getDebugLoc())); 890 } 891 assert(!Base->use_empty() && "The use list is empty!?"); 892 assert(isa<Instruction>(Base->user_back()) && 893 "All uses should be instructions."); 894 } 895 (void)UsesNum; 896 (void)ReBasesNum; 897 (void)NotRebasedNum; 898 // Expect all uses are rebased after rebase is done. 899 assert(UsesNum == (ReBasesNum + NotRebasedNum) && 900 "Not all uses are rebased"); 901 902 NumConstantsHoisted++; 903 904 // Base constant is also included in ConstInfo.RebasedConstants, so 905 // deduct 1 from ConstInfo.RebasedConstants.size(). 906 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; 907 908 MadeChange = true; 909 } 910 return MadeChange; 911 } 912 913 /// Check all cast instructions we made a copy of and remove them if they 914 /// have no more users. 915 void ConstantHoistingPass::deleteDeadCastInst() const { 916 for (auto const &I : ClonedCastMap) 917 if (I.first->use_empty()) 918 I.first->eraseFromParent(); 919 } 920 921 /// Optimize expensive integer constants in the given function. 922 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, 923 DominatorTree &DT, BlockFrequencyInfo *BFI, 924 BasicBlock &Entry, ProfileSummaryInfo *PSI) { 925 this->TTI = &TTI; 926 this->DT = &DT; 927 this->BFI = BFI; 928 this->DL = &Fn.getDataLayout(); 929 this->Ctx = &Fn.getContext(); 930 this->Entry = &Entry; 931 this->PSI = PSI; 932 this->OptForSize = llvm::shouldOptimizeForSize(Entry.getParent(), PSI, BFI, 933 PGSOQueryType::IRPass); 934 935 // Collect all constant candidates. 936 collectConstantCandidates(Fn); 937 938 // Combine constants that can be easily materialized with an add from a common 939 // base constant. 940 if (!ConstIntCandVec.empty()) 941 findBaseConstants(nullptr); 942 for (const auto &MapEntry : ConstGEPCandMap) 943 if (!MapEntry.second.empty()) 944 findBaseConstants(MapEntry.first); 945 946 // Finally hoist the base constant and emit materialization code for dependent 947 // constants. 948 bool MadeChange = false; 949 if (!ConstIntInfoVec.empty()) 950 MadeChange = emitBaseConstants(nullptr); 951 for (const auto &MapEntry : ConstGEPInfoMap) 952 if (!MapEntry.second.empty()) 953 MadeChange |= emitBaseConstants(MapEntry.first); 954 955 956 // Cleanup dead instructions. 957 deleteDeadCastInst(); 958 959 cleanup(); 960 961 return MadeChange; 962 } 963 964 PreservedAnalyses ConstantHoistingPass::run(Function &F, 965 FunctionAnalysisManager &AM) { 966 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 967 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 968 auto BFI = ConstHoistWithBlockFrequency 969 ? &AM.getResult<BlockFrequencyAnalysis>(F) 970 : nullptr; 971 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 972 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 973 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) 974 return PreservedAnalyses::all(); 975 976 PreservedAnalyses PA; 977 PA.preserveSet<CFGAnalyses>(); 978 return PA; 979 } 980