xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
12 //
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
18 //
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
23 //
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
29 //
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
34 
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Analysis/BlockFrequencyInfo.h"
42 #include "llvm/Analysis/ProfileSummaryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/SizeOpts.h"
66 #include <cassert>
67 #include <iterator>
68 #include <tuple>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace consthoist;
73 
74 #define DEBUG_TYPE "consthoist"
75 
76 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
77 STATISTIC(NumConstantsRebased, "Number of constants rebased");
78 
79 static cl::opt<bool> ConstHoistWithBlockFrequency(
80     "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
81     cl::desc("Enable the use of the block frequency analysis to reduce the "
82              "chance to execute const materialization more frequently than "
83              "without hoisting."));
84 
85 static cl::opt<bool> ConstHoistGEP(
86     "consthoist-gep", cl::init(false), cl::Hidden,
87     cl::desc("Try hoisting constant gep expressions"));
88 
89 static cl::opt<unsigned>
90 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
91     cl::desc("Do not rebase if number of dependent constants of a Base is less "
92              "than this number."),
93     cl::init(0), cl::Hidden);
94 
95 namespace {
96 
97 /// The constant hoisting pass.
98 class ConstantHoistingLegacyPass : public FunctionPass {
99 public:
100   static char ID; // Pass identification, replacement for typeid
101 
102   ConstantHoistingLegacyPass() : FunctionPass(ID) {
103     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
104   }
105 
106   bool runOnFunction(Function &Fn) override;
107 
108   StringRef getPassName() const override { return "Constant Hoisting"; }
109 
110   void getAnalysisUsage(AnalysisUsage &AU) const override {
111     AU.setPreservesCFG();
112     if (ConstHoistWithBlockFrequency)
113       AU.addRequired<BlockFrequencyInfoWrapperPass>();
114     AU.addRequired<DominatorTreeWrapperPass>();
115     AU.addRequired<ProfileSummaryInfoWrapperPass>();
116     AU.addRequired<TargetTransformInfoWrapperPass>();
117   }
118 
119 private:
120   ConstantHoistingPass Impl;
121 };
122 
123 } // end anonymous namespace
124 
125 char ConstantHoistingLegacyPass::ID = 0;
126 
127 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
128                       "Constant Hoisting", false, false)
129 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
133 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
134                     "Constant Hoisting", false, false)
135 
136 FunctionPass *llvm::createConstantHoistingPass() {
137   return new ConstantHoistingLegacyPass();
138 }
139 
140 /// Perform the constant hoisting optimization for the given function.
141 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
142   if (skipFunction(Fn))
143     return false;
144 
145   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
146   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
147 
148   bool MadeChange =
149       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
150                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
151                    ConstHoistWithBlockFrequency
152                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
153                        : nullptr,
154                    Fn.getEntryBlock(),
155                    &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
156 
157   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
158 
159   return MadeChange;
160 }
161 
162 void ConstantHoistingPass::collectMatInsertPts(
163     const RebasedConstantListType &RebasedConstants,
164     SmallVectorImpl<BasicBlock::iterator> &MatInsertPts) const {
165   for (const RebasedConstantInfo &RCI : RebasedConstants)
166     for (const ConstantUser &U : RCI.Uses)
167       MatInsertPts.emplace_back(findMatInsertPt(U.Inst, U.OpndIdx));
168 }
169 
170 /// Find the constant materialization insertion point.
171 BasicBlock::iterator ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
172                                                            unsigned Idx) const {
173   // If the operand is a cast instruction, then we have to materialize the
174   // constant before the cast instruction.
175   if (Idx != ~0U) {
176     Value *Opnd = Inst->getOperand(Idx);
177     if (auto CastInst = dyn_cast<Instruction>(Opnd))
178       if (CastInst->isCast())
179         return CastInst->getIterator();
180   }
181 
182   // The simple and common case. This also includes constant expressions.
183   if (!isa<PHINode>(Inst) && !Inst->isEHPad())
184     return Inst->getIterator();
185 
186   // We can't insert directly before a phi node or an eh pad. Insert before
187   // the terminator of the incoming or dominating block.
188   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
189   BasicBlock *InsertionBlock = nullptr;
190   if (Idx != ~0U && isa<PHINode>(Inst)) {
191     InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
192     if (!InsertionBlock->isEHPad()) {
193       return InsertionBlock->getTerminator()->getIterator();
194     }
195   } else {
196     InsertionBlock = Inst->getParent();
197   }
198 
199   // This must be an EH pad. Iterate over immediate dominators until we find a
200   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
201   // and terminators.
202   auto *IDom = DT->getNode(InsertionBlock)->getIDom();
203   while (IDom->getBlock()->isEHPad()) {
204     assert(Entry != IDom->getBlock() && "eh pad in entry block");
205     IDom = IDom->getIDom();
206   }
207 
208   return IDom->getBlock()->getTerminator()->getIterator();
209 }
210 
211 /// Given \p BBs as input, find another set of BBs which collectively
212 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
213 /// set found in \p BBs.
214 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
215                                  BasicBlock *Entry,
216                                  SetVector<BasicBlock *> &BBs) {
217   assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
218   // Nodes on the current path to the root.
219   SmallPtrSet<BasicBlock *, 8> Path;
220   // Candidates includes any block 'BB' in set 'BBs' that is not strictly
221   // dominated by any other blocks in set 'BBs', and all nodes in the path
222   // in the dominator tree from Entry to 'BB'.
223   SmallPtrSet<BasicBlock *, 16> Candidates;
224   for (auto *BB : BBs) {
225     // Ignore unreachable basic blocks.
226     if (!DT.isReachableFromEntry(BB))
227       continue;
228     Path.clear();
229     // Walk up the dominator tree until Entry or another BB in BBs
230     // is reached. Insert the nodes on the way to the Path.
231     BasicBlock *Node = BB;
232     // The "Path" is a candidate path to be added into Candidates set.
233     bool isCandidate = false;
234     do {
235       Path.insert(Node);
236       if (Node == Entry || Candidates.count(Node)) {
237         isCandidate = true;
238         break;
239       }
240       assert(DT.getNode(Node)->getIDom() &&
241              "Entry doens't dominate current Node");
242       Node = DT.getNode(Node)->getIDom()->getBlock();
243     } while (!BBs.count(Node));
244 
245     // If isCandidate is false, Node is another Block in BBs dominating
246     // current 'BB'. Drop the nodes on the Path.
247     if (!isCandidate)
248       continue;
249 
250     // Add nodes on the Path into Candidates.
251     Candidates.insert(Path.begin(), Path.end());
252   }
253 
254   // Sort the nodes in Candidates in top-down order and save the nodes
255   // in Orders.
256   unsigned Idx = 0;
257   SmallVector<BasicBlock *, 16> Orders;
258   Orders.push_back(Entry);
259   while (Idx != Orders.size()) {
260     BasicBlock *Node = Orders[Idx++];
261     for (auto *ChildDomNode : DT.getNode(Node)->children()) {
262       if (Candidates.count(ChildDomNode->getBlock()))
263         Orders.push_back(ChildDomNode->getBlock());
264     }
265   }
266 
267   // Visit Orders in bottom-up order.
268   using InsertPtsCostPair =
269       std::pair<SetVector<BasicBlock *>, BlockFrequency>;
270 
271   // InsertPtsMap is a map from a BB to the best insertion points for the
272   // subtree of BB (subtree not including the BB itself).
273   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
274   InsertPtsMap.reserve(Orders.size() + 1);
275   for (BasicBlock *Node : llvm::reverse(Orders)) {
276     bool NodeInBBs = BBs.count(Node);
277     auto &InsertPts = InsertPtsMap[Node].first;
278     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
279 
280     // Return the optimal insert points in BBs.
281     if (Node == Entry) {
282       BBs.clear();
283       if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
284           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
285         BBs.insert(Entry);
286       else
287         BBs.insert(InsertPts.begin(), InsertPts.end());
288       break;
289     }
290 
291     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
292     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293     // will update its parent's ParentInsertPts and ParentPtsFreq.
294     auto &ParentInsertPts = InsertPtsMap[Parent].first;
295     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
296     // Choose to insert in Node or in subtree of Node.
297     // Don't hoist to EHPad because we may not find a proper place to insert
298     // in EHPad.
299     // If the total frequency of InsertPts is the same as the frequency of the
300     // target Node, and InsertPts contains more than one nodes, choose hoisting
301     // to reduce code size.
302     if (NodeInBBs ||
303         (!Node->isEHPad() &&
304          (InsertPtsFreq > BFI.getBlockFreq(Node) ||
305           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
306       ParentInsertPts.insert(Node);
307       ParentPtsFreq += BFI.getBlockFreq(Node);
308     } else {
309       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
310       ParentPtsFreq += InsertPtsFreq;
311     }
312   }
313 }
314 
315 /// Find an insertion point that dominates all uses.
316 SetVector<BasicBlock::iterator>
317 ConstantHoistingPass::findConstantInsertionPoint(
318     const ConstantInfo &ConstInfo,
319     const ArrayRef<BasicBlock::iterator> MatInsertPts) const {
320   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
321   // Collect all basic blocks.
322   SetVector<BasicBlock *> BBs;
323   SetVector<BasicBlock::iterator> InsertPts;
324 
325   for (BasicBlock::iterator MatInsertPt : MatInsertPts)
326     BBs.insert(MatInsertPt->getParent());
327 
328   if (BBs.count(Entry)) {
329     InsertPts.insert(Entry->begin());
330     return InsertPts;
331   }
332 
333   if (BFI) {
334     findBestInsertionSet(*DT, *BFI, Entry, BBs);
335     for (BasicBlock *BB : BBs)
336       InsertPts.insert(BB->getFirstInsertionPt());
337     return InsertPts;
338   }
339 
340   while (BBs.size() >= 2) {
341     BasicBlock *BB, *BB1, *BB2;
342     BB1 = BBs.pop_back_val();
343     BB2 = BBs.pop_back_val();
344     BB = DT->findNearestCommonDominator(BB1, BB2);
345     if (BB == Entry) {
346       InsertPts.insert(Entry->begin());
347       return InsertPts;
348     }
349     BBs.insert(BB);
350   }
351   assert((BBs.size() == 1) && "Expected only one element.");
352   Instruction &FirstInst = (*BBs.begin())->front();
353   InsertPts.insert(findMatInsertPt(&FirstInst));
354   return InsertPts;
355 }
356 
357 /// Record constant integer ConstInt for instruction Inst at operand
358 /// index Idx.
359 ///
360 /// The operand at index Idx is not necessarily the constant integer itself. It
361 /// could also be a cast instruction or a constant expression that uses the
362 /// constant integer.
363 void ConstantHoistingPass::collectConstantCandidates(
364     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
365     ConstantInt *ConstInt) {
366   if (ConstInt->getType()->isVectorTy())
367     return;
368 
369   InstructionCost Cost;
370   // Ask the target about the cost of materializing the constant for the given
371   // instruction and operand index.
372   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
373     Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
374                                     ConstInt->getValue(), ConstInt->getType(),
375                                     TargetTransformInfo::TCK_SizeAndLatency);
376   else
377     Cost = TTI->getIntImmCostInst(
378         Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
379         TargetTransformInfo::TCK_SizeAndLatency, Inst);
380 
381   // Ignore cheap integer constants.
382   if (Cost > TargetTransformInfo::TCC_Basic) {
383     ConstCandMapType::iterator Itr;
384     bool Inserted;
385     ConstPtrUnionType Cand = ConstInt;
386     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
387     if (Inserted) {
388       ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
389       Itr->second = ConstIntCandVec.size() - 1;
390     }
391     ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
392     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
393                    << "Collect constant " << *ConstInt << " from " << *Inst
394                    << " with cost " << Cost << '\n';
395                else dbgs() << "Collect constant " << *ConstInt
396                            << " indirectly from " << *Inst << " via "
397                            << *Inst->getOperand(Idx) << " with cost " << Cost
398                            << '\n';);
399   }
400 }
401 
402 /// Record constant GEP expression for instruction Inst at operand index Idx.
403 void ConstantHoistingPass::collectConstantCandidates(
404     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
405     ConstantExpr *ConstExpr) {
406   // TODO: Handle vector GEPs
407   if (ConstExpr->getType()->isVectorTy())
408     return;
409 
410   GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
411   if (!BaseGV)
412     return;
413 
414   // Get offset from the base GV.
415   PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
416   IntegerType *OffsetTy = DL->getIndexType(*Ctx, GVPtrTy->getAddressSpace());
417   APInt Offset(DL->getTypeSizeInBits(OffsetTy), /*val*/ 0, /*isSigned*/ true);
418   auto *GEPO = cast<GEPOperator>(ConstExpr);
419 
420   // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
421   // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
422   // inbounds GEP for now -- alternatively, we could drop inbounds from the
423   // constant expression,
424   if (!GEPO->isInBounds())
425     return;
426 
427   if (!GEPO->accumulateConstantOffset(*DL, Offset))
428     return;
429 
430   if (!Offset.isIntN(32))
431     return;
432 
433   // A constant GEP expression that has a GlobalVariable as base pointer is
434   // usually lowered to a load from constant pool. Such operation is unlikely
435   // to be cheaper than compute it by <Base + Offset>, which can be lowered to
436   // an ADD instruction or folded into Load/Store instruction.
437   InstructionCost Cost =
438       TTI->getIntImmCostInst(Instruction::Add, 1, Offset, OffsetTy,
439                              TargetTransformInfo::TCK_SizeAndLatency, Inst);
440   ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
441   ConstCandMapType::iterator Itr;
442   bool Inserted;
443   ConstPtrUnionType Cand = ConstExpr;
444   std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
445   if (Inserted) {
446     ExprCandVec.push_back(ConstantCandidate(
447         ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
448         ConstExpr));
449     Itr->second = ExprCandVec.size() - 1;
450   }
451   ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
452 }
453 
454 /// Check the operand for instruction Inst at index Idx.
455 void ConstantHoistingPass::collectConstantCandidates(
456     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
457   Value *Opnd = Inst->getOperand(Idx);
458 
459   // Visit constant integers.
460   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
461     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
462     return;
463   }
464 
465   // Visit cast instructions that have constant integers.
466   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
467     // Only visit cast instructions, which have been skipped. All other
468     // instructions should have already been visited.
469     if (!CastInst->isCast())
470       return;
471 
472     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
473       // Pretend the constant is directly used by the instruction and ignore
474       // the cast instruction.
475       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
476       return;
477     }
478   }
479 
480   // Visit constant expressions that have constant integers.
481   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
482     // Handle constant gep expressions.
483     if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
484       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
485 
486     // Only visit constant cast expressions.
487     if (!ConstExpr->isCast())
488       return;
489 
490     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
491       // Pretend the constant is directly used by the instruction and ignore
492       // the constant expression.
493       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
494       return;
495     }
496   }
497 }
498 
499 /// Scan the instruction for expensive integer constants and record them
500 /// in the constant candidate vector.
501 void ConstantHoistingPass::collectConstantCandidates(
502     ConstCandMapType &ConstCandMap, Instruction *Inst) {
503   // Skip all cast instructions. They are visited indirectly later on.
504   if (Inst->isCast())
505     return;
506 
507   // Scan all operands.
508   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
509     // The cost of materializing the constants (defined in
510     // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
511     // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
512     // So it's safe for us to collect constant candidates from all
513     // IntrinsicInsts.
514     if (canReplaceOperandWithVariable(Inst, Idx)) {
515       collectConstantCandidates(ConstCandMap, Inst, Idx);
516     }
517   } // end of for all operands
518 }
519 
520 /// Collect all integer constants in the function that cannot be folded
521 /// into an instruction itself.
522 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
523   ConstCandMapType ConstCandMap;
524   for (BasicBlock &BB : Fn) {
525     // Ignore unreachable basic blocks.
526     if (!DT->isReachableFromEntry(&BB))
527       continue;
528     for (Instruction &Inst : BB)
529       if (!TTI->preferToKeepConstantsAttached(Inst, Fn))
530         collectConstantCandidates(ConstCandMap, &Inst);
531   }
532 }
533 
534 // From a list of constants, one needs to picked as the base and the other
535 // constants will be transformed into an offset from that base constant. The
536 // question is which we can pick best? For example, consider these constants
537 // and their number of uses:
538 //
539 //  Constants| 2 | 4 | 12 | 42 |
540 //  NumUses  | 3 | 2 |  8 |  7 |
541 //
542 // Selecting constant 12 because it has the most uses will generate negative
543 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
544 // offsets lead to less optimal code generation, then there might be better
545 // solutions. Suppose immediates in the range of 0..35 are most optimally
546 // supported by the architecture, then selecting constant 2 is most optimal
547 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
548 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
549 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
550 // selecting the base constant the range of the offsets is a very important
551 // factor too that we take into account here. This algorithm calculates a total
552 // costs for selecting a constant as the base and substract the costs if
553 // immediates are out of range. It has quadratic complexity, so we call this
554 // function only when we're optimising for size and there are less than 100
555 // constants, we fall back to the straightforward algorithm otherwise
556 // which does not do all the offset calculations.
557 unsigned
558 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
559                                            ConstCandVecType::iterator E,
560                                            ConstCandVecType::iterator &MaxCostItr) {
561   unsigned NumUses = 0;
562 
563   if (!OptForSize || std::distance(S,E) > 100) {
564     for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
565       NumUses += ConstCand->Uses.size();
566       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
567         MaxCostItr = ConstCand;
568     }
569     return NumUses;
570   }
571 
572   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
573   InstructionCost MaxCost = -1;
574   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
575     auto Value = ConstCand->ConstInt->getValue();
576     Type *Ty = ConstCand->ConstInt->getType();
577     InstructionCost Cost = 0;
578     NumUses += ConstCand->Uses.size();
579     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
580                       << "\n");
581 
582     for (auto User : ConstCand->Uses) {
583       unsigned Opcode = User.Inst->getOpcode();
584       unsigned OpndIdx = User.OpndIdx;
585       Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
586                                      TargetTransformInfo::TCK_SizeAndLatency);
587       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
588 
589       for (auto C2 = S; C2 != E; ++C2) {
590         APInt Diff = C2->ConstInt->getValue() - ConstCand->ConstInt->getValue();
591         const InstructionCost ImmCosts =
592             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff, Ty);
593         Cost -= ImmCosts;
594         LLVM_DEBUG(dbgs() << "Offset " << Diff << " "
595                           << "has penalty: " << ImmCosts << "\n"
596                           << "Adjusted cost: " << Cost << "\n");
597       }
598     }
599     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
600     if (Cost > MaxCost) {
601       MaxCost = Cost;
602       MaxCostItr = ConstCand;
603       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
604                         << "\n");
605     }
606   }
607   return NumUses;
608 }
609 
610 /// Find the base constant within the given range and rebase all other
611 /// constants with respect to the base constant.
612 void ConstantHoistingPass::findAndMakeBaseConstant(
613     ConstCandVecType::iterator S, ConstCandVecType::iterator E,
614     SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
615   auto MaxCostItr = S;
616   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
617 
618   // Don't hoist constants that have only one use.
619   if (NumUses <= 1)
620     return;
621 
622   ConstantInt *ConstInt = MaxCostItr->ConstInt;
623   ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
624   ConstantInfo ConstInfo;
625   ConstInfo.BaseInt = ConstInt;
626   ConstInfo.BaseExpr = ConstExpr;
627   Type *Ty = ConstInt->getType();
628 
629   // Rebase the constants with respect to the base constant.
630   for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
631     APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
632     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
633     Type *ConstTy =
634         ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
635     ConstInfo.RebasedConstants.push_back(
636       RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
637   }
638   ConstInfoVec.push_back(std::move(ConstInfo));
639 }
640 
641 /// Finds and combines constant candidates that can be easily
642 /// rematerialized with an add from a common base constant.
643 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
644   // If BaseGV is nullptr, find base among candidate constant integers;
645   // Otherwise find base among constant GEPs that share the same BaseGV.
646   ConstCandVecType &ConstCandVec = BaseGV ?
647       ConstGEPCandMap[BaseGV] : ConstIntCandVec;
648   ConstInfoVecType &ConstInfoVec = BaseGV ?
649       ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
650 
651   // Sort the constants by value and type. This invalidates the mapping!
652   llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
653                                      const ConstantCandidate &RHS) {
654     if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
655       return LHS.ConstInt->getBitWidth() < RHS.ConstInt->getBitWidth();
656     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
657   });
658 
659   // Simple linear scan through the sorted constant candidate vector for viable
660   // merge candidates.
661   auto MinValItr = ConstCandVec.begin();
662   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
663        CC != E; ++CC) {
664     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
665       Type *MemUseValTy = nullptr;
666       for (auto &U : CC->Uses) {
667         auto *UI = U.Inst;
668         if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
669           MemUseValTy = LI->getType();
670           break;
671         } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
672           // Make sure the constant is used as pointer operand of the StoreInst.
673           if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
674             MemUseValTy = SI->getValueOperand()->getType();
675             break;
676           }
677         }
678       }
679 
680       // Check if the constant is in range of an add with immediate.
681       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
682       if ((Diff.getBitWidth() <= 64) &&
683           TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
684           // Check if Diff can be used as offset in addressing mode of the user
685           // memory instruction.
686           (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
687            /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
688            /*HasBaseReg*/true, /*Scale*/0)))
689         continue;
690     }
691     // We either have now a different constant type or the constant is not in
692     // range of an add with immediate anymore.
693     findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
694     // Start a new base constant search.
695     MinValItr = CC;
696   }
697   // Finalize the last base constant search.
698   findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
699 }
700 
701 /// Updates the operand at Idx in instruction Inst with the result of
702 ///        instruction Mat. If the instruction is a PHI node then special
703 ///        handling for duplicate values from the same incoming basic block is
704 ///        required.
705 /// \return The update will always succeed, but the return value indicated if
706 ///         Mat was used for the update or not.
707 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
708   if (auto PHI = dyn_cast<PHINode>(Inst)) {
709     // Check if any previous operand of the PHI node has the same incoming basic
710     // block. This is a very odd case that happens when the incoming basic block
711     // has a switch statement. In this case use the same value as the previous
712     // operand(s), otherwise we will fail verification due to different values.
713     // The values are actually the same, but the variable names are different
714     // and the verifier doesn't like that.
715     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
716     for (unsigned i = 0; i < Idx; ++i) {
717       if (PHI->getIncomingBlock(i) == IncomingBB) {
718         Value *IncomingVal = PHI->getIncomingValue(i);
719         Inst->setOperand(Idx, IncomingVal);
720         return false;
721       }
722     }
723   }
724 
725   Inst->setOperand(Idx, Mat);
726   return true;
727 }
728 
729 /// Emit materialization code for all rebased constants and update their
730 /// users.
731 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
732                                              UserAdjustment *Adj) {
733   Instruction *Mat = Base;
734 
735   // The same offset can be dereferenced to different types in nested struct.
736   if (!Adj->Offset && Adj->Ty && Adj->Ty != Base->getType())
737     Adj->Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
738 
739   if (Adj->Offset) {
740     if (Adj->Ty) {
741       // Constant being rebased is a ConstantExpr.
742       Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Adj->Offset,
743                                       "mat_gep", Adj->MatInsertPt);
744       // Hide it behind a bitcast.
745       Mat = new BitCastInst(Mat, Adj->Ty, "mat_bitcast",
746                             Adj->MatInsertPt->getIterator());
747     } else
748       // Constant being rebased is a ConstantInt.
749       Mat =
750           BinaryOperator::Create(Instruction::Add, Base, Adj->Offset,
751                                  "const_mat", Adj->MatInsertPt->getIterator());
752 
753     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
754                       << " + " << *Adj->Offset << ") in BB "
755                       << Mat->getParent()->getName() << '\n'
756                       << *Mat << '\n');
757     Mat->setDebugLoc(Adj->User.Inst->getDebugLoc());
758   }
759   Value *Opnd = Adj->User.Inst->getOperand(Adj->User.OpndIdx);
760 
761   // Visit constant integer.
762   if (isa<ConstantInt>(Opnd)) {
763     LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
764     if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat) && Adj->Offset)
765       Mat->eraseFromParent();
766     LLVM_DEBUG(dbgs() << "To    : " << *Adj->User.Inst << '\n');
767     return;
768   }
769 
770   // Visit cast instruction.
771   if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
772     assert(CastInst->isCast() && "Expected an cast instruction!");
773     // Check if we already have visited this cast instruction before to avoid
774     // unnecessary cloning.
775     Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
776     if (!ClonedCastInst) {
777       ClonedCastInst = CastInst->clone();
778       ClonedCastInst->setOperand(0, Mat);
779       ClonedCastInst->insertAfter(CastInst->getIterator());
780       // Use the same debug location as the original cast instruction.
781       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
782       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
783                         << "To               : " << *ClonedCastInst << '\n');
784     }
785 
786     LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
787     updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ClonedCastInst);
788     LLVM_DEBUG(dbgs() << "To    : " << *Adj->User.Inst << '\n');
789     return;
790   }
791 
792   // Visit constant expression.
793   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
794     if (isa<GEPOperator>(ConstExpr)) {
795       // Operand is a ConstantGEP, replace it.
796       updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat);
797       return;
798     }
799 
800     // Aside from constant GEPs, only constant cast expressions are collected.
801     assert(ConstExpr->isCast() && "ConstExpr should be a cast");
802     Instruction *ConstExprInst = ConstExpr->getAsInstruction();
803     ConstExprInst->insertBefore(Adj->MatInsertPt);
804     ConstExprInst->setOperand(0, Mat);
805 
806     // Use the same debug location as the instruction we are about to update.
807     ConstExprInst->setDebugLoc(Adj->User.Inst->getDebugLoc());
808 
809     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
810                       << "From              : " << *ConstExpr << '\n');
811     LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
812     if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ConstExprInst)) {
813       ConstExprInst->eraseFromParent();
814       if (Adj->Offset)
815         Mat->eraseFromParent();
816     }
817     LLVM_DEBUG(dbgs() << "To    : " << *Adj->User.Inst << '\n');
818     return;
819   }
820 }
821 
822 /// Hoist and hide the base constant behind a bitcast and emit
823 /// materialization code for derived constants.
824 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
825   bool MadeChange = false;
826   SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
827       BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
828   for (const consthoist::ConstantInfo &ConstInfo : ConstInfoVec) {
829     SmallVector<BasicBlock::iterator, 4> MatInsertPts;
830     collectMatInsertPts(ConstInfo.RebasedConstants, MatInsertPts);
831     SetVector<BasicBlock::iterator> IPSet =
832         findConstantInsertionPoint(ConstInfo, MatInsertPts);
833     // We can have an empty set if the function contains unreachable blocks.
834     if (IPSet.empty())
835       continue;
836 
837     unsigned UsesNum = 0;
838     unsigned ReBasesNum = 0;
839     unsigned NotRebasedNum = 0;
840     for (const BasicBlock::iterator &IP : IPSet) {
841       // First, collect constants depending on this IP of the base.
842       UsesNum = 0;
843       SmallVector<UserAdjustment, 4> ToBeRebased;
844       unsigned MatCtr = 0;
845       for (auto const &RCI : ConstInfo.RebasedConstants) {
846         UsesNum += RCI.Uses.size();
847         for (auto const &U : RCI.Uses) {
848           const BasicBlock::iterator &MatInsertPt = MatInsertPts[MatCtr++];
849           BasicBlock *OrigMatInsertBB = MatInsertPt->getParent();
850           // If Base constant is to be inserted in multiple places,
851           // generate rebase for U using the Base dominating U.
852           if (IPSet.size() == 1 ||
853               DT->dominates(IP->getParent(), OrigMatInsertBB))
854             ToBeRebased.emplace_back(RCI.Offset, RCI.Ty, MatInsertPt, U);
855         }
856       }
857 
858       // If only few constants depend on this IP of base, skip rebasing,
859       // assuming the base and the rebased have the same materialization cost.
860       if (ToBeRebased.size() < MinNumOfDependentToRebase) {
861         NotRebasedNum += ToBeRebased.size();
862         continue;
863       }
864 
865       // Emit an instance of the base at this IP.
866       Instruction *Base = nullptr;
867       // Hoist and hide the base constant behind a bitcast.
868       if (ConstInfo.BaseExpr) {
869         assert(BaseGV && "A base constant expression must have an base GV");
870         Type *Ty = ConstInfo.BaseExpr->getType();
871         Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
872       } else {
873         IntegerType *Ty = ConstInfo.BaseInt->getIntegerType();
874         Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
875       }
876 
877       Base->setDebugLoc(IP->getDebugLoc());
878 
879       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
880                         << ") to BB " << IP->getParent()->getName() << '\n'
881                         << *Base << '\n');
882 
883       // Emit materialization code for rebased constants depending on this IP.
884       for (UserAdjustment &R : ToBeRebased) {
885         emitBaseConstants(Base, &R);
886         ReBasesNum++;
887         // Use the same debug location as the last user of the constant.
888         Base->setDebugLoc(DILocation::getMergedLocation(
889             Base->getDebugLoc(), R.User.Inst->getDebugLoc()));
890       }
891       assert(!Base->use_empty() && "The use list is empty!?");
892       assert(isa<Instruction>(Base->user_back()) &&
893              "All uses should be instructions.");
894     }
895     (void)UsesNum;
896     (void)ReBasesNum;
897     (void)NotRebasedNum;
898     // Expect all uses are rebased after rebase is done.
899     assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
900            "Not all uses are rebased");
901 
902     NumConstantsHoisted++;
903 
904     // Base constant is also included in ConstInfo.RebasedConstants, so
905     // deduct 1 from ConstInfo.RebasedConstants.size().
906     NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
907 
908     MadeChange = true;
909   }
910   return MadeChange;
911 }
912 
913 /// Check all cast instructions we made a copy of and remove them if they
914 /// have no more users.
915 void ConstantHoistingPass::deleteDeadCastInst() const {
916   for (auto const &I : ClonedCastMap)
917     if (I.first->use_empty())
918       I.first->eraseFromParent();
919 }
920 
921 /// Optimize expensive integer constants in the given function.
922 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
923                                    DominatorTree &DT, BlockFrequencyInfo *BFI,
924                                    BasicBlock &Entry, ProfileSummaryInfo *PSI) {
925   this->TTI = &TTI;
926   this->DT = &DT;
927   this->BFI = BFI;
928   this->DL = &Fn.getDataLayout();
929   this->Ctx = &Fn.getContext();
930   this->Entry = &Entry;
931   this->PSI = PSI;
932   this->OptForSize = llvm::shouldOptimizeForSize(Entry.getParent(), PSI, BFI,
933                                                  PGSOQueryType::IRPass);
934 
935   // Collect all constant candidates.
936   collectConstantCandidates(Fn);
937 
938   // Combine constants that can be easily materialized with an add from a common
939   // base constant.
940   if (!ConstIntCandVec.empty())
941     findBaseConstants(nullptr);
942   for (const auto &MapEntry : ConstGEPCandMap)
943     if (!MapEntry.second.empty())
944       findBaseConstants(MapEntry.first);
945 
946   // Finally hoist the base constant and emit materialization code for dependent
947   // constants.
948   bool MadeChange = false;
949   if (!ConstIntInfoVec.empty())
950     MadeChange = emitBaseConstants(nullptr);
951   for (const auto &MapEntry : ConstGEPInfoMap)
952     if (!MapEntry.second.empty())
953       MadeChange |= emitBaseConstants(MapEntry.first);
954 
955 
956   // Cleanup dead instructions.
957   deleteDeadCastInst();
958 
959   cleanup();
960 
961   return MadeChange;
962 }
963 
964 PreservedAnalyses ConstantHoistingPass::run(Function &F,
965                                             FunctionAnalysisManager &AM) {
966   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
967   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
968   auto BFI = ConstHoistWithBlockFrequency
969                  ? &AM.getResult<BlockFrequencyAnalysis>(F)
970                  : nullptr;
971   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
972   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
973   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
974     return PreservedAnalyses::all();
975 
976   PreservedAnalyses PA;
977   PA.preserveSet<CFGAnalyses>();
978   return PA;
979 }
980