xref: /llvm-project/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp (revision 6292a808b3524d9ba6f4ce55bc5b9e547b088dd8)
1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
10 //
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
13 //
14 // The instrumentation phase is quite simple:
15 //   - Insert calls to run-time library before every memory access.
16 //      - Optimizations may apply to avoid instrumenting some of the accesses.
17 //   - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
45 #include "llvm/Transforms/Utils/Instrumentation.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ModuleUtils.h"
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "tsan"
52 
53 static cl::opt<bool> ClInstrumentMemoryAccesses(
54     "tsan-instrument-memory-accesses", cl::init(true),
55     cl::desc("Instrument memory accesses"), cl::Hidden);
56 static cl::opt<bool>
57     ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true),
58                               cl::desc("Instrument function entry and exit"),
59                               cl::Hidden);
60 static cl::opt<bool> ClHandleCxxExceptions(
61     "tsan-handle-cxx-exceptions", cl::init(true),
62     cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
63     cl::Hidden);
64 static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics",
65                                          cl::init(true),
66                                          cl::desc("Instrument atomics"),
67                                          cl::Hidden);
68 static cl::opt<bool> ClInstrumentMemIntrinsics(
69     "tsan-instrument-memintrinsics", cl::init(true),
70     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
71 static cl::opt<bool> ClDistinguishVolatile(
72     "tsan-distinguish-volatile", cl::init(false),
73     cl::desc("Emit special instrumentation for accesses to volatiles"),
74     cl::Hidden);
75 static cl::opt<bool> ClInstrumentReadBeforeWrite(
76     "tsan-instrument-read-before-write", cl::init(false),
77     cl::desc("Do not eliminate read instrumentation for read-before-writes"),
78     cl::Hidden);
79 static cl::opt<bool> ClCompoundReadBeforeWrite(
80     "tsan-compound-read-before-write", cl::init(false),
81     cl::desc("Emit special compound instrumentation for reads-before-writes"),
82     cl::Hidden);
83 
84 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
85 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
86 STATISTIC(NumOmittedReadsBeforeWrite,
87           "Number of reads ignored due to following writes");
88 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
89 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
90 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
91 STATISTIC(NumOmittedReadsFromConstantGlobals,
92           "Number of reads from constant globals");
93 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
94 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
95 
96 const char kTsanModuleCtorName[] = "tsan.module_ctor";
97 const char kTsanInitName[] = "__tsan_init";
98 
99 namespace {
100 
101 /// ThreadSanitizer: instrument the code in module to find races.
102 ///
103 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
104 /// declarations into the module if they don't exist already. Instantiating
105 /// ensures the __tsan_init function is in the list of global constructors for
106 /// the module.
107 struct ThreadSanitizer {
108   ThreadSanitizer() {
109     // Check options and warn user.
110     if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) {
111       errs()
112           << "warning: Option -tsan-compound-read-before-write has no effect "
113              "when -tsan-instrument-read-before-write is set.\n";
114     }
115   }
116 
117   bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
118 
119 private:
120   // Internal Instruction wrapper that contains more information about the
121   // Instruction from prior analysis.
122   struct InstructionInfo {
123     // Instrumentation emitted for this instruction is for a compounded set of
124     // read and write operations in the same basic block.
125     static constexpr unsigned kCompoundRW = (1U << 0);
126 
127     explicit InstructionInfo(Instruction *Inst) : Inst(Inst) {}
128 
129     Instruction *Inst;
130     unsigned Flags = 0;
131   };
132 
133   void initialize(Module &M, const TargetLibraryInfo &TLI);
134   bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL);
135   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
136   bool instrumentMemIntrinsic(Instruction *I);
137   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
138                                       SmallVectorImpl<InstructionInfo> &All,
139                                       const DataLayout &DL);
140   bool addrPointsToConstantData(Value *Addr);
141   int getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr, const DataLayout &DL);
142   void InsertRuntimeIgnores(Function &F);
143 
144   Type *IntptrTy;
145   FunctionCallee TsanFuncEntry;
146   FunctionCallee TsanFuncExit;
147   FunctionCallee TsanIgnoreBegin;
148   FunctionCallee TsanIgnoreEnd;
149   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
150   static const size_t kNumberOfAccessSizes = 5;
151   FunctionCallee TsanRead[kNumberOfAccessSizes];
152   FunctionCallee TsanWrite[kNumberOfAccessSizes];
153   FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
154   FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
155   FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
156   FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
157   FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
158   FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
159   FunctionCallee TsanCompoundRW[kNumberOfAccessSizes];
160   FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes];
161   FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
162   FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
163   FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
164                               [kNumberOfAccessSizes];
165   FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
166   FunctionCallee TsanAtomicThreadFence;
167   FunctionCallee TsanAtomicSignalFence;
168   FunctionCallee TsanVptrUpdate;
169   FunctionCallee TsanVptrLoad;
170   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
171 };
172 
173 void insertModuleCtor(Module &M) {
174   getOrCreateSanitizerCtorAndInitFunctions(
175       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
176       /*InitArgs=*/{},
177       // This callback is invoked when the functions are created the first
178       // time. Hook them into the global ctors list in that case:
179       [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
180 }
181 }  // namespace
182 
183 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
184                                            FunctionAnalysisManager &FAM) {
185   ThreadSanitizer TSan;
186   if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
187     return PreservedAnalyses::none();
188   return PreservedAnalyses::all();
189 }
190 
191 PreservedAnalyses ModuleThreadSanitizerPass::run(Module &M,
192                                                  ModuleAnalysisManager &MAM) {
193   // Return early if nosanitize_thread module flag is present for the module.
194   if (checkIfAlreadyInstrumented(M, "nosanitize_thread"))
195     return PreservedAnalyses::all();
196   insertModuleCtor(M);
197   return PreservedAnalyses::none();
198 }
199 void ThreadSanitizer::initialize(Module &M, const TargetLibraryInfo &TLI) {
200   const DataLayout &DL = M.getDataLayout();
201   LLVMContext &Ctx = M.getContext();
202   IntptrTy = DL.getIntPtrType(Ctx);
203 
204   IRBuilder<> IRB(Ctx);
205   AttributeList Attr;
206   Attr = Attr.addFnAttribute(Ctx, Attribute::NoUnwind);
207   // Initialize the callbacks.
208   TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
209                                         IRB.getVoidTy(), IRB.getPtrTy());
210   TsanFuncExit =
211       M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
212   TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
213                                           IRB.getVoidTy());
214   TsanIgnoreEnd =
215       M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
216   IntegerType *OrdTy = IRB.getInt32Ty();
217   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
218     const unsigned ByteSize = 1U << i;
219     const unsigned BitSize = ByteSize * 8;
220     std::string ByteSizeStr = utostr(ByteSize);
221     std::string BitSizeStr = utostr(BitSize);
222     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
223     TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
224                                         IRB.getPtrTy());
225 
226     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
227     TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
228                                          IRB.getPtrTy());
229 
230     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
231     TsanUnalignedRead[i] = M.getOrInsertFunction(
232         UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
233 
234     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
235     TsanUnalignedWrite[i] = M.getOrInsertFunction(
236         UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
237 
238     SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
239     TsanVolatileRead[i] = M.getOrInsertFunction(
240         VolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
241 
242     SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
243     TsanVolatileWrite[i] = M.getOrInsertFunction(
244         VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
245 
246     SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
247                                               ByteSizeStr);
248     TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
249         UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
250 
251     SmallString<64> UnalignedVolatileWriteName(
252         "__tsan_unaligned_volatile_write" + ByteSizeStr);
253     TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
254         UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
255 
256     SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr);
257     TsanCompoundRW[i] = M.getOrInsertFunction(
258         CompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
259 
260     SmallString<64> UnalignedCompoundRWName("__tsan_unaligned_read_write" +
261                                             ByteSizeStr);
262     TsanUnalignedCompoundRW[i] = M.getOrInsertFunction(
263         UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getPtrTy());
264 
265     Type *Ty = Type::getIntNTy(Ctx, BitSize);
266     Type *PtrTy = PointerType::get(Ctx, 0);
267     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
268     TsanAtomicLoad[i] =
269         M.getOrInsertFunction(AtomicLoadName,
270                               TLI.getAttrList(&Ctx, {1}, /*Signed=*/true,
271                                               /*Ret=*/BitSize <= 32, Attr),
272                               Ty, PtrTy, OrdTy);
273 
274     // Args of type Ty need extension only when BitSize is 32 or less.
275     using Idxs = std::vector<unsigned>;
276     Idxs Idxs2Or12   ((BitSize <= 32) ? Idxs({1, 2})       : Idxs({2}));
277     Idxs Idxs34Or1234((BitSize <= 32) ? Idxs({1, 2, 3, 4}) : Idxs({3, 4}));
278     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
279     TsanAtomicStore[i] = M.getOrInsertFunction(
280         AtomicStoreName,
281         TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true, /*Ret=*/false, Attr),
282         IRB.getVoidTy(), PtrTy, Ty, OrdTy);
283 
284     for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
285          Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
286       TsanAtomicRMW[Op][i] = nullptr;
287       const char *NamePart = nullptr;
288       if (Op == AtomicRMWInst::Xchg)
289         NamePart = "_exchange";
290       else if (Op == AtomicRMWInst::Add)
291         NamePart = "_fetch_add";
292       else if (Op == AtomicRMWInst::Sub)
293         NamePart = "_fetch_sub";
294       else if (Op == AtomicRMWInst::And)
295         NamePart = "_fetch_and";
296       else if (Op == AtomicRMWInst::Or)
297         NamePart = "_fetch_or";
298       else if (Op == AtomicRMWInst::Xor)
299         NamePart = "_fetch_xor";
300       else if (Op == AtomicRMWInst::Nand)
301         NamePart = "_fetch_nand";
302       else
303         continue;
304       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
305       TsanAtomicRMW[Op][i] = M.getOrInsertFunction(
306           RMWName,
307           TLI.getAttrList(&Ctx, Idxs2Or12, /*Signed=*/true,
308                           /*Ret=*/BitSize <= 32, Attr),
309           Ty, PtrTy, Ty, OrdTy);
310     }
311 
312     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
313                                   "_compare_exchange_val");
314     TsanAtomicCAS[i] = M.getOrInsertFunction(
315         AtomicCASName,
316         TLI.getAttrList(&Ctx, Idxs34Or1234, /*Signed=*/true,
317                         /*Ret=*/BitSize <= 32, Attr),
318         Ty, PtrTy, Ty, Ty, OrdTy, OrdTy);
319   }
320   TsanVptrUpdate =
321       M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
322                             IRB.getPtrTy(), IRB.getPtrTy());
323   TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
324                                        IRB.getVoidTy(), IRB.getPtrTy());
325   TsanAtomicThreadFence = M.getOrInsertFunction(
326       "__tsan_atomic_thread_fence",
327       TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
328       IRB.getVoidTy(), OrdTy);
329 
330   TsanAtomicSignalFence = M.getOrInsertFunction(
331       "__tsan_atomic_signal_fence",
332       TLI.getAttrList(&Ctx, {0}, /*Signed=*/true, /*Ret=*/false, Attr),
333       IRB.getVoidTy(), OrdTy);
334 
335   MemmoveFn =
336       M.getOrInsertFunction("__tsan_memmove", Attr, IRB.getPtrTy(),
337                             IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
338   MemcpyFn =
339       M.getOrInsertFunction("__tsan_memcpy", Attr, IRB.getPtrTy(),
340                             IRB.getPtrTy(), IRB.getPtrTy(), IntptrTy);
341   MemsetFn = M.getOrInsertFunction(
342       "__tsan_memset",
343       TLI.getAttrList(&Ctx, {1}, /*Signed=*/true, /*Ret=*/false, Attr),
344       IRB.getPtrTy(), IRB.getPtrTy(), IRB.getInt32Ty(), IntptrTy);
345 }
346 
347 static bool isVtableAccess(Instruction *I) {
348   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
349     return Tag->isTBAAVtableAccess();
350   return false;
351 }
352 
353 // Do not instrument known races/"benign races" that come from compiler
354 // instrumentatin. The user has no way of suppressing them.
355 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
356   // Peel off GEPs and BitCasts.
357   Addr = Addr->stripInBoundsOffsets();
358 
359   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
360     if (GV->hasSection()) {
361       StringRef SectionName = GV->getSection();
362       // Check if the global is in the PGO counters section.
363       auto OF = Triple(M->getTargetTriple()).getObjectFormat();
364       if (SectionName.ends_with(
365               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
366         return false;
367     }
368   }
369 
370   // Do not instrument accesses from different address spaces; we cannot deal
371   // with them.
372   if (Addr) {
373     Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
374     if (PtrTy->getPointerAddressSpace() != 0)
375       return false;
376   }
377 
378   return true;
379 }
380 
381 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
382   // If this is a GEP, just analyze its pointer operand.
383   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
384     Addr = GEP->getPointerOperand();
385 
386   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
387     if (GV->isConstant()) {
388       // Reads from constant globals can not race with any writes.
389       NumOmittedReadsFromConstantGlobals++;
390       return true;
391     }
392   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
393     if (isVtableAccess(L)) {
394       // Reads from a vtable pointer can not race with any writes.
395       NumOmittedReadsFromVtable++;
396       return true;
397     }
398   }
399   return false;
400 }
401 
402 // Instrumenting some of the accesses may be proven redundant.
403 // Currently handled:
404 //  - read-before-write (within same BB, no calls between)
405 //  - not captured variables
406 //
407 // We do not handle some of the patterns that should not survive
408 // after the classic compiler optimizations.
409 // E.g. two reads from the same temp should be eliminated by CSE,
410 // two writes should be eliminated by DSE, etc.
411 //
412 // 'Local' is a vector of insns within the same BB (no calls between).
413 // 'All' is a vector of insns that will be instrumented.
414 void ThreadSanitizer::chooseInstructionsToInstrument(
415     SmallVectorImpl<Instruction *> &Local,
416     SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) {
417   DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All
418   // Iterate from the end.
419   for (Instruction *I : reverse(Local)) {
420     const bool IsWrite = isa<StoreInst>(*I);
421     Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand()
422                           : cast<LoadInst>(I)->getPointerOperand();
423 
424     if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
425       continue;
426 
427     if (!IsWrite) {
428       const auto WriteEntry = WriteTargets.find(Addr);
429       if (!ClInstrumentReadBeforeWrite && WriteEntry != WriteTargets.end()) {
430         auto &WI = All[WriteEntry->second];
431         // If we distinguish volatile accesses and if either the read or write
432         // is volatile, do not omit any instrumentation.
433         const bool AnyVolatile =
434             ClDistinguishVolatile && (cast<LoadInst>(I)->isVolatile() ||
435                                       cast<StoreInst>(WI.Inst)->isVolatile());
436         if (!AnyVolatile) {
437           // We will write to this temp, so no reason to analyze the read.
438           // Mark the write instruction as compound.
439           WI.Flags |= InstructionInfo::kCompoundRW;
440           NumOmittedReadsBeforeWrite++;
441           continue;
442         }
443       }
444 
445       if (addrPointsToConstantData(Addr)) {
446         // Addr points to some constant data -- it can not race with any writes.
447         continue;
448       }
449     }
450 
451     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
452         !PointerMayBeCaptured(Addr, true, true)) {
453       // The variable is addressable but not captured, so it cannot be
454       // referenced from a different thread and participate in a data race
455       // (see llvm/Analysis/CaptureTracking.h for details).
456       NumOmittedNonCaptured++;
457       continue;
458     }
459 
460     // Instrument this instruction.
461     All.emplace_back(I);
462     if (IsWrite) {
463       // For read-before-write and compound instrumentation we only need one
464       // write target, and we can override any previous entry if it exists.
465       WriteTargets[Addr] = All.size() - 1;
466     }
467   }
468   Local.clear();
469 }
470 
471 static bool isTsanAtomic(const Instruction *I) {
472   // TODO: Ask TTI whether synchronization scope is between threads.
473   auto SSID = getAtomicSyncScopeID(I);
474   if (!SSID)
475     return false;
476   if (isa<LoadInst>(I) || isa<StoreInst>(I))
477     return *SSID != SyncScope::SingleThread;
478   return true;
479 }
480 
481 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
482   InstrumentationIRBuilder IRB(&F.getEntryBlock(),
483                                F.getEntryBlock().getFirstNonPHIIt());
484   IRB.CreateCall(TsanIgnoreBegin);
485   EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
486   while (IRBuilder<> *AtExit = EE.Next()) {
487     InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
488     AtExit->CreateCall(TsanIgnoreEnd);
489   }
490 }
491 
492 bool ThreadSanitizer::sanitizeFunction(Function &F,
493                                        const TargetLibraryInfo &TLI) {
494   // This is required to prevent instrumenting call to __tsan_init from within
495   // the module constructor.
496   if (F.getName() == kTsanModuleCtorName)
497     return false;
498   // Naked functions can not have prologue/epilogue
499   // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
500   // all.
501   if (F.hasFnAttribute(Attribute::Naked))
502     return false;
503 
504   // __attribute__(disable_sanitizer_instrumentation) prevents all kinds of
505   // instrumentation.
506   if (F.hasFnAttribute(Attribute::DisableSanitizerInstrumentation))
507     return false;
508 
509   initialize(*F.getParent(), TLI);
510   SmallVector<InstructionInfo, 8> AllLoadsAndStores;
511   SmallVector<Instruction*, 8> LocalLoadsAndStores;
512   SmallVector<Instruction*, 8> AtomicAccesses;
513   SmallVector<Instruction*, 8> MemIntrinCalls;
514   bool Res = false;
515   bool HasCalls = false;
516   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
517   const DataLayout &DL = F.getDataLayout();
518 
519   // Traverse all instructions, collect loads/stores/returns, check for calls.
520   for (auto &BB : F) {
521     for (auto &Inst : BB) {
522       // Skip instructions inserted by another instrumentation.
523       if (Inst.hasMetadata(LLVMContext::MD_nosanitize))
524         continue;
525       if (isTsanAtomic(&Inst))
526         AtomicAccesses.push_back(&Inst);
527       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
528         LocalLoadsAndStores.push_back(&Inst);
529       else if ((isa<CallInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) ||
530                isa<InvokeInst>(Inst)) {
531         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
532           maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
533         if (isa<MemIntrinsic>(Inst))
534           MemIntrinCalls.push_back(&Inst);
535         HasCalls = true;
536         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
537                                        DL);
538       }
539     }
540     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
541   }
542 
543   // We have collected all loads and stores.
544   // FIXME: many of these accesses do not need to be checked for races
545   // (e.g. variables that do not escape, etc).
546 
547   // Instrument memory accesses only if we want to report bugs in the function.
548   if (ClInstrumentMemoryAccesses && SanitizeFunction)
549     for (const auto &II : AllLoadsAndStores) {
550       Res |= instrumentLoadOrStore(II, DL);
551     }
552 
553   // Instrument atomic memory accesses in any case (they can be used to
554   // implement synchronization).
555   if (ClInstrumentAtomics)
556     for (auto *Inst : AtomicAccesses) {
557       Res |= instrumentAtomic(Inst, DL);
558     }
559 
560   if (ClInstrumentMemIntrinsics && SanitizeFunction)
561     for (auto *Inst : MemIntrinCalls) {
562       Res |= instrumentMemIntrinsic(Inst);
563     }
564 
565   if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
566     assert(!F.hasFnAttribute(Attribute::SanitizeThread));
567     if (HasCalls)
568       InsertRuntimeIgnores(F);
569   }
570 
571   // Instrument function entry/exit points if there were instrumented accesses.
572   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
573     InstrumentationIRBuilder IRB(&F.getEntryBlock(),
574                                  F.getEntryBlock().getFirstNonPHIIt());
575     Value *ReturnAddress =
576         IRB.CreateIntrinsic(Intrinsic::returnaddress, {}, IRB.getInt32(0));
577     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
578 
579     EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
580     while (IRBuilder<> *AtExit = EE.Next()) {
581       InstrumentationIRBuilder::ensureDebugInfo(*AtExit, F);
582       AtExit->CreateCall(TsanFuncExit, {});
583     }
584     Res = true;
585   }
586   return Res;
587 }
588 
589 bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II,
590                                             const DataLayout &DL) {
591   InstrumentationIRBuilder IRB(II.Inst);
592   const bool IsWrite = isa<StoreInst>(*II.Inst);
593   Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand()
594                         : cast<LoadInst>(II.Inst)->getPointerOperand();
595   Type *OrigTy = getLoadStoreType(II.Inst);
596 
597   // swifterror memory addresses are mem2reg promoted by instruction selection.
598   // As such they cannot have regular uses like an instrumentation function and
599   // it makes no sense to track them as memory.
600   if (Addr->isSwiftError())
601     return false;
602 
603   int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
604   if (Idx < 0)
605     return false;
606   if (IsWrite && isVtableAccess(II.Inst)) {
607     LLVM_DEBUG(dbgs() << "  VPTR : " << *II.Inst << "\n");
608     Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand();
609     // StoredValue may be a vector type if we are storing several vptrs at once.
610     // In this case, just take the first element of the vector since this is
611     // enough to find vptr races.
612     if (isa<VectorType>(StoredValue->getType()))
613       StoredValue = IRB.CreateExtractElement(
614           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
615     if (StoredValue->getType()->isIntegerTy())
616       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getPtrTy());
617     // Call TsanVptrUpdate.
618     IRB.CreateCall(TsanVptrUpdate, {Addr, StoredValue});
619     NumInstrumentedVtableWrites++;
620     return true;
621   }
622   if (!IsWrite && isVtableAccess(II.Inst)) {
623     IRB.CreateCall(TsanVptrLoad, Addr);
624     NumInstrumentedVtableReads++;
625     return true;
626   }
627 
628   const Align Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlign()
629                                   : cast<LoadInst>(II.Inst)->getAlign();
630   const bool IsCompoundRW =
631       ClCompoundReadBeforeWrite && (II.Flags & InstructionInfo::kCompoundRW);
632   const bool IsVolatile = ClDistinguishVolatile &&
633                           (IsWrite ? cast<StoreInst>(II.Inst)->isVolatile()
634                                    : cast<LoadInst>(II.Inst)->isVolatile());
635   assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!");
636 
637   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
638   FunctionCallee OnAccessFunc = nullptr;
639   if (Alignment >= Align(8) || (Alignment.value() % (TypeSize / 8)) == 0) {
640     if (IsCompoundRW)
641       OnAccessFunc = TsanCompoundRW[Idx];
642     else if (IsVolatile)
643       OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
644     else
645       OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
646   } else {
647     if (IsCompoundRW)
648       OnAccessFunc = TsanUnalignedCompoundRW[Idx];
649     else if (IsVolatile)
650       OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
651                              : TsanUnalignedVolatileRead[Idx];
652     else
653       OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
654   }
655   IRB.CreateCall(OnAccessFunc, Addr);
656   if (IsCompoundRW || IsWrite)
657     NumInstrumentedWrites++;
658   if (IsCompoundRW || !IsWrite)
659     NumInstrumentedReads++;
660   return true;
661 }
662 
663 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
664   uint32_t v = 0;
665   switch (ord) {
666     case AtomicOrdering::NotAtomic:
667       llvm_unreachable("unexpected atomic ordering!");
668     case AtomicOrdering::Unordered:              [[fallthrough]];
669     case AtomicOrdering::Monotonic:              v = 0; break;
670     // Not specified yet:
671     // case AtomicOrdering::Consume:                v = 1; break;
672     case AtomicOrdering::Acquire:                v = 2; break;
673     case AtomicOrdering::Release:                v = 3; break;
674     case AtomicOrdering::AcquireRelease:         v = 4; break;
675     case AtomicOrdering::SequentiallyConsistent: v = 5; break;
676   }
677   return IRB->getInt32(v);
678 }
679 
680 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
681 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
682 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
683 // instead we simply replace them with regular function calls, which are then
684 // intercepted by the run-time.
685 // Since tsan is running after everyone else, the calls should not be
686 // replaced back with intrinsics. If that becomes wrong at some point,
687 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
688 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
689   InstrumentationIRBuilder IRB(I);
690   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
691     Value *Cast1 = IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false);
692     Value *Cast2 = IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false);
693     IRB.CreateCall(
694         MemsetFn,
695         {M->getArgOperand(0),
696          Cast1,
697          Cast2});
698     I->eraseFromParent();
699   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
700     IRB.CreateCall(
701         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
702         {M->getArgOperand(0),
703          M->getArgOperand(1),
704          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
705     I->eraseFromParent();
706   }
707   return false;
708 }
709 
710 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
711 // standards.  For background see C++11 standard.  A slightly older, publicly
712 // available draft of the standard (not entirely up-to-date, but close enough
713 // for casual browsing) is available here:
714 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
715 // The following page contains more background information:
716 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
717 
718 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
719   InstrumentationIRBuilder IRB(I);
720   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
721     Value *Addr = LI->getPointerOperand();
722     Type *OrigTy = LI->getType();
723     int Idx = getMemoryAccessFuncIndex(OrigTy, Addr, DL);
724     if (Idx < 0)
725       return false;
726     Value *Args[] = {Addr,
727                      createOrdering(&IRB, LI->getOrdering())};
728     Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
729     Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
730     I->replaceAllUsesWith(Cast);
731   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
732     Value *Addr = SI->getPointerOperand();
733     int Idx =
734         getMemoryAccessFuncIndex(SI->getValueOperand()->getType(), Addr, DL);
735     if (Idx < 0)
736       return false;
737     const unsigned ByteSize = 1U << Idx;
738     const unsigned BitSize = ByteSize * 8;
739     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
740     Value *Args[] = {Addr,
741                      IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
742                      createOrdering(&IRB, SI->getOrdering())};
743     IRB.CreateCall(TsanAtomicStore[Idx], Args);
744     SI->eraseFromParent();
745   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
746     Value *Addr = RMWI->getPointerOperand();
747     int Idx =
748         getMemoryAccessFuncIndex(RMWI->getValOperand()->getType(), Addr, DL);
749     if (Idx < 0)
750       return false;
751     FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
752     if (!F)
753       return false;
754     const unsigned ByteSize = 1U << Idx;
755     const unsigned BitSize = ByteSize * 8;
756     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
757     Value *Val = RMWI->getValOperand();
758     Value *Args[] = {Addr, IRB.CreateBitOrPointerCast(Val, Ty),
759                      createOrdering(&IRB, RMWI->getOrdering())};
760     Value *C = IRB.CreateCall(F, Args);
761     I->replaceAllUsesWith(IRB.CreateBitOrPointerCast(C, Val->getType()));
762     I->eraseFromParent();
763   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
764     Value *Addr = CASI->getPointerOperand();
765     Type *OrigOldValTy = CASI->getNewValOperand()->getType();
766     int Idx = getMemoryAccessFuncIndex(OrigOldValTy, Addr, DL);
767     if (Idx < 0)
768       return false;
769     const unsigned ByteSize = 1U << Idx;
770     const unsigned BitSize = ByteSize * 8;
771     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
772     Value *CmpOperand =
773       IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
774     Value *NewOperand =
775       IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
776     Value *Args[] = {Addr,
777                      CmpOperand,
778                      NewOperand,
779                      createOrdering(&IRB, CASI->getSuccessOrdering()),
780                      createOrdering(&IRB, CASI->getFailureOrdering())};
781     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
782     Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
783     Value *OldVal = C;
784     if (Ty != OrigOldValTy) {
785       // The value is a pointer, so we need to cast the return value.
786       OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
787     }
788 
789     Value *Res =
790       IRB.CreateInsertValue(PoisonValue::get(CASI->getType()), OldVal, 0);
791     Res = IRB.CreateInsertValue(Res, Success, 1);
792 
793     I->replaceAllUsesWith(Res);
794     I->eraseFromParent();
795   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
796     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
797     FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
798                            ? TsanAtomicSignalFence
799                            : TsanAtomicThreadFence;
800     IRB.CreateCall(F, Args);
801     FI->eraseFromParent();
802   }
803   return true;
804 }
805 
806 int ThreadSanitizer::getMemoryAccessFuncIndex(Type *OrigTy, Value *Addr,
807                                               const DataLayout &DL) {
808   assert(OrigTy->isSized());
809   if (OrigTy->isScalableTy()) {
810     // FIXME: support vscale.
811     return -1;
812   }
813   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
814   if (TypeSize != 8  && TypeSize != 16 &&
815       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
816     NumAccessesWithBadSize++;
817     // Ignore all unusual sizes.
818     return -1;
819   }
820   size_t Idx = llvm::countr_zero(TypeSize / 8);
821   assert(Idx < kNumberOfAccessSizes);
822   return Idx;
823 }
824