1 //===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers instrprof_* intrinsics emitted by an instrumentor. 10 // It also builds the data structures and initialization code needed for 11 // updating execution counts and emitting the profile at runtime. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DIBuilder.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Pass.h" 45 #include "llvm/ProfileData/InstrProf.h" 46 #include "llvm/ProfileData/InstrProfCorrelator.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Error.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/TargetParser/Triple.h" 52 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Instrumentation.h" 55 #include "llvm/Transforms/Utils/ModuleUtils.h" 56 #include "llvm/Transforms/Utils/SSAUpdater.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <string> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "instrprof" 65 66 namespace llvm { 67 // Command line option to enable vtable value profiling. Defined in 68 // ProfileData/InstrProf.cpp: -enable-vtable-value-profiling= 69 extern cl::opt<bool> EnableVTableValueProfiling; 70 // TODO: Remove -debug-info-correlate in next LLVM release, in favor of 71 // -profile-correlate=debug-info. 72 cl::opt<bool> DebugInfoCorrelate( 73 "debug-info-correlate", 74 cl::desc("Use debug info to correlate profiles. (Deprecated, use " 75 "-profile-correlate=debug-info)"), 76 cl::init(false)); 77 78 cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate( 79 "profile-correlate", 80 cl::desc("Use debug info or binary file to correlate profiles."), 81 cl::init(InstrProfCorrelator::NONE), 82 cl::values(clEnumValN(InstrProfCorrelator::NONE, "", 83 "No profile correlation"), 84 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info", 85 "Use debug info to correlate"), 86 clEnumValN(InstrProfCorrelator::BINARY, "binary", 87 "Use binary to correlate"))); 88 } // namespace llvm 89 90 namespace { 91 92 cl::opt<bool> DoHashBasedCounterSplit( 93 "hash-based-counter-split", 94 cl::desc("Rename counter variable of a comdat function based on cfg hash"), 95 cl::init(true)); 96 97 cl::opt<bool> 98 RuntimeCounterRelocation("runtime-counter-relocation", 99 cl::desc("Enable relocating counters at runtime."), 100 cl::init(false)); 101 102 cl::opt<bool> ValueProfileStaticAlloc( 103 "vp-static-alloc", 104 cl::desc("Do static counter allocation for value profiler"), 105 cl::init(true)); 106 107 cl::opt<double> NumCountersPerValueSite( 108 "vp-counters-per-site", 109 cl::desc("The average number of profile counters allocated " 110 "per value profiling site."), 111 // This is set to a very small value because in real programs, only 112 // a very small percentage of value sites have non-zero targets, e.g, 1/30. 113 // For those sites with non-zero profile, the average number of targets 114 // is usually smaller than 2. 115 cl::init(1.0)); 116 117 cl::opt<bool> AtomicCounterUpdateAll( 118 "instrprof-atomic-counter-update-all", 119 cl::desc("Make all profile counter updates atomic (for testing only)"), 120 cl::init(false)); 121 122 cl::opt<bool> AtomicCounterUpdatePromoted( 123 "atomic-counter-update-promoted", 124 cl::desc("Do counter update using atomic fetch add " 125 " for promoted counters only"), 126 cl::init(false)); 127 128 cl::opt<bool> AtomicFirstCounter( 129 "atomic-first-counter", 130 cl::desc("Use atomic fetch add for first counter in a function (usually " 131 "the entry counter)"), 132 cl::init(false)); 133 134 cl::opt<bool> ConditionalCounterUpdate( 135 "conditional-counter-update", 136 cl::desc("Do conditional counter updates in single byte counters mode)"), 137 cl::init(false)); 138 139 // If the option is not specified, the default behavior about whether 140 // counter promotion is done depends on how instrumentaiton lowering 141 // pipeline is setup, i.e., the default value of true of this option 142 // does not mean the promotion will be done by default. Explicitly 143 // setting this option can override the default behavior. 144 cl::opt<bool> DoCounterPromotion("do-counter-promotion", 145 cl::desc("Do counter register promotion"), 146 cl::init(false)); 147 cl::opt<unsigned> MaxNumOfPromotionsPerLoop( 148 "max-counter-promotions-per-loop", cl::init(20), 149 cl::desc("Max number counter promotions per loop to avoid" 150 " increasing register pressure too much")); 151 152 // A debug option 153 cl::opt<int> 154 MaxNumOfPromotions("max-counter-promotions", cl::init(-1), 155 cl::desc("Max number of allowed counter promotions")); 156 157 cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( 158 "speculative-counter-promotion-max-exiting", cl::init(3), 159 cl::desc("The max number of exiting blocks of a loop to allow " 160 " speculative counter promotion")); 161 162 cl::opt<bool> SpeculativeCounterPromotionToLoop( 163 "speculative-counter-promotion-to-loop", 164 cl::desc("When the option is false, if the target block is in a loop, " 165 "the promotion will be disallowed unless the promoted counter " 166 " update can be further/iteratively promoted into an acyclic " 167 " region.")); 168 169 cl::opt<bool> IterativeCounterPromotion( 170 "iterative-counter-promotion", cl::init(true), 171 cl::desc("Allow counter promotion across the whole loop nest.")); 172 173 cl::opt<bool> SkipRetExitBlock( 174 "skip-ret-exit-block", cl::init(true), 175 cl::desc("Suppress counter promotion if exit blocks contain ret.")); 176 177 static cl::opt<bool> SampledInstr("sampled-instrumentation", cl::ZeroOrMore, 178 cl::init(false), 179 cl::desc("Do PGO instrumentation sampling")); 180 181 static cl::opt<unsigned> SampledInstrPeriod( 182 "sampled-instr-period", 183 cl::desc("Set the profile instrumentation sample period. A sample period " 184 "of 0 is invalid. For each sample period, a fixed number of " 185 "consecutive samples will be recorded. The number is controlled " 186 "by 'sampled-instr-burst-duration' flag. The default sample " 187 "period of 65536 is optimized for generating efficient code that " 188 "leverages unsigned short integer wrapping in overflow, but this " 189 "is disabled under simple sampling (burst duration = 1)."), 190 cl::init(USHRT_MAX + 1)); 191 192 static cl::opt<unsigned> SampledInstrBurstDuration( 193 "sampled-instr-burst-duration", 194 cl::desc("Set the profile instrumentation burst duration, which can range " 195 "from 1 to the value of 'sampled-instr-period' (0 is invalid). " 196 "This number of samples will be recorded for each " 197 "'sampled-instr-period' count update. Setting to 1 enables simple " 198 "sampling, in which case it is recommended to set " 199 "'sampled-instr-period' to a prime number."), 200 cl::init(200)); 201 202 struct SampledInstrumentationConfig { 203 unsigned BurstDuration; 204 unsigned Period; 205 bool UseShort; 206 bool IsSimpleSampling; 207 bool IsFastSampling; 208 }; 209 210 static SampledInstrumentationConfig getSampledInstrumentationConfig() { 211 SampledInstrumentationConfig config; 212 config.BurstDuration = SampledInstrBurstDuration.getValue(); 213 config.Period = SampledInstrPeriod.getValue(); 214 if (config.BurstDuration > config.Period) 215 report_fatal_error( 216 "SampledBurstDuration must be less than or equal to SampledPeriod"); 217 if (config.Period == 0 || config.BurstDuration == 0) 218 report_fatal_error( 219 "SampledPeriod and SampledBurstDuration must be greater than 0"); 220 config.IsSimpleSampling = (config.BurstDuration == 1); 221 // If (BurstDuration == 1 && Period == 65536), generate the simple sampling 222 // style code. 223 config.IsFastSampling = 224 (!config.IsSimpleSampling && config.Period == USHRT_MAX + 1); 225 config.UseShort = (config.Period <= USHRT_MAX) || config.IsFastSampling; 226 return config; 227 } 228 229 using LoadStorePair = std::pair<Instruction *, Instruction *>; 230 231 static uint64_t getIntModuleFlagOrZero(const Module &M, StringRef Flag) { 232 auto *MD = dyn_cast_or_null<ConstantAsMetadata>(M.getModuleFlag(Flag)); 233 if (!MD) 234 return 0; 235 236 // If the flag is a ConstantAsMetadata, it should be an integer representable 237 // in 64-bits. 238 return cast<ConstantInt>(MD->getValue())->getZExtValue(); 239 } 240 241 static bool enablesValueProfiling(const Module &M) { 242 return isIRPGOFlagSet(&M) || 243 getIntModuleFlagOrZero(M, "EnableValueProfiling") != 0; 244 } 245 246 // Conservatively returns true if value profiling is enabled. 247 static bool profDataReferencedByCode(const Module &M) { 248 return enablesValueProfiling(M); 249 } 250 251 class InstrLowerer final { 252 public: 253 InstrLowerer(Module &M, const InstrProfOptions &Options, 254 std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 255 bool IsCS) 256 : M(M), Options(Options), TT(Triple(M.getTargetTriple())), IsCS(IsCS), 257 GetTLI(GetTLI), DataReferencedByCode(profDataReferencedByCode(M)) {} 258 259 bool lower(); 260 261 private: 262 Module &M; 263 const InstrProfOptions Options; 264 const Triple TT; 265 // Is this lowering for the context-sensitive instrumentation. 266 const bool IsCS; 267 268 std::function<const TargetLibraryInfo &(Function &F)> GetTLI; 269 270 const bool DataReferencedByCode; 271 272 struct PerFunctionProfileData { 273 uint32_t NumValueSites[IPVK_Last + 1] = {}; 274 GlobalVariable *RegionCounters = nullptr; 275 GlobalVariable *DataVar = nullptr; 276 GlobalVariable *RegionBitmaps = nullptr; 277 uint32_t NumBitmapBytes = 0; 278 279 PerFunctionProfileData() = default; 280 }; 281 DenseMap<GlobalVariable *, PerFunctionProfileData> ProfileDataMap; 282 // Key is virtual table variable, value is 'VTableProfData' in the form of 283 // GlobalVariable. 284 DenseMap<GlobalVariable *, GlobalVariable *> VTableDataMap; 285 /// If runtime relocation is enabled, this maps functions to the load 286 /// instruction that produces the profile relocation bias. 287 DenseMap<const Function *, LoadInst *> FunctionToProfileBiasMap; 288 std::vector<GlobalValue *> CompilerUsedVars; 289 std::vector<GlobalValue *> UsedVars; 290 std::vector<GlobalVariable *> ReferencedNames; 291 // The list of virtual table variables of which the VTableProfData is 292 // collected. 293 std::vector<GlobalVariable *> ReferencedVTables; 294 GlobalVariable *NamesVar = nullptr; 295 size_t NamesSize = 0; 296 297 // vector of counter load/store pairs to be register promoted. 298 std::vector<LoadStorePair> PromotionCandidates; 299 300 int64_t TotalCountersPromoted = 0; 301 302 /// Lower instrumentation intrinsics in the function. Returns true if there 303 /// any lowering. 304 bool lowerIntrinsics(Function *F); 305 306 /// Register-promote counter loads and stores in loops. 307 void promoteCounterLoadStores(Function *F); 308 309 /// Returns true if relocating counters at runtime is enabled. 310 bool isRuntimeCounterRelocationEnabled() const; 311 312 /// Returns true if profile counter update register promotion is enabled. 313 bool isCounterPromotionEnabled() const; 314 315 /// Return true if profile sampling is enabled. 316 bool isSamplingEnabled() const; 317 318 /// Count the number of instrumented value sites for the function. 319 void computeNumValueSiteCounts(InstrProfValueProfileInst *Ins); 320 321 /// Replace instrprof.value.profile with a call to runtime library. 322 void lowerValueProfileInst(InstrProfValueProfileInst *Ins); 323 324 /// Replace instrprof.cover with a store instruction to the coverage byte. 325 void lowerCover(InstrProfCoverInst *Inc); 326 327 /// Replace instrprof.timestamp with a call to 328 /// INSTR_PROF_PROFILE_SET_TIMESTAMP. 329 void lowerTimestamp(InstrProfTimestampInst *TimestampInstruction); 330 331 /// Replace instrprof.increment with an increment of the appropriate value. 332 void lowerIncrement(InstrProfIncrementInst *Inc); 333 334 /// Force emitting of name vars for unused functions. 335 void lowerCoverageData(GlobalVariable *CoverageNamesVar); 336 337 /// Replace instrprof.mcdc.tvbitmask.update with a shift and or instruction 338 /// using the index represented by the a temp value into a bitmap. 339 void lowerMCDCTestVectorBitmapUpdate(InstrProfMCDCTVBitmapUpdate *Ins); 340 341 /// Get the Bias value for data to access mmap-ed area. 342 /// Create it if it hasn't been seen. 343 GlobalVariable *getOrCreateBiasVar(StringRef VarName); 344 345 /// Compute the address of the counter value that this profiling instruction 346 /// acts on. 347 Value *getCounterAddress(InstrProfCntrInstBase *I); 348 349 /// Lower the incremental instructions under profile sampling predicates. 350 void doSampling(Instruction *I); 351 352 /// Get the region counters for an increment, creating them if necessary. 353 /// 354 /// If the counter array doesn't yet exist, the profile data variables 355 /// referring to them will also be created. 356 GlobalVariable *getOrCreateRegionCounters(InstrProfCntrInstBase *Inc); 357 358 /// Create the region counters. 359 GlobalVariable *createRegionCounters(InstrProfCntrInstBase *Inc, 360 StringRef Name, 361 GlobalValue::LinkageTypes Linkage); 362 363 /// Compute the address of the test vector bitmap that this profiling 364 /// instruction acts on. 365 Value *getBitmapAddress(InstrProfMCDCTVBitmapUpdate *I); 366 367 /// Get the region bitmaps for an increment, creating them if necessary. 368 /// 369 /// If the bitmap array doesn't yet exist, the profile data variables 370 /// referring to them will also be created. 371 GlobalVariable *getOrCreateRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc); 372 373 /// Create the MC/DC bitmap as a byte-aligned array of bytes associated with 374 /// an MC/DC Decision region. The number of bytes required is indicated by 375 /// the intrinsic used (type InstrProfMCDCBitmapInstBase). This is called 376 /// as part of setupProfileSection() and is conceptually very similar to 377 /// what is done for profile data counters in createRegionCounters(). 378 GlobalVariable *createRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc, 379 StringRef Name, 380 GlobalValue::LinkageTypes Linkage); 381 382 /// Set Comdat property of GV, if required. 383 void maybeSetComdat(GlobalVariable *GV, GlobalObject *GO, StringRef VarName); 384 385 /// Setup the sections into which counters and bitmaps are allocated. 386 GlobalVariable *setupProfileSection(InstrProfInstBase *Inc, 387 InstrProfSectKind IPSK); 388 389 /// Create INSTR_PROF_DATA variable for counters and bitmaps. 390 void createDataVariable(InstrProfCntrInstBase *Inc); 391 392 /// Get the counters for virtual table values, creating them if necessary. 393 void getOrCreateVTableProfData(GlobalVariable *GV); 394 395 /// Emit the section with compressed function names. 396 void emitNameData(); 397 398 /// Emit the section with compressed vtable names. 399 void emitVTableNames(); 400 401 /// Emit value nodes section for value profiling. 402 void emitVNodes(); 403 404 /// Emit runtime registration functions for each profile data variable. 405 void emitRegistration(); 406 407 /// Emit the necessary plumbing to pull in the runtime initialization. 408 /// Returns true if a change was made. 409 bool emitRuntimeHook(); 410 411 /// Add uses of our data variables and runtime hook. 412 void emitUses(); 413 414 /// Create a static initializer for our data, on platforms that need it, 415 /// and for any profile output file that was specified. 416 void emitInitialization(); 417 }; 418 419 /// 420 /// A helper class to promote one counter RMW operation in the loop 421 /// into register update. 422 /// 423 /// RWM update for the counter will be sinked out of the loop after 424 /// the transformation. 425 /// 426 class PGOCounterPromoterHelper : public LoadAndStorePromoter { 427 public: 428 PGOCounterPromoterHelper( 429 Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, 430 BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, 431 ArrayRef<Instruction *> InsertPts, 432 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 433 LoopInfo &LI) 434 : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), 435 InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { 436 assert(isa<LoadInst>(L)); 437 assert(isa<StoreInst>(S)); 438 SSA.AddAvailableValue(PH, Init); 439 } 440 441 void doExtraRewritesBeforeFinalDeletion() override { 442 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 443 BasicBlock *ExitBlock = ExitBlocks[i]; 444 Instruction *InsertPos = InsertPts[i]; 445 // Get LiveIn value into the ExitBlock. If there are multiple 446 // predecessors, the value is defined by a PHI node in this 447 // block. 448 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 449 Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); 450 Type *Ty = LiveInValue->getType(); 451 IRBuilder<> Builder(InsertPos); 452 if (auto *AddrInst = dyn_cast_or_null<IntToPtrInst>(Addr)) { 453 // If isRuntimeCounterRelocationEnabled() is true then the address of 454 // the store instruction is computed with two instructions in 455 // InstrProfiling::getCounterAddress(). We need to copy those 456 // instructions to this block to compute Addr correctly. 457 // %BiasAdd = add i64 ptrtoint <__profc_>, <__llvm_profile_counter_bias> 458 // %Addr = inttoptr i64 %BiasAdd to i64* 459 auto *OrigBiasInst = dyn_cast<BinaryOperator>(AddrInst->getOperand(0)); 460 assert(OrigBiasInst->getOpcode() == Instruction::BinaryOps::Add); 461 Value *BiasInst = Builder.Insert(OrigBiasInst->clone()); 462 Addr = Builder.CreateIntToPtr(BiasInst, 463 PointerType::getUnqual(Ty->getContext())); 464 } 465 if (AtomicCounterUpdatePromoted) 466 // automic update currently can only be promoted across the current 467 // loop, not the whole loop nest. 468 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, 469 MaybeAlign(), 470 AtomicOrdering::SequentiallyConsistent); 471 else { 472 LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); 473 auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); 474 auto *NewStore = Builder.CreateStore(NewVal, Addr); 475 476 // Now update the parent loop's candidate list: 477 if (IterativeCounterPromotion) { 478 auto *TargetLoop = LI.getLoopFor(ExitBlock); 479 if (TargetLoop) 480 LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); 481 } 482 } 483 } 484 } 485 486 private: 487 Instruction *Store; 488 ArrayRef<BasicBlock *> ExitBlocks; 489 ArrayRef<Instruction *> InsertPts; 490 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 491 LoopInfo &LI; 492 }; 493 494 /// A helper class to do register promotion for all profile counter 495 /// updates in a loop. 496 /// 497 class PGOCounterPromoter { 498 public: 499 PGOCounterPromoter( 500 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, 501 Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) 502 : LoopToCandidates(LoopToCands), L(CurLoop), LI(LI), BFI(BFI) { 503 504 // Skip collection of ExitBlocks and InsertPts for loops that will not be 505 // able to have counters promoted. 506 SmallVector<BasicBlock *, 8> LoopExitBlocks; 507 SmallPtrSet<BasicBlock *, 8> BlockSet; 508 509 L.getExitBlocks(LoopExitBlocks); 510 if (!isPromotionPossible(&L, LoopExitBlocks)) 511 return; 512 513 for (BasicBlock *ExitBlock : LoopExitBlocks) { 514 if (BlockSet.insert(ExitBlock).second && 515 llvm::none_of(predecessors(ExitBlock), [&](const BasicBlock *Pred) { 516 return llvm::isPresplitCoroSuspendExitEdge(*Pred, *ExitBlock); 517 })) { 518 ExitBlocks.push_back(ExitBlock); 519 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 520 } 521 } 522 } 523 524 bool run(int64_t *NumPromoted) { 525 // Skip 'infinite' loops: 526 if (ExitBlocks.size() == 0) 527 return false; 528 529 // Skip if any of the ExitBlocks contains a ret instruction. 530 // This is to prevent dumping of incomplete profile -- if the 531 // the loop is a long running loop and dump is called in the middle 532 // of the loop, the result profile is incomplete. 533 // FIXME: add other heuristics to detect long running loops. 534 if (SkipRetExitBlock) { 535 for (auto *BB : ExitBlocks) 536 if (isa<ReturnInst>(BB->getTerminator())) 537 return false; 538 } 539 540 unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); 541 if (MaxProm == 0) 542 return false; 543 544 unsigned Promoted = 0; 545 for (auto &Cand : LoopToCandidates[&L]) { 546 547 SmallVector<PHINode *, 4> NewPHIs; 548 SSAUpdater SSA(&NewPHIs); 549 Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); 550 551 // If BFI is set, we will use it to guide the promotions. 552 if (BFI) { 553 auto *BB = Cand.first->getParent(); 554 auto InstrCount = BFI->getBlockProfileCount(BB); 555 if (!InstrCount) 556 continue; 557 auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); 558 // If the average loop trip count is not greater than 1.5, we skip 559 // promotion. 560 if (PreheaderCount && (*PreheaderCount * 3) >= (*InstrCount * 2)) 561 continue; 562 } 563 564 PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, 565 L.getLoopPreheader(), ExitBlocks, 566 InsertPts, LoopToCandidates, LI); 567 Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); 568 Promoted++; 569 if (Promoted >= MaxProm) 570 break; 571 572 (*NumPromoted)++; 573 if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) 574 break; 575 } 576 577 LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" 578 << L.getLoopDepth() << ")\n"); 579 return Promoted != 0; 580 } 581 582 private: 583 bool allowSpeculativeCounterPromotion(Loop *LP) { 584 SmallVector<BasicBlock *, 8> ExitingBlocks; 585 L.getExitingBlocks(ExitingBlocks); 586 // Not considierered speculative. 587 if (ExitingBlocks.size() == 1) 588 return true; 589 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 590 return false; 591 return true; 592 } 593 594 // Check whether the loop satisfies the basic conditions needed to perform 595 // Counter Promotions. 596 bool 597 isPromotionPossible(Loop *LP, 598 const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { 599 // We can't insert into a catchswitch. 600 if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { 601 return isa<CatchSwitchInst>(Exit->getTerminator()); 602 })) 603 return false; 604 605 if (!LP->hasDedicatedExits()) 606 return false; 607 608 BasicBlock *PH = LP->getLoopPreheader(); 609 if (!PH) 610 return false; 611 612 return true; 613 } 614 615 // Returns the max number of Counter Promotions for LP. 616 unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { 617 SmallVector<BasicBlock *, 8> LoopExitBlocks; 618 LP->getExitBlocks(LoopExitBlocks); 619 if (!isPromotionPossible(LP, LoopExitBlocks)) 620 return 0; 621 622 SmallVector<BasicBlock *, 8> ExitingBlocks; 623 LP->getExitingBlocks(ExitingBlocks); 624 625 // If BFI is set, we do more aggressive promotions based on BFI. 626 if (BFI) 627 return (unsigned)-1; 628 629 // Not considierered speculative. 630 if (ExitingBlocks.size() == 1) 631 return MaxNumOfPromotionsPerLoop; 632 633 if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) 634 return 0; 635 636 // Whether the target block is in a loop does not matter: 637 if (SpeculativeCounterPromotionToLoop) 638 return MaxNumOfPromotionsPerLoop; 639 640 // Now check the target block: 641 unsigned MaxProm = MaxNumOfPromotionsPerLoop; 642 for (auto *TargetBlock : LoopExitBlocks) { 643 auto *TargetLoop = LI.getLoopFor(TargetBlock); 644 if (!TargetLoop) 645 continue; 646 unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); 647 unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); 648 MaxProm = 649 std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - 650 PendingCandsInTarget); 651 } 652 return MaxProm; 653 } 654 655 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; 656 SmallVector<BasicBlock *, 8> ExitBlocks; 657 SmallVector<Instruction *, 8> InsertPts; 658 Loop &L; 659 LoopInfo &LI; 660 BlockFrequencyInfo *BFI; 661 }; 662 663 enum class ValueProfilingCallType { 664 // Individual values are tracked. Currently used for indiret call target 665 // profiling. 666 Default, 667 668 // MemOp: the memop size value profiling. 669 MemOp 670 }; 671 672 } // end anonymous namespace 673 674 PreservedAnalyses InstrProfilingLoweringPass::run(Module &M, 675 ModuleAnalysisManager &AM) { 676 FunctionAnalysisManager &FAM = 677 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 678 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 679 return FAM.getResult<TargetLibraryAnalysis>(F); 680 }; 681 InstrLowerer Lowerer(M, Options, GetTLI, IsCS); 682 if (!Lowerer.lower()) 683 return PreservedAnalyses::all(); 684 685 return PreservedAnalyses::none(); 686 } 687 688 // 689 // Perform instrumentation sampling. 690 // 691 // There are 3 favors of sampling: 692 // (1) Full burst sampling: We transform: 693 // Increment_Instruction; 694 // to: 695 // if (__llvm_profile_sampling__ <= SampledInstrBurstDuration - 1) { 696 // Increment_Instruction; 697 // } 698 // __llvm_profile_sampling__ += 1; 699 // if (__llvm_profile_sampling__ >= SampledInstrPeriod) { 700 // __llvm_profile_sampling__ = 0; 701 // } 702 // 703 // "__llvm_profile_sampling__" is a thread-local global shared by all PGO 704 // counters (value-instrumentation and edge instrumentation). 705 // 706 // (2) Fast burst sampling: 707 // "__llvm_profile_sampling__" variable is an unsigned type, meaning it will 708 // wrap around to zero when overflows. In this case, the second check is 709 // unnecessary, so we won't generate check2 when the SampledInstrPeriod is 710 // set to 65536 (64K). The code after: 711 // if (__llvm_profile_sampling__ <= SampledInstrBurstDuration - 1) { 712 // Increment_Instruction; 713 // } 714 // __llvm_profile_sampling__ += 1; 715 // 716 // (3) Simple sampling: 717 // When SampledInstrBurstDuration is set to 1, we do a simple sampling: 718 // __llvm_profile_sampling__ += 1; 719 // if (__llvm_profile_sampling__ >= SampledInstrPeriod) { 720 // __llvm_profile_sampling__ = 0; 721 // Increment_Instruction; 722 // } 723 // 724 // Note that, the code snippet after the transformation can still be counter 725 // promoted. However, with sampling enabled, counter updates are expected to 726 // be infrequent, making the benefits of counter promotion negligible. 727 // Moreover, counter promotion can potentially cause issues in server 728 // applications, particularly when the counters are dumped without a clean 729 // exit. To mitigate this risk, counter promotion is disabled by default when 730 // sampling is enabled. This behavior can be overridden using the internal 731 // option. 732 void InstrLowerer::doSampling(Instruction *I) { 733 if (!isSamplingEnabled()) 734 return; 735 736 SampledInstrumentationConfig config = getSampledInstrumentationConfig(); 737 auto GetConstant = [&config](IRBuilder<> &Builder, uint32_t C) { 738 if (config.UseShort) 739 return Builder.getInt16(C); 740 else 741 return Builder.getInt32(C); 742 }; 743 744 IntegerType *SamplingVarTy; 745 if (config.UseShort) 746 SamplingVarTy = Type::getInt16Ty(M.getContext()); 747 else 748 SamplingVarTy = Type::getInt32Ty(M.getContext()); 749 auto *SamplingVar = 750 M.getGlobalVariable(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SAMPLING_VAR)); 751 assert(SamplingVar && "SamplingVar not set properly"); 752 753 // Create the condition for checking the burst duration. 754 Instruction *SamplingVarIncr; 755 Value *NewSamplingVarVal; 756 MDBuilder MDB(I->getContext()); 757 MDNode *BranchWeight; 758 IRBuilder<> CondBuilder(I); 759 auto *LoadSamplingVar = CondBuilder.CreateLoad(SamplingVarTy, SamplingVar); 760 if (config.IsSimpleSampling) { 761 // For the simple sampling, just create the load and increments. 762 IRBuilder<> IncBuilder(I); 763 NewSamplingVarVal = 764 IncBuilder.CreateAdd(LoadSamplingVar, GetConstant(IncBuilder, 1)); 765 SamplingVarIncr = IncBuilder.CreateStore(NewSamplingVarVal, SamplingVar); 766 } else { 767 // For the burst-sampling, create the conditional update. 768 auto *DurationCond = CondBuilder.CreateICmpULE( 769 LoadSamplingVar, GetConstant(CondBuilder, config.BurstDuration - 1)); 770 BranchWeight = MDB.createBranchWeights( 771 config.BurstDuration, config.Period - config.BurstDuration); 772 Instruction *ThenTerm = SplitBlockAndInsertIfThen( 773 DurationCond, I, /* Unreachable */ false, BranchWeight); 774 IRBuilder<> IncBuilder(I); 775 NewSamplingVarVal = 776 IncBuilder.CreateAdd(LoadSamplingVar, GetConstant(IncBuilder, 1)); 777 SamplingVarIncr = IncBuilder.CreateStore(NewSamplingVarVal, SamplingVar); 778 I->moveBefore(ThenTerm->getIterator()); 779 } 780 781 if (config.IsFastSampling) 782 return; 783 784 // Create the condition for checking the period. 785 Instruction *ThenTerm, *ElseTerm; 786 IRBuilder<> PeriodCondBuilder(SamplingVarIncr); 787 auto *PeriodCond = PeriodCondBuilder.CreateICmpUGE( 788 NewSamplingVarVal, GetConstant(PeriodCondBuilder, config.Period)); 789 BranchWeight = MDB.createBranchWeights(1, config.Period - 1); 790 SplitBlockAndInsertIfThenElse(PeriodCond, SamplingVarIncr, &ThenTerm, 791 &ElseTerm, BranchWeight); 792 793 // For the simple sampling, the counter update happens in sampling var reset. 794 if (config.IsSimpleSampling) 795 I->moveBefore(ThenTerm->getIterator()); 796 797 IRBuilder<> ResetBuilder(ThenTerm); 798 ResetBuilder.CreateStore(GetConstant(ResetBuilder, 0), SamplingVar); 799 SamplingVarIncr->moveBefore(ElseTerm->getIterator()); 800 } 801 802 bool InstrLowerer::lowerIntrinsics(Function *F) { 803 bool MadeChange = false; 804 PromotionCandidates.clear(); 805 SmallVector<InstrProfInstBase *, 8> InstrProfInsts; 806 807 // To ensure compatibility with sampling, we save the intrinsics into 808 // a buffer to prevent potential breakage of the iterator (as the 809 // intrinsics will be moved to a different BB). 810 for (BasicBlock &BB : *F) { 811 for (Instruction &Instr : llvm::make_early_inc_range(BB)) { 812 if (auto *IP = dyn_cast<InstrProfInstBase>(&Instr)) 813 InstrProfInsts.push_back(IP); 814 } 815 } 816 817 for (auto *Instr : InstrProfInsts) { 818 doSampling(Instr); 819 if (auto *IPIS = dyn_cast<InstrProfIncrementInstStep>(Instr)) { 820 lowerIncrement(IPIS); 821 MadeChange = true; 822 } else if (auto *IPI = dyn_cast<InstrProfIncrementInst>(Instr)) { 823 lowerIncrement(IPI); 824 MadeChange = true; 825 } else if (auto *IPC = dyn_cast<InstrProfTimestampInst>(Instr)) { 826 lowerTimestamp(IPC); 827 MadeChange = true; 828 } else if (auto *IPC = dyn_cast<InstrProfCoverInst>(Instr)) { 829 lowerCover(IPC); 830 MadeChange = true; 831 } else if (auto *IPVP = dyn_cast<InstrProfValueProfileInst>(Instr)) { 832 lowerValueProfileInst(IPVP); 833 MadeChange = true; 834 } else if (auto *IPMP = dyn_cast<InstrProfMCDCBitmapParameters>(Instr)) { 835 IPMP->eraseFromParent(); 836 MadeChange = true; 837 } else if (auto *IPBU = dyn_cast<InstrProfMCDCTVBitmapUpdate>(Instr)) { 838 lowerMCDCTestVectorBitmapUpdate(IPBU); 839 MadeChange = true; 840 } 841 } 842 843 if (!MadeChange) 844 return false; 845 846 promoteCounterLoadStores(F); 847 return true; 848 } 849 850 bool InstrLowerer::isRuntimeCounterRelocationEnabled() const { 851 // Mach-O don't support weak external references. 852 if (TT.isOSBinFormatMachO()) 853 return false; 854 855 if (RuntimeCounterRelocation.getNumOccurrences() > 0) 856 return RuntimeCounterRelocation; 857 858 // Fuchsia uses runtime counter relocation by default. 859 return TT.isOSFuchsia(); 860 } 861 862 bool InstrLowerer::isSamplingEnabled() const { 863 if (SampledInstr.getNumOccurrences() > 0) 864 return SampledInstr; 865 return Options.Sampling; 866 } 867 868 bool InstrLowerer::isCounterPromotionEnabled() const { 869 if (DoCounterPromotion.getNumOccurrences() > 0) 870 return DoCounterPromotion; 871 872 return Options.DoCounterPromotion; 873 } 874 875 void InstrLowerer::promoteCounterLoadStores(Function *F) { 876 if (!isCounterPromotionEnabled()) 877 return; 878 879 DominatorTree DT(*F); 880 LoopInfo LI(DT); 881 DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; 882 883 std::unique_ptr<BlockFrequencyInfo> BFI; 884 if (Options.UseBFIInPromotion) { 885 std::unique_ptr<BranchProbabilityInfo> BPI; 886 BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); 887 BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); 888 } 889 890 for (const auto &LoadStore : PromotionCandidates) { 891 auto *CounterLoad = LoadStore.first; 892 auto *CounterStore = LoadStore.second; 893 BasicBlock *BB = CounterLoad->getParent(); 894 Loop *ParentLoop = LI.getLoopFor(BB); 895 if (!ParentLoop) 896 continue; 897 LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); 898 } 899 900 SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); 901 902 // Do a post-order traversal of the loops so that counter updates can be 903 // iteratively hoisted outside the loop nest. 904 for (auto *Loop : llvm::reverse(Loops)) { 905 PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); 906 Promoter.run(&TotalCountersPromoted); 907 } 908 } 909 910 static bool needsRuntimeHookUnconditionally(const Triple &TT) { 911 // On Fuchsia, we only need runtime hook if any counters are present. 912 if (TT.isOSFuchsia()) 913 return false; 914 915 return true; 916 } 917 918 /// Check if the module contains uses of any profiling intrinsics. 919 static bool containsProfilingIntrinsics(Module &M) { 920 auto containsIntrinsic = [&](int ID) { 921 if (auto *F = Intrinsic::getDeclarationIfExists(&M, ID)) 922 return !F->use_empty(); 923 return false; 924 }; 925 return containsIntrinsic(Intrinsic::instrprof_cover) || 926 containsIntrinsic(Intrinsic::instrprof_increment) || 927 containsIntrinsic(Intrinsic::instrprof_increment_step) || 928 containsIntrinsic(Intrinsic::instrprof_timestamp) || 929 containsIntrinsic(Intrinsic::instrprof_value_profile); 930 } 931 932 bool InstrLowerer::lower() { 933 bool MadeChange = false; 934 bool NeedsRuntimeHook = needsRuntimeHookUnconditionally(TT); 935 if (NeedsRuntimeHook) 936 MadeChange = emitRuntimeHook(); 937 938 if (!IsCS && isSamplingEnabled()) 939 createProfileSamplingVar(M); 940 941 bool ContainsProfiling = containsProfilingIntrinsics(M); 942 GlobalVariable *CoverageNamesVar = 943 M.getNamedGlobal(getCoverageUnusedNamesVarName()); 944 // Improve compile time by avoiding linear scans when there is no work. 945 if (!ContainsProfiling && !CoverageNamesVar) 946 return MadeChange; 947 948 // We did not know how many value sites there would be inside 949 // the instrumented function. This is counting the number of instrumented 950 // target value sites to enter it as field in the profile data variable. 951 for (Function &F : M) { 952 InstrProfCntrInstBase *FirstProfInst = nullptr; 953 for (BasicBlock &BB : F) { 954 for (auto I = BB.begin(), E = BB.end(); I != E; I++) { 955 if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) 956 computeNumValueSiteCounts(Ind); 957 else { 958 if (FirstProfInst == nullptr && 959 (isa<InstrProfIncrementInst>(I) || isa<InstrProfCoverInst>(I))) 960 FirstProfInst = dyn_cast<InstrProfCntrInstBase>(I); 961 // If the MCDCBitmapParameters intrinsic seen, create the bitmaps. 962 if (const auto &Params = dyn_cast<InstrProfMCDCBitmapParameters>(I)) 963 static_cast<void>(getOrCreateRegionBitmaps(Params)); 964 } 965 } 966 } 967 968 // Use a profile intrinsic to create the region counters and data variable. 969 // Also create the data variable based on the MCDCParams. 970 if (FirstProfInst != nullptr) { 971 static_cast<void>(getOrCreateRegionCounters(FirstProfInst)); 972 } 973 } 974 975 if (EnableVTableValueProfiling) 976 for (GlobalVariable &GV : M.globals()) 977 // Global variables with type metadata are virtual table variables. 978 if (GV.hasMetadata(LLVMContext::MD_type)) 979 getOrCreateVTableProfData(&GV); 980 981 for (Function &F : M) 982 MadeChange |= lowerIntrinsics(&F); 983 984 if (CoverageNamesVar) { 985 lowerCoverageData(CoverageNamesVar); 986 MadeChange = true; 987 } 988 989 if (!MadeChange) 990 return false; 991 992 emitVNodes(); 993 emitNameData(); 994 emitVTableNames(); 995 996 // Emit runtime hook for the cases where the target does not unconditionally 997 // require pulling in profile runtime, and coverage is enabled on code that is 998 // not eliminated by the front-end, e.g. unused functions with internal 999 // linkage. 1000 if (!NeedsRuntimeHook && ContainsProfiling) 1001 emitRuntimeHook(); 1002 1003 emitRegistration(); 1004 emitUses(); 1005 emitInitialization(); 1006 return true; 1007 } 1008 1009 static FunctionCallee getOrInsertValueProfilingCall( 1010 Module &M, const TargetLibraryInfo &TLI, 1011 ValueProfilingCallType CallType = ValueProfilingCallType::Default) { 1012 LLVMContext &Ctx = M.getContext(); 1013 auto *ReturnTy = Type::getVoidTy(M.getContext()); 1014 1015 AttributeList AL; 1016 if (auto AK = TLI.getExtAttrForI32Param(false)) 1017 AL = AL.addParamAttribute(M.getContext(), 2, AK); 1018 1019 assert((CallType == ValueProfilingCallType::Default || 1020 CallType == ValueProfilingCallType::MemOp) && 1021 "Must be Default or MemOp"); 1022 Type *ParamTypes[] = { 1023 #define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType 1024 #include "llvm/ProfileData/InstrProfData.inc" 1025 }; 1026 auto *ValueProfilingCallTy = 1027 FunctionType::get(ReturnTy, ArrayRef(ParamTypes), false); 1028 StringRef FuncName = CallType == ValueProfilingCallType::Default 1029 ? getInstrProfValueProfFuncName() 1030 : getInstrProfValueProfMemOpFuncName(); 1031 return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL); 1032 } 1033 1034 void InstrLowerer::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { 1035 GlobalVariable *Name = Ind->getName(); 1036 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 1037 uint64_t Index = Ind->getIndex()->getZExtValue(); 1038 auto &PD = ProfileDataMap[Name]; 1039 PD.NumValueSites[ValueKind] = 1040 std::max(PD.NumValueSites[ValueKind], (uint32_t)(Index + 1)); 1041 } 1042 1043 void InstrLowerer::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { 1044 // TODO: Value profiling heavily depends on the data section which is omitted 1045 // in lightweight mode. We need to move the value profile pointer to the 1046 // Counter struct to get this working. 1047 assert( 1048 !DebugInfoCorrelate && ProfileCorrelate == InstrProfCorrelator::NONE && 1049 "Value profiling is not yet supported with lightweight instrumentation"); 1050 GlobalVariable *Name = Ind->getName(); 1051 auto It = ProfileDataMap.find(Name); 1052 assert(It != ProfileDataMap.end() && It->second.DataVar && 1053 "value profiling detected in function with no counter incerement"); 1054 1055 GlobalVariable *DataVar = It->second.DataVar; 1056 uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); 1057 uint64_t Index = Ind->getIndex()->getZExtValue(); 1058 for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) 1059 Index += It->second.NumValueSites[Kind]; 1060 1061 IRBuilder<> Builder(Ind); 1062 bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() == 1063 llvm::InstrProfValueKind::IPVK_MemOPSize); 1064 CallInst *Call = nullptr; 1065 auto *TLI = &GetTLI(*Ind->getFunction()); 1066 auto *NormalizedDataVarPtr = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1067 DataVar, PointerType::get(M.getContext(), 0)); 1068 1069 // To support value profiling calls within Windows exception handlers, funclet 1070 // information contained within operand bundles needs to be copied over to 1071 // the library call. This is required for the IR to be processed by the 1072 // WinEHPrepare pass. 1073 SmallVector<OperandBundleDef, 1> OpBundles; 1074 Ind->getOperandBundlesAsDefs(OpBundles); 1075 if (!IsMemOpSize) { 1076 Value *Args[3] = {Ind->getTargetValue(), NormalizedDataVarPtr, 1077 Builder.getInt32(Index)}; 1078 Call = Builder.CreateCall(getOrInsertValueProfilingCall(M, *TLI), Args, 1079 OpBundles); 1080 } else { 1081 Value *Args[3] = {Ind->getTargetValue(), NormalizedDataVarPtr, 1082 Builder.getInt32(Index)}; 1083 Call = Builder.CreateCall( 1084 getOrInsertValueProfilingCall(M, *TLI, ValueProfilingCallType::MemOp), 1085 Args, OpBundles); 1086 } 1087 if (auto AK = TLI->getExtAttrForI32Param(false)) 1088 Call->addParamAttr(2, AK); 1089 Ind->replaceAllUsesWith(Call); 1090 Ind->eraseFromParent(); 1091 } 1092 1093 GlobalVariable *InstrLowerer::getOrCreateBiasVar(StringRef VarName) { 1094 GlobalVariable *Bias = M.getGlobalVariable(VarName); 1095 if (Bias) 1096 return Bias; 1097 1098 Type *Int64Ty = Type::getInt64Ty(M.getContext()); 1099 1100 // Compiler must define this variable when runtime counter relocation 1101 // is being used. Runtime has a weak external reference that is used 1102 // to check whether that's the case or not. 1103 Bias = new GlobalVariable(M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, 1104 Constant::getNullValue(Int64Ty), VarName); 1105 Bias->setVisibility(GlobalVariable::HiddenVisibility); 1106 // A definition that's weak (linkonce_odr) without being in a COMDAT 1107 // section wouldn't lead to link errors, but it would lead to a dead 1108 // data word from every TU but one. Putting it in COMDAT ensures there 1109 // will be exactly one data slot in the link. 1110 if (TT.supportsCOMDAT()) 1111 Bias->setComdat(M.getOrInsertComdat(VarName)); 1112 1113 return Bias; 1114 } 1115 1116 Value *InstrLowerer::getCounterAddress(InstrProfCntrInstBase *I) { 1117 auto *Counters = getOrCreateRegionCounters(I); 1118 IRBuilder<> Builder(I); 1119 1120 if (isa<InstrProfTimestampInst>(I)) 1121 Counters->setAlignment(Align(8)); 1122 1123 auto *Addr = Builder.CreateConstInBoundsGEP2_32( 1124 Counters->getValueType(), Counters, 0, I->getIndex()->getZExtValue()); 1125 1126 if (!isRuntimeCounterRelocationEnabled()) 1127 return Addr; 1128 1129 Type *Int64Ty = Type::getInt64Ty(M.getContext()); 1130 Function *Fn = I->getParent()->getParent(); 1131 LoadInst *&BiasLI = FunctionToProfileBiasMap[Fn]; 1132 if (!BiasLI) { 1133 IRBuilder<> EntryBuilder(&Fn->getEntryBlock().front()); 1134 auto *Bias = getOrCreateBiasVar(getInstrProfCounterBiasVarName()); 1135 BiasLI = EntryBuilder.CreateLoad(Int64Ty, Bias, "profc_bias"); 1136 // Bias doesn't change after startup. 1137 BiasLI->setMetadata(LLVMContext::MD_invariant_load, 1138 MDNode::get(M.getContext(), {})); 1139 } 1140 auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), BiasLI); 1141 return Builder.CreateIntToPtr(Add, Addr->getType()); 1142 } 1143 1144 Value *InstrLowerer::getBitmapAddress(InstrProfMCDCTVBitmapUpdate *I) { 1145 auto *Bitmaps = getOrCreateRegionBitmaps(I); 1146 if (!isRuntimeCounterRelocationEnabled()) 1147 return Bitmaps; 1148 1149 // Put BiasLI onto the entry block. 1150 Type *Int64Ty = Type::getInt64Ty(M.getContext()); 1151 Function *Fn = I->getFunction(); 1152 IRBuilder<> EntryBuilder(&Fn->getEntryBlock().front()); 1153 auto *Bias = getOrCreateBiasVar(getInstrProfBitmapBiasVarName()); 1154 auto *BiasLI = EntryBuilder.CreateLoad(Int64Ty, Bias, "profbm_bias"); 1155 // Assume BiasLI invariant (in the function at least) 1156 BiasLI->setMetadata(LLVMContext::MD_invariant_load, 1157 MDNode::get(M.getContext(), {})); 1158 1159 // Add Bias to Bitmaps and put it before the intrinsic. 1160 IRBuilder<> Builder(I); 1161 return Builder.CreatePtrAdd(Bitmaps, BiasLI, "profbm_addr"); 1162 } 1163 1164 void InstrLowerer::lowerCover(InstrProfCoverInst *CoverInstruction) { 1165 auto *Addr = getCounterAddress(CoverInstruction); 1166 IRBuilder<> Builder(CoverInstruction); 1167 if (ConditionalCounterUpdate) { 1168 Instruction *SplitBefore = CoverInstruction->getNextNode(); 1169 auto &Ctx = CoverInstruction->getParent()->getContext(); 1170 auto *Int8Ty = llvm::Type::getInt8Ty(Ctx); 1171 Value *Load = Builder.CreateLoad(Int8Ty, Addr, "pgocount"); 1172 Value *Cmp = Builder.CreateIsNotNull(Load, "pgocount.ifnonzero"); 1173 Instruction *ThenBranch = 1174 SplitBlockAndInsertIfThen(Cmp, SplitBefore, false); 1175 Builder.SetInsertPoint(ThenBranch); 1176 } 1177 1178 // We store zero to represent that this block is covered. 1179 Builder.CreateStore(Builder.getInt8(0), Addr); 1180 CoverInstruction->eraseFromParent(); 1181 } 1182 1183 void InstrLowerer::lowerTimestamp( 1184 InstrProfTimestampInst *TimestampInstruction) { 1185 assert(TimestampInstruction->getIndex()->isZeroValue() && 1186 "timestamp probes are always the first probe for a function"); 1187 auto &Ctx = M.getContext(); 1188 auto *TimestampAddr = getCounterAddress(TimestampInstruction); 1189 IRBuilder<> Builder(TimestampInstruction); 1190 auto *CalleeTy = 1191 FunctionType::get(Type::getVoidTy(Ctx), TimestampAddr->getType(), false); 1192 auto Callee = M.getOrInsertFunction( 1193 INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SET_TIMESTAMP), CalleeTy); 1194 Builder.CreateCall(Callee, {TimestampAddr}); 1195 TimestampInstruction->eraseFromParent(); 1196 } 1197 1198 void InstrLowerer::lowerIncrement(InstrProfIncrementInst *Inc) { 1199 auto *Addr = getCounterAddress(Inc); 1200 1201 IRBuilder<> Builder(Inc); 1202 if (Options.Atomic || AtomicCounterUpdateAll || 1203 (Inc->getIndex()->isZeroValue() && AtomicFirstCounter)) { 1204 Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), 1205 MaybeAlign(), AtomicOrdering::Monotonic); 1206 } else { 1207 Value *IncStep = Inc->getStep(); 1208 Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); 1209 auto *Count = Builder.CreateAdd(Load, Inc->getStep()); 1210 auto *Store = Builder.CreateStore(Count, Addr); 1211 if (isCounterPromotionEnabled()) 1212 PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); 1213 } 1214 Inc->eraseFromParent(); 1215 } 1216 1217 void InstrLowerer::lowerCoverageData(GlobalVariable *CoverageNamesVar) { 1218 ConstantArray *Names = 1219 cast<ConstantArray>(CoverageNamesVar->getInitializer()); 1220 for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { 1221 Constant *NC = Names->getOperand(I); 1222 Value *V = NC->stripPointerCasts(); 1223 assert(isa<GlobalVariable>(V) && "Missing reference to function name"); 1224 GlobalVariable *Name = cast<GlobalVariable>(V); 1225 1226 Name->setLinkage(GlobalValue::PrivateLinkage); 1227 ReferencedNames.push_back(Name); 1228 if (isa<ConstantExpr>(NC)) 1229 NC->dropAllReferences(); 1230 } 1231 CoverageNamesVar->eraseFromParent(); 1232 } 1233 1234 void InstrLowerer::lowerMCDCTestVectorBitmapUpdate( 1235 InstrProfMCDCTVBitmapUpdate *Update) { 1236 auto &Ctx = M.getContext(); 1237 IRBuilder<> Builder(Update); 1238 auto *Int8Ty = Type::getInt8Ty(Ctx); 1239 auto *Int32Ty = Type::getInt32Ty(Ctx); 1240 auto *MCDCCondBitmapAddr = Update->getMCDCCondBitmapAddr(); 1241 auto *BitmapAddr = getBitmapAddress(Update); 1242 1243 // Load Temp Val + BitmapIdx. 1244 // %mcdc.temp = load i32, ptr %mcdc.addr, align 4 1245 auto *Temp = Builder.CreateAdd( 1246 Builder.CreateLoad(Int32Ty, MCDCCondBitmapAddr, "mcdc.temp"), 1247 Update->getBitmapIndex()); 1248 1249 // Calculate byte offset using div8. 1250 // %1 = lshr i32 %mcdc.temp, 3 1251 auto *BitmapByteOffset = Builder.CreateLShr(Temp, 0x3); 1252 1253 // Add byte offset to section base byte address. 1254 // %4 = getelementptr inbounds i8, ptr @__profbm_test, i32 %1 1255 auto *BitmapByteAddr = 1256 Builder.CreateInBoundsPtrAdd(BitmapAddr, BitmapByteOffset); 1257 1258 // Calculate bit offset into bitmap byte by using div8 remainder (AND ~8) 1259 // %5 = and i32 %mcdc.temp, 7 1260 // %6 = trunc i32 %5 to i8 1261 auto *BitToSet = Builder.CreateTrunc(Builder.CreateAnd(Temp, 0x7), Int8Ty); 1262 1263 // Shift bit offset left to form a bitmap. 1264 // %7 = shl i8 1, %6 1265 auto *ShiftedVal = Builder.CreateShl(Builder.getInt8(0x1), BitToSet); 1266 1267 // Load profile bitmap byte. 1268 // %mcdc.bits = load i8, ptr %4, align 1 1269 auto *Bitmap = Builder.CreateLoad(Int8Ty, BitmapByteAddr, "mcdc.bits"); 1270 1271 if (Options.Atomic || AtomicCounterUpdateAll) { 1272 // If ((Bitmap & Val) != Val), then execute atomic (Bitmap |= Val). 1273 // Note, just-loaded Bitmap might not be up-to-date. Use it just for 1274 // early testing. 1275 auto *Masked = Builder.CreateAnd(Bitmap, ShiftedVal); 1276 auto *ShouldStore = Builder.CreateICmpNE(Masked, ShiftedVal); 1277 1278 // Assume updating will be rare. 1279 auto *Unlikely = MDBuilder(Ctx).createUnlikelyBranchWeights(); 1280 Instruction *ThenBranch = 1281 SplitBlockAndInsertIfThen(ShouldStore, Update, false, Unlikely); 1282 1283 // Execute if (unlikely(ShouldStore)). 1284 Builder.SetInsertPoint(ThenBranch); 1285 Builder.CreateAtomicRMW(AtomicRMWInst::Or, BitmapByteAddr, ShiftedVal, 1286 MaybeAlign(), AtomicOrdering::Monotonic); 1287 } else { 1288 // Perform logical OR of profile bitmap byte and shifted bit offset. 1289 // %8 = or i8 %mcdc.bits, %7 1290 auto *Result = Builder.CreateOr(Bitmap, ShiftedVal); 1291 1292 // Store the updated profile bitmap byte. 1293 // store i8 %8, ptr %3, align 1 1294 Builder.CreateStore(Result, BitmapByteAddr); 1295 } 1296 1297 Update->eraseFromParent(); 1298 } 1299 1300 /// Get the name of a profiling variable for a particular function. 1301 static std::string getVarName(InstrProfInstBase *Inc, StringRef Prefix, 1302 bool &Renamed) { 1303 StringRef NamePrefix = getInstrProfNameVarPrefix(); 1304 StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); 1305 Function *F = Inc->getParent()->getParent(); 1306 Module *M = F->getParent(); 1307 if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || 1308 !canRenameComdatFunc(*F)) { 1309 Renamed = false; 1310 return (Prefix + Name).str(); 1311 } 1312 Renamed = true; 1313 uint64_t FuncHash = Inc->getHash()->getZExtValue(); 1314 SmallVector<char, 24> HashPostfix; 1315 if (Name.ends_with((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) 1316 return (Prefix + Name).str(); 1317 return (Prefix + Name + "." + Twine(FuncHash)).str(); 1318 } 1319 1320 static inline bool shouldRecordFunctionAddr(Function *F) { 1321 // Only record function addresses if IR PGO is enabled or if clang value 1322 // profiling is enabled. Recording function addresses greatly increases object 1323 // file size, because it prevents the inliner from deleting functions that 1324 // have been inlined everywhere. 1325 if (!profDataReferencedByCode(*F->getParent())) 1326 return false; 1327 1328 // Check the linkage 1329 bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); 1330 if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && 1331 !HasAvailableExternallyLinkage) 1332 return true; 1333 1334 // A function marked 'alwaysinline' with available_externally linkage can't 1335 // have its address taken. Doing so would create an undefined external ref to 1336 // the function, which would fail to link. 1337 if (HasAvailableExternallyLinkage && 1338 F->hasFnAttribute(Attribute::AlwaysInline)) 1339 return false; 1340 1341 // Prohibit function address recording if the function is both internal and 1342 // COMDAT. This avoids the profile data variable referencing internal symbols 1343 // in COMDAT. 1344 if (F->hasLocalLinkage() && F->hasComdat()) 1345 return false; 1346 1347 // Check uses of this function for other than direct calls or invokes to it. 1348 // Inline virtual functions have linkeOnceODR linkage. When a key method 1349 // exists, the vtable will only be emitted in the TU where the key method 1350 // is defined. In a TU where vtable is not available, the function won't 1351 // be 'addresstaken'. If its address is not recorded here, the profile data 1352 // with missing address may be picked by the linker leading to missing 1353 // indirect call target info. 1354 return F->hasAddressTaken() || F->hasLinkOnceLinkage(); 1355 } 1356 1357 static inline bool shouldUsePublicSymbol(Function *Fn) { 1358 // It isn't legal to make an alias of this function at all 1359 if (Fn->isDeclarationForLinker()) 1360 return true; 1361 1362 // Symbols with local linkage can just use the symbol directly without 1363 // introducing relocations 1364 if (Fn->hasLocalLinkage()) 1365 return true; 1366 1367 // PGO + ThinLTO + CFI cause duplicate symbols to be introduced due to some 1368 // unfavorable interaction between the new alias and the alias renaming done 1369 // in LowerTypeTests under ThinLTO. For comdat functions that would normally 1370 // be deduplicated, but the renaming scheme ends up preventing renaming, since 1371 // it creates unique names for each alias, resulting in duplicated symbols. In 1372 // the future, we should update the CFI related passes to migrate these 1373 // aliases to the same module as the jump-table they refer to will be defined. 1374 if (Fn->hasMetadata(LLVMContext::MD_type)) 1375 return true; 1376 1377 // For comdat functions, an alias would need the same linkage as the original 1378 // function and hidden visibility. There is no point in adding an alias with 1379 // identical linkage an visibility to avoid introducing symbolic relocations. 1380 if (Fn->hasComdat() && 1381 (Fn->getVisibility() == GlobalValue::VisibilityTypes::HiddenVisibility)) 1382 return true; 1383 1384 // its OK to use an alias 1385 return false; 1386 } 1387 1388 static inline Constant *getFuncAddrForProfData(Function *Fn) { 1389 auto *Int8PtrTy = PointerType::getUnqual(Fn->getContext()); 1390 // Store a nullptr in __llvm_profd, if we shouldn't use a real address 1391 if (!shouldRecordFunctionAddr(Fn)) 1392 return ConstantPointerNull::get(Int8PtrTy); 1393 1394 // If we can't use an alias, we must use the public symbol, even though this 1395 // may require a symbolic relocation. 1396 if (shouldUsePublicSymbol(Fn)) 1397 return Fn; 1398 1399 // When possible use a private alias to avoid symbolic relocations. 1400 auto *GA = GlobalAlias::create(GlobalValue::LinkageTypes::PrivateLinkage, 1401 Fn->getName() + ".local", Fn); 1402 1403 // When the instrumented function is a COMDAT function, we cannot use a 1404 // private alias. If we did, we would create reference to a local label in 1405 // this function's section. If this version of the function isn't selected by 1406 // the linker, then the metadata would introduce a reference to a discarded 1407 // section. So, for COMDAT functions, we need to adjust the linkage of the 1408 // alias. Using hidden visibility avoids a dynamic relocation and an entry in 1409 // the dynamic symbol table. 1410 // 1411 // Note that this handles COMDAT functions with visibility other than Hidden, 1412 // since that case is covered in shouldUsePublicSymbol() 1413 if (Fn->hasComdat()) { 1414 GA->setLinkage(Fn->getLinkage()); 1415 GA->setVisibility(GlobalValue::VisibilityTypes::HiddenVisibility); 1416 } 1417 1418 // appendToCompilerUsed(*Fn->getParent(), {GA}); 1419 1420 return GA; 1421 } 1422 1423 static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { 1424 // compiler-rt uses linker support to get data/counters/name start/end for 1425 // ELF, COFF, Mach-O, XCOFF, and Wasm. 1426 if (TT.isOSBinFormatELF() || TT.isOSBinFormatCOFF() || 1427 TT.isOSBinFormatMachO() || TT.isOSBinFormatXCOFF() || 1428 TT.isOSBinFormatWasm()) 1429 return false; 1430 1431 return true; 1432 } 1433 1434 void InstrLowerer::maybeSetComdat(GlobalVariable *GV, GlobalObject *GO, 1435 StringRef CounterGroupName) { 1436 // Place lowered global variables in a comdat group if the associated function 1437 // or global variable is a COMDAT. This will make sure that only one copy of 1438 // global variable (e.g. function counters) of the COMDAT function will be 1439 // emitted after linking. 1440 bool NeedComdat = needsComdatForCounter(*GO, M); 1441 bool UseComdat = (NeedComdat || TT.isOSBinFormatELF()); 1442 1443 if (!UseComdat) 1444 return; 1445 1446 // Keep in mind that this pass may run before the inliner, so we need to 1447 // create a new comdat group (for counters, profiling data, etc). If we use 1448 // the comdat of the parent function, that will result in relocations against 1449 // discarded sections. 1450 // 1451 // If the data variable is referenced by code, non-counter variables (notably 1452 // profiling data) and counters have to be in different comdats for COFF 1453 // because the Visual C++ linker will report duplicate symbol errors if there 1454 // are multiple external symbols with the same name marked 1455 // IMAGE_COMDAT_SELECT_ASSOCIATIVE. 1456 StringRef GroupName = TT.isOSBinFormatCOFF() && DataReferencedByCode 1457 ? GV->getName() 1458 : CounterGroupName; 1459 Comdat *C = M.getOrInsertComdat(GroupName); 1460 1461 if (!NeedComdat) { 1462 // Object file format must be ELF since `UseComdat && !NeedComdat` is true. 1463 // 1464 // For ELF, when not using COMDAT, put counters, data and values into a 1465 // nodeduplicate COMDAT which is lowered to a zero-flag section group. This 1466 // allows -z start-stop-gc to discard the entire group when the function is 1467 // discarded. 1468 C->setSelectionKind(Comdat::NoDeduplicate); 1469 } 1470 GV->setComdat(C); 1471 // COFF doesn't allow the comdat group leader to have private linkage, so 1472 // upgrade private linkage to internal linkage to produce a symbol table 1473 // entry. 1474 if (TT.isOSBinFormatCOFF() && GV->hasPrivateLinkage()) 1475 GV->setLinkage(GlobalValue::InternalLinkage); 1476 } 1477 1478 static inline bool shouldRecordVTableAddr(GlobalVariable *GV) { 1479 if (!profDataReferencedByCode(*GV->getParent())) 1480 return false; 1481 1482 if (!GV->hasLinkOnceLinkage() && !GV->hasLocalLinkage() && 1483 !GV->hasAvailableExternallyLinkage()) 1484 return true; 1485 1486 // This avoids the profile data from referencing internal symbols in 1487 // COMDAT. 1488 if (GV->hasLocalLinkage() && GV->hasComdat()) 1489 return false; 1490 1491 return true; 1492 } 1493 1494 // FIXME: Introduce an internal alias like what's done for functions to reduce 1495 // the number of relocation entries. 1496 static inline Constant *getVTableAddrForProfData(GlobalVariable *GV) { 1497 auto *Int8PtrTy = PointerType::getUnqual(GV->getContext()); 1498 1499 // Store a nullptr in __profvt_ if a real address shouldn't be used. 1500 if (!shouldRecordVTableAddr(GV)) 1501 return ConstantPointerNull::get(Int8PtrTy); 1502 1503 return ConstantExpr::getBitCast(GV, Int8PtrTy); 1504 } 1505 1506 void InstrLowerer::getOrCreateVTableProfData(GlobalVariable *GV) { 1507 assert(!DebugInfoCorrelate && 1508 "Value profiling is not supported with lightweight instrumentation"); 1509 if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) 1510 return; 1511 1512 // Skip llvm internal global variable or __prof variables. 1513 if (GV->getName().starts_with("llvm.") || 1514 GV->getName().starts_with("__llvm") || 1515 GV->getName().starts_with("__prof")) 1516 return; 1517 1518 // VTableProfData already created 1519 auto It = VTableDataMap.find(GV); 1520 if (It != VTableDataMap.end() && It->second) 1521 return; 1522 1523 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 1524 GlobalValue::VisibilityTypes Visibility = GV->getVisibility(); 1525 1526 // This is to keep consistent with per-function profile data 1527 // for correctness. 1528 if (TT.isOSBinFormatXCOFF()) { 1529 Linkage = GlobalValue::InternalLinkage; 1530 Visibility = GlobalValue::DefaultVisibility; 1531 } 1532 1533 LLVMContext &Ctx = M.getContext(); 1534 Type *DataTypes[] = { 1535 #define INSTR_PROF_VTABLE_DATA(Type, LLVMType, Name, Init) LLVMType, 1536 #include "llvm/ProfileData/InstrProfData.inc" 1537 #undef INSTR_PROF_VTABLE_DATA 1538 }; 1539 1540 auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes)); 1541 1542 // Used by INSTR_PROF_VTABLE_DATA MACRO 1543 Constant *VTableAddr = getVTableAddrForProfData(GV); 1544 const std::string PGOVTableName = getPGOName(*GV); 1545 // Record the length of the vtable. This is needed since vtable pointers 1546 // loaded from C++ objects might be from the middle of a vtable definition. 1547 uint32_t VTableSizeVal = 1548 M.getDataLayout().getTypeAllocSize(GV->getValueType()); 1549 1550 Constant *DataVals[] = { 1551 #define INSTR_PROF_VTABLE_DATA(Type, LLVMType, Name, Init) Init, 1552 #include "llvm/ProfileData/InstrProfData.inc" 1553 #undef INSTR_PROF_VTABLE_DATA 1554 }; 1555 1556 auto *Data = 1557 new GlobalVariable(M, DataTy, /*constant=*/false, Linkage, 1558 ConstantStruct::get(DataTy, DataVals), 1559 getInstrProfVTableVarPrefix() + PGOVTableName); 1560 1561 Data->setVisibility(Visibility); 1562 Data->setSection(getInstrProfSectionName(IPSK_vtab, TT.getObjectFormat())); 1563 Data->setAlignment(Align(8)); 1564 1565 maybeSetComdat(Data, GV, Data->getName()); 1566 1567 VTableDataMap[GV] = Data; 1568 1569 ReferencedVTables.push_back(GV); 1570 1571 // VTable <Hash, Addr> is used by runtime but not referenced by other 1572 // sections. Conservatively mark it linker retained. 1573 UsedVars.push_back(Data); 1574 } 1575 1576 GlobalVariable *InstrLowerer::setupProfileSection(InstrProfInstBase *Inc, 1577 InstrProfSectKind IPSK) { 1578 GlobalVariable *NamePtr = Inc->getName(); 1579 1580 // Match the linkage and visibility of the name global. 1581 Function *Fn = Inc->getParent()->getParent(); 1582 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 1583 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 1584 1585 // Use internal rather than private linkage so the counter variable shows up 1586 // in the symbol table when using debug info for correlation. 1587 if ((DebugInfoCorrelate || 1588 ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) && 1589 TT.isOSBinFormatMachO() && Linkage == GlobalValue::PrivateLinkage) 1590 Linkage = GlobalValue::InternalLinkage; 1591 1592 // Due to the limitation of binder as of 2021/09/28, the duplicate weak 1593 // symbols in the same csect won't be discarded. When there are duplicate weak 1594 // symbols, we can NOT guarantee that the relocations get resolved to the 1595 // intended weak symbol, so we can not ensure the correctness of the relative 1596 // CounterPtr, so we have to use private linkage for counter and data symbols. 1597 if (TT.isOSBinFormatXCOFF()) { 1598 Linkage = GlobalValue::PrivateLinkage; 1599 Visibility = GlobalValue::DefaultVisibility; 1600 } 1601 // Move the name variable to the right section. 1602 bool Renamed; 1603 GlobalVariable *Ptr; 1604 StringRef VarPrefix; 1605 std::string VarName; 1606 if (IPSK == IPSK_cnts) { 1607 VarPrefix = getInstrProfCountersVarPrefix(); 1608 VarName = getVarName(Inc, VarPrefix, Renamed); 1609 InstrProfCntrInstBase *CntrIncrement = dyn_cast<InstrProfCntrInstBase>(Inc); 1610 Ptr = createRegionCounters(CntrIncrement, VarName, Linkage); 1611 } else if (IPSK == IPSK_bitmap) { 1612 VarPrefix = getInstrProfBitmapVarPrefix(); 1613 VarName = getVarName(Inc, VarPrefix, Renamed); 1614 InstrProfMCDCBitmapInstBase *BitmapUpdate = 1615 dyn_cast<InstrProfMCDCBitmapInstBase>(Inc); 1616 Ptr = createRegionBitmaps(BitmapUpdate, VarName, Linkage); 1617 } else { 1618 llvm_unreachable("Profile Section must be for Counters or Bitmaps"); 1619 } 1620 1621 Ptr->setVisibility(Visibility); 1622 // Put the counters and bitmaps in their own sections so linkers can 1623 // remove unneeded sections. 1624 Ptr->setSection(getInstrProfSectionName(IPSK, TT.getObjectFormat())); 1625 Ptr->setLinkage(Linkage); 1626 maybeSetComdat(Ptr, Fn, VarName); 1627 return Ptr; 1628 } 1629 1630 GlobalVariable * 1631 InstrLowerer::createRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc, 1632 StringRef Name, 1633 GlobalValue::LinkageTypes Linkage) { 1634 uint64_t NumBytes = Inc->getNumBitmapBytes(); 1635 auto *BitmapTy = ArrayType::get(Type::getInt8Ty(M.getContext()), NumBytes); 1636 auto GV = new GlobalVariable(M, BitmapTy, false, Linkage, 1637 Constant::getNullValue(BitmapTy), Name); 1638 GV->setAlignment(Align(1)); 1639 return GV; 1640 } 1641 1642 GlobalVariable * 1643 InstrLowerer::getOrCreateRegionBitmaps(InstrProfMCDCBitmapInstBase *Inc) { 1644 GlobalVariable *NamePtr = Inc->getName(); 1645 auto &PD = ProfileDataMap[NamePtr]; 1646 if (PD.RegionBitmaps) 1647 return PD.RegionBitmaps; 1648 1649 // If RegionBitmaps doesn't already exist, create it by first setting up 1650 // the corresponding profile section. 1651 auto *BitmapPtr = setupProfileSection(Inc, IPSK_bitmap); 1652 PD.RegionBitmaps = BitmapPtr; 1653 PD.NumBitmapBytes = Inc->getNumBitmapBytes(); 1654 return PD.RegionBitmaps; 1655 } 1656 1657 GlobalVariable * 1658 InstrLowerer::createRegionCounters(InstrProfCntrInstBase *Inc, StringRef Name, 1659 GlobalValue::LinkageTypes Linkage) { 1660 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 1661 auto &Ctx = M.getContext(); 1662 GlobalVariable *GV; 1663 if (isa<InstrProfCoverInst>(Inc)) { 1664 auto *CounterTy = Type::getInt8Ty(Ctx); 1665 auto *CounterArrTy = ArrayType::get(CounterTy, NumCounters); 1666 // TODO: `Constant::getAllOnesValue()` does not yet accept an array type. 1667 std::vector<Constant *> InitialValues(NumCounters, 1668 Constant::getAllOnesValue(CounterTy)); 1669 GV = new GlobalVariable(M, CounterArrTy, false, Linkage, 1670 ConstantArray::get(CounterArrTy, InitialValues), 1671 Name); 1672 GV->setAlignment(Align(1)); 1673 } else { 1674 auto *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); 1675 GV = new GlobalVariable(M, CounterTy, false, Linkage, 1676 Constant::getNullValue(CounterTy), Name); 1677 GV->setAlignment(Align(8)); 1678 } 1679 return GV; 1680 } 1681 1682 GlobalVariable * 1683 InstrLowerer::getOrCreateRegionCounters(InstrProfCntrInstBase *Inc) { 1684 GlobalVariable *NamePtr = Inc->getName(); 1685 auto &PD = ProfileDataMap[NamePtr]; 1686 if (PD.RegionCounters) 1687 return PD.RegionCounters; 1688 1689 // If RegionCounters doesn't already exist, create it by first setting up 1690 // the corresponding profile section. 1691 auto *CounterPtr = setupProfileSection(Inc, IPSK_cnts); 1692 PD.RegionCounters = CounterPtr; 1693 1694 if (DebugInfoCorrelate || 1695 ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) { 1696 LLVMContext &Ctx = M.getContext(); 1697 Function *Fn = Inc->getParent()->getParent(); 1698 if (auto *SP = Fn->getSubprogram()) { 1699 DIBuilder DB(M, true, SP->getUnit()); 1700 Metadata *FunctionNameAnnotation[] = { 1701 MDString::get(Ctx, InstrProfCorrelator::FunctionNameAttributeName), 1702 MDString::get(Ctx, getPGOFuncNameVarInitializer(NamePtr)), 1703 }; 1704 Metadata *CFGHashAnnotation[] = { 1705 MDString::get(Ctx, InstrProfCorrelator::CFGHashAttributeName), 1706 ConstantAsMetadata::get(Inc->getHash()), 1707 }; 1708 Metadata *NumCountersAnnotation[] = { 1709 MDString::get(Ctx, InstrProfCorrelator::NumCountersAttributeName), 1710 ConstantAsMetadata::get(Inc->getNumCounters()), 1711 }; 1712 auto Annotations = DB.getOrCreateArray({ 1713 MDNode::get(Ctx, FunctionNameAnnotation), 1714 MDNode::get(Ctx, CFGHashAnnotation), 1715 MDNode::get(Ctx, NumCountersAnnotation), 1716 }); 1717 auto *DICounter = DB.createGlobalVariableExpression( 1718 SP, CounterPtr->getName(), /*LinkageName=*/StringRef(), SP->getFile(), 1719 /*LineNo=*/0, DB.createUnspecifiedType("Profile Data Type"), 1720 CounterPtr->hasLocalLinkage(), /*IsDefined=*/true, /*Expr=*/nullptr, 1721 /*Decl=*/nullptr, /*TemplateParams=*/nullptr, /*AlignInBits=*/0, 1722 Annotations); 1723 CounterPtr->addDebugInfo(DICounter); 1724 DB.finalize(); 1725 } 1726 1727 // Mark the counter variable as used so that it isn't optimized out. 1728 CompilerUsedVars.push_back(PD.RegionCounters); 1729 } 1730 1731 // Create the data variable (if it doesn't already exist). 1732 createDataVariable(Inc); 1733 1734 return PD.RegionCounters; 1735 } 1736 1737 void InstrLowerer::createDataVariable(InstrProfCntrInstBase *Inc) { 1738 // When debug information is correlated to profile data, a data variable 1739 // is not needed. 1740 if (DebugInfoCorrelate || ProfileCorrelate == InstrProfCorrelator::DEBUG_INFO) 1741 return; 1742 1743 GlobalVariable *NamePtr = Inc->getName(); 1744 auto &PD = ProfileDataMap[NamePtr]; 1745 1746 // Return if data variable was already created. 1747 if (PD.DataVar) 1748 return; 1749 1750 LLVMContext &Ctx = M.getContext(); 1751 1752 Function *Fn = Inc->getParent()->getParent(); 1753 GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); 1754 GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); 1755 1756 // Due to the limitation of binder as of 2021/09/28, the duplicate weak 1757 // symbols in the same csect won't be discarded. When there are duplicate weak 1758 // symbols, we can NOT guarantee that the relocations get resolved to the 1759 // intended weak symbol, so we can not ensure the correctness of the relative 1760 // CounterPtr, so we have to use private linkage for counter and data symbols. 1761 if (TT.isOSBinFormatXCOFF()) { 1762 Linkage = GlobalValue::PrivateLinkage; 1763 Visibility = GlobalValue::DefaultVisibility; 1764 } 1765 1766 bool NeedComdat = needsComdatForCounter(*Fn, M); 1767 bool Renamed; 1768 1769 // The Data Variable section is anchored to profile counters. 1770 std::string CntsVarName = 1771 getVarName(Inc, getInstrProfCountersVarPrefix(), Renamed); 1772 std::string DataVarName = 1773 getVarName(Inc, getInstrProfDataVarPrefix(), Renamed); 1774 1775 auto *Int8PtrTy = PointerType::getUnqual(Ctx); 1776 // Allocate statically the array of pointers to value profile nodes for 1777 // the current function. 1778 Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); 1779 uint64_t NS = 0; 1780 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1781 NS += PD.NumValueSites[Kind]; 1782 if (NS > 0 && ValueProfileStaticAlloc && 1783 !needsRuntimeRegistrationOfSectionRange(TT)) { 1784 ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); 1785 auto *ValuesVar = new GlobalVariable( 1786 M, ValuesTy, false, Linkage, Constant::getNullValue(ValuesTy), 1787 getVarName(Inc, getInstrProfValuesVarPrefix(), Renamed)); 1788 ValuesVar->setVisibility(Visibility); 1789 setGlobalVariableLargeSection(TT, *ValuesVar); 1790 ValuesVar->setSection( 1791 getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); 1792 ValuesVar->setAlignment(Align(8)); 1793 maybeSetComdat(ValuesVar, Fn, CntsVarName); 1794 ValuesPtrExpr = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1795 ValuesVar, PointerType::get(Fn->getContext(), 0)); 1796 } 1797 1798 uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); 1799 auto *CounterPtr = PD.RegionCounters; 1800 1801 uint64_t NumBitmapBytes = PD.NumBitmapBytes; 1802 1803 // Create data variable. 1804 auto *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext()); 1805 auto *Int16Ty = Type::getInt16Ty(Ctx); 1806 auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); 1807 Type *DataTypes[] = { 1808 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, 1809 #include "llvm/ProfileData/InstrProfData.inc" 1810 }; 1811 auto *DataTy = StructType::get(Ctx, ArrayRef(DataTypes)); 1812 1813 Constant *FunctionAddr = getFuncAddrForProfData(Fn); 1814 1815 Constant *Int16ArrayVals[IPVK_Last + 1]; 1816 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1817 Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); 1818 1819 if (isGPUProfTarget(M)) { 1820 Linkage = GlobalValue::ExternalLinkage; 1821 Visibility = GlobalValue::ProtectedVisibility; 1822 } 1823 // If the data variable is not referenced by code (if we don't emit 1824 // @llvm.instrprof.value.profile, NS will be 0), and the counter keeps the 1825 // data variable live under linker GC, the data variable can be private. This 1826 // optimization applies to ELF. 1827 // 1828 // On COFF, a comdat leader cannot be local so we require DataReferencedByCode 1829 // to be false. 1830 // 1831 // If profd is in a deduplicate comdat, NS==0 with a hash suffix guarantees 1832 // that other copies must have the same CFG and cannot have value profiling. 1833 // If no hash suffix, other profd copies may be referenced by code. 1834 else if (NS == 0 && !(DataReferencedByCode && NeedComdat && !Renamed) && 1835 (TT.isOSBinFormatELF() || 1836 (!DataReferencedByCode && TT.isOSBinFormatCOFF()))) { 1837 Linkage = GlobalValue::PrivateLinkage; 1838 Visibility = GlobalValue::DefaultVisibility; 1839 } 1840 auto *Data = 1841 new GlobalVariable(M, DataTy, false, Linkage, nullptr, DataVarName); 1842 Constant *RelativeCounterPtr; 1843 GlobalVariable *BitmapPtr = PD.RegionBitmaps; 1844 Constant *RelativeBitmapPtr = ConstantInt::get(IntPtrTy, 0); 1845 InstrProfSectKind DataSectionKind; 1846 // With binary profile correlation, profile data is not loaded into memory. 1847 // profile data must reference profile counter with an absolute relocation. 1848 if (ProfileCorrelate == InstrProfCorrelator::BINARY) { 1849 DataSectionKind = IPSK_covdata; 1850 RelativeCounterPtr = ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy); 1851 if (BitmapPtr != nullptr) 1852 RelativeBitmapPtr = ConstantExpr::getPtrToInt(BitmapPtr, IntPtrTy); 1853 } else { 1854 // Reference the counter variable with a label difference (link-time 1855 // constant). 1856 DataSectionKind = IPSK_data; 1857 RelativeCounterPtr = 1858 ConstantExpr::getSub(ConstantExpr::getPtrToInt(CounterPtr, IntPtrTy), 1859 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 1860 if (BitmapPtr != nullptr) 1861 RelativeBitmapPtr = 1862 ConstantExpr::getSub(ConstantExpr::getPtrToInt(BitmapPtr, IntPtrTy), 1863 ConstantExpr::getPtrToInt(Data, IntPtrTy)); 1864 } 1865 1866 Constant *DataVals[] = { 1867 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, 1868 #include "llvm/ProfileData/InstrProfData.inc" 1869 }; 1870 Data->setInitializer(ConstantStruct::get(DataTy, DataVals)); 1871 1872 Data->setVisibility(Visibility); 1873 Data->setSection( 1874 getInstrProfSectionName(DataSectionKind, TT.getObjectFormat())); 1875 Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); 1876 maybeSetComdat(Data, Fn, CntsVarName); 1877 1878 PD.DataVar = Data; 1879 1880 // Mark the data variable as used so that it isn't stripped out. 1881 CompilerUsedVars.push_back(Data); 1882 // Now that the linkage set by the FE has been passed to the data and counter 1883 // variables, reset Name variable's linkage and visibility to private so that 1884 // it can be removed later by the compiler. 1885 NamePtr->setLinkage(GlobalValue::PrivateLinkage); 1886 // Collect the referenced names to be used by emitNameData. 1887 ReferencedNames.push_back(NamePtr); 1888 } 1889 1890 void InstrLowerer::emitVNodes() { 1891 if (!ValueProfileStaticAlloc) 1892 return; 1893 1894 // For now only support this on platforms that do 1895 // not require runtime registration to discover 1896 // named section start/end. 1897 if (needsRuntimeRegistrationOfSectionRange(TT)) 1898 return; 1899 1900 size_t TotalNS = 0; 1901 for (auto &PD : ProfileDataMap) { 1902 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) 1903 TotalNS += PD.second.NumValueSites[Kind]; 1904 } 1905 1906 if (!TotalNS) 1907 return; 1908 1909 uint64_t NumCounters = TotalNS * NumCountersPerValueSite; 1910 // Heuristic for small programs with very few total value sites. 1911 // The default value of vp-counters-per-site is chosen based on 1912 // the observation that large apps usually have a low percentage 1913 // of value sites that actually have any profile data, and thus 1914 // the average number of counters per site is low. For small 1915 // apps with very few sites, this may not be true. Bump up the 1916 // number of counters in this case. 1917 #define INSTR_PROF_MIN_VAL_COUNTS 10 1918 if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) 1919 NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); 1920 1921 auto &Ctx = M.getContext(); 1922 Type *VNodeTypes[] = { 1923 #define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, 1924 #include "llvm/ProfileData/InstrProfData.inc" 1925 }; 1926 auto *VNodeTy = StructType::get(Ctx, ArrayRef(VNodeTypes)); 1927 1928 ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); 1929 auto *VNodesVar = new GlobalVariable( 1930 M, VNodesTy, false, GlobalValue::PrivateLinkage, 1931 Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); 1932 setGlobalVariableLargeSection(TT, *VNodesVar); 1933 VNodesVar->setSection( 1934 getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); 1935 VNodesVar->setAlignment(M.getDataLayout().getABITypeAlign(VNodesTy)); 1936 // VNodesVar is used by runtime but not referenced via relocation by other 1937 // sections. Conservatively make it linker retained. 1938 UsedVars.push_back(VNodesVar); 1939 } 1940 1941 void InstrLowerer::emitNameData() { 1942 std::string UncompressedData; 1943 1944 if (ReferencedNames.empty()) 1945 return; 1946 1947 std::string CompressedNameStr; 1948 if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, 1949 DoInstrProfNameCompression)) { 1950 report_fatal_error(Twine(toString(std::move(E))), false); 1951 } 1952 1953 auto &Ctx = M.getContext(); 1954 auto *NamesVal = 1955 ConstantDataArray::getString(Ctx, StringRef(CompressedNameStr), false); 1956 NamesVar = new GlobalVariable(M, NamesVal->getType(), true, 1957 GlobalValue::PrivateLinkage, NamesVal, 1958 getInstrProfNamesVarName()); 1959 1960 // Make names variable public if current target is a GPU 1961 if (isGPUProfTarget(M)) { 1962 NamesVar->setLinkage(GlobalValue::ExternalLinkage); 1963 NamesVar->setVisibility(GlobalValue::VisibilityTypes::ProtectedVisibility); 1964 } 1965 1966 NamesSize = CompressedNameStr.size(); 1967 setGlobalVariableLargeSection(TT, *NamesVar); 1968 NamesVar->setSection( 1969 ProfileCorrelate == InstrProfCorrelator::BINARY 1970 ? getInstrProfSectionName(IPSK_covname, TT.getObjectFormat()) 1971 : getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); 1972 // On COFF, it's important to reduce the alignment down to 1 to prevent the 1973 // linker from inserting padding before the start of the names section or 1974 // between names entries. 1975 NamesVar->setAlignment(Align(1)); 1976 // NamesVar is used by runtime but not referenced via relocation by other 1977 // sections. Conservatively make it linker retained. 1978 UsedVars.push_back(NamesVar); 1979 1980 for (auto *NamePtr : ReferencedNames) 1981 NamePtr->eraseFromParent(); 1982 } 1983 1984 void InstrLowerer::emitVTableNames() { 1985 if (!EnableVTableValueProfiling || ReferencedVTables.empty()) 1986 return; 1987 1988 // Collect the PGO names of referenced vtables and compress them. 1989 std::string CompressedVTableNames; 1990 if (Error E = collectVTableStrings(ReferencedVTables, CompressedVTableNames, 1991 DoInstrProfNameCompression)) { 1992 report_fatal_error(Twine(toString(std::move(E))), false); 1993 } 1994 1995 auto &Ctx = M.getContext(); 1996 auto *VTableNamesVal = ConstantDataArray::getString( 1997 Ctx, StringRef(CompressedVTableNames), false /* AddNull */); 1998 GlobalVariable *VTableNamesVar = 1999 new GlobalVariable(M, VTableNamesVal->getType(), true /* constant */, 2000 GlobalValue::PrivateLinkage, VTableNamesVal, 2001 getInstrProfVTableNamesVarName()); 2002 VTableNamesVar->setSection( 2003 getInstrProfSectionName(IPSK_vname, TT.getObjectFormat())); 2004 VTableNamesVar->setAlignment(Align(1)); 2005 // Make VTableNames linker retained. 2006 UsedVars.push_back(VTableNamesVar); 2007 } 2008 2009 void InstrLowerer::emitRegistration() { 2010 if (!needsRuntimeRegistrationOfSectionRange(TT)) 2011 return; 2012 2013 // Construct the function. 2014 auto *VoidTy = Type::getVoidTy(M.getContext()); 2015 auto *VoidPtrTy = PointerType::getUnqual(M.getContext()); 2016 auto *Int64Ty = Type::getInt64Ty(M.getContext()); 2017 auto *RegisterFTy = FunctionType::get(VoidTy, false); 2018 auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, 2019 getInstrProfRegFuncsName(), M); 2020 RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 2021 if (Options.NoRedZone) 2022 RegisterF->addFnAttr(Attribute::NoRedZone); 2023 2024 auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); 2025 auto *RuntimeRegisterF = 2026 Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, 2027 getInstrProfRegFuncName(), M); 2028 2029 IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", RegisterF)); 2030 for (Value *Data : CompilerUsedVars) 2031 if (!isa<Function>(Data)) 2032 // Check for addrspace cast when profiling GPU 2033 IRB.CreateCall(RuntimeRegisterF, 2034 IRB.CreatePointerBitCastOrAddrSpaceCast(Data, VoidPtrTy)); 2035 for (Value *Data : UsedVars) 2036 if (Data != NamesVar && !isa<Function>(Data)) 2037 IRB.CreateCall(RuntimeRegisterF, 2038 IRB.CreatePointerBitCastOrAddrSpaceCast(Data, VoidPtrTy)); 2039 2040 if (NamesVar) { 2041 Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; 2042 auto *NamesRegisterTy = 2043 FunctionType::get(VoidTy, ArrayRef(ParamTypes), false); 2044 auto *NamesRegisterF = 2045 Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, 2046 getInstrProfNamesRegFuncName(), M); 2047 IRB.CreateCall(NamesRegisterF, {IRB.CreatePointerBitCastOrAddrSpaceCast( 2048 NamesVar, VoidPtrTy), 2049 IRB.getInt64(NamesSize)}); 2050 } 2051 2052 IRB.CreateRetVoid(); 2053 } 2054 2055 bool InstrLowerer::emitRuntimeHook() { 2056 // We expect the linker to be invoked with -u<hook_var> flag for Linux 2057 // in which case there is no need to emit the external variable. 2058 if (TT.isOSLinux() || TT.isOSAIX()) 2059 return false; 2060 2061 // If the module's provided its own runtime, we don't need to do anything. 2062 if (M.getGlobalVariable(getInstrProfRuntimeHookVarName())) 2063 return false; 2064 2065 // Declare an external variable that will pull in the runtime initialization. 2066 auto *Int32Ty = Type::getInt32Ty(M.getContext()); 2067 auto *Var = 2068 new GlobalVariable(M, Int32Ty, false, GlobalValue::ExternalLinkage, 2069 nullptr, getInstrProfRuntimeHookVarName()); 2070 if (isGPUProfTarget(M)) 2071 Var->setVisibility(GlobalValue::ProtectedVisibility); 2072 else 2073 Var->setVisibility(GlobalValue::HiddenVisibility); 2074 2075 if (TT.isOSBinFormatELF() && !TT.isPS()) { 2076 // Mark the user variable as used so that it isn't stripped out. 2077 CompilerUsedVars.push_back(Var); 2078 } else { 2079 // Make a function that uses it. 2080 auto *User = Function::Create(FunctionType::get(Int32Ty, false), 2081 GlobalValue::LinkOnceODRLinkage, 2082 getInstrProfRuntimeHookVarUseFuncName(), M); 2083 User->addFnAttr(Attribute::NoInline); 2084 if (Options.NoRedZone) 2085 User->addFnAttr(Attribute::NoRedZone); 2086 User->setVisibility(GlobalValue::HiddenVisibility); 2087 if (TT.supportsCOMDAT()) 2088 User->setComdat(M.getOrInsertComdat(User->getName())); 2089 2090 IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", User)); 2091 auto *Load = IRB.CreateLoad(Int32Ty, Var); 2092 IRB.CreateRet(Load); 2093 2094 // Mark the function as used so that it isn't stripped out. 2095 CompilerUsedVars.push_back(User); 2096 } 2097 return true; 2098 } 2099 2100 void InstrLowerer::emitUses() { 2101 // The metadata sections are parallel arrays. Optimizers (e.g. 2102 // GlobalOpt/ConstantMerge) may not discard associated sections as a unit, so 2103 // we conservatively retain all unconditionally in the compiler. 2104 // 2105 // On ELF and Mach-O, the linker can guarantee the associated sections will be 2106 // retained or discarded as a unit, so llvm.compiler.used is sufficient. 2107 // Similarly on COFF, if prof data is not referenced by code we use one comdat 2108 // and ensure this GC property as well. Otherwise, we have to conservatively 2109 // make all of the sections retained by the linker. 2110 if (TT.isOSBinFormatELF() || TT.isOSBinFormatMachO() || 2111 (TT.isOSBinFormatCOFF() && !DataReferencedByCode)) 2112 appendToCompilerUsed(M, CompilerUsedVars); 2113 else 2114 appendToUsed(M, CompilerUsedVars); 2115 2116 // We do not add proper references from used metadata sections to NamesVar and 2117 // VNodesVar, so we have to be conservative and place them in llvm.used 2118 // regardless of the target, 2119 appendToUsed(M, UsedVars); 2120 } 2121 2122 void InstrLowerer::emitInitialization() { 2123 // Create ProfileFileName variable. Don't don't this for the 2124 // context-sensitive instrumentation lowering: This lowering is after 2125 // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should 2126 // have already create the variable before LTO/ThinLTO linking. 2127 if (!IsCS) 2128 createProfileFileNameVar(M, Options.InstrProfileOutput); 2129 Function *RegisterF = M.getFunction(getInstrProfRegFuncsName()); 2130 if (!RegisterF) 2131 return; 2132 2133 // Create the initialization function. 2134 auto *VoidTy = Type::getVoidTy(M.getContext()); 2135 auto *F = Function::Create(FunctionType::get(VoidTy, false), 2136 GlobalValue::InternalLinkage, 2137 getInstrProfInitFuncName(), M); 2138 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 2139 F->addFnAttr(Attribute::NoInline); 2140 if (Options.NoRedZone) 2141 F->addFnAttr(Attribute::NoRedZone); 2142 2143 // Add the basic block and the necessary calls. 2144 IRBuilder<> IRB(BasicBlock::Create(M.getContext(), "", F)); 2145 IRB.CreateCall(RegisterF, {}); 2146 IRB.CreateRetVoid(); 2147 2148 appendToGlobalCtors(M, F, 0); 2149 } 2150 2151 namespace llvm { 2152 // Create the variable for profile sampling. 2153 void createProfileSamplingVar(Module &M) { 2154 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_SAMPLING_VAR)); 2155 IntegerType *SamplingVarTy; 2156 Constant *ValueZero; 2157 if (getSampledInstrumentationConfig().UseShort) { 2158 SamplingVarTy = Type::getInt16Ty(M.getContext()); 2159 ValueZero = Constant::getIntegerValue(SamplingVarTy, APInt(16, 0)); 2160 } else { 2161 SamplingVarTy = Type::getInt32Ty(M.getContext()); 2162 ValueZero = Constant::getIntegerValue(SamplingVarTy, APInt(32, 0)); 2163 } 2164 auto SamplingVar = new GlobalVariable( 2165 M, SamplingVarTy, false, GlobalValue::WeakAnyLinkage, ValueZero, VarName); 2166 SamplingVar->setVisibility(GlobalValue::DefaultVisibility); 2167 SamplingVar->setThreadLocal(true); 2168 Triple TT(M.getTargetTriple()); 2169 if (TT.supportsCOMDAT()) { 2170 SamplingVar->setLinkage(GlobalValue::ExternalLinkage); 2171 SamplingVar->setComdat(M.getOrInsertComdat(VarName)); 2172 } 2173 appendToCompilerUsed(M, SamplingVar); 2174 } 2175 } // namespace llvm 2176