xref: /llvm-project/llvm/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp (revision 4d12a14357b136e996f8789786f1b76348b5582b)
1 //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the transformation that promotes indirect calls to
10 // conditional direct calls when the indirect-call value profile metadata is
11 // available.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
20 #include "llvm/Analysis/IndirectCallVisitor.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TypeMetadataUtils.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/ProfileData/InstrProf.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
41 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
42 #include "llvm/Transforms/Utils/Instrumentation.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <set>
46 #include <string>
47 #include <unordered_map>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "pgo-icall-prom"
54 
55 STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
56 STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
57 
58 extern cl::opt<unsigned> MaxNumVTableAnnotations;
59 
60 namespace llvm {
61 extern cl::opt<bool> EnableVTableProfileUse;
62 }
63 
64 // Command line option to disable indirect-call promotion with the default as
65 // false. This is for debug purpose.
66 static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
67                                 cl::desc("Disable indirect call promotion"));
68 
69 // Set the cutoff value for the promotion. If the value is other than 0, we
70 // stop the transformation once the total number of promotions equals the cutoff
71 // value.
72 // For debug use only.
73 static cl::opt<unsigned>
74     ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
75               cl::desc("Max number of promotions for this compilation"));
76 
77 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
78 // For debug use only.
79 static cl::opt<unsigned>
80     ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
81               cl::desc("Skip Callsite up to this number for this compilation"));
82 
83 // Set if the pass is called in LTO optimization. The difference for LTO mode
84 // is the pass won't prefix the source module name to the internal linkage
85 // symbols.
86 static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
87                                 cl::desc("Run indirect-call promotion in LTO "
88                                          "mode"));
89 
90 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO
91 // mode is it will add prof metadatato the created direct call.
92 static cl::opt<bool>
93     ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
94                      cl::desc("Run indirect-call promotion in SamplePGO mode"));
95 
96 // If the option is set to true, only call instructions will be considered for
97 // transformation -- invoke instructions will be ignored.
98 static cl::opt<bool>
99     ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
100                 cl::desc("Run indirect-call promotion for call instructions "
101                          "only"));
102 
103 // If the option is set to true, only invoke instructions will be considered for
104 // transformation -- call instructions will be ignored.
105 static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
106                                    cl::Hidden,
107                                    cl::desc("Run indirect-call promotion for "
108                                             "invoke instruction only"));
109 
110 // Dump the function level IR if the transformation happened in this
111 // function. For debug use only.
112 static cl::opt<bool>
113     ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
114                  cl::desc("Dump IR after transformation happens"));
115 
116 // Indirect call promotion pass will fall back to function-based comparison if
117 // vtable-count / function-count is smaller than this threshold.
118 static cl::opt<float> ICPVTablePercentageThreshold(
119     "icp-vtable-percentage-threshold", cl::init(0.995), cl::Hidden,
120     cl::desc("The percentage threshold of vtable-count / function-count for "
121              "cost-benefit analysis."));
122 
123 // Although comparing vtables can save a vtable load, we may need to compare
124 // vtable pointer with multiple vtable address points due to class inheritance.
125 // Comparing with multiple vtables inserts additional instructions on hot code
126 // path, and doing so for an earlier candidate delays the comparisons for later
127 // candidates. For the last candidate, only the fallback path is affected.
128 // We allow multiple vtable comparison for the last function candidate and use
129 // the option below to cap the number of vtables.
130 static cl::opt<int> ICPMaxNumVTableLastCandidate(
131     "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
132     cl::desc("The maximum number of vtable for the last candidate."));
133 
134 static cl::list<std::string> ICPIgnoredBaseTypes(
135     "icp-ignored-base-types", cl::Hidden,
136     cl::desc(
137         "A list of mangled vtable type info names. Classes specified by the "
138         "type info names and their derived ones will not be vtable-ICP'ed. "
139         "Useful when the profiled types and actual types in the optimized "
140         "binary could be different due to profiling limitations. Type info "
141         "names are those string literals used in LLVM type metadata"));
142 
143 namespace {
144 
145 // The key is a vtable global variable, and the value is a map.
146 // In the inner map, the key represents address point offsets and the value is a
147 // constant for this address point.
148 using VTableAddressPointOffsetValMap =
149     SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
150 
151 // A struct to collect type information for a virtual call site.
152 struct VirtualCallSiteInfo {
153   // The offset from the address point to virtual function in the vtable.
154   uint64_t FunctionOffset;
155   // The instruction that computes the address point of vtable.
156   Instruction *VPtr;
157   // The compatible type used in LLVM type intrinsics.
158   StringRef CompatibleTypeStr;
159 };
160 
161 // The key is a virtual call, and value is its type information.
162 using VirtualCallSiteTypeInfoMap =
163     SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
164 
165 // The key is vtable GUID, and value is its value profile count.
166 using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
167 
168 // Return the address point offset of the given compatible type.
169 //
170 // Type metadata of a vtable specifies the types that can contain a pointer to
171 // this vtable, for example, `Base*` can be a pointer to an derived type
172 // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
173 static std::optional<uint64_t>
174 getAddressPointOffset(const GlobalVariable &VTableVar,
175                       StringRef CompatibleType) {
176   SmallVector<MDNode *> Types;
177   VTableVar.getMetadata(LLVMContext::MD_type, Types);
178 
179   for (MDNode *Type : Types)
180     if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
181         TypeId && TypeId->getString() == CompatibleType)
182       return cast<ConstantInt>(
183                  cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
184           ->getZExtValue();
185 
186   return std::nullopt;
187 }
188 
189 // Return a constant representing the vtable's address point specified by the
190 // offset.
191 static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
192                                              uint32_t AddressPointOffset) {
193   Module &M = *VTable->getParent();
194   LLVMContext &Context = M.getContext();
195   assert(AddressPointOffset <
196              M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
197          "Out-of-bound access");
198 
199   return ConstantExpr::getInBoundsGetElementPtr(
200       Type::getInt8Ty(Context), VTable,
201       llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
202 }
203 
204 // Return the basic block in which Use `U` is used via its `UserInst`.
205 static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
206   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
207     return PN->getIncomingBlock(U);
208 
209   return UserInst->getParent();
210 }
211 
212 // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
213 // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
214 // is the sole predecessor of `DestBB` and `DestBB` is dominated by
215 // `Inst->getParent()`.
216 static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
217   // 'BB' is used only by assert.
218   [[maybe_unused]] BasicBlock *BB = Inst->getParent();
219 
220   assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
221          DestBB->getUniquePredecessor() == BB &&
222          "Guaranteed by ICP transformation");
223 
224   BasicBlock *UserBB = nullptr;
225   for (Use &Use : Inst->uses()) {
226     User *User = Use.getUser();
227     // Do checked cast since IR verifier guarantees that the user of an
228     // instruction must be an instruction. See `Verifier::visitInstruction`.
229     Instruction *UserInst = cast<Instruction>(User);
230     // We can sink debug or pseudo instructions together with Inst.
231     if (UserInst->isDebugOrPseudoInst())
232       continue;
233     UserBB = getUserBasicBlock(Use, UserInst);
234     // Do not sink if Inst is used in a basic block that is not DestBB.
235     // TODO: Sink to the common dominator of all user blocks.
236     if (UserBB != DestBB)
237       return false;
238   }
239   return UserBB != nullptr;
240 }
241 
242 // For the virtual call dispatch sequence, try to sink vtable load instructions
243 // to the cold indirect call fallback.
244 // FIXME: Move the sink eligibility check below to a utility function in
245 // Transforms/Utils/ directory.
246 static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
247   if (!isDestBBSuitableForSink(I, DestBlock))
248     return false;
249 
250   // Do not move control-flow-involving, volatile loads, vaarg, alloca
251   // instructions, etc.
252   if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
253       isa<AllocaInst>(I))
254     return false;
255 
256   // Do not sink convergent call instructions.
257   if (const auto *C = dyn_cast<CallBase>(I))
258     if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
259       return false;
260 
261   // Do not move an instruction that may write to memory.
262   if (I->mayWriteToMemory())
263     return false;
264 
265   // We can only sink load instructions if there is nothing between the load and
266   // the end of block that could change the value.
267   if (I->mayReadFromMemory()) {
268     // We already know that SrcBlock is the unique predecessor of DestBlock.
269     for (BasicBlock::iterator Scan = std::next(I->getIterator()),
270                               E = I->getParent()->end();
271          Scan != E; ++Scan) {
272       // Note analysis analysis can tell whether two pointers can point to the
273       // same object in memory or not thereby find further opportunities to
274       // sink.
275       if (Scan->mayWriteToMemory())
276         return false;
277     }
278   }
279 
280   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
281   I->moveBefore(*DestBlock, InsertPos);
282 
283   // TODO: Sink debug intrinsic users of I to 'DestBlock'.
284   // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
285   // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
286   // the core logic to do this.
287   return true;
288 }
289 
290 // Try to sink instructions after VPtr to the indirect call fallback.
291 // Return the number of sunk IR instructions.
292 static int tryToSinkInstructions(BasicBlock *OriginalBB,
293                                  BasicBlock *IndirectCallBB) {
294   int SinkCount = 0;
295   // Do not sink across a critical edge for simplicity.
296   if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
297     return SinkCount;
298   // Sink all eligible instructions in OriginalBB in reverse order.
299   for (Instruction &I :
300        llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
301     if (tryToSinkInstruction(&I, IndirectCallBB))
302       SinkCount++;
303 
304   return SinkCount;
305 }
306 
307 // Promote indirect calls to conditional direct calls, keeping track of
308 // thresholds.
309 class IndirectCallPromoter {
310 private:
311   Function &F;
312   Module &M;
313 
314   // Symtab that maps indirect call profile values to function names and
315   // defines.
316   InstrProfSymtab *const Symtab;
317 
318   const bool SamplePGO;
319 
320   // A map from a virtual call to its type information.
321   const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
322 
323   VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
324 
325   OptimizationRemarkEmitter &ORE;
326 
327   const DenseSet<StringRef> &IgnoredBaseTypes;
328 
329   // A struct that records the direct target and it's call count.
330   struct PromotionCandidate {
331     Function *const TargetFunction;
332     const uint64_t Count;
333 
334     // The following fields only exists for promotion candidates with vtable
335     // information.
336     //
337     // Due to class inheritance, one virtual call candidate can come from
338     // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
339     // counts for 'TargetFunction'. `AddressPoints` stores the vtable address
340     // points for comparison.
341     VTableGUIDCountsMap VTableGUIDAndCounts;
342     SmallVector<Constant *> AddressPoints;
343 
344     PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
345   };
346 
347   // Check if the indirect-call call site should be promoted. Return the number
348   // of promotions. Inst is the candidate indirect call, ValueDataRef
349   // contains the array of value profile data for profiled targets,
350   // TotalCount is the total profiled count of call executions, and
351   // NumCandidates is the number of candidate entries in ValueDataRef.
352   std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
353       const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
354       uint64_t TotalCount, uint32_t NumCandidates);
355 
356   // Promote a list of targets for one indirect-call callsite by comparing
357   // indirect callee with functions. Return true if there are IR
358   // transformations and false otherwise.
359   bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
360                                ArrayRef<PromotionCandidate> Candidates,
361                                uint64_t TotalCount,
362                                ArrayRef<InstrProfValueData> ICallProfDataRef,
363                                uint32_t NumCandidates,
364                                VTableGUIDCountsMap &VTableGUIDCounts);
365 
366   // Promote a list of targets for one indirect call by comparing vtables with
367   // functions. Return true if there are IR transformations and false
368   // otherwise.
369   bool tryToPromoteWithVTableCmp(
370       CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
371       uint64_t TotalFuncCount, uint32_t NumCandidates,
372       MutableArrayRef<InstrProfValueData> ICallProfDataRef,
373       VTableGUIDCountsMap &VTableGUIDCounts);
374 
375   // Return true if it's profitable to compare vtables for the callsite.
376   bool isProfitableToCompareVTables(const CallBase &CB,
377                                     ArrayRef<PromotionCandidate> Candidates);
378 
379   // Return true if the vtable corresponding to VTableGUID should be skipped
380   // for vtable-based comparison.
381   bool shouldSkipVTable(uint64_t VTableGUID);
382 
383   // Given an indirect callsite and the list of function candidates, compute
384   // the following vtable information in output parameters and return vtable
385   // pointer if type profiles exist.
386   // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
387   // metadata attached on the vtable pointer.
388   // - For each function candidate, finds out the vtables from which it gets
389   // called and stores the <vtable-guid, count> in promotion candidate.
390   Instruction *computeVTableInfos(const CallBase *CB,
391                                   VTableGUIDCountsMap &VTableGUIDCounts,
392                                   std::vector<PromotionCandidate> &Candidates);
393 
394   Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
395                                              uint64_t AddressPointOffset);
396 
397   void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
398                                uint64_t Sum, uint32_t MaxMDCount);
399 
400   void updateVPtrValueProfiles(Instruction *VPtr,
401                                VTableGUIDCountsMap &VTableGUIDCounts);
402 
403 public:
404   IndirectCallPromoter(
405       Function &Func, Module &M, InstrProfSymtab *Symtab, bool SamplePGO,
406       const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
407       VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
408       const DenseSet<StringRef> &IgnoredBaseTypes,
409       OptimizationRemarkEmitter &ORE)
410       : F(Func), M(M), Symtab(Symtab), SamplePGO(SamplePGO),
411         VirtualCSInfo(VirtualCSInfo),
412         VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE),
413         IgnoredBaseTypes(IgnoredBaseTypes) {}
414   IndirectCallPromoter(const IndirectCallPromoter &) = delete;
415   IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
416 
417   bool processFunction(ProfileSummaryInfo *PSI);
418 };
419 
420 } // end anonymous namespace
421 
422 // Indirect-call promotion heuristic. The direct targets are sorted based on
423 // the count. Stop at the first target that is not promoted.
424 std::vector<IndirectCallPromoter::PromotionCandidate>
425 IndirectCallPromoter::getPromotionCandidatesForCallSite(
426     const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
427     uint64_t TotalCount, uint32_t NumCandidates) {
428   std::vector<PromotionCandidate> Ret;
429 
430   LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
431                     << " Num_targets: " << ValueDataRef.size()
432                     << " Num_candidates: " << NumCandidates << "\n");
433   NumOfPGOICallsites++;
434   if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
435     LLVM_DEBUG(dbgs() << " Skip: User options.\n");
436     return Ret;
437   }
438 
439   for (uint32_t I = 0; I < NumCandidates; I++) {
440     uint64_t Count = ValueDataRef[I].Count;
441     assert(Count <= TotalCount);
442     (void)TotalCount;
443     uint64_t Target = ValueDataRef[I].Value;
444     LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
445                       << "  Target_func: " << Target << "\n");
446 
447     if (ICPInvokeOnly && isa<CallInst>(CB)) {
448       LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
449       ORE.emit([&]() {
450         return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
451                << " Not promote: User options";
452       });
453       break;
454     }
455     if (ICPCallOnly && isa<InvokeInst>(CB)) {
456       LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
457       ORE.emit([&]() {
458         return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
459                << " Not promote: User options";
460       });
461       break;
462     }
463     if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
464       LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
465       ORE.emit([&]() {
466         return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
467                << " Not promote: Cutoff reached";
468       });
469       break;
470     }
471 
472     // Don't promote if the symbol is not defined in the module. This avoids
473     // creating a reference to a symbol that doesn't exist in the module
474     // This can happen when we compile with a sample profile collected from
475     // one binary but used for another, which may have profiled targets that
476     // aren't used in the new binary. We might have a declaration initially in
477     // the case where the symbol is globally dead in the binary and removed by
478     // ThinLTO.
479     Function *TargetFunction = Symtab->getFunction(Target);
480     if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
481       LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
482       ORE.emit([&]() {
483         return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
484                << "Cannot promote indirect call: target with md5sum "
485                << ore::NV("target md5sum", Target) << " not found";
486       });
487       break;
488     }
489 
490     const char *Reason = nullptr;
491     if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
492       using namespace ore;
493 
494       ORE.emit([&]() {
495         return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
496                << "Cannot promote indirect call to "
497                << NV("TargetFunction", TargetFunction) << " with count of "
498                << NV("Count", Count) << ": " << Reason;
499       });
500       break;
501     }
502 
503     Ret.push_back(PromotionCandidate(TargetFunction, Count));
504     TotalCount -= Count;
505   }
506   return Ret;
507 }
508 
509 Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
510     GlobalVariable *GV, uint64_t AddressPointOffset) {
511   auto [Iter, Inserted] =
512       VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
513   if (Inserted)
514     Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
515   return Iter->second;
516 }
517 
518 Instruction *IndirectCallPromoter::computeVTableInfos(
519     const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
520     std::vector<PromotionCandidate> &Candidates) {
521   if (!EnableVTableProfileUse)
522     return nullptr;
523 
524   // Take the following code sequence as an example, here is how the code works
525   //   @vtable1 = {[n x ptr] [... ptr @func1]}
526   //   @vtable2 = {[m x ptr] [... ptr @func2]}
527   //
528   //   %vptr = load ptr, ptr %d, !prof !0
529   //   %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
530   //   tail call void @llvm.assume(i1 %0)
531   //   %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
532   //   %1 = load ptr, ptr %vfn
533   //   call void %1(ptr %d), !prof !1
534   //
535   //   !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
536   //   !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
537   //
538   // Step 1. Find out the %vptr instruction for indirect call and use its !prof
539   // to populate `GUIDCountsMap`.
540   // Step 2. For each vtable-guid, look up its definition from symtab. LTO can
541   // make vtable definitions visible across modules.
542   // Step 3. Compute the byte offset of the virtual call, by adding vtable
543   // address point offset and function's offset relative to vtable address
544   // point. For each function candidate, this step tells us the vtable from
545   // which it comes from, and the vtable address point to compare %vptr with.
546 
547   // Only virtual calls have virtual call site info.
548   auto Iter = VirtualCSInfo.find(CB);
549   if (Iter == VirtualCSInfo.end())
550     return nullptr;
551 
552   LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
553                     << NumOfPGOICallsites << "\n");
554 
555   const auto &VirtualCallInfo = Iter->second;
556   Instruction *VPtr = VirtualCallInfo.VPtr;
557 
558   SmallDenseMap<Function *, int, 4> CalleeIndexMap;
559   for (size_t I = 0; I < Candidates.size(); I++)
560     CalleeIndexMap[Candidates[I].TargetFunction] = I;
561 
562   uint64_t TotalVTableCount = 0;
563   auto VTableValueDataArray =
564       getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
565                                MaxNumVTableAnnotations, TotalVTableCount);
566   if (VTableValueDataArray.empty())
567     return VPtr;
568 
569   // Compute the functions and counts from by each vtable.
570   for (const auto &V : VTableValueDataArray) {
571     uint64_t VTableVal = V.Value;
572     GUIDCountsMap[VTableVal] = V.Count;
573     GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
574     if (!VTableVar) {
575       LLVM_DEBUG(dbgs() << "  Cannot find vtable definition for " << VTableVal
576                         << "; maybe the vtable isn't imported\n");
577       continue;
578     }
579 
580     std::optional<uint64_t> MaybeAddressPointOffset =
581         getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
582     if (!MaybeAddressPointOffset)
583       continue;
584 
585     const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
586 
587     Function *Callee = nullptr;
588     std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
589         VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
590     if (!Callee)
591       continue;
592     auto CalleeIndexIter = CalleeIndexMap.find(Callee);
593     if (CalleeIndexIter == CalleeIndexMap.end())
594       continue;
595 
596     auto &Candidate = Candidates[CalleeIndexIter->second];
597     // There shouldn't be duplicate GUIDs in one !prof metadata (except
598     // duplicated zeros), so assign counters directly won't cause overwrite or
599     // counter loss.
600     Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
601     Candidate.AddressPoints.push_back(
602         getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
603   }
604 
605   return VPtr;
606 }
607 
608 // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
609 // Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
610 static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
611                                    uint64_t FalseWeight) {
612   MDBuilder MDB(Context);
613   uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
614   return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
615                                  scaleBranchCount(FalseWeight, Scale));
616 }
617 
618 CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
619                                          uint64_t Count, uint64_t TotalCount,
620                                          bool AttachProfToDirectCall,
621                                          OptimizationRemarkEmitter *ORE) {
622   CallBase &NewInst = promoteCallWithIfThenElse(
623       CB, DirectCallee,
624       createBranchWeights(CB.getContext(), Count, TotalCount - Count));
625 
626   if (AttachProfToDirectCall)
627     setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
628                      /*IsExpected=*/false);
629 
630   using namespace ore;
631 
632   if (ORE)
633     ORE->emit([&]() {
634       return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
635              << "Promote indirect call to " << NV("DirectCallee", DirectCallee)
636              << " with count " << NV("Count", Count) << " out of "
637              << NV("TotalCount", TotalCount);
638     });
639   return NewInst;
640 }
641 
642 // Promote indirect-call to conditional direct-call for one callsite.
643 bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
644     CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
645     uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
646     uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
647   uint32_t NumPromoted = 0;
648 
649   for (const auto &C : Candidates) {
650     uint64_t FuncCount = C.Count;
651     pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
652                              SamplePGO, &ORE);
653     assert(TotalCount >= FuncCount);
654     TotalCount -= FuncCount;
655     NumOfPGOICallPromotion++;
656     NumPromoted++;
657 
658     if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
659       continue;
660 
661     // After a virtual call candidate gets promoted, update the vtable's counts
662     // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
663     // a vtable from which the virtual call is loaded. Compute the sum and use
664     // 128-bit APInt to improve accuracy.
665     uint64_t SumVTableCount = 0;
666     for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
667       SumVTableCount += VTableCount;
668 
669     for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
670       APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
671       APFuncCount *= VTableCount;
672       VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
673     }
674   }
675   if (NumPromoted == 0)
676     return false;
677 
678   assert(NumPromoted <= ICallProfDataRef.size() &&
679          "Number of promoted functions should not be greater than the number "
680          "of values in profile metadata");
681 
682   // Update value profiles on the indirect call.
683   updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
684                           NumCandidates);
685   updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
686   return true;
687 }
688 
689 void IndirectCallPromoter::updateFuncValueProfiles(
690     CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
691     uint32_t MaxMDCount) {
692   // First clear the existing !prof.
693   CB.setMetadata(LLVMContext::MD_prof, nullptr);
694   // Annotate the remaining value profiles if counter is not zero.
695   if (TotalCount != 0)
696     annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
697                       MaxMDCount);
698 }
699 
700 void IndirectCallPromoter::updateVPtrValueProfiles(
701     Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
702   if (!EnableVTableProfileUse || VPtr == nullptr ||
703       !VPtr->getMetadata(LLVMContext::MD_prof))
704     return;
705   VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
706   std::vector<InstrProfValueData> VTableValueProfiles;
707   uint64_t TotalVTableCount = 0;
708   for (auto [GUID, Count] : VTableGUIDCounts) {
709     if (Count == 0)
710       continue;
711 
712     VTableValueProfiles.push_back({GUID, Count});
713     TotalVTableCount += Count;
714   }
715   llvm::sort(VTableValueProfiles,
716              [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
717                return LHS.Count > RHS.Count;
718              });
719 
720   annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
721                     IPVK_VTableTarget, VTableValueProfiles.size());
722 }
723 
724 bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
725     CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
726     uint64_t TotalFuncCount, uint32_t NumCandidates,
727     MutableArrayRef<InstrProfValueData> ICallProfDataRef,
728     VTableGUIDCountsMap &VTableGUIDCounts) {
729   SmallVector<uint64_t, 4> PromotedFuncCount;
730 
731   for (const auto &Candidate : Candidates) {
732     for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
733       VTableGUIDCounts[GUID] -= Count;
734 
735     // 'OriginalBB' is the basic block of indirect call. After each candidate
736     // is promoted, a new basic block is created for the indirect fallback basic
737     // block and indirect call `CB` is moved into this new BB.
738     BasicBlock *OriginalBB = CB.getParent();
739     promoteCallWithVTableCmp(
740         CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
741         createBranchWeights(CB.getContext(), Candidate.Count,
742                             TotalFuncCount - Candidate.Count));
743 
744     int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
745 
746     ORE.emit([&]() {
747       OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
748 
749       const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
750       Remark << "Promote indirect call to "
751              << ore::NV("DirectCallee", Candidate.TargetFunction)
752              << " with count " << ore::NV("Count", Candidate.Count)
753              << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
754              << ore::NV("SinkCount", SinkCount)
755              << " instruction(s) and compare "
756              << ore::NV("VTable", VTableGUIDAndCounts.size())
757              << " vtable(s): {";
758 
759       // Sort GUIDs so remark message is deterministic.
760       std::set<uint64_t> GUIDSet;
761       for (auto [GUID, Count] : VTableGUIDAndCounts)
762         GUIDSet.insert(GUID);
763       for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
764         if (Iter != GUIDSet.begin())
765           Remark << ", ";
766         Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
767       }
768 
769       Remark << "}";
770 
771       return Remark;
772     });
773 
774     PromotedFuncCount.push_back(Candidate.Count);
775 
776     assert(TotalFuncCount >= Candidate.Count &&
777            "Within one prof metadata, total count is the sum of counts from "
778            "individual <target, count> pairs");
779     // Use std::min since 'TotalFuncCount' is the saturated sum of individual
780     // counts, see
781     // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
782     TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
783     NumOfPGOICallPromotion++;
784   }
785 
786   if (PromotedFuncCount.empty())
787     return false;
788 
789   // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
790   // a distinct 'VPtr'.
791   // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
792   // used to load multiple virtual functions. The vtable profiles needs to be
793   // updated properly in that case (e.g, for each indirect call annotate both
794   // type profiles and function profiles in one !prof).
795   for (size_t I = 0; I < PromotedFuncCount.size(); I++)
796     ICallProfDataRef[I].Count -=
797         std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
798   // Sort value profiles by count in descending order.
799   llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
800                                          const InstrProfValueData &RHS) {
801     return LHS.Count > RHS.Count;
802   });
803   // Drop the <target-value, count> pair if count is zero.
804   ArrayRef<InstrProfValueData> VDs(
805       ICallProfDataRef.begin(),
806       llvm::upper_bound(ICallProfDataRef, 0U,
807                         [](uint64_t Count, const InstrProfValueData &ProfData) {
808                           return ProfData.Count <= Count;
809                         }));
810   updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
811   updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
812   return true;
813 }
814 
815 // Traverse all the indirect-call callsite and get the value profile
816 // annotation to perform indirect-call promotion.
817 bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
818   bool Changed = false;
819   ICallPromotionAnalysis ICallAnalysis;
820   for (auto *CB : findIndirectCalls(F)) {
821     uint32_t NumCandidates;
822     uint64_t TotalCount;
823     auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
824         CB, TotalCount, NumCandidates);
825     if (!NumCandidates ||
826         (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
827       continue;
828 
829     auto PromotionCandidates = getPromotionCandidatesForCallSite(
830         *CB, ICallProfDataRef, TotalCount, NumCandidates);
831 
832     VTableGUIDCountsMap VTableGUIDCounts;
833     Instruction *VPtr =
834         computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
835 
836     if (isProfitableToCompareVTables(*CB, PromotionCandidates))
837       Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
838                                            TotalCount, NumCandidates,
839                                            ICallProfDataRef, VTableGUIDCounts);
840     else
841       Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
842                                          TotalCount, ICallProfDataRef,
843                                          NumCandidates, VTableGUIDCounts);
844   }
845   return Changed;
846 }
847 
848 // TODO: Return false if the function addressing and vtable load instructions
849 // cannot sink to indirect fallback.
850 bool IndirectCallPromoter::isProfitableToCompareVTables(
851     const CallBase &CB, ArrayRef<PromotionCandidate> Candidates) {
852   if (!EnableVTableProfileUse || Candidates.empty())
853     return false;
854   LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
855                     << NumOfPGOICallsites << CB << "\n");
856   const size_t CandidateSize = Candidates.size();
857   for (size_t I = 0; I < CandidateSize; I++) {
858     auto &Candidate = Candidates[I];
859     auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
860 
861     LLVM_DEBUG(dbgs() << "  Candidate " << I << " FunctionCount: "
862                       << Candidate.Count << ", VTableCounts:");
863     // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
864     for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
865       LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
866                         << ", " << Count << "}");
867     LLVM_DEBUG(dbgs() << "\n");
868 
869     uint64_t CandidateVTableCount = 0;
870 
871     for (auto &[GUID, Count] : VTableGUIDAndCounts) {
872       CandidateVTableCount += Count;
873 
874       if (shouldSkipVTable(GUID))
875         return false;
876     }
877 
878     if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
879       LLVM_DEBUG(
880           dbgs() << "    function count " << Candidate.Count
881                  << " and its vtable sum count " << CandidateVTableCount
882                  << " have discrepancies. Bail out vtable comparison.\n");
883       return false;
884     }
885 
886     // 'MaxNumVTable' limits the number of vtables to make vtable comparison
887     // profitable. Comparing multiple vtables for one function candidate will
888     // insert additional instructions on the hot path, and allowing more than
889     // one vtable for non last candidates may or may not elongate the dependency
890     // chain for the subsequent candidates. Set its value to 1 for non-last
891     // candidate and allow option to override it for the last candidate.
892     int MaxNumVTable = 1;
893     if (I == CandidateSize - 1)
894       MaxNumVTable = ICPMaxNumVTableLastCandidate;
895 
896     if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
897       LLVM_DEBUG(dbgs() << "    allow at most " << MaxNumVTable << " and got "
898                         << Candidate.AddressPoints.size()
899                         << " vtables. Bail out for vtable comparison.\n");
900       return false;
901     }
902   }
903 
904   return true;
905 }
906 
907 bool IndirectCallPromoter::shouldSkipVTable(uint64_t VTableGUID) {
908   if (IgnoredBaseTypes.empty())
909     return false;
910 
911   auto *VTableVar = Symtab->getGlobalVariable(VTableGUID);
912 
913   assert(VTableVar && "VTableVar must exist for GUID in VTableGUIDAndCounts");
914 
915   SmallVector<MDNode *, 2> Types;
916   VTableVar->getMetadata(LLVMContext::MD_type, Types);
917 
918   for (auto *Type : Types)
919     if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get()))
920       if (IgnoredBaseTypes.contains(TypeId->getString())) {
921         LLVM_DEBUG(dbgs() << "    vtable profiles should be ignored. Bail "
922                              "out of vtable comparison.");
923         return true;
924       }
925   return false;
926 }
927 
928 // For virtual calls in the module, collect per-callsite information which will
929 // be used to associate an ICP candidate with a vtable and a specific function
930 // in the vtable. With type intrinsics (llvm.type.test), we can find virtual
931 // calls in a compile-time efficient manner (by iterating its users) and more
932 // importantly use the compatible type later to figure out the function byte
933 // offset relative to the start of vtables.
934 static void
935 computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
936                                   VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
937   // Right now only llvm.type.test is used to find out virtual call sites.
938   // With ThinLTO and whole-program-devirtualization, llvm.type.test and
939   // llvm.public.type.test are emitted, and llvm.public.type.test is either
940   // refined to llvm.type.test or dropped before indirect-call-promotion pass.
941   //
942   // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
943   // Find out virtual calls by looking at users of llvm.type.checked.load in
944   // that case.
945   Function *TypeTestFunc =
946       Intrinsic::getDeclarationIfExists(&M, Intrinsic::type_test);
947   if (!TypeTestFunc || TypeTestFunc->use_empty())
948     return;
949 
950   auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
951   auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
952     return FAM.getResult<DominatorTreeAnalysis>(F);
953   };
954   // Iterate all type.test calls to find all indirect calls.
955   for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
956     auto *CI = dyn_cast<CallInst>(U.getUser());
957     if (!CI)
958       continue;
959     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
960     if (!TypeMDVal)
961       continue;
962     auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
963     if (!CompatibleTypeId)
964       continue;
965 
966     // Find out all devirtualizable call sites given a llvm.type.test
967     // intrinsic call.
968     SmallVector<DevirtCallSite, 1> DevirtCalls;
969     SmallVector<CallInst *, 1> Assumes;
970     auto &DT = LookupDomTree(*CI->getFunction());
971     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
972 
973     for (auto &DevirtCall : DevirtCalls) {
974       CallBase &CB = DevirtCall.CB;
975       // Given an indirect call, try find the instruction which loads a
976       // pointer to virtual table.
977       Instruction *VTablePtr =
978           PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
979       if (!VTablePtr)
980         continue;
981       VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
982                             CompatibleTypeId->getString()};
983     }
984   }
985 }
986 
987 // A wrapper function that does the actual work.
988 static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
989                                  bool SamplePGO, ModuleAnalysisManager &MAM) {
990   if (DisableICP)
991     return false;
992   InstrProfSymtab Symtab;
993   if (Error E = Symtab.create(M, InLTO)) {
994     std::string SymtabFailure = toString(std::move(E));
995     M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
996     return false;
997   }
998   bool Changed = false;
999   VirtualCallSiteTypeInfoMap VirtualCSInfo;
1000 
1001   DenseSet<StringRef> IgnoredBaseTypes;
1002 
1003   if (EnableVTableProfileUse) {
1004     computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
1005 
1006     for (StringRef Str : ICPIgnoredBaseTypes)
1007       IgnoredBaseTypes.insert(Str);
1008   }
1009 
1010   // VTableAddressPointOffsetVal stores the vtable address points. The vtable
1011   // address point of a given <vtable, address point offset> is static (doesn't
1012   // change after being computed once).
1013   // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
1014   // entry the first time a <vtable, offset> pair is seen, as
1015   // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
1016   // repeatedly on each function.
1017   VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
1018 
1019   for (auto &F : M) {
1020     if (F.isDeclaration() || F.hasOptNone())
1021       continue;
1022 
1023     auto &FAM =
1024         MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1025     auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1026 
1027     IndirectCallPromoter CallPromoter(F, M, &Symtab, SamplePGO, VirtualCSInfo,
1028                                       VTableAddressPointOffsetVal,
1029                                       IgnoredBaseTypes, ORE);
1030     bool FuncChanged = CallPromoter.processFunction(PSI);
1031     if (ICPDUMPAFTER && FuncChanged) {
1032       LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
1033       LLVM_DEBUG(dbgs() << "\n");
1034     }
1035     Changed |= FuncChanged;
1036     if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
1037       LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
1038       break;
1039     }
1040   }
1041   return Changed;
1042 }
1043 
1044 PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
1045                                                 ModuleAnalysisManager &MAM) {
1046   ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
1047 
1048   if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
1049                             SamplePGO | ICPSamplePGOMode, MAM))
1050     return PreservedAnalyses::all();
1051 
1052   return PreservedAnalyses::none();
1053 }
1054