1 //===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 10 #include "llvm/ADT/Statistic.h" 11 #include "llvm/ADT/StringRef.h" 12 #include "llvm/ADT/Twine.h" 13 #include "llvm/Analysis/MemoryBuiltins.h" 14 #include "llvm/Analysis/ScalarEvolution.h" 15 #include "llvm/Analysis/TargetFolder.h" 16 #include "llvm/Analysis/TargetLibraryInfo.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/InstIterator.h" 23 #include "llvm/IR/Instruction.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <utility> 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "bounds-checking" 36 37 static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap", 38 cl::desc("Use one trap block per function")); 39 40 STATISTIC(ChecksAdded, "Bounds checks added"); 41 STATISTIC(ChecksSkipped, "Bounds checks skipped"); 42 STATISTIC(ChecksUnable, "Bounds checks unable to add"); 43 44 class BuilderTy : public IRBuilder<TargetFolder> { 45 public: 46 BuilderTy(BasicBlock *TheBB, BasicBlock::iterator IP, TargetFolder Folder) 47 : IRBuilder<TargetFolder>(TheBB, IP, Folder) { 48 SetNoSanitizeMetadata(); 49 } 50 }; 51 52 /// Gets the conditions under which memory accessing instructions will overflow. 53 /// 54 /// \p Ptr is the pointer that will be read/written, and \p InstVal is either 55 /// the result from the load or the value being stored. It is used to determine 56 /// the size of memory block that is touched. 57 /// 58 /// Returns the condition under which the access will overflow. 59 static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal, 60 const DataLayout &DL, TargetLibraryInfo &TLI, 61 ObjectSizeOffsetEvaluator &ObjSizeEval, 62 BuilderTy &IRB, ScalarEvolution &SE) { 63 TypeSize NeededSize = DL.getTypeStoreSize(InstVal->getType()); 64 LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize) 65 << " bytes\n"); 66 67 SizeOffsetValue SizeOffset = ObjSizeEval.compute(Ptr); 68 69 if (!SizeOffset.bothKnown()) { 70 ++ChecksUnable; 71 return nullptr; 72 } 73 74 Value *Size = SizeOffset.Size; 75 Value *Offset = SizeOffset.Offset; 76 ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size); 77 78 Type *IndexTy = DL.getIndexType(Ptr->getType()); 79 Value *NeededSizeVal = IRB.CreateTypeSize(IndexTy, NeededSize); 80 81 auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size)); 82 auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset)); 83 auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal)); 84 85 // three checks are required to ensure safety: 86 // . Offset >= 0 (since the offset is given from the base ptr) 87 // . Size >= Offset (unsigned) 88 // . Size - Offset >= NeededSize (unsigned) 89 // 90 // optimization: if Size >= 0 (signed), skip 1st check 91 // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows 92 Value *ObjSize = IRB.CreateSub(Size, Offset); 93 Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax()) 94 ? ConstantInt::getFalse(Ptr->getContext()) 95 : IRB.CreateICmpULT(Size, Offset); 96 Value *Cmp3 = SizeRange.sub(OffsetRange) 97 .getUnsignedMin() 98 .uge(NeededSizeRange.getUnsignedMax()) 99 ? ConstantInt::getFalse(Ptr->getContext()) 100 : IRB.CreateICmpULT(ObjSize, NeededSizeVal); 101 Value *Or = IRB.CreateOr(Cmp2, Cmp3); 102 if ((!SizeCI || SizeCI->getValue().slt(0)) && 103 !SizeRange.getSignedMin().isNonNegative()) { 104 Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IndexTy, 0)); 105 Or = IRB.CreateOr(Cmp1, Or); 106 } 107 108 return Or; 109 } 110 111 static CallInst *InsertTrap(BuilderTy &IRB, bool DebugTrapBB, 112 std::optional<int8_t> GuardKind) { 113 if (!DebugTrapBB) 114 return IRB.CreateIntrinsic(Intrinsic::trap, {}, {}); 115 116 return IRB.CreateIntrinsic( 117 Intrinsic::ubsantrap, {}, 118 ConstantInt::get(IRB.getInt8Ty(), 119 GuardKind.has_value() 120 ? GuardKind.value() 121 : IRB.GetInsertBlock()->getParent()->size())); 122 } 123 124 static CallInst *InsertCall(BuilderTy &IRB, bool MayReturn, StringRef Name) { 125 Function *Fn = IRB.GetInsertBlock()->getParent(); 126 LLVMContext &Ctx = Fn->getContext(); 127 llvm::AttrBuilder B(Ctx); 128 B.addAttribute(llvm::Attribute::NoUnwind); 129 if (!MayReturn) 130 B.addAttribute(llvm::Attribute::NoReturn); 131 FunctionCallee Callee = Fn->getParent()->getOrInsertFunction( 132 Name, 133 llvm::AttributeList::get(Ctx, llvm::AttributeList::FunctionIndex, B), 134 Type::getVoidTy(Ctx)); 135 return IRB.CreateCall(Callee); 136 } 137 138 /// Adds run-time bounds checks to memory accessing instructions. 139 /// 140 /// \p Or is the condition that should guard the trap. 141 /// 142 /// \p GetTrapBB is a callable that returns the trap BB to use on failure. 143 template <typename GetTrapBBT> 144 static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) { 145 // check if the comparison is always false 146 ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or); 147 if (C) { 148 ++ChecksSkipped; 149 // If non-zero, nothing to do. 150 if (!C->getZExtValue()) 151 return; 152 } 153 ++ChecksAdded; 154 155 BasicBlock::iterator SplitI = IRB.GetInsertPoint(); 156 BasicBlock *OldBB = SplitI->getParent(); 157 BasicBlock *Cont = OldBB->splitBasicBlock(SplitI); 158 OldBB->getTerminator()->eraseFromParent(); 159 160 BasicBlock *TrapBB = GetTrapBB(IRB, Cont); 161 162 if (C) { 163 // If we have a constant zero, unconditionally branch. 164 // FIXME: We should really handle this differently to bypass the splitting 165 // the block. 166 BranchInst::Create(TrapBB, OldBB); 167 return; 168 } 169 170 // Create the conditional branch. 171 BranchInst::Create(TrapBB, Cont, Or, OldBB); 172 } 173 174 static std::string 175 getRuntimeCallName(const BoundsCheckingPass::Options::Runtime &Opts) { 176 std::string Name = "__ubsan_handle_local_out_of_bounds"; 177 if (Opts.MinRuntime) 178 Name += "_minimal"; 179 if (!Opts.MayReturn) 180 Name += "_abort"; 181 return Name; 182 } 183 184 static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI, 185 ScalarEvolution &SE, 186 const BoundsCheckingPass::Options &Opts) { 187 if (F.hasFnAttribute(Attribute::NoSanitizeBounds)) 188 return false; 189 190 const DataLayout &DL = F.getDataLayout(); 191 ObjectSizeOpts EvalOpts; 192 EvalOpts.RoundToAlign = true; 193 EvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset; 194 ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts); 195 196 // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory 197 // touching instructions 198 SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo; 199 for (Instruction &I : instructions(F)) { 200 Value *Or = nullptr; 201 BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL)); 202 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 203 if (!LI->isVolatile()) 204 Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI, 205 ObjSizeEval, IRB, SE); 206 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 207 if (!SI->isVolatile()) 208 Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(), 209 DL, TLI, ObjSizeEval, IRB, SE); 210 } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 211 if (!AI->isVolatile()) 212 Or = 213 getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(), 214 DL, TLI, ObjSizeEval, IRB, SE); 215 } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 216 if (!AI->isVolatile()) 217 Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), 218 DL, TLI, ObjSizeEval, IRB, SE); 219 } 220 if (Or) { 221 if (Opts.GuardKind) { 222 llvm::Value *Allow = IRB.CreateIntrinsic( 223 IRB.getInt1Ty(), Intrinsic::allow_ubsan_check, 224 {llvm::ConstantInt::getSigned(IRB.getInt8Ty(), *Opts.GuardKind)}); 225 Or = IRB.CreateAnd(Or, Allow); 226 } 227 TrapInfo.push_back(std::make_pair(&I, Or)); 228 } 229 } 230 231 std::string Name; 232 if (Opts.Rt) 233 Name = getRuntimeCallName(*Opts.Rt); 234 235 // Create a trapping basic block on demand using a callback. Depending on 236 // flags, this will either create a single block for the entire function or 237 // will create a fresh block every time it is called. 238 BasicBlock *ReuseTrapBB = nullptr; 239 auto GetTrapBB = [&ReuseTrapBB, &Opts, &Name](BuilderTy &IRB, 240 BasicBlock *Cont) { 241 Function *Fn = IRB.GetInsertBlock()->getParent(); 242 auto DebugLoc = IRB.getCurrentDebugLocation(); 243 IRBuilder<>::InsertPointGuard Guard(IRB); 244 245 // Create a trapping basic block on demand using a callback. Depending on 246 // flags, this will either create a single block for the entire function or 247 // will create a fresh block every time it is called. 248 if (ReuseTrapBB) 249 return ReuseTrapBB; 250 251 BasicBlock *TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn); 252 IRB.SetInsertPoint(TrapBB); 253 254 bool DebugTrapBB = !Opts.Merge; 255 CallInst *TrapCall = Opts.Rt ? InsertCall(IRB, Opts.Rt->MayReturn, Name) 256 : InsertTrap(IRB, DebugTrapBB, Opts.GuardKind); 257 if (DebugTrapBB) 258 TrapCall->addFnAttr(llvm::Attribute::NoMerge); 259 260 TrapCall->setDoesNotThrow(); 261 TrapCall->setDebugLoc(DebugLoc); 262 263 bool MayReturn = Opts.Rt && Opts.Rt->MayReturn; 264 if (MayReturn) { 265 IRB.CreateBr(Cont); 266 } else { 267 TrapCall->setDoesNotReturn(); 268 IRB.CreateUnreachable(); 269 } 270 271 if (!MayReturn && SingleTrapBB && !DebugTrapBB) 272 ReuseTrapBB = TrapBB; 273 274 return TrapBB; 275 }; 276 277 for (const auto &Entry : TrapInfo) { 278 Instruction *Inst = Entry.first; 279 BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL)); 280 insertBoundsCheck(Entry.second, IRB, GetTrapBB); 281 } 282 283 return !TrapInfo.empty(); 284 } 285 286 PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) { 287 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 288 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 289 290 if (!addBoundsChecking(F, TLI, SE, Opts)) 291 return PreservedAnalyses::all(); 292 293 return PreservedAnalyses::none(); 294 } 295 296 void BoundsCheckingPass::printPipeline( 297 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 298 static_cast<PassInfoMixin<BoundsCheckingPass> *>(this)->printPipeline( 299 OS, MapClassName2PassName); 300 OS << "<"; 301 if (Opts.Rt) { 302 if (Opts.Rt->MinRuntime) 303 OS << "min-"; 304 OS << "rt"; 305 if (!Opts.Rt->MayReturn) 306 OS << "-abort"; 307 } else { 308 OS << "trap"; 309 } 310 if (Opts.Merge) 311 OS << ";merge"; 312 if (Opts.GuardKind) 313 OS << ";guard=" << static_cast<int>(*Opts.GuardKind); 314 OS << ">"; 315 } 316