1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/BlockFrequencyInfo.h" 46 #include "llvm/Analysis/CFG.h" 47 #include "llvm/Analysis/ConstantFolding.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LastRunTrackingAnalysis.h" 51 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 52 #include "llvm/Analysis/MemoryBuiltins.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/ProfileSummaryInfo.h" 55 #include "llvm/Analysis/TargetFolder.h" 56 #include "llvm/Analysis/TargetLibraryInfo.h" 57 #include "llvm/Analysis/TargetTransformInfo.h" 58 #include "llvm/Analysis/Utils/Local.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/Analysis/VectorUtils.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DIBuilder.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Use.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/DebugCounter.h" 94 #include "llvm/Support/ErrorHandling.h" 95 #include "llvm/Support/KnownBits.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/InstCombine/InstCombine.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <memory> 104 #include <optional> 105 #include <string> 106 #include <utility> 107 108 #define DEBUG_TYPE "instcombine" 109 #include "llvm/Transforms/Utils/InstructionWorklist.h" 110 #include <optional> 111 112 using namespace llvm; 113 using namespace llvm::PatternMatch; 114 115 STATISTIC(NumWorklistIterations, 116 "Number of instruction combining iterations performed"); 117 STATISTIC(NumOneIteration, "Number of functions with one iteration"); 118 STATISTIC(NumTwoIterations, "Number of functions with two iterations"); 119 STATISTIC(NumThreeIterations, "Number of functions with three iterations"); 120 STATISTIC(NumFourOrMoreIterations, 121 "Number of functions with four or more iterations"); 122 123 STATISTIC(NumCombined , "Number of insts combined"); 124 STATISTIC(NumConstProp, "Number of constant folds"); 125 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 126 STATISTIC(NumSunkInst , "Number of instructions sunk"); 127 STATISTIC(NumExpand, "Number of expansions"); 128 STATISTIC(NumFactor , "Number of factorizations"); 129 STATISTIC(NumReassoc , "Number of reassociations"); 130 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 131 "Controls which instructions are visited"); 132 133 static cl::opt<bool> 134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 135 cl::init(true)); 136 137 static cl::opt<unsigned> MaxSinkNumUsers( 138 "instcombine-max-sink-users", cl::init(32), 139 cl::desc("Maximum number of undroppable users for instruction sinking")); 140 141 static cl::opt<unsigned> 142 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 143 cl::desc("Maximum array size considered when doing a combine")); 144 145 // FIXME: Remove this flag when it is no longer necessary to convert 146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 147 // increases variable availability at the cost of accuracy. Variables that 148 // cannot be promoted by mem2reg or SROA will be described as living in memory 149 // for their entire lifetime. However, passes like DSE and instcombine can 150 // delete stores to the alloca, leading to misleading and inaccurate debug 151 // information. This flag can be removed when those passes are fixed. 152 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 153 cl::Hidden, cl::init(true)); 154 155 std::optional<Instruction *> 156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 157 // Handle target specific intrinsics 158 if (II.getCalledFunction()->isTargetIntrinsic()) { 159 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*this, II); 160 } 161 return std::nullopt; 162 } 163 164 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 165 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 166 bool &KnownBitsComputed) { 167 // Handle target specific intrinsics 168 if (II.getCalledFunction()->isTargetIntrinsic()) { 169 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic( 170 *this, II, DemandedMask, Known, KnownBitsComputed); 171 } 172 return std::nullopt; 173 } 174 175 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 176 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts, 177 APInt &PoisonElts2, APInt &PoisonElts3, 178 std::function<void(Instruction *, unsigned, APInt, APInt &)> 179 SimplifyAndSetOp) { 180 // Handle target specific intrinsics 181 if (II.getCalledFunction()->isTargetIntrinsic()) { 182 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic( 183 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, 184 SimplifyAndSetOp); 185 } 186 return std::nullopt; 187 } 188 189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { 190 // Approved exception for TTI use: This queries a legality property of the 191 // target, not an profitability heuristic. Ideally this should be part of 192 // DataLayout instead. 193 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS); 194 } 195 196 Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) { 197 if (!RewriteGEP) 198 return llvm::emitGEPOffset(&Builder, DL, GEP); 199 200 IRBuilderBase::InsertPointGuard Guard(Builder); 201 auto *Inst = dyn_cast<Instruction>(GEP); 202 if (Inst) 203 Builder.SetInsertPoint(Inst); 204 205 Value *Offset = EmitGEPOffset(GEP); 206 // If a non-trivial GEP has other uses, rewrite it to avoid duplicating 207 // the offset arithmetic. 208 if (Inst && !GEP->hasOneUse() && !GEP->hasAllConstantIndices() && 209 !GEP->getSourceElementType()->isIntegerTy(8)) { 210 replaceInstUsesWith( 211 *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(), 212 Offset, "", GEP->getNoWrapFlags())); 213 eraseInstFromFunction(*Inst); 214 } 215 return Offset; 216 } 217 218 /// Legal integers and common types are considered desirable. This is used to 219 /// avoid creating instructions with types that may not be supported well by the 220 /// the backend. 221 /// NOTE: This treats i8, i16 and i32 specially because they are common 222 /// types in frontend languages. 223 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 224 switch (BitWidth) { 225 case 8: 226 case 16: 227 case 32: 228 return true; 229 default: 230 return DL.isLegalInteger(BitWidth); 231 } 232 } 233 234 /// Return true if it is desirable to convert an integer computation from a 235 /// given bit width to a new bit width. 236 /// We don't want to convert from a legal or desirable type (like i8) to an 237 /// illegal type or from a smaller to a larger illegal type. A width of '1' 238 /// is always treated as a desirable type because i1 is a fundamental type in 239 /// IR, and there are many specialized optimizations for i1 types. 240 /// Common/desirable widths are equally treated as legal to convert to, in 241 /// order to open up more combining opportunities. 242 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 243 unsigned ToWidth) const { 244 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 245 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 246 247 // Convert to desirable widths even if they are not legal types. 248 // Only shrink types, to prevent infinite loops. 249 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 250 return true; 251 252 // If this is a legal or desiable integer from type, and the result would be 253 // an illegal type, don't do the transformation. 254 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) 255 return false; 256 257 // Otherwise, if both are illegal, do not increase the size of the result. We 258 // do allow things like i160 -> i64, but not i64 -> i160. 259 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 260 return false; 261 262 return true; 263 } 264 265 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 266 /// We don't want to convert from a legal to an illegal type or from a smaller 267 /// to a larger illegal type. i1 is always treated as a legal type because it is 268 /// a fundamental type in IR, and there are many specialized optimizations for 269 /// i1 types. 270 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 271 // TODO: This could be extended to allow vectors. Datalayout changes might be 272 // needed to properly support that. 273 if (!From->isIntegerTy() || !To->isIntegerTy()) 274 return false; 275 276 unsigned FromWidth = From->getPrimitiveSizeInBits(); 277 unsigned ToWidth = To->getPrimitiveSizeInBits(); 278 return shouldChangeType(FromWidth, ToWidth); 279 } 280 281 // Return true, if No Signed Wrap should be maintained for I. 282 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 283 // where both B and C should be ConstantInts, results in a constant that does 284 // not overflow. This function only handles the Add/Sub/Mul opcodes. For 285 // all other opcodes, the function conservatively returns false. 286 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 288 if (!OBO || !OBO->hasNoSignedWrap()) 289 return false; 290 291 const APInt *BVal, *CVal; 292 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 293 return false; 294 295 // We reason about Add/Sub/Mul Only. 296 bool Overflow = false; 297 switch (I.getOpcode()) { 298 case Instruction::Add: 299 (void)BVal->sadd_ov(*CVal, Overflow); 300 break; 301 case Instruction::Sub: 302 (void)BVal->ssub_ov(*CVal, Overflow); 303 break; 304 case Instruction::Mul: 305 (void)BVal->smul_ov(*CVal, Overflow); 306 break; 307 default: 308 // Conservatively return false for other opcodes. 309 return false; 310 } 311 return !Overflow; 312 } 313 314 static bool hasNoUnsignedWrap(BinaryOperator &I) { 315 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 316 return OBO && OBO->hasNoUnsignedWrap(); 317 } 318 319 static bool hasNoSignedWrap(BinaryOperator &I) { 320 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 321 return OBO && OBO->hasNoSignedWrap(); 322 } 323 324 /// Conservatively clears subclassOptionalData after a reassociation or 325 /// commutation. We preserve fast-math flags when applicable as they can be 326 /// preserved. 327 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 328 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 329 if (!FPMO) { 330 I.clearSubclassOptionalData(); 331 return; 332 } 333 334 FastMathFlags FMF = I.getFastMathFlags(); 335 I.clearSubclassOptionalData(); 336 I.setFastMathFlags(FMF); 337 } 338 339 /// Combine constant operands of associative operations either before or after a 340 /// cast to eliminate one of the associative operations: 341 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 342 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 343 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 344 InstCombinerImpl &IC) { 345 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 346 if (!Cast || !Cast->hasOneUse()) 347 return false; 348 349 // TODO: Enhance logic for other casts and remove this check. 350 auto CastOpcode = Cast->getOpcode(); 351 if (CastOpcode != Instruction::ZExt) 352 return false; 353 354 // TODO: Enhance logic for other BinOps and remove this check. 355 if (!BinOp1->isBitwiseLogicOp()) 356 return false; 357 358 auto AssocOpcode = BinOp1->getOpcode(); 359 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 360 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 361 return false; 362 363 Constant *C1, *C2; 364 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 365 !match(BinOp2->getOperand(1), m_Constant(C2))) 366 return false; 367 368 // TODO: This assumes a zext cast. 369 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 370 // to the destination type might lose bits. 371 372 // Fold the constants together in the destination type: 373 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 374 const DataLayout &DL = IC.getDataLayout(); 375 Type *DestTy = C1->getType(); 376 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL); 377 if (!CastC2) 378 return false; 379 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL); 380 if (!FoldedC) 381 return false; 382 383 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 384 IC.replaceOperand(*BinOp1, 1, FoldedC); 385 BinOp1->dropPoisonGeneratingFlags(); 386 Cast->dropPoisonGeneratingFlags(); 387 return true; 388 } 389 390 // Simplifies IntToPtr/PtrToInt RoundTrip Cast. 391 // inttoptr ( ptrtoint (x) ) --> x 392 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 393 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 394 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == 395 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 396 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 397 Type *CastTy = IntToPtr->getDestTy(); 398 if (PtrToInt && 399 CastTy->getPointerAddressSpace() == 400 PtrToInt->getSrcTy()->getPointerAddressSpace() && 401 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == 402 DL.getTypeSizeInBits(PtrToInt->getDestTy())) 403 return PtrToInt->getOperand(0); 404 } 405 return nullptr; 406 } 407 408 /// This performs a few simplifications for operators that are associative or 409 /// commutative: 410 /// 411 /// Commutative operators: 412 /// 413 /// 1. Order operands such that they are listed from right (least complex) to 414 /// left (most complex). This puts constants before unary operators before 415 /// binary operators. 416 /// 417 /// Associative operators: 418 /// 419 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 420 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 421 /// 422 /// Associative and commutative operators: 423 /// 424 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 425 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 426 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 427 /// if C1 and C2 are constants. 428 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 429 Instruction::BinaryOps Opcode = I.getOpcode(); 430 bool Changed = false; 431 432 do { 433 // Order operands such that they are listed from right (least complex) to 434 // left (most complex). This puts constants before unary operators before 435 // binary operators. 436 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 437 getComplexity(I.getOperand(1))) 438 Changed = !I.swapOperands(); 439 440 if (I.isCommutative()) { 441 if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) { 442 replaceOperand(I, 0, Pair->first); 443 replaceOperand(I, 1, Pair->second); 444 Changed = true; 445 } 446 } 447 448 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 449 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 450 451 if (I.isAssociative()) { 452 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 453 if (Op0 && Op0->getOpcode() == Opcode) { 454 Value *A = Op0->getOperand(0); 455 Value *B = Op0->getOperand(1); 456 Value *C = I.getOperand(1); 457 458 // Does "B op C" simplify? 459 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 460 // It simplifies to V. Form "A op V". 461 replaceOperand(I, 0, A); 462 replaceOperand(I, 1, V); 463 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 464 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 465 466 // Conservatively clear all optional flags since they may not be 467 // preserved by the reassociation. Reset nsw/nuw based on the above 468 // analysis. 469 ClearSubclassDataAfterReassociation(I); 470 471 // Note: this is only valid because SimplifyBinOp doesn't look at 472 // the operands to Op0. 473 if (IsNUW) 474 I.setHasNoUnsignedWrap(true); 475 476 if (IsNSW) 477 I.setHasNoSignedWrap(true); 478 479 Changed = true; 480 ++NumReassoc; 481 continue; 482 } 483 } 484 485 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 486 if (Op1 && Op1->getOpcode() == Opcode) { 487 Value *A = I.getOperand(0); 488 Value *B = Op1->getOperand(0); 489 Value *C = Op1->getOperand(1); 490 491 // Does "A op B" simplify? 492 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 493 // It simplifies to V. Form "V op C". 494 replaceOperand(I, 0, V); 495 replaceOperand(I, 1, C); 496 // Conservatively clear the optional flags, since they may not be 497 // preserved by the reassociation. 498 ClearSubclassDataAfterReassociation(I); 499 Changed = true; 500 ++NumReassoc; 501 continue; 502 } 503 } 504 } 505 506 if (I.isAssociative() && I.isCommutative()) { 507 if (simplifyAssocCastAssoc(&I, *this)) { 508 Changed = true; 509 ++NumReassoc; 510 continue; 511 } 512 513 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 514 if (Op0 && Op0->getOpcode() == Opcode) { 515 Value *A = Op0->getOperand(0); 516 Value *B = Op0->getOperand(1); 517 Value *C = I.getOperand(1); 518 519 // Does "C op A" simplify? 520 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 521 // It simplifies to V. Form "V op B". 522 replaceOperand(I, 0, V); 523 replaceOperand(I, 1, B); 524 // Conservatively clear the optional flags, since they may not be 525 // preserved by the reassociation. 526 ClearSubclassDataAfterReassociation(I); 527 Changed = true; 528 ++NumReassoc; 529 continue; 530 } 531 } 532 533 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 534 if (Op1 && Op1->getOpcode() == Opcode) { 535 Value *A = I.getOperand(0); 536 Value *B = Op1->getOperand(0); 537 Value *C = Op1->getOperand(1); 538 539 // Does "C op A" simplify? 540 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 541 // It simplifies to V. Form "B op V". 542 replaceOperand(I, 0, B); 543 replaceOperand(I, 1, V); 544 // Conservatively clear the optional flags, since they may not be 545 // preserved by the reassociation. 546 ClearSubclassDataAfterReassociation(I); 547 Changed = true; 548 ++NumReassoc; 549 continue; 550 } 551 } 552 553 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 554 // if C1 and C2 are constants. 555 Value *A, *B; 556 Constant *C1, *C2, *CRes; 557 if (Op0 && Op1 && 558 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 559 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 560 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 561 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 562 bool IsNUW = hasNoUnsignedWrap(I) && 563 hasNoUnsignedWrap(*Op0) && 564 hasNoUnsignedWrap(*Op1); 565 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 566 BinaryOperator::CreateNUW(Opcode, A, B) : 567 BinaryOperator::Create(Opcode, A, B); 568 569 if (isa<FPMathOperator>(NewBO)) { 570 FastMathFlags Flags = I.getFastMathFlags() & 571 Op0->getFastMathFlags() & 572 Op1->getFastMathFlags(); 573 NewBO->setFastMathFlags(Flags); 574 } 575 InsertNewInstWith(NewBO, I.getIterator()); 576 NewBO->takeName(Op1); 577 replaceOperand(I, 0, NewBO); 578 replaceOperand(I, 1, CRes); 579 // Conservatively clear the optional flags, since they may not be 580 // preserved by the reassociation. 581 ClearSubclassDataAfterReassociation(I); 582 if (IsNUW) 583 I.setHasNoUnsignedWrap(true); 584 585 Changed = true; 586 continue; 587 } 588 } 589 590 // No further simplifications. 591 return Changed; 592 } while (true); 593 } 594 595 /// Return whether "X LOp (Y ROp Z)" is always equal to 596 /// "(X LOp Y) ROp (X LOp Z)". 597 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 598 Instruction::BinaryOps ROp) { 599 // X & (Y | Z) <--> (X & Y) | (X & Z) 600 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 601 if (LOp == Instruction::And) 602 return ROp == Instruction::Or || ROp == Instruction::Xor; 603 604 // X | (Y & Z) <--> (X | Y) & (X | Z) 605 if (LOp == Instruction::Or) 606 return ROp == Instruction::And; 607 608 // X * (Y + Z) <--> (X * Y) + (X * Z) 609 // X * (Y - Z) <--> (X * Y) - (X * Z) 610 if (LOp == Instruction::Mul) 611 return ROp == Instruction::Add || ROp == Instruction::Sub; 612 613 return false; 614 } 615 616 /// Return whether "(X LOp Y) ROp Z" is always equal to 617 /// "(X ROp Z) LOp (Y ROp Z)". 618 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 619 Instruction::BinaryOps ROp) { 620 if (Instruction::isCommutative(ROp)) 621 return leftDistributesOverRight(ROp, LOp); 622 623 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 624 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 625 626 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 627 // but this requires knowing that the addition does not overflow and other 628 // such subtleties. 629 } 630 631 /// This function returns identity value for given opcode, which can be used to 632 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 633 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 634 if (isa<Constant>(V)) 635 return nullptr; 636 637 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 638 } 639 640 /// This function predicates factorization using distributive laws. By default, 641 /// it just returns the 'Op' inputs. But for special-cases like 642 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 643 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 644 /// allow more factorization opportunities. 645 static Instruction::BinaryOps 646 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 647 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) { 648 assert(Op && "Expected a binary operator"); 649 LHS = Op->getOperand(0); 650 RHS = Op->getOperand(1); 651 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 652 Constant *C; 653 if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) { 654 // X << C --> X * (1 << C) 655 RHS = ConstantFoldBinaryInstruction( 656 Instruction::Shl, ConstantInt::get(Op->getType(), 1), C); 657 assert(RHS && "Constant folding of immediate constants failed"); 658 return Instruction::Mul; 659 } 660 // TODO: We can add other conversions e.g. shr => div etc. 661 } 662 if (Instruction::isBitwiseLogicOp(TopOpcode)) { 663 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr && 664 match(Op, m_LShr(m_NonNegative(), m_Value()))) { 665 // lshr nneg C, X --> ashr nneg C, X 666 return Instruction::AShr; 667 } 668 } 669 return Op->getOpcode(); 670 } 671 672 /// This tries to simplify binary operations by factorizing out common terms 673 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 674 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, 675 InstCombiner::BuilderTy &Builder, 676 Instruction::BinaryOps InnerOpcode, Value *A, 677 Value *B, Value *C, Value *D) { 678 assert(A && B && C && D && "All values must be provided"); 679 680 Value *V = nullptr; 681 Value *RetVal = nullptr; 682 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 683 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 684 685 // Does "X op' Y" always equal "Y op' X"? 686 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 687 688 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 689 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { 690 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 691 // commutative case, "(A op' B) op (C op' A)"? 692 if (A == C || (InnerCommutative && A == D)) { 693 if (A != C) 694 std::swap(C, D); 695 // Consider forming "A op' (B op D)". 696 // If "B op D" simplifies then it can be formed with no cost. 697 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 698 699 // If "B op D" doesn't simplify then only go on if one of the existing 700 // operations "A op' B" and "C op' D" will be zapped as no longer used. 701 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 702 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 703 if (V) 704 RetVal = Builder.CreateBinOp(InnerOpcode, A, V); 705 } 706 } 707 708 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 709 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { 710 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 711 // commutative case, "(A op' B) op (B op' D)"? 712 if (B == D || (InnerCommutative && B == C)) { 713 if (B != D) 714 std::swap(C, D); 715 // Consider forming "(A op C) op' B". 716 // If "A op C" simplifies then it can be formed with no cost. 717 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 718 719 // If "A op C" doesn't simplify then only go on if one of the existing 720 // operations "A op' B" and "C op' D" will be zapped as no longer used. 721 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 722 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 723 if (V) 724 RetVal = Builder.CreateBinOp(InnerOpcode, V, B); 725 } 726 } 727 728 if (!RetVal) 729 return nullptr; 730 731 ++NumFactor; 732 RetVal->takeName(&I); 733 734 // Try to add no-overflow flags to the final value. 735 if (isa<BinaryOperator>(RetVal)) { 736 bool HasNSW = false; 737 bool HasNUW = false; 738 if (isa<OverflowingBinaryOperator>(&I)) { 739 HasNSW = I.hasNoSignedWrap(); 740 HasNUW = I.hasNoUnsignedWrap(); 741 } 742 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 743 HasNSW &= LOBO->hasNoSignedWrap(); 744 HasNUW &= LOBO->hasNoUnsignedWrap(); 745 } 746 747 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 748 HasNSW &= ROBO->hasNoSignedWrap(); 749 HasNUW &= ROBO->hasNoUnsignedWrap(); 750 } 751 752 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { 753 // We can propagate 'nsw' if we know that 754 // %Y = mul nsw i16 %X, C 755 // %Z = add nsw i16 %Y, %X 756 // => 757 // %Z = mul nsw i16 %X, C+1 758 // 759 // iff C+1 isn't INT_MIN 760 const APInt *CInt; 761 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 762 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW); 763 764 // nuw can be propagated with any constant or nuw value. 765 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW); 766 } 767 } 768 return RetVal; 769 } 770 771 // If `I` has one Const operand and the other matches `(ctpop (not x))`, 772 // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`. 773 // This is only useful is the new subtract can fold so we only handle the 774 // following cases: 775 // 1) (add/sub/disjoint_or C, (ctpop (not x)) 776 // -> (add/sub/disjoint_or C', (ctpop x)) 777 // 1) (cmp pred C, (ctpop (not x)) 778 // -> (cmp pred C', (ctpop x)) 779 Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) { 780 unsigned Opc = I->getOpcode(); 781 unsigned ConstIdx = 1; 782 switch (Opc) { 783 default: 784 return nullptr; 785 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x)) 786 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand 787 // is constant. 788 case Instruction::Sub: 789 ConstIdx = 0; 790 break; 791 case Instruction::ICmp: 792 // Signed predicates aren't correct in some edge cases like for i2 types, as 793 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed 794 // comparisons against it are simplfied to unsigned. 795 if (cast<ICmpInst>(I)->isSigned()) 796 return nullptr; 797 break; 798 case Instruction::Or: 799 if (!match(I, m_DisjointOr(m_Value(), m_Value()))) 800 return nullptr; 801 [[fallthrough]]; 802 case Instruction::Add: 803 break; 804 } 805 806 Value *Op; 807 // Find ctpop. 808 if (!match(I->getOperand(1 - ConstIdx), 809 m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op))))) 810 return nullptr; 811 812 Constant *C; 813 // Check other operand is ImmConstant. 814 if (!match(I->getOperand(ConstIdx), m_ImmConstant(C))) 815 return nullptr; 816 817 Type *Ty = Op->getType(); 818 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits()); 819 // Need extra check for icmp. Note if this check is true, it generally means 820 // the icmp will simplify to true/false. 821 if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) { 822 Constant *Cmp = 823 ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, C, BitWidthC, DL); 824 if (!Cmp || !Cmp->isZeroValue()) 825 return nullptr; 826 } 827 828 // Check we can invert `(not x)` for free. 829 bool Consumes = false; 830 if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes) 831 return nullptr; 832 Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder); 833 assert(NotOp != nullptr && 834 "Desync between isFreeToInvert and getFreelyInverted"); 835 836 Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp); 837 838 Value *R = nullptr; 839 840 // Do the transformation here to avoid potentially introducing an infinite 841 // loop. 842 switch (Opc) { 843 case Instruction::Sub: 844 R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC)); 845 break; 846 case Instruction::Or: 847 case Instruction::Add: 848 R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp); 849 break; 850 case Instruction::ICmp: 851 R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(), 852 CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C)); 853 break; 854 default: 855 llvm_unreachable("Unhandled Opcode"); 856 } 857 assert(R != nullptr); 858 return replaceInstUsesWith(*I, R); 859 } 860 861 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C)) 862 // IFF 863 // 1) the logic_shifts match 864 // 2) either both binops are binops and one is `and` or 865 // BinOp1 is `and` 866 // (logic_shift (inv_logic_shift C1, C), C) == C1 or 867 // 868 // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C) 869 // 870 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt)) 871 // IFF 872 // 1) the logic_shifts match 873 // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`). 874 // 875 // -> (BinOp (logic_shift (BinOp X, Y)), Mask) 876 // 877 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt)) 878 // IFF 879 // 1) Binop1 is bitwise logical operator `and`, `or` or `xor` 880 // 2) Binop2 is `not` 881 // 882 // -> (arithmetic_shift Binop1((not X), Y), Amt) 883 884 Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) { 885 const DataLayout &DL = I.getDataLayout(); 886 auto IsValidBinOpc = [](unsigned Opc) { 887 switch (Opc) { 888 default: 889 return false; 890 case Instruction::And: 891 case Instruction::Or: 892 case Instruction::Xor: 893 case Instruction::Add: 894 // Skip Sub as we only match constant masks which will canonicalize to use 895 // add. 896 return true; 897 } 898 }; 899 900 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra 901 // constraints. 902 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2, 903 unsigned ShOpc) { 904 assert(ShOpc != Instruction::AShr); 905 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) || 906 ShOpc == Instruction::Shl; 907 }; 908 909 auto GetInvShift = [](unsigned ShOpc) { 910 assert(ShOpc != Instruction::AShr); 911 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr; 912 }; 913 914 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2, 915 unsigned ShOpc, Constant *CMask, 916 Constant *CShift) { 917 // If the BinOp1 is `and` we don't need to check the mask. 918 if (BinOpc1 == Instruction::And) 919 return true; 920 921 // For all other possible transfers we need complete distributable 922 // binop/shift (anything but `add` + `lshr`). 923 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc)) 924 return false; 925 926 // If BinOp2 is `and`, any mask works (this only really helps for non-splat 927 // vecs, otherwise the mask will be simplified and the following check will 928 // handle it). 929 if (BinOpc2 == Instruction::And) 930 return true; 931 932 // Otherwise, need mask that meets the below requirement. 933 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask 934 Constant *MaskInvShift = 935 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 936 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) == 937 CMask; 938 }; 939 940 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * { 941 Constant *CMask, *CShift; 942 Value *X, *Y, *ShiftedX, *Mask, *Shift; 943 if (!match(I.getOperand(ShOpnum), 944 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift))))) 945 return nullptr; 946 if (!match(I.getOperand(1 - ShOpnum), 947 m_c_BinOp(m_CombineAnd( 948 m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))), 949 m_Value(ShiftedX)), 950 m_Value(Mask)))) 951 return nullptr; 952 // Make sure we are matching instruction shifts and not ConstantExpr 953 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum)); 954 auto *IX = dyn_cast<Instruction>(ShiftedX); 955 if (!IY || !IX) 956 return nullptr; 957 958 // LHS and RHS need same shift opcode 959 unsigned ShOpc = IY->getOpcode(); 960 if (ShOpc != IX->getOpcode()) 961 return nullptr; 962 963 // Make sure binop is real instruction and not ConstantExpr 964 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum)); 965 if (!BO2) 966 return nullptr; 967 968 unsigned BinOpc = BO2->getOpcode(); 969 // Make sure we have valid binops. 970 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc)) 971 return nullptr; 972 973 if (ShOpc == Instruction::AShr) { 974 if (Instruction::isBitwiseLogicOp(I.getOpcode()) && 975 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) { 976 Value *NotX = Builder.CreateNot(X); 977 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX); 978 return BinaryOperator::Create( 979 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift); 980 } 981 982 return nullptr; 983 } 984 985 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just 986 // distribute to drop the shift irrelevant of constants. 987 if (BinOpc == I.getOpcode() && 988 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) { 989 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y); 990 Value *NewBinOp1 = Builder.CreateBinOp( 991 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift); 992 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask); 993 } 994 995 // Otherwise we can only distribute by constant shifting the mask, so 996 // ensure we have constants. 997 if (!match(Shift, m_ImmConstant(CShift))) 998 return nullptr; 999 if (!match(Mask, m_ImmConstant(CMask))) 1000 return nullptr; 1001 1002 // Check if we can distribute the binops. 1003 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift)) 1004 return nullptr; 1005 1006 Constant *NewCMask = 1007 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 1008 Value *NewBinOp2 = Builder.CreateBinOp( 1009 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask); 1010 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2); 1011 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc), 1012 NewBinOp1, CShift); 1013 }; 1014 1015 if (Instruction *R = MatchBinOp(0)) 1016 return R; 1017 return MatchBinOp(1); 1018 } 1019 1020 // (Binop (zext C), (select C, T, F)) 1021 // -> (select C, (binop 1, T), (binop 0, F)) 1022 // 1023 // (Binop (sext C), (select C, T, F)) 1024 // -> (select C, (binop -1, T), (binop 0, F)) 1025 // 1026 // Attempt to simplify binary operations into a select with folded args, when 1027 // one operand of the binop is a select instruction and the other operand is a 1028 // zext/sext extension, whose value is the select condition. 1029 Instruction * 1030 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) { 1031 // TODO: this simplification may be extended to any speculatable instruction, 1032 // not just binops, and would possibly be handled better in FoldOpIntoSelect. 1033 Instruction::BinaryOps Opc = I.getOpcode(); 1034 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1035 Value *A, *CondVal, *TrueVal, *FalseVal; 1036 Value *CastOp; 1037 1038 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) { 1039 return match(CastOp, m_ZExtOrSExt(m_Value(A))) && 1040 A->getType()->getScalarSizeInBits() == 1 && 1041 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal), 1042 m_Value(FalseVal))); 1043 }; 1044 1045 // Make sure one side of the binop is a select instruction, and the other is a 1046 // zero/sign extension operating on a i1. 1047 if (MatchSelectAndCast(LHS, RHS)) 1048 CastOp = LHS; 1049 else if (MatchSelectAndCast(RHS, LHS)) 1050 CastOp = RHS; 1051 else 1052 return nullptr; 1053 1054 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) { 1055 bool IsCastOpRHS = (CastOp == RHS); 1056 bool IsZExt = isa<ZExtInst>(CastOp); 1057 Constant *C; 1058 1059 if (IsTrueArm) { 1060 C = Constant::getNullValue(V->getType()); 1061 } else if (IsZExt) { 1062 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1063 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1)); 1064 } else { 1065 C = Constant::getAllOnesValue(V->getType()); 1066 } 1067 1068 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C) 1069 : Builder.CreateBinOp(Opc, C, V); 1070 }; 1071 1072 // If the value used in the zext/sext is the select condition, or the negated 1073 // of the select condition, the binop can be simplified. 1074 if (CondVal == A) { 1075 Value *NewTrueVal = NewFoldedConst(false, TrueVal); 1076 return SelectInst::Create(CondVal, NewTrueVal, 1077 NewFoldedConst(true, FalseVal)); 1078 } 1079 1080 if (match(A, m_Not(m_Specific(CondVal)))) { 1081 Value *NewTrueVal = NewFoldedConst(true, TrueVal); 1082 return SelectInst::Create(CondVal, NewTrueVal, 1083 NewFoldedConst(false, FalseVal)); 1084 } 1085 1086 return nullptr; 1087 } 1088 1089 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { 1090 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1091 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1092 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1093 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1094 Value *A, *B, *C, *D; 1095 Instruction::BinaryOps LHSOpcode, RHSOpcode; 1096 1097 if (Op0) 1098 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1); 1099 if (Op1) 1100 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0); 1101 1102 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 1103 // a common term. 1104 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 1105 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) 1106 return V; 1107 1108 // The instruction has the form "(A op' B) op (C)". Try to factorize common 1109 // term. 1110 if (Op0) 1111 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 1112 if (Value *V = 1113 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) 1114 return V; 1115 1116 // The instruction has the form "(B) op (C op' D)". Try to factorize common 1117 // term. 1118 if (Op1) 1119 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 1120 if (Value *V = 1121 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) 1122 return V; 1123 1124 return nullptr; 1125 } 1126 1127 /// This tries to simplify binary operations which some other binary operation 1128 /// distributes over either by factorizing out common terms 1129 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 1130 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 1131 /// Returns the simplified value, or null if it didn't simplify. 1132 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { 1133 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1134 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1135 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1136 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1137 1138 // Factorization. 1139 if (Value *R = tryFactorizationFolds(I)) 1140 return R; 1141 1142 // Expansion. 1143 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 1144 // The instruction has the form "(A op' B) op C". See if expanding it out 1145 // to "(A op C) op' (B op C)" results in simplifications. 1146 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 1147 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 1148 1149 // Disable the use of undef because it's not safe to distribute undef. 1150 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1151 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1152 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 1153 1154 // Do "A op C" and "B op C" both simplify? 1155 if (L && R) { 1156 // They do! Return "L op' R". 1157 ++NumExpand; 1158 C = Builder.CreateBinOp(InnerOpcode, L, R); 1159 C->takeName(&I); 1160 return C; 1161 } 1162 1163 // Does "A op C" simplify to the identity value for the inner opcode? 1164 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1165 // They do! Return "B op C". 1166 ++NumExpand; 1167 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 1168 C->takeName(&I); 1169 return C; 1170 } 1171 1172 // Does "B op C" simplify to the identity value for the inner opcode? 1173 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1174 // They do! Return "A op C". 1175 ++NumExpand; 1176 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 1177 C->takeName(&I); 1178 return C; 1179 } 1180 } 1181 1182 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 1183 // The instruction has the form "A op (B op' C)". See if expanding it out 1184 // to "(A op B) op' (A op C)" results in simplifications. 1185 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 1186 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 1187 1188 // Disable the use of undef because it's not safe to distribute undef. 1189 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1190 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 1191 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1192 1193 // Do "A op B" and "A op C" both simplify? 1194 if (L && R) { 1195 // They do! Return "L op' R". 1196 ++NumExpand; 1197 A = Builder.CreateBinOp(InnerOpcode, L, R); 1198 A->takeName(&I); 1199 return A; 1200 } 1201 1202 // Does "A op B" simplify to the identity value for the inner opcode? 1203 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1204 // They do! Return "A op C". 1205 ++NumExpand; 1206 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 1207 A->takeName(&I); 1208 return A; 1209 } 1210 1211 // Does "A op C" simplify to the identity value for the inner opcode? 1212 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1213 // They do! Return "A op B". 1214 ++NumExpand; 1215 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 1216 A->takeName(&I); 1217 return A; 1218 } 1219 } 1220 1221 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 1222 } 1223 1224 static std::optional<std::pair<Value *, Value *>> 1225 matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) { 1226 if (LHS->getParent() != RHS->getParent()) 1227 return std::nullopt; 1228 1229 if (LHS->getNumIncomingValues() < 2) 1230 return std::nullopt; 1231 1232 if (!equal(LHS->blocks(), RHS->blocks())) 1233 return std::nullopt; 1234 1235 Value *L0 = LHS->getIncomingValue(0); 1236 Value *R0 = RHS->getIncomingValue(0); 1237 1238 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) { 1239 Value *L1 = LHS->getIncomingValue(I); 1240 Value *R1 = RHS->getIncomingValue(I); 1241 1242 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1)) 1243 continue; 1244 1245 return std::nullopt; 1246 } 1247 1248 return std::optional(std::pair(L0, R0)); 1249 } 1250 1251 std::optional<std::pair<Value *, Value *>> 1252 InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) { 1253 Instruction *LHSInst = dyn_cast<Instruction>(LHS); 1254 Instruction *RHSInst = dyn_cast<Instruction>(RHS); 1255 if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode()) 1256 return std::nullopt; 1257 switch (LHSInst->getOpcode()) { 1258 case Instruction::PHI: 1259 return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS)); 1260 case Instruction::Select: { 1261 Value *Cond = LHSInst->getOperand(0); 1262 Value *TrueVal = LHSInst->getOperand(1); 1263 Value *FalseVal = LHSInst->getOperand(2); 1264 if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) && 1265 FalseVal == RHSInst->getOperand(1)) 1266 return std::pair(TrueVal, FalseVal); 1267 return std::nullopt; 1268 } 1269 case Instruction::Call: { 1270 // Match min(a, b) and max(a, b) 1271 MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst); 1272 MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst); 1273 if (LHSMinMax && RHSMinMax && 1274 LHSMinMax->getPredicate() == 1275 ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) && 1276 ((LHSMinMax->getLHS() == RHSMinMax->getLHS() && 1277 LHSMinMax->getRHS() == RHSMinMax->getRHS()) || 1278 (LHSMinMax->getLHS() == RHSMinMax->getRHS() && 1279 LHSMinMax->getRHS() == RHSMinMax->getLHS()))) 1280 return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS()); 1281 return std::nullopt; 1282 } 1283 default: 1284 return std::nullopt; 1285 } 1286 } 1287 1288 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 1289 Value *LHS, 1290 Value *RHS) { 1291 Value *A, *B, *C, *D, *E, *F; 1292 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 1293 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 1294 if (!LHSIsSelect && !RHSIsSelect) 1295 return nullptr; 1296 1297 FastMathFlags FMF; 1298 BuilderTy::FastMathFlagGuard Guard(Builder); 1299 if (isa<FPMathOperator>(&I)) { 1300 FMF = I.getFastMathFlags(); 1301 Builder.setFastMathFlags(FMF); 1302 } 1303 1304 Instruction::BinaryOps Opcode = I.getOpcode(); 1305 SimplifyQuery Q = SQ.getWithInstruction(&I); 1306 1307 Value *Cond, *True = nullptr, *False = nullptr; 1308 1309 // Special-case for add/negate combination. Replace the zero in the negation 1310 // with the trailing add operand: 1311 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) 1312 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False 1313 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { 1314 // We need an 'add' and exactly 1 arm of the select to have been simplified. 1315 if (Opcode != Instruction::Add || (!True && !False) || (True && False)) 1316 return nullptr; 1317 1318 Value *N; 1319 if (True && match(FVal, m_Neg(m_Value(N)))) { 1320 Value *Sub = Builder.CreateSub(Z, N); 1321 return Builder.CreateSelect(Cond, True, Sub, I.getName()); 1322 } 1323 if (False && match(TVal, m_Neg(m_Value(N)))) { 1324 Value *Sub = Builder.CreateSub(Z, N); 1325 return Builder.CreateSelect(Cond, Sub, False, I.getName()); 1326 } 1327 return nullptr; 1328 }; 1329 1330 if (LHSIsSelect && RHSIsSelect && A == D) { 1331 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 1332 Cond = A; 1333 True = simplifyBinOp(Opcode, B, E, FMF, Q); 1334 False = simplifyBinOp(Opcode, C, F, FMF, Q); 1335 1336 if (LHS->hasOneUse() && RHS->hasOneUse()) { 1337 if (False && !True) 1338 True = Builder.CreateBinOp(Opcode, B, E); 1339 else if (True && !False) 1340 False = Builder.CreateBinOp(Opcode, C, F); 1341 } 1342 } else if (LHSIsSelect && LHS->hasOneUse()) { 1343 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 1344 Cond = A; 1345 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 1346 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 1347 if (Value *NewSel = foldAddNegate(B, C, RHS)) 1348 return NewSel; 1349 } else if (RHSIsSelect && RHS->hasOneUse()) { 1350 // X op (D ? E : F) -> D ? (X op E) : (X op F) 1351 Cond = D; 1352 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 1353 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 1354 if (Value *NewSel = foldAddNegate(E, F, LHS)) 1355 return NewSel; 1356 } 1357 1358 if (!True || !False) 1359 return nullptr; 1360 1361 Value *SI = Builder.CreateSelect(Cond, True, False); 1362 SI->takeName(&I); 1363 return SI; 1364 } 1365 1366 /// Freely adapt every user of V as-if V was changed to !V. 1367 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 1368 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { 1369 assert(!isa<Constant>(I) && "Shouldn't invert users of constant"); 1370 for (User *U : make_early_inc_range(I->users())) { 1371 if (U == IgnoredUser) 1372 continue; // Don't consider this user. 1373 switch (cast<Instruction>(U)->getOpcode()) { 1374 case Instruction::Select: { 1375 auto *SI = cast<SelectInst>(U); 1376 SI->swapValues(); 1377 SI->swapProfMetadata(); 1378 break; 1379 } 1380 case Instruction::Br: { 1381 BranchInst *BI = cast<BranchInst>(U); 1382 BI->swapSuccessors(); // swaps prof metadata too 1383 if (BPI) 1384 BPI->swapSuccEdgesProbabilities(BI->getParent()); 1385 break; 1386 } 1387 case Instruction::Xor: 1388 replaceInstUsesWith(cast<Instruction>(*U), I); 1389 // Add to worklist for DCE. 1390 addToWorklist(cast<Instruction>(U)); 1391 break; 1392 default: 1393 llvm_unreachable("Got unexpected user - out of sync with " 1394 "canFreelyInvertAllUsersOf() ?"); 1395 } 1396 } 1397 } 1398 1399 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 1400 /// constant zero (which is the 'negate' form). 1401 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 1402 Value *NegV; 1403 if (match(V, m_Neg(m_Value(NegV)))) 1404 return NegV; 1405 1406 // Constants can be considered to be negated values if they can be folded. 1407 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 1408 return ConstantExpr::getNeg(C); 1409 1410 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 1411 if (C->getType()->getElementType()->isIntegerTy()) 1412 return ConstantExpr::getNeg(C); 1413 1414 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 1415 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1416 Constant *Elt = CV->getAggregateElement(i); 1417 if (!Elt) 1418 return nullptr; 1419 1420 if (isa<UndefValue>(Elt)) 1421 continue; 1422 1423 if (!isa<ConstantInt>(Elt)) 1424 return nullptr; 1425 } 1426 return ConstantExpr::getNeg(CV); 1427 } 1428 1429 // Negate integer vector splats. 1430 if (auto *CV = dyn_cast<Constant>(V)) 1431 if (CV->getType()->isVectorTy() && 1432 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 1433 return ConstantExpr::getNeg(CV); 1434 1435 return nullptr; 1436 } 1437 1438 // Try to fold: 1439 // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y)) 1440 // -> ({s|u}itofp (int_binop x, y)) 1441 // 2) (fp_binop ({s|u}itofp x), FpC) 1442 // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC))) 1443 // 1444 // Assuming the sign of the cast for x/y is `OpsFromSigned`. 1445 Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign( 1446 BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps, 1447 Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown) { 1448 1449 Type *FPTy = BO.getType(); 1450 Type *IntTy = IntOps[0]->getType(); 1451 1452 unsigned IntSz = IntTy->getScalarSizeInBits(); 1453 // This is the maximum number of inuse bits by the integer where the int -> fp 1454 // casts are exact. 1455 unsigned MaxRepresentableBits = 1456 APFloat::semanticsPrecision(FPTy->getScalarType()->getFltSemantics()); 1457 1458 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw 1459 // checks later on. 1460 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz}; 1461 1462 // NB: This only comes up if OpsFromSigned is true, so there is no need to 1463 // cache if between calls to `foldFBinOpOfIntCastsFromSign`. 1464 auto IsNonZero = [&](unsigned OpNo) -> bool { 1465 if (OpsKnown[OpNo].hasKnownBits() && 1466 OpsKnown[OpNo].getKnownBits(SQ).isNonZero()) 1467 return true; 1468 return isKnownNonZero(IntOps[OpNo], SQ); 1469 }; 1470 1471 auto IsNonNeg = [&](unsigned OpNo) -> bool { 1472 // NB: This matches the impl in ValueTracking, we just try to use cached 1473 // knownbits here. If we ever start supporting WithCache for 1474 // `isKnownNonNegative`, change this to an explicit call. 1475 return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative(); 1476 }; 1477 1478 // Check if we know for certain that ({s|u}itofp op) is exact. 1479 auto IsValidPromotion = [&](unsigned OpNo) -> bool { 1480 // Can we treat this operand as the desired sign? 1481 if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) && 1482 !IsNonNeg(OpNo)) 1483 return false; 1484 1485 // If fp precision >= bitwidth(op) then its exact. 1486 // NB: This is slightly conservative for `sitofp`. For signed conversion, we 1487 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be 1488 // handled specially. We can't, however, increase the bound arbitrarily for 1489 // `sitofp` as for larger sizes, it won't sign extend. 1490 if (MaxRepresentableBits < IntSz) { 1491 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) - 1492 // numSignBits(op). 1493 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change 1494 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`. 1495 if (OpsFromSigned) 1496 NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]); 1497 // Finally for unsigned check that fp precision >= bitwidth(op) - 1498 // numLeadingZeros(op). 1499 else { 1500 NumUsedLeadingBits[OpNo] = 1501 IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros(); 1502 } 1503 } 1504 // NB: We could also check if op is known to be a power of 2 or zero (which 1505 // will always be representable). Its unlikely, however, that is we are 1506 // unable to bound op in any way we will be able to pass the overflow checks 1507 // later on. 1508 1509 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo]) 1510 return false; 1511 // Signed + Mul also requires that op is non-zero to avoid -0 cases. 1512 return !OpsFromSigned || BO.getOpcode() != Instruction::FMul || 1513 IsNonZero(OpNo); 1514 }; 1515 1516 // If we have a constant rhs, see if we can losslessly convert it to an int. 1517 if (Op1FpC != nullptr) { 1518 // Signed + Mul req non-zero 1519 if (OpsFromSigned && BO.getOpcode() == Instruction::FMul && 1520 !match(Op1FpC, m_NonZeroFP())) 1521 return nullptr; 1522 1523 Constant *Op1IntC = ConstantFoldCastOperand( 1524 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC, 1525 IntTy, DL); 1526 if (Op1IntC == nullptr) 1527 return nullptr; 1528 if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP 1529 : Instruction::UIToFP, 1530 Op1IntC, FPTy, DL) != Op1FpC) 1531 return nullptr; 1532 1533 // First try to keep sign of cast the same. 1534 IntOps[1] = Op1IntC; 1535 } 1536 1537 // Ensure lhs/rhs integer types match. 1538 if (IntTy != IntOps[1]->getType()) 1539 return nullptr; 1540 1541 if (Op1FpC == nullptr) { 1542 if (!IsValidPromotion(1)) 1543 return nullptr; 1544 } 1545 if (!IsValidPromotion(0)) 1546 return nullptr; 1547 1548 // Final we check if the integer version of the binop will not overflow. 1549 BinaryOperator::BinaryOps IntOpc; 1550 // Because of the precision check, we can often rule out overflows. 1551 bool NeedsOverflowCheck = true; 1552 // Try to conservatively rule out overflow based on the already done precision 1553 // checks. 1554 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1; 1555 unsigned OverflowMaxCurBits = 1556 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]); 1557 bool OutputSigned = OpsFromSigned; 1558 switch (BO.getOpcode()) { 1559 case Instruction::FAdd: 1560 IntOpc = Instruction::Add; 1561 OverflowMaxOutputBits += OverflowMaxCurBits; 1562 break; 1563 case Instruction::FSub: 1564 IntOpc = Instruction::Sub; 1565 OverflowMaxOutputBits += OverflowMaxCurBits; 1566 break; 1567 case Instruction::FMul: 1568 IntOpc = Instruction::Mul; 1569 OverflowMaxOutputBits += OverflowMaxCurBits * 2; 1570 break; 1571 default: 1572 llvm_unreachable("Unsupported binop"); 1573 } 1574 // The precision check may have already ruled out overflow. 1575 if (OverflowMaxOutputBits < IntSz) { 1576 NeedsOverflowCheck = false; 1577 // We can bound unsigned overflow from sub to in range signed value (this is 1578 // what allows us to avoid the overflow check for sub). 1579 if (IntOpc == Instruction::Sub) 1580 OutputSigned = true; 1581 } 1582 1583 // Precision check did not rule out overflow, so need to check. 1584 // TODO: If we add support for `WithCache` in `willNotOverflow`, change 1585 // `IntOps[...]` arguments to `KnownOps[...]`. 1586 if (NeedsOverflowCheck && 1587 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned)) 1588 return nullptr; 1589 1590 Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]); 1591 if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) { 1592 IntBO->setHasNoSignedWrap(OutputSigned); 1593 IntBO->setHasNoUnsignedWrap(!OutputSigned); 1594 } 1595 if (OutputSigned) 1596 return new SIToFPInst(IntBinOp, FPTy); 1597 return new UIToFPInst(IntBinOp, FPTy); 1598 } 1599 1600 // Try to fold: 1601 // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y)) 1602 // -> ({s|u}itofp (int_binop x, y)) 1603 // 2) (fp_binop ({s|u}itofp x), FpC) 1604 // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC))) 1605 Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) { 1606 std::array<Value *, 2> IntOps = {nullptr, nullptr}; 1607 Constant *Op1FpC = nullptr; 1608 // Check for: 1609 // 1) (binop ({s|u}itofp x), ({s|u}itofp y)) 1610 // 2) (binop ({s|u}itofp x), FpC) 1611 if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) && 1612 !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0])))) 1613 return nullptr; 1614 1615 if (!match(BO.getOperand(1), m_Constant(Op1FpC)) && 1616 !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) && 1617 !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1])))) 1618 return nullptr; 1619 1620 // Cache KnownBits a bit to potentially save some analysis. 1621 SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]}; 1622 1623 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are 1624 // different constraints depending on the sign of the cast. 1625 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`. 1626 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false, 1627 IntOps, Op1FpC, OpsKnown)) 1628 return R; 1629 return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps, 1630 Op1FpC, OpsKnown); 1631 } 1632 1633 /// A binop with a constant operand and a sign-extended boolean operand may be 1634 /// converted into a select of constants by applying the binary operation to 1635 /// the constant with the two possible values of the extended boolean (0 or -1). 1636 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 1637 // TODO: Handle non-commutative binop (constant is operand 0). 1638 // TODO: Handle zext. 1639 // TODO: Peek through 'not' of cast. 1640 Value *BO0 = BO.getOperand(0); 1641 Value *BO1 = BO.getOperand(1); 1642 Value *X; 1643 Constant *C; 1644 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 1645 !X->getType()->isIntOrIntVectorTy(1)) 1646 return nullptr; 1647 1648 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 1649 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 1650 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 1651 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 1652 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 1653 return SelectInst::Create(X, TVal, FVal); 1654 } 1655 1656 static Value *simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, 1657 bool IsTrueArm) { 1658 SmallVector<Value *> Ops; 1659 for (Value *Op : I.operands()) { 1660 Value *V = nullptr; 1661 if (Op == SI) { 1662 V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue(); 1663 } else if (match(SI->getCondition(), 1664 m_SpecificICmp(IsTrueArm ? ICmpInst::ICMP_EQ 1665 : ICmpInst::ICMP_NE, 1666 m_Specific(Op), m_Value(V))) && 1667 isGuaranteedNotToBeUndefOrPoison(V)) { 1668 // Pass 1669 } else { 1670 V = Op; 1671 } 1672 Ops.push_back(V); 1673 } 1674 1675 return simplifyInstructionWithOperands(&I, Ops, I.getDataLayout()); 1676 } 1677 1678 static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, 1679 Value *NewOp, InstCombiner &IC) { 1680 Instruction *Clone = I.clone(); 1681 Clone->replaceUsesOfWith(SI, NewOp); 1682 Clone->dropUBImplyingAttrsAndMetadata(); 1683 IC.InsertNewInstBefore(Clone, I.getIterator()); 1684 return Clone; 1685 } 1686 1687 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1688 bool FoldWithMultiUse) { 1689 // Don't modify shared select instructions unless set FoldWithMultiUse 1690 if (!SI->hasOneUse() && !FoldWithMultiUse) 1691 return nullptr; 1692 1693 Value *TV = SI->getTrueValue(); 1694 Value *FV = SI->getFalseValue(); 1695 1696 // Bool selects with constant operands can be folded to logical ops. 1697 if (SI->getType()->isIntOrIntVectorTy(1)) 1698 return nullptr; 1699 1700 // Test if a FCmpInst instruction is used exclusively by a select as 1701 // part of a minimum or maximum operation. If so, refrain from doing 1702 // any other folding. This helps out other analyses which understand 1703 // non-obfuscated minimum and maximum idioms. And in this case, at 1704 // least one of the comparison operands has at least one user besides 1705 // the compare (the select), which would often largely negate the 1706 // benefit of folding anyway. 1707 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) { 1708 if (CI->hasOneUse()) { 1709 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1710 if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) 1711 return nullptr; 1712 } 1713 } 1714 1715 // Make sure that one of the select arms folds successfully. 1716 Value *NewTV = simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/true); 1717 Value *NewFV = 1718 simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/false); 1719 if (!NewTV && !NewFV) 1720 return nullptr; 1721 1722 // Create an instruction for the arm that did not fold. 1723 if (!NewTV) 1724 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this); 1725 if (!NewFV) 1726 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this); 1727 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1728 } 1729 1730 static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN, 1731 Value *InValue, BasicBlock *InBB, 1732 const DataLayout &DL, 1733 const SimplifyQuery SQ) { 1734 // NB: It is a precondition of this transform that the operands be 1735 // phi translatable! 1736 SmallVector<Value *> Ops; 1737 for (Value *Op : I.operands()) { 1738 if (Op == PN) 1739 Ops.push_back(InValue); 1740 else 1741 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); 1742 } 1743 1744 // Don't consider the simplification successful if we get back a constant 1745 // expression. That's just an instruction in hiding. 1746 // Also reject the case where we simplify back to the phi node. We wouldn't 1747 // be able to remove it in that case. 1748 Value *NewVal = simplifyInstructionWithOperands( 1749 &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); 1750 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) 1751 return NewVal; 1752 1753 // Check if incoming PHI value can be replaced with constant 1754 // based on implied condition. 1755 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator()); 1756 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I); 1757 if (TerminatorBI && TerminatorBI->isConditional() && 1758 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) { 1759 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent(); 1760 std::optional<bool> ImpliedCond = isImpliedCondition( 1761 TerminatorBI->getCondition(), ICmp->getCmpPredicate(), Ops[0], Ops[1], 1762 DL, LHSIsTrue); 1763 if (ImpliedCond) 1764 return ConstantInt::getBool(I.getType(), ImpliedCond.value()); 1765 } 1766 1767 return nullptr; 1768 } 1769 1770 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN, 1771 bool AllowMultipleUses) { 1772 unsigned NumPHIValues = PN->getNumIncomingValues(); 1773 if (NumPHIValues == 0) 1774 return nullptr; 1775 1776 // We normally only transform phis with a single use. However, if a PHI has 1777 // multiple uses and they are all the same operation, we can fold *all* of the 1778 // uses into the PHI. 1779 bool OneUse = PN->hasOneUse(); 1780 bool IdenticalUsers = false; 1781 if (!AllowMultipleUses && !OneUse) { 1782 // Walk the use list for the instruction, comparing them to I. 1783 for (User *U : PN->users()) { 1784 Instruction *UI = cast<Instruction>(U); 1785 if (UI != &I && !I.isIdenticalTo(UI)) 1786 return nullptr; 1787 } 1788 // Otherwise, we can replace *all* users with the new PHI we form. 1789 IdenticalUsers = true; 1790 } 1791 1792 // Check that all operands are phi-translatable. 1793 for (Value *Op : I.operands()) { 1794 if (Op == PN) 1795 continue; 1796 1797 // Non-instructions never require phi-translation. 1798 auto *I = dyn_cast<Instruction>(Op); 1799 if (!I) 1800 continue; 1801 1802 // Phi-translate can handle phi nodes in the same block. 1803 if (isa<PHINode>(I)) 1804 if (I->getParent() == PN->getParent()) 1805 continue; 1806 1807 // Operand dominates the block, no phi-translation necessary. 1808 if (DT.dominates(I, PN->getParent())) 1809 continue; 1810 1811 // Not phi-translatable, bail out. 1812 return nullptr; 1813 } 1814 1815 // Check to see whether the instruction can be folded into each phi operand. 1816 // If there is one operand that does not fold, remember the BB it is in. 1817 SmallVector<Value *> NewPhiValues; 1818 SmallVector<unsigned int> OpsToMoveUseToIncomingBB; 1819 bool SeenNonSimplifiedInVal = false; 1820 for (unsigned i = 0; i != NumPHIValues; ++i) { 1821 Value *InVal = PN->getIncomingValue(i); 1822 BasicBlock *InBB = PN->getIncomingBlock(i); 1823 1824 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) { 1825 NewPhiValues.push_back(NewVal); 1826 continue; 1827 } 1828 1829 // Handle some cases that can't be fully simplified, but where we know that 1830 // the two instructions will fold into one. 1831 auto WillFold = [&]() { 1832 if (!InVal->hasOneUser()) 1833 return false; 1834 1835 // icmp of ucmp/scmp with constant will fold to icmp. 1836 const APInt *Ignored; 1837 if (isa<CmpIntrinsic>(InVal) && 1838 match(&I, m_ICmp(m_Specific(PN), m_APInt(Ignored)))) 1839 return true; 1840 1841 // icmp eq zext(bool), 0 will fold to !bool. 1842 if (isa<ZExtInst>(InVal) && 1843 cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) && 1844 match(&I, 1845 m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(PN), m_Zero()))) 1846 return true; 1847 1848 return false; 1849 }; 1850 1851 if (WillFold()) { 1852 OpsToMoveUseToIncomingBB.push_back(i); 1853 NewPhiValues.push_back(nullptr); 1854 continue; 1855 } 1856 1857 if (!OneUse && !IdenticalUsers) 1858 return nullptr; 1859 1860 if (SeenNonSimplifiedInVal) 1861 return nullptr; // More than one non-simplified value. 1862 SeenNonSimplifiedInVal = true; 1863 1864 // If there is exactly one non-simplified value, we can insert a copy of the 1865 // operation in that block. However, if this is a critical edge, we would 1866 // be inserting the computation on some other paths (e.g. inside a loop). 1867 // Only do this if the pred block is unconditionally branching into the phi 1868 // block. Also, make sure that the pred block is not dead code. 1869 BranchInst *BI = dyn_cast<BranchInst>(InBB->getTerminator()); 1870 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(InBB)) 1871 return nullptr; 1872 1873 NewPhiValues.push_back(nullptr); 1874 OpsToMoveUseToIncomingBB.push_back(i); 1875 1876 // If the InVal is an invoke at the end of the pred block, then we can't 1877 // insert a computation after it without breaking the edge. 1878 if (isa<InvokeInst>(InVal)) 1879 if (cast<Instruction>(InVal)->getParent() == InBB) 1880 return nullptr; 1881 1882 // Do not push the operation across a loop backedge. This could result in 1883 // an infinite combine loop, and is generally non-profitable (especially 1884 // if the operation was originally outside the loop). 1885 if (isBackEdge(InBB, PN->getParent())) 1886 return nullptr; 1887 } 1888 1889 // Clone the instruction that uses the phi node and move it into the incoming 1890 // BB because we know that the next iteration of InstCombine will simplify it. 1891 SmallDenseMap<BasicBlock *, Instruction *> Clones; 1892 for (auto OpIndex : OpsToMoveUseToIncomingBB) { 1893 Value *Op = PN->getIncomingValue(OpIndex); 1894 BasicBlock *OpBB = PN->getIncomingBlock(OpIndex); 1895 1896 Instruction *Clone = Clones.lookup(OpBB); 1897 if (!Clone) { 1898 Clone = I.clone(); 1899 for (Use &U : Clone->operands()) { 1900 if (U == PN) 1901 U = Op; 1902 else 1903 U = U->DoPHITranslation(PN->getParent(), OpBB); 1904 } 1905 Clone = InsertNewInstBefore(Clone, OpBB->getTerminator()->getIterator()); 1906 Clones.insert({OpBB, Clone}); 1907 } 1908 1909 NewPhiValues[OpIndex] = Clone; 1910 } 1911 1912 // Okay, we can do the transformation: create the new PHI node. 1913 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1914 InsertNewInstBefore(NewPN, PN->getIterator()); 1915 NewPN->takeName(PN); 1916 NewPN->setDebugLoc(PN->getDebugLoc()); 1917 1918 for (unsigned i = 0; i != NumPHIValues; ++i) 1919 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); 1920 1921 if (IdenticalUsers) { 1922 for (User *U : make_early_inc_range(PN->users())) { 1923 Instruction *User = cast<Instruction>(U); 1924 if (User == &I) 1925 continue; 1926 replaceInstUsesWith(*User, NewPN); 1927 eraseInstFromFunction(*User); 1928 } 1929 OneUse = true; 1930 } 1931 1932 if (OneUse) { 1933 replaceAllDbgUsesWith(const_cast<PHINode &>(*PN), 1934 const_cast<PHINode &>(*NewPN), 1935 const_cast<PHINode &>(*PN), DT); 1936 } 1937 return replaceInstUsesWith(I, NewPN); 1938 } 1939 1940 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1941 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1942 // we are guarding against replicating the binop in >1 predecessor. 1943 // This could miss matching a phi with 2 constant incoming values. 1944 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1945 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1946 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1947 Phi0->getNumOperands() != Phi1->getNumOperands()) 1948 return nullptr; 1949 1950 // TODO: Remove the restriction for binop being in the same block as the phis. 1951 if (BO.getParent() != Phi0->getParent() || 1952 BO.getParent() != Phi1->getParent()) 1953 return nullptr; 1954 1955 // Fold if there is at least one specific constant value in phi0 or phi1's 1956 // incoming values that comes from the same block and this specific constant 1957 // value can be used to do optimization for specific binary operator. 1958 // For example: 1959 // %phi0 = phi i32 [0, %bb0], [%i, %bb1] 1960 // %phi1 = phi i32 [%j, %bb0], [0, %bb1] 1961 // %add = add i32 %phi0, %phi1 1962 // ==> 1963 // %add = phi i32 [%j, %bb0], [%i, %bb1] 1964 Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(), 1965 /*AllowRHSConstant*/ false); 1966 if (C) { 1967 SmallVector<Value *, 4> NewIncomingValues; 1968 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) { 1969 auto &Phi0Use = std::get<0>(T); 1970 auto &Phi1Use = std::get<1>(T); 1971 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use)) 1972 return false; 1973 Value *Phi0UseV = Phi0Use.get(); 1974 Value *Phi1UseV = Phi1Use.get(); 1975 if (Phi0UseV == C) 1976 NewIncomingValues.push_back(Phi1UseV); 1977 else if (Phi1UseV == C) 1978 NewIncomingValues.push_back(Phi0UseV); 1979 else 1980 return false; 1981 return true; 1982 }; 1983 1984 if (all_of(zip(Phi0->operands(), Phi1->operands()), 1985 CanFoldIncomingValuePair)) { 1986 PHINode *NewPhi = 1987 PHINode::Create(Phi0->getType(), Phi0->getNumOperands()); 1988 assert(NewIncomingValues.size() == Phi0->getNumOperands() && 1989 "The number of collected incoming values should equal the number " 1990 "of the original PHINode operands!"); 1991 for (unsigned I = 0; I < Phi0->getNumOperands(); I++) 1992 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I)); 1993 return NewPhi; 1994 } 1995 } 1996 1997 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1998 return nullptr; 1999 2000 // Match a pair of incoming constants for one of the predecessor blocks. 2001 BasicBlock *ConstBB, *OtherBB; 2002 Constant *C0, *C1; 2003 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 2004 ConstBB = Phi0->getIncomingBlock(0); 2005 OtherBB = Phi0->getIncomingBlock(1); 2006 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 2007 ConstBB = Phi0->getIncomingBlock(1); 2008 OtherBB = Phi0->getIncomingBlock(0); 2009 } else { 2010 return nullptr; 2011 } 2012 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 2013 return nullptr; 2014 2015 // The block that we are hoisting to must reach here unconditionally. 2016 // Otherwise, we could be speculatively executing an expensive or 2017 // non-speculative op. 2018 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 2019 if (!PredBlockBranch || PredBlockBranch->isConditional() || 2020 !DT.isReachableFromEntry(OtherBB)) 2021 return nullptr; 2022 2023 // TODO: This check could be tightened to only apply to binops (div/rem) that 2024 // are not safe to speculatively execute. But that could allow hoisting 2025 // potentially expensive instructions (fdiv for example). 2026 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 2027 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 2028 return nullptr; 2029 2030 // Fold constants for the predecessor block with constant incoming values. 2031 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 2032 if (!NewC) 2033 return nullptr; 2034 2035 // Make a new binop in the predecessor block with the non-constant incoming 2036 // values. 2037 Builder.SetInsertPoint(PredBlockBranch); 2038 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 2039 Phi0->getIncomingValueForBlock(OtherBB), 2040 Phi1->getIncomingValueForBlock(OtherBB)); 2041 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 2042 NotFoldedNewBO->copyIRFlags(&BO); 2043 2044 // Replace the binop with a phi of the new values. The old phis are dead. 2045 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 2046 NewPhi->addIncoming(NewBO, OtherBB); 2047 NewPhi->addIncoming(NewC, ConstBB); 2048 return NewPhi; 2049 } 2050 2051 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 2052 if (!isa<Constant>(I.getOperand(1))) 2053 return nullptr; 2054 2055 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 2056 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 2057 return NewSel; 2058 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 2059 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 2060 return NewPhi; 2061 } 2062 return nullptr; 2063 } 2064 2065 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 2066 // If this GEP has only 0 indices, it is the same pointer as 2067 // Src. If Src is not a trivial GEP too, don't combine 2068 // the indices. 2069 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 2070 !Src.hasOneUse()) 2071 return false; 2072 return true; 2073 } 2074 2075 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 2076 if (!isa<VectorType>(Inst.getType())) 2077 return nullptr; 2078 2079 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 2080 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 2081 assert(cast<VectorType>(LHS->getType())->getElementCount() == 2082 cast<VectorType>(Inst.getType())->getElementCount()); 2083 assert(cast<VectorType>(RHS->getType())->getElementCount() == 2084 cast<VectorType>(Inst.getType())->getElementCount()); 2085 2086 // If both operands of the binop are vector concatenations, then perform the 2087 // narrow binop on each pair of the source operands followed by concatenation 2088 // of the results. 2089 Value *L0, *L1, *R0, *R1; 2090 ArrayRef<int> Mask; 2091 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 2092 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 2093 LHS->hasOneUse() && RHS->hasOneUse() && 2094 cast<ShuffleVectorInst>(LHS)->isConcat() && 2095 cast<ShuffleVectorInst>(RHS)->isConcat()) { 2096 // This transform does not have the speculative execution constraint as 2097 // below because the shuffle is a concatenation. The new binops are 2098 // operating on exactly the same elements as the existing binop. 2099 // TODO: We could ease the mask requirement to allow different undef lanes, 2100 // but that requires an analysis of the binop-with-undef output value. 2101 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 2102 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 2103 BO->copyIRFlags(&Inst); 2104 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 2105 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 2106 BO->copyIRFlags(&Inst); 2107 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 2108 } 2109 2110 auto createBinOpReverse = [&](Value *X, Value *Y) { 2111 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); 2112 if (auto *BO = dyn_cast<BinaryOperator>(V)) 2113 BO->copyIRFlags(&Inst); 2114 Module *M = Inst.getModule(); 2115 Function *F = Intrinsic::getOrInsertDeclaration( 2116 M, Intrinsic::vector_reverse, V->getType()); 2117 return CallInst::Create(F, V); 2118 }; 2119 2120 // NOTE: Reverse shuffles don't require the speculative execution protection 2121 // below because they don't affect which lanes take part in the computation. 2122 2123 Value *V1, *V2; 2124 if (match(LHS, m_VecReverse(m_Value(V1)))) { 2125 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) 2126 if (match(RHS, m_VecReverse(m_Value(V2))) && 2127 (LHS->hasOneUse() || RHS->hasOneUse() || 2128 (LHS == RHS && LHS->hasNUses(2)))) 2129 return createBinOpReverse(V1, V2); 2130 2131 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) 2132 if (LHS->hasOneUse() && isSplatValue(RHS)) 2133 return createBinOpReverse(V1, RHS); 2134 } 2135 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) 2136 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 2137 return createBinOpReverse(LHS, V2); 2138 2139 // It may not be safe to reorder shuffles and things like div, urem, etc. 2140 // because we may trap when executing those ops on unknown vector elements. 2141 // See PR20059. 2142 if (!isSafeToSpeculativelyExecuteWithVariableReplaced(&Inst)) 2143 return nullptr; 2144 2145 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 2146 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 2147 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 2148 BO->copyIRFlags(&Inst); 2149 return new ShuffleVectorInst(XY, M); 2150 }; 2151 2152 // If both arguments of the binary operation are shuffles that use the same 2153 // mask and shuffle within a single vector, move the shuffle after the binop. 2154 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) && 2155 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) && 2156 V1->getType() == V2->getType() && 2157 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 2158 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 2159 return createBinOpShuffle(V1, V2, Mask); 2160 } 2161 2162 // If both arguments of a commutative binop are select-shuffles that use the 2163 // same mask with commuted operands, the shuffles are unnecessary. 2164 if (Inst.isCommutative() && 2165 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 2166 match(RHS, 2167 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 2168 auto *LShuf = cast<ShuffleVectorInst>(LHS); 2169 auto *RShuf = cast<ShuffleVectorInst>(RHS); 2170 // TODO: Allow shuffles that contain undefs in the mask? 2171 // That is legal, but it reduces undef knowledge. 2172 // TODO: Allow arbitrary shuffles by shuffling after binop? 2173 // That might be legal, but we have to deal with poison. 2174 if (LShuf->isSelect() && 2175 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) && 2176 RShuf->isSelect() && 2177 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) { 2178 // Example: 2179 // LHS = shuffle V1, V2, <0, 5, 6, 3> 2180 // RHS = shuffle V2, V1, <0, 5, 6, 3> 2181 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 2182 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 2183 NewBO->copyIRFlags(&Inst); 2184 return NewBO; 2185 } 2186 } 2187 2188 // If one argument is a shuffle within one vector and the other is a constant, 2189 // try moving the shuffle after the binary operation. This canonicalization 2190 // intends to move shuffles closer to other shuffles and binops closer to 2191 // other binops, so they can be folded. It may also enable demanded elements 2192 // transforms. 2193 Constant *C; 2194 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 2195 if (InstVTy && 2196 match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(), 2197 m_Mask(Mask))), 2198 m_ImmConstant(C))) && 2199 cast<FixedVectorType>(V1->getType())->getNumElements() <= 2200 InstVTy->getNumElements()) { 2201 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 2202 "Shuffle should not change scalar type"); 2203 2204 // Find constant NewC that has property: 2205 // shuffle(NewC, ShMask) = C 2206 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 2207 // reorder is not possible. A 1-to-1 mapping is not required. Example: 2208 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 2209 bool ConstOp1 = isa<Constant>(RHS); 2210 ArrayRef<int> ShMask = Mask; 2211 unsigned SrcVecNumElts = 2212 cast<FixedVectorType>(V1->getType())->getNumElements(); 2213 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType()); 2214 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar); 2215 bool MayChange = true; 2216 unsigned NumElts = InstVTy->getNumElements(); 2217 for (unsigned I = 0; I < NumElts; ++I) { 2218 Constant *CElt = C->getAggregateElement(I); 2219 if (ShMask[I] >= 0) { 2220 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 2221 Constant *NewCElt = NewVecC[ShMask[I]]; 2222 // Bail out if: 2223 // 1. The constant vector contains a constant expression. 2224 // 2. The shuffle needs an element of the constant vector that can't 2225 // be mapped to a new constant vector. 2226 // 3. This is a widening shuffle that copies elements of V1 into the 2227 // extended elements (extending with poison is allowed). 2228 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) || 2229 I >= SrcVecNumElts) { 2230 MayChange = false; 2231 break; 2232 } 2233 NewVecC[ShMask[I]] = CElt; 2234 } 2235 // If this is a widening shuffle, we must be able to extend with poison 2236 // elements. If the original binop does not produce a poison in the high 2237 // lanes, then this transform is not safe. 2238 // Similarly for poison lanes due to the shuffle mask, we can only 2239 // transform binops that preserve poison. 2240 // TODO: We could shuffle those non-poison constant values into the 2241 // result by using a constant vector (rather than an poison vector) 2242 // as operand 1 of the new binop, but that might be too aggressive 2243 // for target-independent shuffle creation. 2244 if (I >= SrcVecNumElts || ShMask[I] < 0) { 2245 Constant *MaybePoison = 2246 ConstOp1 2247 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL) 2248 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL); 2249 if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) { 2250 MayChange = false; 2251 break; 2252 } 2253 } 2254 } 2255 if (MayChange) { 2256 Constant *NewC = ConstantVector::get(NewVecC); 2257 // It may not be safe to execute a binop on a vector with poison elements 2258 // because the entire instruction can be folded to undef or create poison 2259 // that did not exist in the original code. 2260 // TODO: The shift case should not be necessary. 2261 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 2262 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 2263 2264 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 2265 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 2266 Value *NewLHS = ConstOp1 ? V1 : NewC; 2267 Value *NewRHS = ConstOp1 ? NewC : V1; 2268 return createBinOpShuffle(NewLHS, NewRHS, Mask); 2269 } 2270 } 2271 2272 // Try to reassociate to sink a splat shuffle after a binary operation. 2273 if (Inst.isAssociative() && Inst.isCommutative()) { 2274 // Canonicalize shuffle operand as LHS. 2275 if (isa<ShuffleVectorInst>(RHS)) 2276 std::swap(LHS, RHS); 2277 2278 Value *X; 2279 ArrayRef<int> MaskC; 2280 int SplatIndex; 2281 Value *Y, *OtherOp; 2282 if (!match(LHS, 2283 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 2284 !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) || 2285 X->getType() != Inst.getType() || 2286 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 2287 return nullptr; 2288 2289 // FIXME: This may not be safe if the analysis allows undef elements. By 2290 // moving 'Y' before the splat shuffle, we are implicitly assuming 2291 // that it is not undef/poison at the splat index. 2292 if (isSplatValue(OtherOp, SplatIndex)) { 2293 std::swap(Y, OtherOp); 2294 } else if (!isSplatValue(Y, SplatIndex)) { 2295 return nullptr; 2296 } 2297 2298 // X and Y are splatted values, so perform the binary operation on those 2299 // values followed by a splat followed by the 2nd binary operation: 2300 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 2301 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 2302 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 2303 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 2304 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 2305 2306 // Intersect FMF on both new binops. Other (poison-generating) flags are 2307 // dropped to be safe. 2308 if (isa<FPMathOperator>(R)) { 2309 R->copyFastMathFlags(&Inst); 2310 R->andIRFlags(RHS); 2311 } 2312 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 2313 NewInstBO->copyIRFlags(R); 2314 return R; 2315 } 2316 2317 return nullptr; 2318 } 2319 2320 /// Try to narrow the width of a binop if at least 1 operand is an extend of 2321 /// of a value. This requires a potentially expensive known bits check to make 2322 /// sure the narrow op does not overflow. 2323 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 2324 // We need at least one extended operand. 2325 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 2326 2327 // If this is a sub, we swap the operands since we always want an extension 2328 // on the RHS. The LHS can be an extension or a constant. 2329 if (BO.getOpcode() == Instruction::Sub) 2330 std::swap(Op0, Op1); 2331 2332 Value *X; 2333 bool IsSext = match(Op0, m_SExt(m_Value(X))); 2334 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 2335 return nullptr; 2336 2337 // If both operands are the same extension from the same source type and we 2338 // can eliminate at least one (hasOneUse), this might work. 2339 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 2340 Value *Y; 2341 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 2342 cast<Operator>(Op1)->getOpcode() == CastOpc && 2343 (Op0->hasOneUse() || Op1->hasOneUse()))) { 2344 // If that did not match, see if we have a suitable constant operand. 2345 // Truncating and extending must produce the same constant. 2346 Constant *WideC; 2347 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 2348 return nullptr; 2349 Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc); 2350 if (!NarrowC) 2351 return nullptr; 2352 Y = NarrowC; 2353 } 2354 2355 // Swap back now that we found our operands. 2356 if (BO.getOpcode() == Instruction::Sub) 2357 std::swap(X, Y); 2358 2359 // Both operands have narrow versions. Last step: the math must not overflow 2360 // in the narrow width. 2361 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 2362 return nullptr; 2363 2364 // bo (ext X), (ext Y) --> ext (bo X, Y) 2365 // bo (ext X), C --> ext (bo X, C') 2366 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 2367 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 2368 if (IsSext) 2369 NewBinOp->setHasNoSignedWrap(); 2370 else 2371 NewBinOp->setHasNoUnsignedWrap(); 2372 } 2373 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 2374 } 2375 2376 /// Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) 2377 /// transform. 2378 static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, 2379 GEPOperator &GEP2) { 2380 return GEP1.getNoWrapFlags().intersectForOffsetAdd(GEP2.getNoWrapFlags()); 2381 } 2382 2383 /// Thread a GEP operation with constant indices through the constant true/false 2384 /// arms of a select. 2385 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 2386 InstCombiner::BuilderTy &Builder) { 2387 if (!GEP.hasAllConstantIndices()) 2388 return nullptr; 2389 2390 Instruction *Sel; 2391 Value *Cond; 2392 Constant *TrueC, *FalseC; 2393 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 2394 !match(Sel, 2395 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 2396 return nullptr; 2397 2398 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 2399 // Propagate 'inbounds' and metadata from existing instructions. 2400 // Note: using IRBuilder to create the constants for efficiency. 2401 SmallVector<Value *, 4> IndexC(GEP.indices()); 2402 GEPNoWrapFlags NW = GEP.getNoWrapFlags(); 2403 Type *Ty = GEP.getSourceElementType(); 2404 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW); 2405 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW); 2406 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 2407 } 2408 2409 // Canonicalization: 2410 // gep T, (gep i8, base, C1), (Index + C2) into 2411 // gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index 2412 static Instruction *canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, 2413 GEPOperator *Src, 2414 InstCombinerImpl &IC) { 2415 if (GEP.getNumIndices() != 1) 2416 return nullptr; 2417 auto &DL = IC.getDataLayout(); 2418 Value *Base; 2419 const APInt *C1; 2420 if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1)))) 2421 return nullptr; 2422 Value *VarIndex; 2423 const APInt *C2; 2424 Type *PtrTy = Src->getType()->getScalarType(); 2425 unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy); 2426 if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2)))) 2427 return nullptr; 2428 if (C1->getBitWidth() != IndexSizeInBits || 2429 C2->getBitWidth() != IndexSizeInBits) 2430 return nullptr; 2431 Type *BaseType = GEP.getSourceElementType(); 2432 if (isa<ScalableVectorType>(BaseType)) 2433 return nullptr; 2434 APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType)); 2435 APInt NewOffset = TypeSize * *C2 + *C1; 2436 if (NewOffset.isZero() || 2437 (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) { 2438 Value *GEPConst = 2439 IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset)); 2440 return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex); 2441 } 2442 2443 return nullptr; 2444 } 2445 2446 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 2447 GEPOperator *Src) { 2448 // Combine Indices - If the source pointer to this getelementptr instruction 2449 // is a getelementptr instruction with matching element type, combine the 2450 // indices of the two getelementptr instructions into a single instruction. 2451 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2452 return nullptr; 2453 2454 if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this)) 2455 return I; 2456 2457 // For constant GEPs, use a more general offset-based folding approach. 2458 Type *PtrTy = Src->getType()->getScalarType(); 2459 if (GEP.hasAllConstantIndices() && 2460 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 2461 // Split Src into a variable part and a constant suffix. 2462 gep_type_iterator GTI = gep_type_begin(*Src); 2463 Type *BaseType = GTI.getIndexedType(); 2464 bool IsFirstType = true; 2465 unsigned NumVarIndices = 0; 2466 for (auto Pair : enumerate(Src->indices())) { 2467 if (!isa<ConstantInt>(Pair.value())) { 2468 BaseType = GTI.getIndexedType(); 2469 IsFirstType = false; 2470 NumVarIndices = Pair.index() + 1; 2471 } 2472 ++GTI; 2473 } 2474 2475 // Determine the offset for the constant suffix of Src. 2476 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2477 if (NumVarIndices != Src->getNumIndices()) { 2478 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2479 if (BaseType->isScalableTy()) 2480 return nullptr; 2481 2482 SmallVector<Value *> ConstantIndices; 2483 if (!IsFirstType) 2484 ConstantIndices.push_back( 2485 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2486 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2487 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2488 } 2489 2490 // Add the offset for GEP (which is fully constant). 2491 if (!GEP.accumulateConstantOffset(DL, Offset)) 2492 return nullptr; 2493 2494 // Convert the total offset back into indices. 2495 SmallVector<APInt> ConstIndices = 2496 DL.getGEPIndicesForOffset(BaseType, Offset); 2497 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) 2498 return nullptr; 2499 2500 GEPNoWrapFlags NW = getMergedGEPNoWrapFlags(*Src, *cast<GEPOperator>(&GEP)); 2501 SmallVector<Value *> Indices; 2502 append_range(Indices, drop_end(Src->indices(), 2503 Src->getNumIndices() - NumVarIndices)); 2504 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2505 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2506 // Even if the total offset is inbounds, we may end up representing it 2507 // by first performing a larger negative offset, and then a smaller 2508 // positive one. The large negative offset might go out of bounds. Only 2509 // preserve inbounds if all signs are the same. 2510 if (Idx.isNonNegative() != ConstIndices[0].isNonNegative()) 2511 NW = NW.withoutNoUnsignedSignedWrap(); 2512 if (!Idx.isNonNegative()) 2513 NW = NW.withoutNoUnsignedWrap(); 2514 } 2515 2516 return replaceInstUsesWith( 2517 GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0), 2518 Indices, "", NW)); 2519 } 2520 2521 if (Src->getResultElementType() != GEP.getSourceElementType()) 2522 return nullptr; 2523 2524 SmallVector<Value*, 8> Indices; 2525 2526 // Find out whether the last index in the source GEP is a sequential idx. 2527 bool EndsWithSequential = false; 2528 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2529 I != E; ++I) 2530 EndsWithSequential = I.isSequential(); 2531 2532 // Can we combine the two pointer arithmetics offsets? 2533 if (EndsWithSequential) { 2534 // Replace: gep (gep %P, long B), long A, ... 2535 // With: T = long A+B; gep %P, T, ... 2536 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2537 Value *GO1 = GEP.getOperand(1); 2538 2539 // If they aren't the same type, then the input hasn't been processed 2540 // by the loop above yet (which canonicalizes sequential index types to 2541 // intptr_t). Just avoid transforming this until the input has been 2542 // normalized. 2543 if (SO1->getType() != GO1->getType()) 2544 return nullptr; 2545 2546 Value *Sum = 2547 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2548 // Only do the combine when we are sure the cost after the 2549 // merge is never more than that before the merge. 2550 if (Sum == nullptr) 2551 return nullptr; 2552 2553 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2554 Indices.push_back(Sum); 2555 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2556 } else if (isa<Constant>(*GEP.idx_begin()) && 2557 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2558 Src->getNumOperands() != 1) { 2559 // Otherwise we can do the fold if the first index of the GEP is a zero 2560 Indices.append(Src->op_begin()+1, Src->op_end()); 2561 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2562 } 2563 2564 if (!Indices.empty()) 2565 return replaceInstUsesWith( 2566 GEP, Builder.CreateGEP( 2567 Src->getSourceElementType(), Src->getOperand(0), Indices, "", 2568 getMergedGEPNoWrapFlags(*Src, *cast<GEPOperator>(&GEP)))); 2569 2570 return nullptr; 2571 } 2572 2573 Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, 2574 BuilderTy *Builder, 2575 bool &DoesConsume, unsigned Depth) { 2576 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1)); 2577 // ~(~(X)) -> X. 2578 Value *A, *B; 2579 if (match(V, m_Not(m_Value(A)))) { 2580 DoesConsume = true; 2581 return A; 2582 } 2583 2584 Constant *C; 2585 // Constants can be considered to be not'ed values. 2586 if (match(V, m_ImmConstant(C))) 2587 return ConstantExpr::getNot(C); 2588 2589 if (Depth++ >= MaxAnalysisRecursionDepth) 2590 return nullptr; 2591 2592 // The rest of the cases require that we invert all uses so don't bother 2593 // doing the analysis if we know we can't use the result. 2594 if (!WillInvertAllUses) 2595 return nullptr; 2596 2597 // Compares can be inverted if all of their uses are being modified to use 2598 // the ~V. 2599 if (auto *I = dyn_cast<CmpInst>(V)) { 2600 if (Builder != nullptr) 2601 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0), 2602 I->getOperand(1)); 2603 return NonNull; 2604 } 2605 2606 // If `V` is of the form `A + B` then `-1 - V` can be folded into 2607 // `(-1 - B) - A` if we are willing to invert all of the uses. 2608 if (match(V, m_Add(m_Value(A), m_Value(B)))) { 2609 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2610 DoesConsume, Depth)) 2611 return Builder ? Builder->CreateSub(BV, A) : NonNull; 2612 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2613 DoesConsume, Depth)) 2614 return Builder ? Builder->CreateSub(AV, B) : NonNull; 2615 return nullptr; 2616 } 2617 2618 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded 2619 // into `A ^ B` if we are willing to invert all of the uses. 2620 if (match(V, m_Xor(m_Value(A), m_Value(B)))) { 2621 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2622 DoesConsume, Depth)) 2623 return Builder ? Builder->CreateXor(A, BV) : NonNull; 2624 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2625 DoesConsume, Depth)) 2626 return Builder ? Builder->CreateXor(AV, B) : NonNull; 2627 return nullptr; 2628 } 2629 2630 // If `V` is of the form `B - A` then `-1 - V` can be folded into 2631 // `A + (-1 - B)` if we are willing to invert all of the uses. 2632 if (match(V, m_Sub(m_Value(A), m_Value(B)))) { 2633 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2634 DoesConsume, Depth)) 2635 return Builder ? Builder->CreateAdd(AV, B) : NonNull; 2636 return nullptr; 2637 } 2638 2639 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded 2640 // into `A s>> B` if we are willing to invert all of the uses. 2641 if (match(V, m_AShr(m_Value(A), m_Value(B)))) { 2642 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2643 DoesConsume, Depth)) 2644 return Builder ? Builder->CreateAShr(AV, B) : NonNull; 2645 return nullptr; 2646 } 2647 2648 Value *Cond; 2649 // LogicOps are special in that we canonicalize them at the cost of an 2650 // instruction. 2651 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 2652 !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V)); 2653 // Selects/min/max with invertible operands are freely invertible 2654 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) { 2655 bool LocalDoesConsume = DoesConsume; 2656 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr, 2657 LocalDoesConsume, Depth)) 2658 return nullptr; 2659 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2660 LocalDoesConsume, Depth)) { 2661 DoesConsume = LocalDoesConsume; 2662 if (Builder != nullptr) { 2663 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2664 DoesConsume, Depth); 2665 assert(NotB != nullptr && 2666 "Unable to build inverted value for known freely invertable op"); 2667 if (auto *II = dyn_cast<IntrinsicInst>(V)) 2668 return Builder->CreateBinaryIntrinsic( 2669 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB); 2670 return Builder->CreateSelect(Cond, NotA, NotB); 2671 } 2672 return NonNull; 2673 } 2674 } 2675 2676 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2677 bool LocalDoesConsume = DoesConsume; 2678 SmallVector<std::pair<Value *, BasicBlock *>, 8> IncomingValues; 2679 for (Use &U : PN->operands()) { 2680 BasicBlock *IncomingBlock = PN->getIncomingBlock(U); 2681 Value *NewIncomingVal = getFreelyInvertedImpl( 2682 U.get(), /*WillInvertAllUses=*/false, 2683 /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1); 2684 if (NewIncomingVal == nullptr) 2685 return nullptr; 2686 // Make sure that we can safely erase the original PHI node. 2687 if (NewIncomingVal == V) 2688 return nullptr; 2689 if (Builder != nullptr) 2690 IncomingValues.emplace_back(NewIncomingVal, IncomingBlock); 2691 } 2692 2693 DoesConsume = LocalDoesConsume; 2694 if (Builder != nullptr) { 2695 IRBuilderBase::InsertPointGuard Guard(*Builder); 2696 Builder->SetInsertPoint(PN); 2697 PHINode *NewPN = 2698 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues()); 2699 for (auto [Val, Pred] : IncomingValues) 2700 NewPN->addIncoming(Val, Pred); 2701 return NewPN; 2702 } 2703 return NonNull; 2704 } 2705 2706 if (match(V, m_SExtLike(m_Value(A)))) { 2707 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2708 DoesConsume, Depth)) 2709 return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull; 2710 return nullptr; 2711 } 2712 2713 if (match(V, m_Trunc(m_Value(A)))) { 2714 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2715 DoesConsume, Depth)) 2716 return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull; 2717 return nullptr; 2718 } 2719 2720 // De Morgan's Laws: 2721 // (~(A | B)) -> (~A & ~B) 2722 // (~(A & B)) -> (~A | ~B) 2723 auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode, 2724 bool IsLogical, Value *A, 2725 Value *B) -> Value * { 2726 bool LocalDoesConsume = DoesConsume; 2727 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr, 2728 LocalDoesConsume, Depth)) 2729 return nullptr; 2730 if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2731 LocalDoesConsume, Depth)) { 2732 auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2733 LocalDoesConsume, Depth); 2734 DoesConsume = LocalDoesConsume; 2735 if (IsLogical) 2736 return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull; 2737 return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull; 2738 } 2739 2740 return nullptr; 2741 }; 2742 2743 if (match(V, m_Or(m_Value(A), m_Value(B)))) 2744 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A, 2745 B); 2746 2747 if (match(V, m_And(m_Value(A), m_Value(B)))) 2748 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A, 2749 B); 2750 2751 if (match(V, m_LogicalOr(m_Value(A), m_Value(B)))) 2752 return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A, 2753 B); 2754 2755 if (match(V, m_LogicalAnd(m_Value(A), m_Value(B)))) 2756 return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A, 2757 B); 2758 2759 return nullptr; 2760 } 2761 2762 /// Return true if we should canonicalize the gep to an i8 ptradd. 2763 static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP) { 2764 Value *PtrOp = GEP.getOperand(0); 2765 Type *GEPEltType = GEP.getSourceElementType(); 2766 if (GEPEltType->isIntegerTy(8)) 2767 return false; 2768 2769 // Canonicalize scalable GEPs to an explicit offset using the llvm.vscale 2770 // intrinsic. This has better support in BasicAA. 2771 if (GEPEltType->isScalableTy()) 2772 return true; 2773 2774 // gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two multiplies 2775 // together. 2776 if (GEP.getNumIndices() == 1 && 2777 match(GEP.getOperand(1), 2778 m_OneUse(m_CombineOr(m_Mul(m_Value(), m_ConstantInt()), 2779 m_Shl(m_Value(), m_ConstantInt()))))) 2780 return true; 2781 2782 // gep (gep %p, C1), %x, C2 is expanded so the two constants can 2783 // possibly be merged together. 2784 auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp); 2785 return PtrOpGep && PtrOpGep->hasAllConstantIndices() && 2786 any_of(GEP.indices(), [](Value *V) { 2787 const APInt *C; 2788 return match(V, m_APInt(C)) && !C->isZero(); 2789 }); 2790 } 2791 2792 static Instruction *foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, 2793 IRBuilderBase &Builder) { 2794 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2795 if (!Op1) 2796 return nullptr; 2797 2798 // Don't fold a GEP into itself through a PHI node. This can only happen 2799 // through the back-edge of a loop. Folding a GEP into itself means that 2800 // the value of the previous iteration needs to be stored in the meantime, 2801 // thus requiring an additional register variable to be live, but not 2802 // actually achieving anything (the GEP still needs to be executed once per 2803 // loop iteration). 2804 if (Op1 == &GEP) 2805 return nullptr; 2806 GEPNoWrapFlags NW = Op1->getNoWrapFlags(); 2807 2808 int DI = -1; 2809 2810 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2811 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2812 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2813 Op1->getSourceElementType() != Op2->getSourceElementType()) 2814 return nullptr; 2815 2816 // As for Op1 above, don't try to fold a GEP into itself. 2817 if (Op2 == &GEP) 2818 return nullptr; 2819 2820 // Keep track of the type as we walk the GEP. 2821 Type *CurTy = nullptr; 2822 2823 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2824 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2825 return nullptr; 2826 2827 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2828 if (DI == -1) { 2829 // We have not seen any differences yet in the GEPs feeding the 2830 // PHI yet, so we record this one if it is allowed to be a 2831 // variable. 2832 2833 // The first two arguments can vary for any GEP, the rest have to be 2834 // static for struct slots 2835 if (J > 1) { 2836 assert(CurTy && "No current type?"); 2837 if (CurTy->isStructTy()) 2838 return nullptr; 2839 } 2840 2841 DI = J; 2842 } else { 2843 // The GEP is different by more than one input. While this could be 2844 // extended to support GEPs that vary by more than one variable it 2845 // doesn't make sense since it greatly increases the complexity and 2846 // would result in an R+R+R addressing mode which no backend 2847 // directly supports and would need to be broken into several 2848 // simpler instructions anyway. 2849 return nullptr; 2850 } 2851 } 2852 2853 // Sink down a layer of the type for the next iteration. 2854 if (J > 0) { 2855 if (J == 1) { 2856 CurTy = Op1->getSourceElementType(); 2857 } else { 2858 CurTy = 2859 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2860 } 2861 } 2862 } 2863 2864 NW &= Op2->getNoWrapFlags(); 2865 } 2866 2867 // If not all GEPs are identical we'll have to create a new PHI node. 2868 // Check that the old PHI node has only one use so that it will get 2869 // removed. 2870 if (DI != -1 && !PN->hasOneUse()) 2871 return nullptr; 2872 2873 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2874 NewGEP->setNoWrapFlags(NW); 2875 2876 if (DI == -1) { 2877 // All the GEPs feeding the PHI are identical. Clone one down into our 2878 // BB so that it can be merged with the current GEP. 2879 } else { 2880 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2881 // into the current block so it can be merged, and create a new PHI to 2882 // set that index. 2883 PHINode *NewPN; 2884 { 2885 IRBuilderBase::InsertPointGuard Guard(Builder); 2886 Builder.SetInsertPoint(PN); 2887 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2888 PN->getNumOperands()); 2889 } 2890 2891 for (auto &I : PN->operands()) 2892 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2893 PN->getIncomingBlock(I)); 2894 2895 NewGEP->setOperand(DI, NewPN); 2896 } 2897 2898 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); 2899 return NewGEP; 2900 } 2901 2902 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2903 Value *PtrOp = GEP.getOperand(0); 2904 SmallVector<Value *, 8> Indices(GEP.indices()); 2905 Type *GEPType = GEP.getType(); 2906 Type *GEPEltType = GEP.getSourceElementType(); 2907 if (Value *V = 2908 simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(), 2909 SQ.getWithInstruction(&GEP))) 2910 return replaceInstUsesWith(GEP, V); 2911 2912 // For vector geps, use the generic demanded vector support. 2913 // Skip if GEP return type is scalable. The number of elements is unknown at 2914 // compile-time. 2915 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2916 auto VWidth = GEPFVTy->getNumElements(); 2917 APInt PoisonElts(VWidth, 0); 2918 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2919 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2920 PoisonElts)) { 2921 if (V != &GEP) 2922 return replaceInstUsesWith(GEP, V); 2923 return &GEP; 2924 } 2925 2926 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2927 // possible (decide on canonical form for pointer broadcast), 3) exploit 2928 // undef elements to decrease demanded bits 2929 } 2930 2931 // Eliminate unneeded casts for indices, and replace indices which displace 2932 // by multiples of a zero size type with zero. 2933 bool MadeChange = false; 2934 2935 // Index width may not be the same width as pointer width. 2936 // Data layout chooses the right type based on supported integer types. 2937 Type *NewScalarIndexTy = 2938 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2939 2940 gep_type_iterator GTI = gep_type_begin(GEP); 2941 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2942 ++I, ++GTI) { 2943 // Skip indices into struct types. 2944 if (GTI.isStruct()) 2945 continue; 2946 2947 Type *IndexTy = (*I)->getType(); 2948 Type *NewIndexType = 2949 IndexTy->isVectorTy() 2950 ? VectorType::get(NewScalarIndexTy, 2951 cast<VectorType>(IndexTy)->getElementCount()) 2952 : NewScalarIndexTy; 2953 2954 // If the element type has zero size then any index over it is equivalent 2955 // to an index of zero, so replace it with zero if it is not zero already. 2956 Type *EltTy = GTI.getIndexedType(); 2957 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2958 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2959 *I = Constant::getNullValue(NewIndexType); 2960 MadeChange = true; 2961 } 2962 2963 if (IndexTy != NewIndexType) { 2964 // If we are using a wider index than needed for this platform, shrink 2965 // it to what we need. If narrower, sign-extend it to what we need. 2966 // This explicit cast can make subsequent optimizations more obvious. 2967 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2968 MadeChange = true; 2969 } 2970 } 2971 if (MadeChange) 2972 return &GEP; 2973 2974 // Canonicalize constant GEPs to i8 type. 2975 if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) { 2976 APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0); 2977 if (GEP.accumulateConstantOffset(DL, Offset)) 2978 return replaceInstUsesWith( 2979 GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "", 2980 GEP.getNoWrapFlags())); 2981 } 2982 2983 if (shouldCanonicalizeGEPToPtrAdd(GEP)) { 2984 Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP)); 2985 Value *NewGEP = 2986 Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags()); 2987 return replaceInstUsesWith(GEP, NewGEP); 2988 } 2989 2990 // Check to see if the inputs to the PHI node are getelementptr instructions. 2991 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2992 if (Value *NewPtrOp = foldGEPOfPhi(GEP, PN, Builder)) 2993 return replaceOperand(GEP, 0, NewPtrOp); 2994 } 2995 2996 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2997 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2998 return I; 2999 3000 if (GEP.getNumIndices() == 1) { 3001 unsigned AS = GEP.getPointerAddressSpace(); 3002 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 3003 DL.getIndexSizeInBits(AS)) { 3004 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 3005 3006 if (TyAllocSize == 1) { 3007 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), 3008 // but only if the result pointer is only used as if it were an integer, 3009 // or both point to the same underlying object (otherwise provenance is 3010 // not necessarily retained). 3011 Value *X = GEP.getPointerOperand(); 3012 Value *Y; 3013 if (match(GEP.getOperand(1), 3014 m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 3015 GEPType == Y->getType()) { 3016 bool HasSameUnderlyingObject = 3017 getUnderlyingObject(X) == getUnderlyingObject(Y); 3018 bool Changed = false; 3019 GEP.replaceUsesWithIf(Y, [&](Use &U) { 3020 bool ShouldReplace = HasSameUnderlyingObject || 3021 isa<ICmpInst>(U.getUser()) || 3022 isa<PtrToIntInst>(U.getUser()); 3023 Changed |= ShouldReplace; 3024 return ShouldReplace; 3025 }); 3026 return Changed ? &GEP : nullptr; 3027 } 3028 } else if (auto *ExactIns = 3029 dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) { 3030 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V) 3031 Value *V; 3032 if (ExactIns->isExact()) { 3033 if ((has_single_bit(TyAllocSize) && 3034 match(GEP.getOperand(1), 3035 m_Shr(m_Value(V), 3036 m_SpecificInt(countr_zero(TyAllocSize))))) || 3037 match(GEP.getOperand(1), 3038 m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) { 3039 return GetElementPtrInst::Create(Builder.getInt8Ty(), 3040 GEP.getPointerOperand(), V, 3041 GEP.getNoWrapFlags()); 3042 } 3043 } 3044 if (ExactIns->isExact() && ExactIns->hasOneUse()) { 3045 // Try to canonicalize non-i8 element type to i8 if the index is an 3046 // exact instruction. If the index is an exact instruction (div/shr) 3047 // with a constant RHS, we can fold the non-i8 element scale into the 3048 // div/shr (similiar to the mul case, just inverted). 3049 const APInt *C; 3050 std::optional<APInt> NewC; 3051 if (has_single_bit(TyAllocSize) && 3052 match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) && 3053 C->uge(countr_zero(TyAllocSize))) 3054 NewC = *C - countr_zero(TyAllocSize); 3055 else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) { 3056 APInt Quot; 3057 uint64_t Rem; 3058 APInt::udivrem(*C, TyAllocSize, Quot, Rem); 3059 if (Rem == 0) 3060 NewC = Quot; 3061 } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) { 3062 APInt Quot; 3063 int64_t Rem; 3064 APInt::sdivrem(*C, TyAllocSize, Quot, Rem); 3065 // For sdiv we need to make sure we arent creating INT_MIN / -1. 3066 if (!Quot.isAllOnes() && Rem == 0) 3067 NewC = Quot; 3068 } 3069 3070 if (NewC.has_value()) { 3071 Value *NewOp = Builder.CreateBinOp( 3072 static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V, 3073 ConstantInt::get(V->getType(), *NewC)); 3074 cast<BinaryOperator>(NewOp)->setIsExact(); 3075 return GetElementPtrInst::Create(Builder.getInt8Ty(), 3076 GEP.getPointerOperand(), NewOp, 3077 GEP.getNoWrapFlags()); 3078 } 3079 } 3080 } 3081 } 3082 } 3083 // We do not handle pointer-vector geps here. 3084 if (GEPType->isVectorTy()) 3085 return nullptr; 3086 3087 if (GEP.getNumIndices() == 1) { 3088 // We can only preserve inbounds if the original gep is inbounds, the add 3089 // is nsw, and the add operands are non-negative. 3090 auto CanPreserveInBounds = [&](bool AddIsNSW, Value *Idx1, Value *Idx2) { 3091 SimplifyQuery Q = SQ.getWithInstruction(&GEP); 3092 return GEP.isInBounds() && AddIsNSW && isKnownNonNegative(Idx1, Q) && 3093 isKnownNonNegative(Idx2, Q); 3094 }; 3095 3096 // Try to replace ADD + GEP with GEP + GEP. 3097 Value *Idx1, *Idx2; 3098 if (match(GEP.getOperand(1), 3099 m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) { 3100 // %idx = add i64 %idx1, %idx2 3101 // %gep = getelementptr i32, ptr %ptr, i64 %idx 3102 // as: 3103 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1 3104 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2 3105 bool IsInBounds = CanPreserveInBounds( 3106 cast<OverflowingBinaryOperator>(GEP.getOperand(1))->hasNoSignedWrap(), 3107 Idx1, Idx2); 3108 auto *NewPtr = 3109 Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(), 3110 Idx1, "", IsInBounds); 3111 return replaceInstUsesWith( 3112 GEP, Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, Idx2, "", 3113 IsInBounds)); 3114 } 3115 ConstantInt *C; 3116 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd( 3117 m_Value(Idx1), m_ConstantInt(C))))))) { 3118 // %add = add nsw i32 %idx1, idx2 3119 // %sidx = sext i32 %add to i64 3120 // %gep = getelementptr i32, ptr %ptr, i64 %sidx 3121 // as: 3122 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1 3123 // %newgep = getelementptr i32, ptr %newptr, i32 idx2 3124 bool IsInBounds = CanPreserveInBounds( 3125 /*IsNSW=*/true, Idx1, C); 3126 auto *NewPtr = Builder.CreateGEP( 3127 GEP.getSourceElementType(), GEP.getPointerOperand(), 3128 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", 3129 IsInBounds); 3130 return replaceInstUsesWith( 3131 GEP, 3132 Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, 3133 Builder.CreateSExt(C, GEP.getOperand(1)->getType()), 3134 "", IsInBounds)); 3135 } 3136 } 3137 3138 if (!GEP.isInBounds()) { 3139 unsigned IdxWidth = 3140 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 3141 APInt BasePtrOffset(IdxWidth, 0); 3142 Value *UnderlyingPtrOp = 3143 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 3144 BasePtrOffset); 3145 bool CanBeNull, CanBeFreed; 3146 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes( 3147 DL, CanBeNull, CanBeFreed); 3148 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) { 3149 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 3150 BasePtrOffset.isNonNegative()) { 3151 APInt AllocSize(IdxWidth, DerefBytes); 3152 if (BasePtrOffset.ule(AllocSize)) { 3153 return GetElementPtrInst::CreateInBounds( 3154 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 3155 } 3156 } 3157 } 3158 } 3159 3160 // nusw + nneg -> nuw 3161 if (GEP.hasNoUnsignedSignedWrap() && !GEP.hasNoUnsignedWrap() && 3162 all_of(GEP.indices(), [&](Value *Idx) { 3163 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP)); 3164 })) { 3165 GEP.setNoWrapFlags(GEP.getNoWrapFlags() | GEPNoWrapFlags::noUnsignedWrap()); 3166 return &GEP; 3167 } 3168 3169 if (Instruction *R = foldSelectGEP(GEP, Builder)) 3170 return R; 3171 3172 return nullptr; 3173 } 3174 3175 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 3176 Instruction *AI) { 3177 if (isa<ConstantPointerNull>(V)) 3178 return true; 3179 if (auto *LI = dyn_cast<LoadInst>(V)) 3180 return isa<GlobalVariable>(LI->getPointerOperand()); 3181 // Two distinct allocations will never be equal. 3182 return isAllocLikeFn(V, &TLI) && V != AI; 3183 } 3184 3185 /// Given a call CB which uses an address UsedV, return true if we can prove the 3186 /// call's only possible effect is storing to V. 3187 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 3188 const TargetLibraryInfo &TLI) { 3189 if (!CB.use_empty()) 3190 // TODO: add recursion if returned attribute is present 3191 return false; 3192 3193 if (CB.isTerminator()) 3194 // TODO: remove implementation restriction 3195 return false; 3196 3197 if (!CB.willReturn() || !CB.doesNotThrow()) 3198 return false; 3199 3200 // If the only possible side effect of the call is writing to the alloca, 3201 // and the result isn't used, we can safely remove any reads implied by the 3202 // call including those which might read the alloca itself. 3203 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 3204 return Dest && Dest->Ptr == UsedV; 3205 } 3206 3207 static bool isAllocSiteRemovable(Instruction *AI, 3208 SmallVectorImpl<WeakTrackingVH> &Users, 3209 const TargetLibraryInfo &TLI) { 3210 SmallVector<Instruction*, 4> Worklist; 3211 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI); 3212 Worklist.push_back(AI); 3213 3214 do { 3215 Instruction *PI = Worklist.pop_back_val(); 3216 for (User *U : PI->users()) { 3217 Instruction *I = cast<Instruction>(U); 3218 switch (I->getOpcode()) { 3219 default: 3220 // Give up the moment we see something we can't handle. 3221 return false; 3222 3223 case Instruction::AddrSpaceCast: 3224 case Instruction::BitCast: 3225 case Instruction::GetElementPtr: 3226 Users.emplace_back(I); 3227 Worklist.push_back(I); 3228 continue; 3229 3230 case Instruction::ICmp: { 3231 ICmpInst *ICI = cast<ICmpInst>(I); 3232 // We can fold eq/ne comparisons with null to false/true, respectively. 3233 // We also fold comparisons in some conditions provided the alloc has 3234 // not escaped (see isNeverEqualToUnescapedAlloc). 3235 if (!ICI->isEquality()) 3236 return false; 3237 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 3238 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 3239 return false; 3240 3241 // Do not fold compares to aligned_alloc calls, as they may have to 3242 // return null in case the required alignment cannot be satisfied, 3243 // unless we can prove that both alignment and size are valid. 3244 auto AlignmentAndSizeKnownValid = [](CallBase *CB) { 3245 // Check if alignment and size of a call to aligned_alloc is valid, 3246 // that is alignment is a power-of-2 and the size is a multiple of the 3247 // alignment. 3248 const APInt *Alignment; 3249 const APInt *Size; 3250 return match(CB->getArgOperand(0), m_APInt(Alignment)) && 3251 match(CB->getArgOperand(1), m_APInt(Size)) && 3252 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero(); 3253 }; 3254 auto *CB = dyn_cast<CallBase>(AI); 3255 LibFunc TheLibFunc; 3256 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) && 3257 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc && 3258 !AlignmentAndSizeKnownValid(CB)) 3259 return false; 3260 Users.emplace_back(I); 3261 continue; 3262 } 3263 3264 case Instruction::Call: 3265 // Ignore no-op and store intrinsics. 3266 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 3267 switch (II->getIntrinsicID()) { 3268 default: 3269 return false; 3270 3271 case Intrinsic::memmove: 3272 case Intrinsic::memcpy: 3273 case Intrinsic::memset: { 3274 MemIntrinsic *MI = cast<MemIntrinsic>(II); 3275 if (MI->isVolatile() || MI->getRawDest() != PI) 3276 return false; 3277 [[fallthrough]]; 3278 } 3279 case Intrinsic::assume: 3280 case Intrinsic::invariant_start: 3281 case Intrinsic::invariant_end: 3282 case Intrinsic::lifetime_start: 3283 case Intrinsic::lifetime_end: 3284 case Intrinsic::objectsize: 3285 Users.emplace_back(I); 3286 continue; 3287 case Intrinsic::launder_invariant_group: 3288 case Intrinsic::strip_invariant_group: 3289 Users.emplace_back(I); 3290 Worklist.push_back(I); 3291 continue; 3292 } 3293 } 3294 3295 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 3296 Users.emplace_back(I); 3297 continue; 3298 } 3299 3300 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && 3301 getAllocationFamily(I, &TLI) == Family) { 3302 assert(Family); 3303 Users.emplace_back(I); 3304 continue; 3305 } 3306 3307 if (getReallocatedOperand(cast<CallBase>(I)) == PI && 3308 getAllocationFamily(I, &TLI) == Family) { 3309 assert(Family); 3310 Users.emplace_back(I); 3311 Worklist.push_back(I); 3312 continue; 3313 } 3314 3315 return false; 3316 3317 case Instruction::Store: { 3318 StoreInst *SI = cast<StoreInst>(I); 3319 if (SI->isVolatile() || SI->getPointerOperand() != PI) 3320 return false; 3321 Users.emplace_back(I); 3322 continue; 3323 } 3324 } 3325 llvm_unreachable("missing a return?"); 3326 } 3327 } while (!Worklist.empty()); 3328 return true; 3329 } 3330 3331 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 3332 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); 3333 3334 // If we have a malloc call which is only used in any amount of comparisons to 3335 // null and free calls, delete the calls and replace the comparisons with true 3336 // or false as appropriate. 3337 3338 // This is based on the principle that we can substitute our own allocation 3339 // function (which will never return null) rather than knowledge of the 3340 // specific function being called. In some sense this can change the permitted 3341 // outputs of a program (when we convert a malloc to an alloca, the fact that 3342 // the allocation is now on the stack is potentially visible, for example), 3343 // but we believe in a permissible manner. 3344 SmallVector<WeakTrackingVH, 64> Users; 3345 3346 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 3347 // before each store. 3348 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 3349 SmallVector<DbgVariableRecord *, 8> DVRs; 3350 std::unique_ptr<DIBuilder> DIB; 3351 if (isa<AllocaInst>(MI)) { 3352 findDbgUsers(DVIs, &MI, &DVRs); 3353 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 3354 } 3355 3356 if (isAllocSiteRemovable(&MI, Users, TLI)) { 3357 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 3358 // Lowering all @llvm.objectsize calls first because they may 3359 // use a bitcast/GEP of the alloca we are removing. 3360 if (!Users[i]) 3361 continue; 3362 3363 Instruction *I = cast<Instruction>(&*Users[i]); 3364 3365 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 3366 if (II->getIntrinsicID() == Intrinsic::objectsize) { 3367 SmallVector<Instruction *> InsertedInstructions; 3368 Value *Result = lowerObjectSizeCall( 3369 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions); 3370 for (Instruction *Inserted : InsertedInstructions) 3371 Worklist.add(Inserted); 3372 replaceInstUsesWith(*I, Result); 3373 eraseInstFromFunction(*I); 3374 Users[i] = nullptr; // Skip examining in the next loop. 3375 } 3376 } 3377 } 3378 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 3379 if (!Users[i]) 3380 continue; 3381 3382 Instruction *I = cast<Instruction>(&*Users[i]); 3383 3384 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 3385 replaceInstUsesWith(*C, 3386 ConstantInt::get(Type::getInt1Ty(C->getContext()), 3387 C->isFalseWhenEqual())); 3388 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3389 for (auto *DVI : DVIs) 3390 if (DVI->isAddressOfVariable()) 3391 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 3392 for (auto *DVR : DVRs) 3393 if (DVR->isAddressOfVariable()) 3394 ConvertDebugDeclareToDebugValue(DVR, SI, *DIB); 3395 } else { 3396 // Casts, GEP, or anything else: we're about to delete this instruction, 3397 // so it can not have any valid uses. 3398 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 3399 } 3400 eraseInstFromFunction(*I); 3401 } 3402 3403 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 3404 // Replace invoke with a NOP intrinsic to maintain the original CFG 3405 Module *M = II->getModule(); 3406 Function *F = Intrinsic::getOrInsertDeclaration(M, Intrinsic::donothing); 3407 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), {}, "", 3408 II->getParent()); 3409 } 3410 3411 // Remove debug intrinsics which describe the value contained within the 3412 // alloca. In addition to removing dbg.{declare,addr} which simply point to 3413 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 3414 // 3415 // ``` 3416 // define void @foo(i32 %0) { 3417 // %a = alloca i32 ; Deleted. 3418 // store i32 %0, i32* %a 3419 // dbg.value(i32 %0, "arg0") ; Not deleted. 3420 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 3421 // call void @trivially_inlinable_no_op(i32* %a) 3422 // ret void 3423 // } 3424 // ``` 3425 // 3426 // This may not be required if we stop describing the contents of allocas 3427 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 3428 // the LowerDbgDeclare utility. 3429 // 3430 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 3431 // "arg0" dbg.value may be stale after the call. However, failing to remove 3432 // the DW_OP_deref dbg.value causes large gaps in location coverage. 3433 // 3434 // FIXME: the Assignment Tracking project has now likely made this 3435 // redundant (and it's sometimes harmful). 3436 for (auto *DVI : DVIs) 3437 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 3438 DVI->eraseFromParent(); 3439 for (auto *DVR : DVRs) 3440 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref()) 3441 DVR->eraseFromParent(); 3442 3443 return eraseInstFromFunction(MI); 3444 } 3445 return nullptr; 3446 } 3447 3448 /// Move the call to free before a NULL test. 3449 /// 3450 /// Check if this free is accessed after its argument has been test 3451 /// against NULL (property 0). 3452 /// If yes, it is legal to move this call in its predecessor block. 3453 /// 3454 /// The move is performed only if the block containing the call to free 3455 /// will be removed, i.e.: 3456 /// 1. it has only one predecessor P, and P has two successors 3457 /// 2. it contains the call, noops, and an unconditional branch 3458 /// 3. its successor is the same as its predecessor's successor 3459 /// 3460 /// The profitability is out-of concern here and this function should 3461 /// be called only if the caller knows this transformation would be 3462 /// profitable (e.g., for code size). 3463 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 3464 const DataLayout &DL) { 3465 Value *Op = FI.getArgOperand(0); 3466 BasicBlock *FreeInstrBB = FI.getParent(); 3467 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 3468 3469 // Validate part of constraint #1: Only one predecessor 3470 // FIXME: We can extend the number of predecessor, but in that case, we 3471 // would duplicate the call to free in each predecessor and it may 3472 // not be profitable even for code size. 3473 if (!PredBB) 3474 return nullptr; 3475 3476 // Validate constraint #2: Does this block contains only the call to 3477 // free, noops, and an unconditional branch? 3478 BasicBlock *SuccBB; 3479 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 3480 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 3481 return nullptr; 3482 3483 // If there are only 2 instructions in the block, at this point, 3484 // this is the call to free and unconditional. 3485 // If there are more than 2 instructions, check that they are noops 3486 // i.e., they won't hurt the performance of the generated code. 3487 if (FreeInstrBB->size() != 2) { 3488 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 3489 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 3490 continue; 3491 auto *Cast = dyn_cast<CastInst>(&Inst); 3492 if (!Cast || !Cast->isNoopCast(DL)) 3493 return nullptr; 3494 } 3495 } 3496 // Validate the rest of constraint #1 by matching on the pred branch. 3497 Instruction *TI = PredBB->getTerminator(); 3498 BasicBlock *TrueBB, *FalseBB; 3499 CmpPredicate Pred; 3500 if (!match(TI, m_Br(m_ICmp(Pred, 3501 m_CombineOr(m_Specific(Op), 3502 m_Specific(Op->stripPointerCasts())), 3503 m_Zero()), 3504 TrueBB, FalseBB))) 3505 return nullptr; 3506 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 3507 return nullptr; 3508 3509 // Validate constraint #3: Ensure the null case just falls through. 3510 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 3511 return nullptr; 3512 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 3513 "Broken CFG: missing edge from predecessor to successor"); 3514 3515 // At this point, we know that everything in FreeInstrBB can be moved 3516 // before TI. 3517 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 3518 if (&Instr == FreeInstrBBTerminator) 3519 break; 3520 Instr.moveBeforePreserving(TI->getIterator()); 3521 } 3522 assert(FreeInstrBB->size() == 1 && 3523 "Only the branch instruction should remain"); 3524 3525 // Now that we've moved the call to free before the NULL check, we have to 3526 // remove any attributes on its parameter that imply it's non-null, because 3527 // those attributes might have only been valid because of the NULL check, and 3528 // we can get miscompiles if we keep them. This is conservative if non-null is 3529 // also implied by something other than the NULL check, but it's guaranteed to 3530 // be correct, and the conservativeness won't matter in practice, since the 3531 // attributes are irrelevant for the call to free itself and the pointer 3532 // shouldn't be used after the call. 3533 AttributeList Attrs = FI.getAttributes(); 3534 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 3535 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 3536 if (Dereferenceable.isValid()) { 3537 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 3538 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3539 Attribute::Dereferenceable); 3540 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3541 } 3542 FI.setAttributes(Attrs); 3543 3544 return &FI; 3545 } 3546 3547 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { 3548 // free undef -> unreachable. 3549 if (isa<UndefValue>(Op)) { 3550 // Leave a marker since we can't modify the CFG here. 3551 CreateNonTerminatorUnreachable(&FI); 3552 return eraseInstFromFunction(FI); 3553 } 3554 3555 // If we have 'free null' delete the instruction. This can happen in stl code 3556 // when lots of inlining happens. 3557 if (isa<ConstantPointerNull>(Op)) 3558 return eraseInstFromFunction(FI); 3559 3560 // If we had free(realloc(...)) with no intervening uses, then eliminate the 3561 // realloc() entirely. 3562 CallInst *CI = dyn_cast<CallInst>(Op); 3563 if (CI && CI->hasOneUse()) 3564 if (Value *ReallocatedOp = getReallocatedOperand(CI)) 3565 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); 3566 3567 // If we optimize for code size, try to move the call to free before the null 3568 // test so that simplify cfg can remove the empty block and dead code 3569 // elimination the branch. I.e., helps to turn something like: 3570 // if (foo) free(foo); 3571 // into 3572 // free(foo); 3573 // 3574 // Note that we can only do this for 'free' and not for any flavor of 3575 // 'operator delete'; there is no 'operator delete' symbol for which we are 3576 // permitted to invent a call, even if we're passing in a null pointer. 3577 if (MinimizeSize) { 3578 LibFunc Func; 3579 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 3580 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 3581 return I; 3582 } 3583 3584 return nullptr; 3585 } 3586 3587 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3588 Value *RetVal = RI.getReturnValue(); 3589 if (!RetVal || !AttributeFuncs::isNoFPClassCompatibleType(RetVal->getType())) 3590 return nullptr; 3591 3592 Function *F = RI.getFunction(); 3593 FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass(); 3594 if (ReturnClass == fcNone) 3595 return nullptr; 3596 3597 KnownFPClass KnownClass; 3598 Value *Simplified = 3599 SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, 0, &RI); 3600 if (!Simplified) 3601 return nullptr; 3602 3603 return ReturnInst::Create(RI.getContext(), Simplified); 3604 } 3605 3606 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 3607 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) { 3608 // Try to remove the previous instruction if it must lead to unreachable. 3609 // This includes instructions like stores and "llvm.assume" that may not get 3610 // removed by simple dead code elimination. 3611 bool Changed = false; 3612 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3613 // While we theoretically can erase EH, that would result in a block that 3614 // used to start with an EH no longer starting with EH, which is invalid. 3615 // To make it valid, we'd need to fixup predecessors to no longer refer to 3616 // this block, but that changes CFG, which is not allowed in InstCombine. 3617 if (Prev->isEHPad()) 3618 break; // Can not drop any more instructions. We're done here. 3619 3620 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3621 break; // Can not drop any more instructions. We're done here. 3622 // Otherwise, this instruction can be freely erased, 3623 // even if it is not side-effect free. 3624 3625 // A value may still have uses before we process it here (for example, in 3626 // another unreachable block), so convert those to poison. 3627 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3628 eraseInstFromFunction(*Prev); 3629 Changed = true; 3630 } 3631 return Changed; 3632 } 3633 3634 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3635 removeInstructionsBeforeUnreachable(I); 3636 return nullptr; 3637 } 3638 3639 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3640 assert(BI.isUnconditional() && "Only for unconditional branches."); 3641 3642 // If this store is the second-to-last instruction in the basic block 3643 // (excluding debug info and bitcasts of pointers) and if the block ends with 3644 // an unconditional branch, try to move the store to the successor block. 3645 3646 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3647 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3648 return BBI->isDebugOrPseudoInst() || 3649 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3650 }; 3651 3652 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3653 do { 3654 if (BBI != FirstInstr) 3655 --BBI; 3656 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3657 3658 return dyn_cast<StoreInst>(BBI); 3659 }; 3660 3661 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3662 if (mergeStoreIntoSuccessor(*SI)) 3663 return &BI; 3664 3665 return nullptr; 3666 } 3667 3668 void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To, 3669 SmallVectorImpl<BasicBlock *> &Worklist) { 3670 if (!DeadEdges.insert({From, To}).second) 3671 return; 3672 3673 // Replace phi node operands in successor with poison. 3674 for (PHINode &PN : To->phis()) 3675 for (Use &U : PN.incoming_values()) 3676 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) { 3677 replaceUse(U, PoisonValue::get(PN.getType())); 3678 addToWorklist(&PN); 3679 MadeIRChange = true; 3680 } 3681 3682 Worklist.push_back(To); 3683 } 3684 3685 // Under the assumption that I is unreachable, remove it and following 3686 // instructions. Changes are reported directly to MadeIRChange. 3687 void InstCombinerImpl::handleUnreachableFrom( 3688 Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) { 3689 BasicBlock *BB = I->getParent(); 3690 for (Instruction &Inst : make_early_inc_range( 3691 make_range(std::next(BB->getTerminator()->getReverseIterator()), 3692 std::next(I->getReverseIterator())))) { 3693 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) { 3694 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType())); 3695 MadeIRChange = true; 3696 } 3697 if (Inst.isEHPad() || Inst.getType()->isTokenTy()) 3698 continue; 3699 // RemoveDIs: erase debug-info on this instruction manually. 3700 Inst.dropDbgRecords(); 3701 eraseInstFromFunction(Inst); 3702 MadeIRChange = true; 3703 } 3704 3705 SmallVector<Value *> Changed; 3706 if (handleUnreachableTerminator(BB->getTerminator(), Changed)) { 3707 MadeIRChange = true; 3708 for (Value *V : Changed) 3709 addToWorklist(cast<Instruction>(V)); 3710 } 3711 3712 // Handle potentially dead successors. 3713 for (BasicBlock *Succ : successors(BB)) 3714 addDeadEdge(BB, Succ, Worklist); 3715 } 3716 3717 void InstCombinerImpl::handlePotentiallyDeadBlocks( 3718 SmallVectorImpl<BasicBlock *> &Worklist) { 3719 while (!Worklist.empty()) { 3720 BasicBlock *BB = Worklist.pop_back_val(); 3721 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) { 3722 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 3723 })) 3724 continue; 3725 3726 handleUnreachableFrom(&BB->front(), Worklist); 3727 } 3728 } 3729 3730 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB, 3731 BasicBlock *LiveSucc) { 3732 SmallVector<BasicBlock *> Worklist; 3733 for (BasicBlock *Succ : successors(BB)) { 3734 // The live successor isn't dead. 3735 if (Succ == LiveSucc) 3736 continue; 3737 3738 addDeadEdge(BB, Succ, Worklist); 3739 } 3740 3741 handlePotentiallyDeadBlocks(Worklist); 3742 } 3743 3744 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3745 if (BI.isUnconditional()) 3746 return visitUnconditionalBranchInst(BI); 3747 3748 // Change br (not X), label True, label False to: br X, label False, True 3749 Value *Cond = BI.getCondition(); 3750 Value *X; 3751 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) { 3752 // Swap Destinations and condition... 3753 BI.swapSuccessors(); 3754 if (BPI) 3755 BPI->swapSuccEdgesProbabilities(BI.getParent()); 3756 return replaceOperand(BI, 0, X); 3757 } 3758 3759 // Canonicalize logical-and-with-invert as logical-or-with-invert. 3760 // This is done by inverting the condition and swapping successors: 3761 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T 3762 Value *Y; 3763 if (isa<SelectInst>(Cond) && 3764 match(Cond, 3765 m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { 3766 Value *NotX = Builder.CreateNot(X, "not." + X->getName()); 3767 Value *Or = Builder.CreateLogicalOr(NotX, Y); 3768 BI.swapSuccessors(); 3769 if (BPI) 3770 BPI->swapSuccEdgesProbabilities(BI.getParent()); 3771 return replaceOperand(BI, 0, Or); 3772 } 3773 3774 // If the condition is irrelevant, remove the use so that other 3775 // transforms on the condition become more effective. 3776 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) 3777 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); 3778 3779 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3780 CmpPredicate Pred; 3781 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && 3782 !isCanonicalPredicate(Pred)) { 3783 // Swap destinations and condition. 3784 auto *Cmp = cast<CmpInst>(Cond); 3785 Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); 3786 BI.swapSuccessors(); 3787 if (BPI) 3788 BPI->swapSuccEdgesProbabilities(BI.getParent()); 3789 Worklist.push(Cmp); 3790 return &BI; 3791 } 3792 3793 if (isa<UndefValue>(Cond)) { 3794 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr); 3795 return nullptr; 3796 } 3797 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3798 handlePotentiallyDeadSuccessors(BI.getParent(), 3799 BI.getSuccessor(!CI->getZExtValue())); 3800 return nullptr; 3801 } 3802 3803 // Replace all dominated uses of the condition with true/false 3804 // Ignore constant expressions to avoid iterating over uses on other 3805 // functions. 3806 if (!isa<Constant>(Cond) && BI.getSuccessor(0) != BI.getSuccessor(1)) { 3807 for (auto &U : make_early_inc_range(Cond->uses())) { 3808 BasicBlockEdge Edge0(BI.getParent(), BI.getSuccessor(0)); 3809 if (DT.dominates(Edge0, U)) { 3810 replaceUse(U, ConstantInt::getTrue(Cond->getType())); 3811 addToWorklist(cast<Instruction>(U.getUser())); 3812 continue; 3813 } 3814 BasicBlockEdge Edge1(BI.getParent(), BI.getSuccessor(1)); 3815 if (DT.dominates(Edge1, U)) { 3816 replaceUse(U, ConstantInt::getFalse(Cond->getType())); 3817 addToWorklist(cast<Instruction>(U.getUser())); 3818 } 3819 } 3820 } 3821 3822 DC.registerBranch(&BI); 3823 return nullptr; 3824 } 3825 3826 // Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if 3827 // we can prove that both (switch C) and (switch X) go to the default when cond 3828 // is false/true. 3829 static Value *simplifySwitchOnSelectUsingRanges(SwitchInst &SI, 3830 SelectInst *Select, 3831 bool IsTrueArm) { 3832 unsigned CstOpIdx = IsTrueArm ? 1 : 2; 3833 auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx)); 3834 if (!C) 3835 return nullptr; 3836 3837 BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor(); 3838 if (CstBB != SI.getDefaultDest()) 3839 return nullptr; 3840 Value *X = Select->getOperand(3 - CstOpIdx); 3841 CmpPredicate Pred; 3842 const APInt *RHSC; 3843 if (!match(Select->getCondition(), 3844 m_ICmp(Pred, m_Specific(X), m_APInt(RHSC)))) 3845 return nullptr; 3846 if (IsTrueArm) 3847 Pred = ICmpInst::getInversePredicate(Pred); 3848 3849 // See whether we can replace the select with X 3850 ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC); 3851 for (auto Case : SI.cases()) 3852 if (!CR.contains(Case.getCaseValue()->getValue())) 3853 return nullptr; 3854 3855 return X; 3856 } 3857 3858 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3859 Value *Cond = SI.getCondition(); 3860 Value *Op0; 3861 ConstantInt *AddRHS; 3862 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3863 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3864 for (auto Case : SI.cases()) { 3865 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3866 assert(isa<ConstantInt>(NewCase) && 3867 "Result of expression should be constant"); 3868 Case.setValue(cast<ConstantInt>(NewCase)); 3869 } 3870 return replaceOperand(SI, 0, Op0); 3871 } 3872 3873 ConstantInt *SubLHS; 3874 if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) { 3875 // Change 'switch (1-X) case 1:' into 'switch (X) case 0'. 3876 for (auto Case : SI.cases()) { 3877 Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue()); 3878 assert(isa<ConstantInt>(NewCase) && 3879 "Result of expression should be constant"); 3880 Case.setValue(cast<ConstantInt>(NewCase)); 3881 } 3882 return replaceOperand(SI, 0, Op0); 3883 } 3884 3885 uint64_t ShiftAmt; 3886 if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) && 3887 ShiftAmt < Op0->getType()->getScalarSizeInBits() && 3888 all_of(SI.cases(), [&](const auto &Case) { 3889 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt; 3890 })) { 3891 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'. 3892 OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond); 3893 if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() || 3894 Shl->hasOneUse()) { 3895 Value *NewCond = Op0; 3896 if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) { 3897 // If the shift may wrap, we need to mask off the shifted bits. 3898 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 3899 NewCond = Builder.CreateAnd( 3900 Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt)); 3901 } 3902 for (auto Case : SI.cases()) { 3903 const APInt &CaseVal = Case.getCaseValue()->getValue(); 3904 APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt) 3905 : CaseVal.lshr(ShiftAmt); 3906 Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase)); 3907 } 3908 return replaceOperand(SI, 0, NewCond); 3909 } 3910 } 3911 3912 // Fold switch(zext/sext(X)) into switch(X) if possible. 3913 if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) { 3914 bool IsZExt = isa<ZExtInst>(Cond); 3915 Type *SrcTy = Op0->getType(); 3916 unsigned NewWidth = SrcTy->getScalarSizeInBits(); 3917 3918 if (all_of(SI.cases(), [&](const auto &Case) { 3919 const APInt &CaseVal = Case.getCaseValue()->getValue(); 3920 return IsZExt ? CaseVal.isIntN(NewWidth) 3921 : CaseVal.isSignedIntN(NewWidth); 3922 })) { 3923 for (auto &Case : SI.cases()) { 3924 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3925 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3926 } 3927 return replaceOperand(SI, 0, Op0); 3928 } 3929 } 3930 3931 // Fold switch(select cond, X, Y) into switch(X/Y) if possible 3932 if (auto *Select = dyn_cast<SelectInst>(Cond)) { 3933 if (Value *V = 3934 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true)) 3935 return replaceOperand(SI, 0, V); 3936 if (Value *V = 3937 simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false)) 3938 return replaceOperand(SI, 0, V); 3939 } 3940 3941 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3942 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3943 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3944 3945 // Compute the number of leading bits we can ignore. 3946 // TODO: A better way to determine this would use ComputeNumSignBits(). 3947 for (const auto &C : SI.cases()) { 3948 LeadingKnownZeros = 3949 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero()); 3950 LeadingKnownOnes = 3951 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one()); 3952 } 3953 3954 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3955 3956 // Shrink the condition operand if the new type is smaller than the old type. 3957 // But do not shrink to a non-standard type, because backend can't generate 3958 // good code for that yet. 3959 // TODO: We can make it aggressive again after fixing PR39569. 3960 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3961 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3962 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3963 Builder.SetInsertPoint(&SI); 3964 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3965 3966 for (auto Case : SI.cases()) { 3967 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3968 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3969 } 3970 return replaceOperand(SI, 0, NewCond); 3971 } 3972 3973 if (isa<UndefValue>(Cond)) { 3974 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr); 3975 return nullptr; 3976 } 3977 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3978 handlePotentiallyDeadSuccessors(SI.getParent(), 3979 SI.findCaseValue(CI)->getCaseSuccessor()); 3980 return nullptr; 3981 } 3982 3983 return nullptr; 3984 } 3985 3986 Instruction * 3987 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { 3988 auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand()); 3989 if (!WO) 3990 return nullptr; 3991 3992 Intrinsic::ID OvID = WO->getIntrinsicID(); 3993 const APInt *C = nullptr; 3994 if (match(WO->getRHS(), m_APIntAllowPoison(C))) { 3995 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || 3996 OvID == Intrinsic::umul_with_overflow)) { 3997 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3998 if (C->isAllOnes()) 3999 return BinaryOperator::CreateNeg(WO->getLHS()); 4000 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n 4001 if (C->isPowerOf2()) { 4002 return BinaryOperator::CreateShl( 4003 WO->getLHS(), 4004 ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); 4005 } 4006 } 4007 } 4008 4009 // We're extracting from an overflow intrinsic. See if we're the only user. 4010 // That allows us to simplify multiple result intrinsics to simpler things 4011 // that just get one value. 4012 if (!WO->hasOneUse()) 4013 return nullptr; 4014 4015 // Check if we're grabbing only the result of a 'with overflow' intrinsic 4016 // and replace it with a traditional binary instruction. 4017 if (*EV.idx_begin() == 0) { 4018 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4019 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 4020 // Replace the old instruction's uses with poison. 4021 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 4022 eraseInstFromFunction(*WO); 4023 return BinaryOperator::Create(BinOp, LHS, RHS); 4024 } 4025 4026 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); 4027 4028 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. 4029 if (OvID == Intrinsic::usub_with_overflow) 4030 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); 4031 4032 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but 4033 // +1 is not possible because we assume signed values. 4034 if (OvID == Intrinsic::smul_with_overflow && 4035 WO->getLHS()->getType()->isIntOrIntVectorTy(1)) 4036 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); 4037 4038 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1 4039 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) { 4040 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits(); 4041 // Only handle even bitwidths for performance reasons. 4042 if (BitWidth % 2 == 0) 4043 return new ICmpInst( 4044 ICmpInst::ICMP_UGT, WO->getLHS(), 4045 ConstantInt::get(WO->getLHS()->getType(), 4046 APInt::getLowBitsSet(BitWidth, BitWidth / 2))); 4047 } 4048 4049 // If only the overflow result is used, and the right hand side is a 4050 // constant (or constant splat), we can remove the intrinsic by directly 4051 // checking for overflow. 4052 if (C) { 4053 // Compute the no-wrap range for LHS given RHS=C, then construct an 4054 // equivalent icmp, potentially using an offset. 4055 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 4056 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 4057 4058 CmpInst::Predicate Pred; 4059 APInt NewRHSC, Offset; 4060 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 4061 auto *OpTy = WO->getRHS()->getType(); 4062 auto *NewLHS = WO->getLHS(); 4063 if (Offset != 0) 4064 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 4065 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 4066 ConstantInt::get(OpTy, NewRHSC)); 4067 } 4068 4069 return nullptr; 4070 } 4071 4072 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 4073 Value *Agg = EV.getAggregateOperand(); 4074 4075 if (!EV.hasIndices()) 4076 return replaceInstUsesWith(EV, Agg); 4077 4078 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 4079 SQ.getWithInstruction(&EV))) 4080 return replaceInstUsesWith(EV, V); 4081 4082 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 4083 // We're extracting from an insertvalue instruction, compare the indices 4084 const unsigned *exti, *exte, *insi, *inse; 4085 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 4086 exte = EV.idx_end(), inse = IV->idx_end(); 4087 exti != exte && insi != inse; 4088 ++exti, ++insi) { 4089 if (*insi != *exti) 4090 // The insert and extract both reference distinctly different elements. 4091 // This means the extract is not influenced by the insert, and we can 4092 // replace the aggregate operand of the extract with the aggregate 4093 // operand of the insert. i.e., replace 4094 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 4095 // %E = extractvalue { i32, { i32 } } %I, 0 4096 // with 4097 // %E = extractvalue { i32, { i32 } } %A, 0 4098 return ExtractValueInst::Create(IV->getAggregateOperand(), 4099 EV.getIndices()); 4100 } 4101 if (exti == exte && insi == inse) 4102 // Both iterators are at the end: Index lists are identical. Replace 4103 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 4104 // %C = extractvalue { i32, { i32 } } %B, 1, 0 4105 // with "i32 42" 4106 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 4107 if (exti == exte) { 4108 // The extract list is a prefix of the insert list. i.e. replace 4109 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 4110 // %E = extractvalue { i32, { i32 } } %I, 1 4111 // with 4112 // %X = extractvalue { i32, { i32 } } %A, 1 4113 // %E = insertvalue { i32 } %X, i32 42, 0 4114 // by switching the order of the insert and extract (though the 4115 // insertvalue should be left in, since it may have other uses). 4116 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 4117 EV.getIndices()); 4118 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 4119 ArrayRef(insi, inse)); 4120 } 4121 if (insi == inse) 4122 // The insert list is a prefix of the extract list 4123 // We can simply remove the common indices from the extract and make it 4124 // operate on the inserted value instead of the insertvalue result. 4125 // i.e., replace 4126 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 4127 // %E = extractvalue { i32, { i32 } } %I, 1, 0 4128 // with 4129 // %E extractvalue { i32 } { i32 42 }, 0 4130 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 4131 ArrayRef(exti, exte)); 4132 } 4133 4134 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) 4135 return R; 4136 4137 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) { 4138 // Bail out if the aggregate contains scalable vector type 4139 if (auto *STy = dyn_cast<StructType>(Agg->getType()); 4140 STy && STy->isScalableTy()) 4141 return nullptr; 4142 4143 // If the (non-volatile) load only has one use, we can rewrite this to a 4144 // load from a GEP. This reduces the size of the load. If a load is used 4145 // only by extractvalue instructions then this either must have been 4146 // optimized before, or it is a struct with padding, in which case we 4147 // don't want to do the transformation as it loses padding knowledge. 4148 if (L->isSimple() && L->hasOneUse()) { 4149 // extractvalue has integer indices, getelementptr has Value*s. Convert. 4150 SmallVector<Value*, 4> Indices; 4151 // Prefix an i32 0 since we need the first element. 4152 Indices.push_back(Builder.getInt32(0)); 4153 for (unsigned Idx : EV.indices()) 4154 Indices.push_back(Builder.getInt32(Idx)); 4155 4156 // We need to insert these at the location of the old load, not at that of 4157 // the extractvalue. 4158 Builder.SetInsertPoint(L); 4159 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 4160 L->getPointerOperand(), Indices); 4161 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 4162 // Whatever aliasing information we had for the orignal load must also 4163 // hold for the smaller load, so propagate the annotations. 4164 NL->setAAMetadata(L->getAAMetadata()); 4165 // Returning the load directly will cause the main loop to insert it in 4166 // the wrong spot, so use replaceInstUsesWith(). 4167 return replaceInstUsesWith(EV, NL); 4168 } 4169 } 4170 4171 if (auto *PN = dyn_cast<PHINode>(Agg)) 4172 if (Instruction *Res = foldOpIntoPhi(EV, PN)) 4173 return Res; 4174 4175 // Canonicalize extract (select Cond, TV, FV) 4176 // -> select cond, (extract TV), (extract FV) 4177 if (auto *SI = dyn_cast<SelectInst>(Agg)) 4178 if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true)) 4179 return R; 4180 4181 // We could simplify extracts from other values. Note that nested extracts may 4182 // already be simplified implicitly by the above: extract (extract (insert) ) 4183 // will be translated into extract ( insert ( extract ) ) first and then just 4184 // the value inserted, if appropriate. Similarly for extracts from single-use 4185 // loads: extract (extract (load)) will be translated to extract (load (gep)) 4186 // and if again single-use then via load (gep (gep)) to load (gep). 4187 // However, double extracts from e.g. function arguments or return values 4188 // aren't handled yet. 4189 return nullptr; 4190 } 4191 4192 /// Return 'true' if the given typeinfo will match anything. 4193 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 4194 switch (Personality) { 4195 case EHPersonality::GNU_C: 4196 case EHPersonality::GNU_C_SjLj: 4197 case EHPersonality::Rust: 4198 // The GCC C EH and Rust personality only exists to support cleanups, so 4199 // it's not clear what the semantics of catch clauses are. 4200 return false; 4201 case EHPersonality::Unknown: 4202 return false; 4203 case EHPersonality::GNU_Ada: 4204 // While __gnat_all_others_value will match any Ada exception, it doesn't 4205 // match foreign exceptions (or didn't, before gcc-4.7). 4206 return false; 4207 case EHPersonality::GNU_CXX: 4208 case EHPersonality::GNU_CXX_SjLj: 4209 case EHPersonality::GNU_ObjC: 4210 case EHPersonality::MSVC_X86SEH: 4211 case EHPersonality::MSVC_TableSEH: 4212 case EHPersonality::MSVC_CXX: 4213 case EHPersonality::CoreCLR: 4214 case EHPersonality::Wasm_CXX: 4215 case EHPersonality::XL_CXX: 4216 case EHPersonality::ZOS_CXX: 4217 return TypeInfo->isNullValue(); 4218 } 4219 llvm_unreachable("invalid enum"); 4220 } 4221 4222 static bool shorter_filter(const Value *LHS, const Value *RHS) { 4223 return 4224 cast<ArrayType>(LHS->getType())->getNumElements() 4225 < 4226 cast<ArrayType>(RHS->getType())->getNumElements(); 4227 } 4228 4229 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 4230 // The logic here should be correct for any real-world personality function. 4231 // However if that turns out not to be true, the offending logic can always 4232 // be conditioned on the personality function, like the catch-all logic is. 4233 EHPersonality Personality = 4234 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 4235 4236 // Simplify the list of clauses, eg by removing repeated catch clauses 4237 // (these are often created by inlining). 4238 bool MakeNewInstruction = false; // If true, recreate using the following: 4239 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 4240 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 4241 4242 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 4243 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 4244 bool isLastClause = i + 1 == e; 4245 if (LI.isCatch(i)) { 4246 // A catch clause. 4247 Constant *CatchClause = LI.getClause(i); 4248 Constant *TypeInfo = CatchClause->stripPointerCasts(); 4249 4250 // If we already saw this clause, there is no point in having a second 4251 // copy of it. 4252 if (AlreadyCaught.insert(TypeInfo).second) { 4253 // This catch clause was not already seen. 4254 NewClauses.push_back(CatchClause); 4255 } else { 4256 // Repeated catch clause - drop the redundant copy. 4257 MakeNewInstruction = true; 4258 } 4259 4260 // If this is a catch-all then there is no point in keeping any following 4261 // clauses or marking the landingpad as having a cleanup. 4262 if (isCatchAll(Personality, TypeInfo)) { 4263 if (!isLastClause) 4264 MakeNewInstruction = true; 4265 CleanupFlag = false; 4266 break; 4267 } 4268 } else { 4269 // A filter clause. If any of the filter elements were already caught 4270 // then they can be dropped from the filter. It is tempting to try to 4271 // exploit the filter further by saying that any typeinfo that does not 4272 // occur in the filter can't be caught later (and thus can be dropped). 4273 // However this would be wrong, since typeinfos can match without being 4274 // equal (for example if one represents a C++ class, and the other some 4275 // class derived from it). 4276 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 4277 Constant *FilterClause = LI.getClause(i); 4278 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 4279 unsigned NumTypeInfos = FilterType->getNumElements(); 4280 4281 // An empty filter catches everything, so there is no point in keeping any 4282 // following clauses or marking the landingpad as having a cleanup. By 4283 // dealing with this case here the following code is made a bit simpler. 4284 if (!NumTypeInfos) { 4285 NewClauses.push_back(FilterClause); 4286 if (!isLastClause) 4287 MakeNewInstruction = true; 4288 CleanupFlag = false; 4289 break; 4290 } 4291 4292 bool MakeNewFilter = false; // If true, make a new filter. 4293 SmallVector<Constant *, 16> NewFilterElts; // New elements. 4294 if (isa<ConstantAggregateZero>(FilterClause)) { 4295 // Not an empty filter - it contains at least one null typeinfo. 4296 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 4297 Constant *TypeInfo = 4298 Constant::getNullValue(FilterType->getElementType()); 4299 // If this typeinfo is a catch-all then the filter can never match. 4300 if (isCatchAll(Personality, TypeInfo)) { 4301 // Throw the filter away. 4302 MakeNewInstruction = true; 4303 continue; 4304 } 4305 4306 // There is no point in having multiple copies of this typeinfo, so 4307 // discard all but the first copy if there is more than one. 4308 NewFilterElts.push_back(TypeInfo); 4309 if (NumTypeInfos > 1) 4310 MakeNewFilter = true; 4311 } else { 4312 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 4313 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 4314 NewFilterElts.reserve(NumTypeInfos); 4315 4316 // Remove any filter elements that were already caught or that already 4317 // occurred in the filter. While there, see if any of the elements are 4318 // catch-alls. If so, the filter can be discarded. 4319 bool SawCatchAll = false; 4320 for (unsigned j = 0; j != NumTypeInfos; ++j) { 4321 Constant *Elt = Filter->getOperand(j); 4322 Constant *TypeInfo = Elt->stripPointerCasts(); 4323 if (isCatchAll(Personality, TypeInfo)) { 4324 // This element is a catch-all. Bail out, noting this fact. 4325 SawCatchAll = true; 4326 break; 4327 } 4328 4329 // Even if we've seen a type in a catch clause, we don't want to 4330 // remove it from the filter. An unexpected type handler may be 4331 // set up for a call site which throws an exception of the same 4332 // type caught. In order for the exception thrown by the unexpected 4333 // handler to propagate correctly, the filter must be correctly 4334 // described for the call site. 4335 // 4336 // Example: 4337 // 4338 // void unexpected() { throw 1;} 4339 // void foo() throw (int) { 4340 // std::set_unexpected(unexpected); 4341 // try { 4342 // throw 2.0; 4343 // } catch (int i) {} 4344 // } 4345 4346 // There is no point in having multiple copies of the same typeinfo in 4347 // a filter, so only add it if we didn't already. 4348 if (SeenInFilter.insert(TypeInfo).second) 4349 NewFilterElts.push_back(cast<Constant>(Elt)); 4350 } 4351 // A filter containing a catch-all cannot match anything by definition. 4352 if (SawCatchAll) { 4353 // Throw the filter away. 4354 MakeNewInstruction = true; 4355 continue; 4356 } 4357 4358 // If we dropped something from the filter, make a new one. 4359 if (NewFilterElts.size() < NumTypeInfos) 4360 MakeNewFilter = true; 4361 } 4362 if (MakeNewFilter) { 4363 FilterType = ArrayType::get(FilterType->getElementType(), 4364 NewFilterElts.size()); 4365 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 4366 MakeNewInstruction = true; 4367 } 4368 4369 NewClauses.push_back(FilterClause); 4370 4371 // If the new filter is empty then it will catch everything so there is 4372 // no point in keeping any following clauses or marking the landingpad 4373 // as having a cleanup. The case of the original filter being empty was 4374 // already handled above. 4375 if (MakeNewFilter && !NewFilterElts.size()) { 4376 assert(MakeNewInstruction && "New filter but not a new instruction!"); 4377 CleanupFlag = false; 4378 break; 4379 } 4380 } 4381 } 4382 4383 // If several filters occur in a row then reorder them so that the shortest 4384 // filters come first (those with the smallest number of elements). This is 4385 // advantageous because shorter filters are more likely to match, speeding up 4386 // unwinding, but mostly because it increases the effectiveness of the other 4387 // filter optimizations below. 4388 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 4389 unsigned j; 4390 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 4391 for (j = i; j != e; ++j) 4392 if (!isa<ArrayType>(NewClauses[j]->getType())) 4393 break; 4394 4395 // Check whether the filters are already sorted by length. We need to know 4396 // if sorting them is actually going to do anything so that we only make a 4397 // new landingpad instruction if it does. 4398 for (unsigned k = i; k + 1 < j; ++k) 4399 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 4400 // Not sorted, so sort the filters now. Doing an unstable sort would be 4401 // correct too but reordering filters pointlessly might confuse users. 4402 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 4403 shorter_filter); 4404 MakeNewInstruction = true; 4405 break; 4406 } 4407 4408 // Look for the next batch of filters. 4409 i = j + 1; 4410 } 4411 4412 // If typeinfos matched if and only if equal, then the elements of a filter L 4413 // that occurs later than a filter F could be replaced by the intersection of 4414 // the elements of F and L. In reality two typeinfos can match without being 4415 // equal (for example if one represents a C++ class, and the other some class 4416 // derived from it) so it would be wrong to perform this transform in general. 4417 // However the transform is correct and useful if F is a subset of L. In that 4418 // case L can be replaced by F, and thus removed altogether since repeating a 4419 // filter is pointless. So here we look at all pairs of filters F and L where 4420 // L follows F in the list of clauses, and remove L if every element of F is 4421 // an element of L. This can occur when inlining C++ functions with exception 4422 // specifications. 4423 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 4424 // Examine each filter in turn. 4425 Value *Filter = NewClauses[i]; 4426 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 4427 if (!FTy) 4428 // Not a filter - skip it. 4429 continue; 4430 unsigned FElts = FTy->getNumElements(); 4431 // Examine each filter following this one. Doing this backwards means that 4432 // we don't have to worry about filters disappearing under us when removed. 4433 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 4434 Value *LFilter = NewClauses[j]; 4435 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 4436 if (!LTy) 4437 // Not a filter - skip it. 4438 continue; 4439 // If Filter is a subset of LFilter, i.e. every element of Filter is also 4440 // an element of LFilter, then discard LFilter. 4441 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 4442 // If Filter is empty then it is a subset of LFilter. 4443 if (!FElts) { 4444 // Discard LFilter. 4445 NewClauses.erase(J); 4446 MakeNewInstruction = true; 4447 // Move on to the next filter. 4448 continue; 4449 } 4450 unsigned LElts = LTy->getNumElements(); 4451 // If Filter is longer than LFilter then it cannot be a subset of it. 4452 if (FElts > LElts) 4453 // Move on to the next filter. 4454 continue; 4455 // At this point we know that LFilter has at least one element. 4456 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 4457 // Filter is a subset of LFilter iff Filter contains only zeros (as we 4458 // already know that Filter is not longer than LFilter). 4459 if (isa<ConstantAggregateZero>(Filter)) { 4460 assert(FElts <= LElts && "Should have handled this case earlier!"); 4461 // Discard LFilter. 4462 NewClauses.erase(J); 4463 MakeNewInstruction = true; 4464 } 4465 // Move on to the next filter. 4466 continue; 4467 } 4468 ConstantArray *LArray = cast<ConstantArray>(LFilter); 4469 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 4470 // Since Filter is non-empty and contains only zeros, it is a subset of 4471 // LFilter iff LFilter contains a zero. 4472 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 4473 for (unsigned l = 0; l != LElts; ++l) 4474 if (LArray->getOperand(l)->isNullValue()) { 4475 // LFilter contains a zero - discard it. 4476 NewClauses.erase(J); 4477 MakeNewInstruction = true; 4478 break; 4479 } 4480 // Move on to the next filter. 4481 continue; 4482 } 4483 // At this point we know that both filters are ConstantArrays. Loop over 4484 // operands to see whether every element of Filter is also an element of 4485 // LFilter. Since filters tend to be short this is probably faster than 4486 // using a method that scales nicely. 4487 ConstantArray *FArray = cast<ConstantArray>(Filter); 4488 bool AllFound = true; 4489 for (unsigned f = 0; f != FElts; ++f) { 4490 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 4491 AllFound = false; 4492 for (unsigned l = 0; l != LElts; ++l) { 4493 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 4494 if (LTypeInfo == FTypeInfo) { 4495 AllFound = true; 4496 break; 4497 } 4498 } 4499 if (!AllFound) 4500 break; 4501 } 4502 if (AllFound) { 4503 // Discard LFilter. 4504 NewClauses.erase(J); 4505 MakeNewInstruction = true; 4506 } 4507 // Move on to the next filter. 4508 } 4509 } 4510 4511 // If we changed any of the clauses, replace the old landingpad instruction 4512 // with a new one. 4513 if (MakeNewInstruction) { 4514 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 4515 NewClauses.size()); 4516 for (Constant *C : NewClauses) 4517 NLI->addClause(C); 4518 // A landing pad with no clauses must have the cleanup flag set. It is 4519 // theoretically possible, though highly unlikely, that we eliminated all 4520 // clauses. If so, force the cleanup flag to true. 4521 if (NewClauses.empty()) 4522 CleanupFlag = true; 4523 NLI->setCleanup(CleanupFlag); 4524 return NLI; 4525 } 4526 4527 // Even if none of the clauses changed, we may nonetheless have understood 4528 // that the cleanup flag is pointless. Clear it if so. 4529 if (LI.isCleanup() != CleanupFlag) { 4530 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 4531 LI.setCleanup(CleanupFlag); 4532 return &LI; 4533 } 4534 4535 return nullptr; 4536 } 4537 4538 Value * 4539 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 4540 // Try to push freeze through instructions that propagate but don't produce 4541 // poison as far as possible. If an operand of freeze follows three 4542 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 4543 // guaranteed-non-poison operands then push the freeze through to the one 4544 // operand that is not guaranteed non-poison. The actual transform is as 4545 // follows. 4546 // Op1 = ... ; Op1 can be posion 4547 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 4548 // ; single guaranteed-non-poison operands 4549 // ... = Freeze(Op0) 4550 // => 4551 // Op1 = ... 4552 // Op1.fr = Freeze(Op1) 4553 // ... = Inst(Op1.fr, NonPoisonOps...) 4554 auto *OrigOp = OrigFI.getOperand(0); 4555 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 4556 4557 // While we could change the other users of OrigOp to use freeze(OrigOp), that 4558 // potentially reduces their optimization potential, so let's only do this iff 4559 // the OrigOp is only used by the freeze. 4560 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 4561 return nullptr; 4562 4563 // We can't push the freeze through an instruction which can itself create 4564 // poison. If the only source of new poison is flags, we can simply 4565 // strip them (since we know the only use is the freeze and nothing can 4566 // benefit from them.) 4567 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), 4568 /*ConsiderFlagsAndMetadata*/ false)) 4569 return nullptr; 4570 4571 // If operand is guaranteed not to be poison, there is no need to add freeze 4572 // to the operand. So we first find the operand that is not guaranteed to be 4573 // poison. 4574 Use *MaybePoisonOperand = nullptr; 4575 for (Use &U : OrigOpInst->operands()) { 4576 if (isa<MetadataAsValue>(U.get()) || 4577 isGuaranteedNotToBeUndefOrPoison(U.get())) 4578 continue; 4579 if (!MaybePoisonOperand) 4580 MaybePoisonOperand = &U; 4581 else 4582 return nullptr; 4583 } 4584 4585 OrigOpInst->dropPoisonGeneratingAnnotations(); 4586 4587 // If all operands are guaranteed to be non-poison, we can drop freeze. 4588 if (!MaybePoisonOperand) 4589 return OrigOp; 4590 4591 Builder.SetInsertPoint(OrigOpInst); 4592 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 4593 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 4594 4595 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 4596 return OrigOp; 4597 } 4598 4599 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 4600 PHINode *PN) { 4601 // Detect whether this is a recurrence with a start value and some number of 4602 // backedge values. We'll check whether we can push the freeze through the 4603 // backedge values (possibly dropping poison flags along the way) until we 4604 // reach the phi again. In that case, we can move the freeze to the start 4605 // value. 4606 Use *StartU = nullptr; 4607 SmallVector<Value *> Worklist; 4608 for (Use &U : PN->incoming_values()) { 4609 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 4610 // Add backedge value to worklist. 4611 Worklist.push_back(U.get()); 4612 continue; 4613 } 4614 4615 // Don't bother handling multiple start values. 4616 if (StartU) 4617 return nullptr; 4618 StartU = &U; 4619 } 4620 4621 if (!StartU || Worklist.empty()) 4622 return nullptr; // Not a recurrence. 4623 4624 Value *StartV = StartU->get(); 4625 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 4626 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 4627 // We can't insert freeze if the start value is the result of the 4628 // terminator (e.g. an invoke). 4629 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 4630 return nullptr; 4631 4632 SmallPtrSet<Value *, 32> Visited; 4633 SmallVector<Instruction *> DropFlags; 4634 while (!Worklist.empty()) { 4635 Value *V = Worklist.pop_back_val(); 4636 if (!Visited.insert(V).second) 4637 continue; 4638 4639 if (Visited.size() > 32) 4640 return nullptr; // Limit the total number of values we inspect. 4641 4642 // Assume that PN is non-poison, because it will be after the transform. 4643 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 4644 continue; 4645 4646 Instruction *I = dyn_cast<Instruction>(V); 4647 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 4648 /*ConsiderFlagsAndMetadata*/ false)) 4649 return nullptr; 4650 4651 DropFlags.push_back(I); 4652 append_range(Worklist, I->operands()); 4653 } 4654 4655 for (Instruction *I : DropFlags) 4656 I->dropPoisonGeneratingAnnotations(); 4657 4658 if (StartNeedsFreeze) { 4659 Builder.SetInsertPoint(StartBB->getTerminator()); 4660 Value *FrozenStartV = Builder.CreateFreeze(StartV, 4661 StartV->getName() + ".fr"); 4662 replaceUse(*StartU, FrozenStartV); 4663 } 4664 return replaceInstUsesWith(FI, PN); 4665 } 4666 4667 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 4668 Value *Op = FI.getOperand(0); 4669 4670 if (isa<Constant>(Op) || Op->hasOneUse()) 4671 return false; 4672 4673 // Move the freeze directly after the definition of its operand, so that 4674 // it dominates the maximum number of uses. Note that it may not dominate 4675 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 4676 // the normal/default destination. This is why the domination check in the 4677 // replacement below is still necessary. 4678 BasicBlock::iterator MoveBefore; 4679 if (isa<Argument>(Op)) { 4680 MoveBefore = 4681 FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); 4682 } else { 4683 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef(); 4684 if (!MoveBeforeOpt) 4685 return false; 4686 MoveBefore = *MoveBeforeOpt; 4687 } 4688 4689 // Don't move to the position of a debug intrinsic. 4690 if (isa<DbgInfoIntrinsic>(MoveBefore)) 4691 MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator(); 4692 // Re-point iterator to come after any debug-info records, if we're 4693 // running in "RemoveDIs" mode 4694 MoveBefore.setHeadBit(false); 4695 4696 bool Changed = false; 4697 if (&FI != &*MoveBefore) { 4698 FI.moveBefore(*MoveBefore->getParent(), MoveBefore); 4699 Changed = true; 4700 } 4701 4702 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 4703 bool Dominates = DT.dominates(&FI, U); 4704 Changed |= Dominates; 4705 return Dominates; 4706 }); 4707 4708 return Changed; 4709 } 4710 4711 // Check if any direct or bitcast user of this value is a shuffle instruction. 4712 static bool isUsedWithinShuffleVector(Value *V) { 4713 for (auto *U : V->users()) { 4714 if (isa<ShuffleVectorInst>(U)) 4715 return true; 4716 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U)) 4717 return true; 4718 } 4719 return false; 4720 } 4721 4722 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 4723 Value *Op0 = I.getOperand(0); 4724 4725 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 4726 return replaceInstUsesWith(I, V); 4727 4728 // freeze (phi const, x) --> phi const, (freeze x) 4729 if (auto *PN = dyn_cast<PHINode>(Op0)) { 4730 if (Instruction *NV = foldOpIntoPhi(I, PN)) 4731 return NV; 4732 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 4733 return NV; 4734 } 4735 4736 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 4737 return replaceInstUsesWith(I, NI); 4738 4739 // If I is freeze(undef), check its uses and fold it to a fixed constant. 4740 // - or: pick -1 4741 // - select's condition: if the true value is constant, choose it by making 4742 // the condition true. 4743 // - default: pick 0 4744 // 4745 // Note that this transform is intentionally done here rather than 4746 // via an analysis in InstSimplify or at individual user sites. That is 4747 // because we must produce the same value for all uses of the freeze - 4748 // it's the reason "freeze" exists! 4749 // 4750 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 4751 // duplicating logic for binops at least. 4752 auto getUndefReplacement = [&I](Type *Ty) { 4753 Constant *BestValue = nullptr; 4754 Constant *NullValue = Constant::getNullValue(Ty); 4755 for (const auto *U : I.users()) { 4756 Constant *C = NullValue; 4757 if (match(U, m_Or(m_Value(), m_Value()))) 4758 C = ConstantInt::getAllOnesValue(Ty); 4759 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 4760 C = ConstantInt::getTrue(Ty); 4761 4762 if (!BestValue) 4763 BestValue = C; 4764 else if (BestValue != C) 4765 BestValue = NullValue; 4766 } 4767 assert(BestValue && "Must have at least one use"); 4768 return BestValue; 4769 }; 4770 4771 if (match(Op0, m_Undef())) { 4772 // Don't fold freeze(undef/poison) if it's used as a vector operand in 4773 // a shuffle. This may improve codegen for shuffles that allow 4774 // unspecified inputs. 4775 if (isUsedWithinShuffleVector(&I)) 4776 return nullptr; 4777 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 4778 } 4779 4780 Constant *C; 4781 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 4782 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 4783 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 4784 } 4785 4786 // Replace uses of Op with freeze(Op). 4787 if (freezeOtherUses(I)) 4788 return &I; 4789 4790 return nullptr; 4791 } 4792 4793 /// Check for case where the call writes to an otherwise dead alloca. This 4794 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 4795 /// helper *only* analyzes the write; doesn't check any other legality aspect. 4796 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 4797 auto *CB = dyn_cast<CallBase>(I); 4798 if (!CB) 4799 // TODO: handle e.g. store to alloca here - only worth doing if we extend 4800 // to allow reload along used path as described below. Otherwise, this 4801 // is simply a store to a dead allocation which will be removed. 4802 return false; 4803 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 4804 if (!Dest) 4805 return false; 4806 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 4807 if (!AI) 4808 // TODO: allow malloc? 4809 return false; 4810 // TODO: allow memory access dominated by move point? Note that since AI 4811 // could have a reference to itself captured by the call, we would need to 4812 // account for cycles in doing so. 4813 SmallVector<const User *> AllocaUsers; 4814 SmallPtrSet<const User *, 4> Visited; 4815 auto pushUsers = [&](const Instruction &I) { 4816 for (const User *U : I.users()) { 4817 if (Visited.insert(U).second) 4818 AllocaUsers.push_back(U); 4819 } 4820 }; 4821 pushUsers(*AI); 4822 while (!AllocaUsers.empty()) { 4823 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 4824 if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) { 4825 pushUsers(*UserI); 4826 continue; 4827 } 4828 if (UserI == CB) 4829 continue; 4830 // TODO: support lifetime.start/end here 4831 return false; 4832 } 4833 return true; 4834 } 4835 4836 /// Try to move the specified instruction from its current block into the 4837 /// beginning of DestBlock, which can only happen if it's safe to move the 4838 /// instruction past all of the instructions between it and the end of its 4839 /// block. 4840 bool InstCombinerImpl::tryToSinkInstruction(Instruction *I, 4841 BasicBlock *DestBlock) { 4842 BasicBlock *SrcBlock = I->getParent(); 4843 4844 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4845 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4846 I->isTerminator()) 4847 return false; 4848 4849 // Do not sink static or dynamic alloca instructions. Static allocas must 4850 // remain in the entry block, and dynamic allocas must not be sunk in between 4851 // a stacksave / stackrestore pair, which would incorrectly shorten its 4852 // lifetime. 4853 if (isa<AllocaInst>(I)) 4854 return false; 4855 4856 // Do not sink into catchswitch blocks. 4857 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4858 return false; 4859 4860 // Do not sink convergent call instructions. 4861 if (auto *CI = dyn_cast<CallInst>(I)) { 4862 if (CI->isConvergent()) 4863 return false; 4864 } 4865 4866 // Unless we can prove that the memory write isn't visibile except on the 4867 // path we're sinking to, we must bail. 4868 if (I->mayWriteToMemory()) { 4869 if (!SoleWriteToDeadLocal(I, TLI)) 4870 return false; 4871 } 4872 4873 // We can only sink load instructions if there is nothing between the load and 4874 // the end of block that could change the value. 4875 if (I->mayReadFromMemory() && 4876 !I->hasMetadata(LLVMContext::MD_invariant_load)) { 4877 // We don't want to do any sophisticated alias analysis, so we only check 4878 // the instructions after I in I's parent block if we try to sink to its 4879 // successor block. 4880 if (DestBlock->getUniquePredecessor() != I->getParent()) 4881 return false; 4882 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4883 E = I->getParent()->end(); 4884 Scan != E; ++Scan) 4885 if (Scan->mayWriteToMemory()) 4886 return false; 4887 } 4888 4889 I->dropDroppableUses([&](const Use *U) { 4890 auto *I = dyn_cast<Instruction>(U->getUser()); 4891 if (I && I->getParent() != DestBlock) { 4892 Worklist.add(I); 4893 return true; 4894 } 4895 return false; 4896 }); 4897 /// FIXME: We could remove droppable uses that are not dominated by 4898 /// the new position. 4899 4900 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4901 I->moveBefore(*DestBlock, InsertPos); 4902 ++NumSunkInst; 4903 4904 // Also sink all related debug uses from the source basic block. Otherwise we 4905 // get debug use before the def. Attempt to salvage debug uses first, to 4906 // maximise the range variables have location for. If we cannot salvage, then 4907 // mark the location undef: we know it was supposed to receive a new location 4908 // here, but that computation has been sunk. 4909 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4910 SmallVector<DbgVariableRecord *, 2> DbgVariableRecords; 4911 findDbgUsers(DbgUsers, I, &DbgVariableRecords); 4912 if (!DbgUsers.empty()) 4913 tryToSinkInstructionDbgValues(I, InsertPos, SrcBlock, DestBlock, DbgUsers); 4914 if (!DbgVariableRecords.empty()) 4915 tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock, 4916 DbgVariableRecords); 4917 4918 // PS: there are numerous flaws with this behaviour, not least that right now 4919 // assignments can be re-ordered past other assignments to the same variable 4920 // if they use different Values. Creating more undef assignements can never be 4921 // undone. And salvaging all users outside of this block can un-necessarily 4922 // alter the lifetime of the live-value that the variable refers to. 4923 // Some of these things can be resolved by tolerating debug use-before-defs in 4924 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend 4925 // being used for more architectures. 4926 4927 return true; 4928 } 4929 4930 void InstCombinerImpl::tryToSinkInstructionDbgValues( 4931 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, 4932 BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers) { 4933 // For all debug values in the destination block, the sunk instruction 4934 // will still be available, so they do not need to be dropped. 4935 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage; 4936 for (auto &DbgUser : DbgUsers) 4937 if (DbgUser->getParent() != DestBlock) 4938 DbgUsersToSalvage.push_back(DbgUser); 4939 4940 // Process the sinking DbgUsersToSalvage in reverse order, as we only want 4941 // to clone the last appearing debug intrinsic for each given variable. 4942 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4943 for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage) 4944 if (DVI->getParent() == SrcBlock) 4945 DbgUsersToSink.push_back(DVI); 4946 llvm::sort(DbgUsersToSink, 4947 [](auto *A, auto *B) { return B->comesBefore(A); }); 4948 4949 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4950 SmallSet<DebugVariable, 4> SunkVariables; 4951 for (auto *User : DbgUsersToSink) { 4952 // A dbg.declare instruction should not be cloned, since there can only be 4953 // one per variable fragment. It should be left in the original place 4954 // because the sunk instruction is not an alloca (otherwise we could not be 4955 // here). 4956 if (isa<DbgDeclareInst>(User)) 4957 continue; 4958 4959 DebugVariable DbgUserVariable = 4960 DebugVariable(User->getVariable(), User->getExpression(), 4961 User->getDebugLoc()->getInlinedAt()); 4962 4963 if (!SunkVariables.insert(DbgUserVariable).second) 4964 continue; 4965 4966 // Leave dbg.assign intrinsics in their original positions and there should 4967 // be no need to insert a clone. 4968 if (isa<DbgAssignIntrinsic>(User)) 4969 continue; 4970 4971 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4972 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4973 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4974 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4975 } 4976 4977 // Perform salvaging without the clones, then sink the clones. 4978 if (!DIIClones.empty()) { 4979 salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, {}); 4980 // The clones are in reverse order of original appearance, reverse again to 4981 // maintain the original order. 4982 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4983 DIIClone->insertBefore(InsertPos); 4984 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4985 } 4986 } 4987 } 4988 4989 void InstCombinerImpl::tryToSinkInstructionDbgVariableRecords( 4990 Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, 4991 BasicBlock *DestBlock, 4992 SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) { 4993 // Implementation of tryToSinkInstructionDbgValues, but for the 4994 // DbgVariableRecord of variable assignments rather than dbg.values. 4995 4996 // Fetch all DbgVariableRecords not already in the destination. 4997 SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage; 4998 for (auto &DVR : DbgVariableRecords) 4999 if (DVR->getParent() != DestBlock) 5000 DbgVariableRecordsToSalvage.push_back(DVR); 5001 5002 // Fetch a second collection, of DbgVariableRecords in the source block that 5003 // we're going to sink. 5004 SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink; 5005 for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage) 5006 if (DVR->getParent() == SrcBlock) 5007 DbgVariableRecordsToSink.push_back(DVR); 5008 5009 // Sort DbgVariableRecords according to their position in the block. This is a 5010 // partial order: DbgVariableRecords attached to different instructions will 5011 // be ordered by the instruction order, but DbgVariableRecords attached to the 5012 // same instruction won't have an order. 5013 auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool { 5014 return B->getInstruction()->comesBefore(A->getInstruction()); 5015 }; 5016 llvm::stable_sort(DbgVariableRecordsToSink, Order); 5017 5018 // If there are two assignments to the same variable attached to the same 5019 // instruction, the ordering between the two assignments is important. Scan 5020 // for this (rare) case and establish which is the last assignment. 5021 using InstVarPair = std::pair<const Instruction *, DebugVariable>; 5022 SmallDenseMap<InstVarPair, DbgVariableRecord *> FilterOutMap; 5023 if (DbgVariableRecordsToSink.size() > 1) { 5024 SmallDenseMap<InstVarPair, unsigned> CountMap; 5025 // Count how many assignments to each variable there is per instruction. 5026 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) { 5027 DebugVariable DbgUserVariable = 5028 DebugVariable(DVR->getVariable(), DVR->getExpression(), 5029 DVR->getDebugLoc()->getInlinedAt()); 5030 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1; 5031 } 5032 5033 // If there are any instructions with two assignments, add them to the 5034 // FilterOutMap to record that they need extra filtering. 5035 SmallPtrSet<const Instruction *, 4> DupSet; 5036 for (auto It : CountMap) { 5037 if (It.second > 1) { 5038 FilterOutMap[It.first] = nullptr; 5039 DupSet.insert(It.first.first); 5040 } 5041 } 5042 5043 // For all instruction/variable pairs needing extra filtering, find the 5044 // latest assignment. 5045 for (const Instruction *Inst : DupSet) { 5046 for (DbgVariableRecord &DVR : 5047 llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) { 5048 DebugVariable DbgUserVariable = 5049 DebugVariable(DVR.getVariable(), DVR.getExpression(), 5050 DVR.getDebugLoc()->getInlinedAt()); 5051 auto FilterIt = 5052 FilterOutMap.find(std::make_pair(Inst, DbgUserVariable)); 5053 if (FilterIt == FilterOutMap.end()) 5054 continue; 5055 if (FilterIt->second != nullptr) 5056 continue; 5057 FilterIt->second = &DVR; 5058 } 5059 } 5060 } 5061 5062 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter 5063 // out any duplicate assignments identified above. 5064 SmallVector<DbgVariableRecord *, 2> DVRClones; 5065 SmallSet<DebugVariable, 4> SunkVariables; 5066 for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) { 5067 if (DVR->Type == DbgVariableRecord::LocationType::Declare) 5068 continue; 5069 5070 DebugVariable DbgUserVariable = 5071 DebugVariable(DVR->getVariable(), DVR->getExpression(), 5072 DVR->getDebugLoc()->getInlinedAt()); 5073 5074 // For any variable where there were multiple assignments in the same place, 5075 // ignore all but the last assignment. 5076 if (!FilterOutMap.empty()) { 5077 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable); 5078 auto It = FilterOutMap.find(IVP); 5079 5080 // Filter out. 5081 if (It != FilterOutMap.end() && It->second != DVR) 5082 continue; 5083 } 5084 5085 if (!SunkVariables.insert(DbgUserVariable).second) 5086 continue; 5087 5088 if (DVR->isDbgAssign()) 5089 continue; 5090 5091 DVRClones.emplace_back(DVR->clone()); 5092 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n'); 5093 } 5094 5095 // Perform salvaging without the clones, then sink the clones. 5096 if (DVRClones.empty()) 5097 return; 5098 5099 salvageDebugInfoForDbgValues(*I, {}, DbgVariableRecordsToSalvage); 5100 5101 // The clones are in reverse order of original appearance. Assert that the 5102 // head bit is set on the iterator as we _should_ have received it via 5103 // getFirstInsertionPt. Inserting like this will reverse the clone order as 5104 // we'll repeatedly insert at the head, such as: 5105 // DVR-3 (third insertion goes here) 5106 // DVR-2 (second insertion goes here) 5107 // DVR-1 (first insertion goes here) 5108 // Any-Prior-DVRs 5109 // InsertPtInst 5110 assert(InsertPos.getHeadBit()); 5111 for (DbgVariableRecord *DVRClone : DVRClones) { 5112 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos); 5113 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n'); 5114 } 5115 } 5116 5117 bool InstCombinerImpl::run() { 5118 while (!Worklist.isEmpty()) { 5119 // Walk deferred instructions in reverse order, and push them to the 5120 // worklist, which means they'll end up popped from the worklist in-order. 5121 while (Instruction *I = Worklist.popDeferred()) { 5122 // Check to see if we can DCE the instruction. We do this already here to 5123 // reduce the number of uses and thus allow other folds to trigger. 5124 // Note that eraseInstFromFunction() may push additional instructions on 5125 // the deferred worklist, so this will DCE whole instruction chains. 5126 if (isInstructionTriviallyDead(I, &TLI)) { 5127 eraseInstFromFunction(*I); 5128 ++NumDeadInst; 5129 continue; 5130 } 5131 5132 Worklist.push(I); 5133 } 5134 5135 Instruction *I = Worklist.removeOne(); 5136 if (I == nullptr) continue; // skip null values. 5137 5138 // Check to see if we can DCE the instruction. 5139 if (isInstructionTriviallyDead(I, &TLI)) { 5140 eraseInstFromFunction(*I); 5141 ++NumDeadInst; 5142 continue; 5143 } 5144 5145 if (!DebugCounter::shouldExecute(VisitCounter)) 5146 continue; 5147 5148 // See if we can trivially sink this instruction to its user if we can 5149 // prove that the successor is not executed more frequently than our block. 5150 // Return the UserBlock if successful. 5151 auto getOptionalSinkBlockForInst = 5152 [this](Instruction *I) -> std::optional<BasicBlock *> { 5153 if (!EnableCodeSinking) 5154 return std::nullopt; 5155 5156 BasicBlock *BB = I->getParent(); 5157 BasicBlock *UserParent = nullptr; 5158 unsigned NumUsers = 0; 5159 5160 for (Use &U : I->uses()) { 5161 User *User = U.getUser(); 5162 if (User->isDroppable()) 5163 continue; 5164 if (NumUsers > MaxSinkNumUsers) 5165 return std::nullopt; 5166 5167 Instruction *UserInst = cast<Instruction>(User); 5168 // Special handling for Phi nodes - get the block the use occurs in. 5169 BasicBlock *UserBB = UserInst->getParent(); 5170 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 5171 UserBB = PN->getIncomingBlock(U); 5172 // Bail out if we have uses in different blocks. We don't do any 5173 // sophisticated analysis (i.e finding NearestCommonDominator of these 5174 // use blocks). 5175 if (UserParent && UserParent != UserBB) 5176 return std::nullopt; 5177 UserParent = UserBB; 5178 5179 // Make sure these checks are done only once, naturally we do the checks 5180 // the first time we get the userparent, this will save compile time. 5181 if (NumUsers == 0) { 5182 // Try sinking to another block. If that block is unreachable, then do 5183 // not bother. SimplifyCFG should handle it. 5184 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 5185 return std::nullopt; 5186 5187 auto *Term = UserParent->getTerminator(); 5188 // See if the user is one of our successors that has only one 5189 // predecessor, so that we don't have to split the critical edge. 5190 // Another option where we can sink is a block that ends with a 5191 // terminator that does not pass control to other block (such as 5192 // return or unreachable or resume). In this case: 5193 // - I dominates the User (by SSA form); 5194 // - the User will be executed at most once. 5195 // So sinking I down to User is always profitable or neutral. 5196 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 5197 return std::nullopt; 5198 5199 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 5200 } 5201 5202 NumUsers++; 5203 } 5204 5205 // No user or only has droppable users. 5206 if (!UserParent) 5207 return std::nullopt; 5208 5209 return UserParent; 5210 }; 5211 5212 auto OptBB = getOptionalSinkBlockForInst(I); 5213 if (OptBB) { 5214 auto *UserParent = *OptBB; 5215 // Okay, the CFG is simple enough, try to sink this instruction. 5216 if (tryToSinkInstruction(I, UserParent)) { 5217 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 5218 MadeIRChange = true; 5219 // We'll add uses of the sunk instruction below, but since 5220 // sinking can expose opportunities for it's *operands* add 5221 // them to the worklist 5222 for (Use &U : I->operands()) 5223 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 5224 Worklist.push(OpI); 5225 } 5226 } 5227 5228 // Now that we have an instruction, try combining it to simplify it. 5229 Builder.SetInsertPoint(I); 5230 Builder.CollectMetadataToCopy( 5231 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 5232 5233 #ifndef NDEBUG 5234 std::string OrigI; 5235 #endif 5236 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS);); 5237 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 5238 5239 if (Instruction *Result = visit(*I)) { 5240 ++NumCombined; 5241 // Should we replace the old instruction with a new one? 5242 if (Result != I) { 5243 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 5244 << " New = " << *Result << '\n'); 5245 5246 // We copy the old instruction's DebugLoc to the new instruction, unless 5247 // InstCombine already assigned a DebugLoc to it, in which case we 5248 // should trust the more specifically selected DebugLoc. 5249 if (!Result->getDebugLoc()) 5250 Result->setDebugLoc(I->getDebugLoc()); 5251 // We also copy annotation metadata to the new instruction. 5252 Result->copyMetadata(*I, LLVMContext::MD_annotation); 5253 // Everything uses the new instruction now. 5254 I->replaceAllUsesWith(Result); 5255 5256 // Move the name to the new instruction first. 5257 Result->takeName(I); 5258 5259 // Insert the new instruction into the basic block... 5260 BasicBlock *InstParent = I->getParent(); 5261 BasicBlock::iterator InsertPos = I->getIterator(); 5262 5263 // Are we replace a PHI with something that isn't a PHI, or vice versa? 5264 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 5265 // We need to fix up the insertion point. 5266 if (isa<PHINode>(I)) // PHI -> Non-PHI 5267 InsertPos = InstParent->getFirstInsertionPt(); 5268 else // Non-PHI -> PHI 5269 InsertPos = InstParent->getFirstNonPHIIt(); 5270 } 5271 5272 Result->insertInto(InstParent, InsertPos); 5273 5274 // Push the new instruction and any users onto the worklist. 5275 Worklist.pushUsersToWorkList(*Result); 5276 Worklist.push(Result); 5277 5278 eraseInstFromFunction(*I); 5279 } else { 5280 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 5281 << " New = " << *I << '\n'); 5282 5283 // If the instruction was modified, it's possible that it is now dead. 5284 // if so, remove it. 5285 if (isInstructionTriviallyDead(I, &TLI)) { 5286 eraseInstFromFunction(*I); 5287 } else { 5288 Worklist.pushUsersToWorkList(*I); 5289 Worklist.push(I); 5290 } 5291 } 5292 MadeIRChange = true; 5293 } 5294 } 5295 5296 Worklist.zap(); 5297 return MadeIRChange; 5298 } 5299 5300 // Track the scopes used by !alias.scope and !noalias. In a function, a 5301 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 5302 // by both sets. If not, the declaration of the scope can be safely omitted. 5303 // The MDNode of the scope can be omitted as well for the instructions that are 5304 // part of this function. We do not do that at this point, as this might become 5305 // too time consuming to do. 5306 class AliasScopeTracker { 5307 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 5308 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 5309 5310 public: 5311 void analyse(Instruction *I) { 5312 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 5313 if (!I->hasMetadataOtherThanDebugLoc()) 5314 return; 5315 5316 auto Track = [](Metadata *ScopeList, auto &Container) { 5317 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 5318 if (!MDScopeList || !Container.insert(MDScopeList).second) 5319 return; 5320 for (const auto &MDOperand : MDScopeList->operands()) 5321 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 5322 Container.insert(MDScope); 5323 }; 5324 5325 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 5326 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 5327 } 5328 5329 bool isNoAliasScopeDeclDead(Instruction *Inst) { 5330 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 5331 if (!Decl) 5332 return false; 5333 5334 assert(Decl->use_empty() && 5335 "llvm.experimental.noalias.scope.decl in use ?"); 5336 const MDNode *MDSL = Decl->getScopeList(); 5337 assert(MDSL->getNumOperands() == 1 && 5338 "llvm.experimental.noalias.scope should refer to a single scope"); 5339 auto &MDOperand = MDSL->getOperand(0); 5340 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 5341 return !UsedAliasScopesAndLists.contains(MD) || 5342 !UsedNoAliasScopesAndLists.contains(MD); 5343 5344 // Not an MDNode ? throw away. 5345 return true; 5346 } 5347 }; 5348 5349 /// Populate the IC worklist from a function, by walking it in reverse 5350 /// post-order and adding all reachable code to the worklist. 5351 /// 5352 /// This has a couple of tricks to make the code faster and more powerful. In 5353 /// particular, we constant fold and DCE instructions as we go, to avoid adding 5354 /// them to the worklist (this significantly speeds up instcombine on code where 5355 /// many instructions are dead or constant). Additionally, if we find a branch 5356 /// whose condition is a known constant, we only visit the reachable successors. 5357 bool InstCombinerImpl::prepareWorklist(Function &F) { 5358 bool MadeIRChange = false; 5359 SmallPtrSet<BasicBlock *, 32> LiveBlocks; 5360 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 5361 DenseMap<Constant *, Constant *> FoldedConstants; 5362 AliasScopeTracker SeenAliasScopes; 5363 5364 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) { 5365 for (BasicBlock *Succ : successors(BB)) 5366 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second) 5367 for (PHINode &PN : Succ->phis()) 5368 for (Use &U : PN.incoming_values()) 5369 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) { 5370 U.set(PoisonValue::get(PN.getType())); 5371 MadeIRChange = true; 5372 } 5373 }; 5374 5375 for (BasicBlock *BB : RPOT) { 5376 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) { 5377 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 5378 })) { 5379 HandleOnlyLiveSuccessor(BB, nullptr); 5380 continue; 5381 } 5382 LiveBlocks.insert(BB); 5383 5384 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 5385 // ConstantProp instruction if trivially constant. 5386 if (!Inst.use_empty() && 5387 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 5388 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) { 5389 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 5390 << '\n'); 5391 Inst.replaceAllUsesWith(C); 5392 ++NumConstProp; 5393 if (isInstructionTriviallyDead(&Inst, &TLI)) 5394 Inst.eraseFromParent(); 5395 MadeIRChange = true; 5396 continue; 5397 } 5398 5399 // See if we can constant fold its operands. 5400 for (Use &U : Inst.operands()) { 5401 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 5402 continue; 5403 5404 auto *C = cast<Constant>(U); 5405 Constant *&FoldRes = FoldedConstants[C]; 5406 if (!FoldRes) 5407 FoldRes = ConstantFoldConstant(C, DL, &TLI); 5408 5409 if (FoldRes != C) { 5410 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 5411 << "\n Old = " << *C 5412 << "\n New = " << *FoldRes << '\n'); 5413 U = FoldRes; 5414 MadeIRChange = true; 5415 } 5416 } 5417 5418 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 5419 // these call instructions consumes non-trivial amount of time and 5420 // provides no value for the optimization. 5421 if (!Inst.isDebugOrPseudoInst()) { 5422 InstrsForInstructionWorklist.push_back(&Inst); 5423 SeenAliasScopes.analyse(&Inst); 5424 } 5425 } 5426 5427 // If this is a branch or switch on a constant, mark only the single 5428 // live successor. Otherwise assume all successors are live. 5429 Instruction *TI = BB->getTerminator(); 5430 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) { 5431 if (isa<UndefValue>(BI->getCondition())) { 5432 // Branch on undef is UB. 5433 HandleOnlyLiveSuccessor(BB, nullptr); 5434 continue; 5435 } 5436 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 5437 bool CondVal = Cond->getZExtValue(); 5438 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal)); 5439 continue; 5440 } 5441 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 5442 if (isa<UndefValue>(SI->getCondition())) { 5443 // Switch on undef is UB. 5444 HandleOnlyLiveSuccessor(BB, nullptr); 5445 continue; 5446 } 5447 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 5448 HandleOnlyLiveSuccessor(BB, 5449 SI->findCaseValue(Cond)->getCaseSuccessor()); 5450 continue; 5451 } 5452 } 5453 } 5454 5455 // Remove instructions inside unreachable blocks. This prevents the 5456 // instcombine code from having to deal with some bad special cases, and 5457 // reduces use counts of instructions. 5458 for (BasicBlock &BB : F) { 5459 if (LiveBlocks.count(&BB)) 5460 continue; 5461 5462 unsigned NumDeadInstInBB; 5463 unsigned NumDeadDbgInstInBB; 5464 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 5465 removeAllNonTerminatorAndEHPadInstructions(&BB); 5466 5467 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 5468 NumDeadInst += NumDeadInstInBB; 5469 } 5470 5471 // Once we've found all of the instructions to add to instcombine's worklist, 5472 // add them in reverse order. This way instcombine will visit from the top 5473 // of the function down. This jives well with the way that it adds all uses 5474 // of instructions to the worklist after doing a transformation, thus avoiding 5475 // some N^2 behavior in pathological cases. 5476 Worklist.reserve(InstrsForInstructionWorklist.size()); 5477 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 5478 // DCE instruction if trivially dead. As we iterate in reverse program 5479 // order here, we will clean up whole chains of dead instructions. 5480 if (isInstructionTriviallyDead(Inst, &TLI) || 5481 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 5482 ++NumDeadInst; 5483 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 5484 salvageDebugInfo(*Inst); 5485 Inst->eraseFromParent(); 5486 MadeIRChange = true; 5487 continue; 5488 } 5489 5490 Worklist.push(Inst); 5491 } 5492 5493 return MadeIRChange; 5494 } 5495 5496 void InstCombiner::computeBackEdges() { 5497 // Collect backedges. 5498 SmallPtrSet<BasicBlock *, 16> Visited; 5499 for (BasicBlock *BB : RPOT) { 5500 Visited.insert(BB); 5501 for (BasicBlock *Succ : successors(BB)) 5502 if (Visited.contains(Succ)) 5503 BackEdges.insert({BB, Succ}); 5504 } 5505 ComputedBackEdges = true; 5506 } 5507 5508 static bool combineInstructionsOverFunction( 5509 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 5510 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 5511 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 5512 BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, 5513 const InstCombineOptions &Opts) { 5514 auto &DL = F.getDataLayout(); 5515 bool VerifyFixpoint = Opts.VerifyFixpoint && 5516 !F.hasFnAttribute("instcombine-no-verify-fixpoint"); 5517 5518 /// Builder - This is an IRBuilder that automatically inserts new 5519 /// instructions into the worklist when they are created. 5520 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 5521 F.getContext(), TargetFolder(DL), 5522 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 5523 Worklist.add(I); 5524 if (auto *Assume = dyn_cast<AssumeInst>(I)) 5525 AC.registerAssumption(Assume); 5526 })); 5527 5528 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front()); 5529 5530 // Lower dbg.declare intrinsics otherwise their value may be clobbered 5531 // by instcombiner. 5532 bool MadeIRChange = false; 5533 if (ShouldLowerDbgDeclare) 5534 MadeIRChange = LowerDbgDeclare(F); 5535 5536 // Iterate while there is work to do. 5537 unsigned Iteration = 0; 5538 while (true) { 5539 ++Iteration; 5540 5541 if (Iteration > Opts.MaxIterations && !VerifyFixpoint) { 5542 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations 5543 << " on " << F.getName() 5544 << " reached; stopping without verifying fixpoint\n"); 5545 break; 5546 } 5547 5548 ++NumWorklistIterations; 5549 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 5550 << F.getName() << "\n"); 5551 5552 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 5553 ORE, BFI, BPI, PSI, DL, RPOT); 5554 IC.MaxArraySizeForCombine = MaxArraySize; 5555 bool MadeChangeInThisIteration = IC.prepareWorklist(F); 5556 MadeChangeInThisIteration |= IC.run(); 5557 if (!MadeChangeInThisIteration) 5558 break; 5559 5560 MadeIRChange = true; 5561 if (Iteration > Opts.MaxIterations) { 5562 report_fatal_error( 5563 "Instruction Combining on " + Twine(F.getName()) + 5564 " did not reach a fixpoint after " + Twine(Opts.MaxIterations) + 5565 " iterations. " + 5566 "Use 'instcombine<no-verify-fixpoint>' or function attribute " 5567 "'instcombine-no-verify-fixpoint' to suppress this error.", 5568 /*GenCrashDiag=*/false); 5569 } 5570 } 5571 5572 if (Iteration == 1) 5573 ++NumOneIteration; 5574 else if (Iteration == 2) 5575 ++NumTwoIterations; 5576 else if (Iteration == 3) 5577 ++NumThreeIterations; 5578 else 5579 ++NumFourOrMoreIterations; 5580 5581 return MadeIRChange; 5582 } 5583 5584 InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {} 5585 5586 void InstCombinePass::printPipeline( 5587 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 5588 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline( 5589 OS, MapClassName2PassName); 5590 OS << '<'; 5591 OS << "max-iterations=" << Options.MaxIterations << ";"; 5592 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint"; 5593 OS << '>'; 5594 } 5595 5596 char InstCombinePass::ID = 0; 5597 5598 PreservedAnalyses InstCombinePass::run(Function &F, 5599 FunctionAnalysisManager &AM) { 5600 auto &LRT = AM.getResult<LastRunTrackingAnalysis>(F); 5601 // No changes since last InstCombine pass, exit early. 5602 if (LRT.shouldSkip(&ID)) 5603 return PreservedAnalyses::all(); 5604 5605 auto &AC = AM.getResult<AssumptionAnalysis>(F); 5606 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 5607 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 5608 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5609 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 5610 5611 auto *AA = &AM.getResult<AAManager>(F); 5612 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 5613 ProfileSummaryInfo *PSI = 5614 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 5615 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 5616 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 5617 auto *BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F); 5618 5619 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 5620 BFI, BPI, PSI, Options)) { 5621 // No changes, all analyses are preserved. 5622 LRT.update(&ID, /*Changed=*/false); 5623 return PreservedAnalyses::all(); 5624 } 5625 5626 // Mark all the analyses that instcombine updates as preserved. 5627 PreservedAnalyses PA; 5628 LRT.update(&ID, /*Changed=*/true); 5629 PA.preserve<LastRunTrackingAnalysis>(); 5630 PA.preserveSet<CFGAnalyses>(); 5631 return PA; 5632 } 5633 5634 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 5635 AU.setPreservesCFG(); 5636 AU.addRequired<AAResultsWrapperPass>(); 5637 AU.addRequired<AssumptionCacheTracker>(); 5638 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5639 AU.addRequired<TargetTransformInfoWrapperPass>(); 5640 AU.addRequired<DominatorTreeWrapperPass>(); 5641 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5642 AU.addPreserved<DominatorTreeWrapperPass>(); 5643 AU.addPreserved<AAResultsWrapperPass>(); 5644 AU.addPreserved<BasicAAWrapperPass>(); 5645 AU.addPreserved<GlobalsAAWrapperPass>(); 5646 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 5647 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 5648 } 5649 5650 bool InstructionCombiningPass::runOnFunction(Function &F) { 5651 if (skipFunction(F)) 5652 return false; 5653 5654 // Required analyses. 5655 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5656 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5657 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 5658 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5659 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5660 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5661 5662 // Optional analyses. 5663 ProfileSummaryInfo *PSI = 5664 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 5665 BlockFrequencyInfo *BFI = 5666 (PSI && PSI->hasProfileSummary()) ? 5667 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 5668 nullptr; 5669 BranchProbabilityInfo *BPI = nullptr; 5670 if (auto *WrapperPass = 5671 getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>()) 5672 BPI = &WrapperPass->getBPI(); 5673 5674 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 5675 BFI, BPI, PSI, InstCombineOptions()); 5676 } 5677 5678 char InstructionCombiningPass::ID = 0; 5679 5680 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) { 5681 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 5682 } 5683 5684 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 5685 "Combine redundant instructions", false, false) 5686 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5687 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 5688 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5689 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5690 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5691 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 5692 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5693 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 5694 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 5695 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 5696 "Combine redundant instructions", false, false) 5697 5698 // Initialization Routines 5699 void llvm::initializeInstCombine(PassRegistry &Registry) { 5700 initializeInstructionCombiningPassPass(Registry); 5701 } 5702 5703 FunctionPass *llvm::createInstructionCombiningPass() { 5704 return new InstructionCombiningPass(); 5705 } 5706