1 //===- InstCombineShifts.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitShl, visitLShr, and visitAShr functions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/Analysis/InstructionSimplify.h" 15 #include "llvm/IR/IntrinsicInst.h" 16 #include "llvm/IR/PatternMatch.h" 17 #include "llvm/Transforms/InstCombine/InstCombiner.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 #define DEBUG_TYPE "instcombine" 22 23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, 24 Value *ShAmt1) { 25 // We have two shift amounts from two different shifts. The types of those 26 // shift amounts may not match. If that's the case let's bailout now.. 27 if (ShAmt0->getType() != ShAmt1->getType()) 28 return false; 29 30 // As input, we have the following pattern: 31 // Sh0 (Sh1 X, Q), K 32 // We want to rewrite that as: 33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x) 34 // While we know that originally (Q+K) would not overflow 35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of 36 // shift amounts. so it may now overflow in smaller bitwidth. 37 // To ensure that does not happen, we need to ensure that the total maximal 38 // shift amount is still representable in that smaller bit width. 39 unsigned MaximalPossibleTotalShiftAmount = 40 (Sh0->getType()->getScalarSizeInBits() - 1) + 41 (Sh1->getType()->getScalarSizeInBits() - 1); 42 APInt MaximalRepresentableShiftAmount = 43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits()); 44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount); 45 } 46 47 // Given pattern: 48 // (x shiftopcode Q) shiftopcode K 49 // we should rewrite it as 50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and 51 // 52 // This is valid for any shift, but they must be identical, and we must be 53 // careful in case we have (zext(Q)+zext(K)) and look past extensions, 54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus. 55 // 56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this 57 // pattern has any 2 right-shifts that sum to 1 less than original bit width. 58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts( 59 BinaryOperator *Sh0, const SimplifyQuery &SQ, 60 bool AnalyzeForSignBitExtraction) { 61 // Look for a shift of some instruction, ignore zext of shift amount if any. 62 Instruction *Sh0Op0; 63 Value *ShAmt0; 64 if (!match(Sh0, 65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0))))) 66 return nullptr; 67 68 // If there is a truncation between the two shifts, we must make note of it 69 // and look through it. The truncation imposes additional constraints on the 70 // transform. 71 Instruction *Sh1; 72 Value *Trunc = nullptr; 73 match(Sh0Op0, 74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)), 75 m_Instruction(Sh1))); 76 77 // Inner shift: (x shiftopcode ShAmt1) 78 // Like with other shift, ignore zext of shift amount if any. 79 Value *X, *ShAmt1; 80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1))))) 81 return nullptr; 82 83 // Verify that it would be safe to try to add those two shift amounts. 84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1)) 85 return nullptr; 86 87 // We are only looking for signbit extraction if we have two right shifts. 88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) && 89 match(Sh1, m_Shr(m_Value(), m_Value())); 90 // ... and if it's not two right-shifts, we know the answer already. 91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts) 92 return nullptr; 93 94 // The shift opcodes must be identical, unless we are just checking whether 95 // this pattern can be interpreted as a sign-bit-extraction. 96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode(); 97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode(); 98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction) 99 return nullptr; 100 101 // If we saw truncation, we'll need to produce extra instruction, 102 // and for that one of the operands of the shift must be one-use, 103 // unless of course we don't actually plan to produce any instructions here. 104 if (Trunc && !AnalyzeForSignBitExtraction && 105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 106 return nullptr; 107 108 // Can we fold (ShAmt0+ShAmt1) ? 109 auto *NewShAmt = dyn_cast_or_null<Constant>( 110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false, 111 SQ.getWithInstruction(Sh0))); 112 if (!NewShAmt) 113 return nullptr; // Did not simplify. 114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits(); 115 unsigned XBitWidth = X->getType()->getScalarSizeInBits(); 116 // Is the new shift amount smaller than the bit width of inner/new shift? 117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, 118 APInt(NewShAmtBitWidth, XBitWidth)))) 119 return nullptr; // FIXME: could perform constant-folding. 120 121 // If there was a truncation, and we have a right-shift, we can only fold if 122 // we are left with the original sign bit. Likewise, if we were just checking 123 // that this is a sighbit extraction, this is the place to check it. 124 // FIXME: zero shift amount is also legal here, but we can't *easily* check 125 // more than one predicate so it's not really worth it. 126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) { 127 // If it's not a sign bit extraction, then we're done. 128 if (!match(NewShAmt, 129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 130 APInt(NewShAmtBitWidth, XBitWidth - 1)))) 131 return nullptr; 132 // If it is, and that was the question, return the base value. 133 if (AnalyzeForSignBitExtraction) 134 return X; 135 } 136 137 assert(IdenticalShOpcodes && "Should not get here with different shifts."); 138 139 if (NewShAmt->getType() != X->getType()) { 140 NewShAmt = ConstantFoldCastOperand(Instruction::ZExt, NewShAmt, 141 X->getType(), SQ.DL); 142 if (!NewShAmt) 143 return nullptr; 144 } 145 146 // All good, we can do this fold. 147 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt); 148 149 // The flags can only be propagated if there wasn't a trunc. 150 if (!Trunc) { 151 // If the pattern did not involve trunc, and both of the original shifts 152 // had the same flag set, preserve the flag. 153 if (ShiftOpcode == Instruction::BinaryOps::Shl) { 154 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() && 155 Sh1->hasNoUnsignedWrap()); 156 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() && 157 Sh1->hasNoSignedWrap()); 158 } else { 159 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact()); 160 } 161 } 162 163 Instruction *Ret = NewShift; 164 if (Trunc) { 165 Builder.Insert(NewShift); 166 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType()); 167 } 168 169 return Ret; 170 } 171 172 // If we have some pattern that leaves only some low bits set, and then performs 173 // left-shift of those bits, if none of the bits that are left after the final 174 // shift are modified by the mask, we can omit the mask. 175 // 176 // There are many variants to this pattern: 177 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt 178 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt 179 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt 180 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt 181 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt 182 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt 183 // All these patterns can be simplified to just: 184 // x << ShiftShAmt 185 // iff: 186 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x) 187 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt) 188 static Instruction * 189 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, 190 const SimplifyQuery &Q, 191 InstCombiner::BuilderTy &Builder) { 192 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl && 193 "The input must be 'shl'!"); 194 195 Value *Masked, *ShiftShAmt; 196 match(OuterShift, 197 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt)))); 198 199 // *If* there is a truncation between an outer shift and a possibly-mask, 200 // then said truncation *must* be one-use, else we can't perform the fold. 201 Value *Trunc; 202 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) && 203 !Trunc->hasOneUse()) 204 return nullptr; 205 206 Type *NarrowestTy = OuterShift->getType(); 207 Type *WidestTy = Masked->getType(); 208 bool HadTrunc = WidestTy != NarrowestTy; 209 210 // The mask must be computed in a type twice as wide to ensure 211 // that no bits are lost if the sum-of-shifts is wider than the base type. 212 Type *ExtendedTy = WidestTy->getExtendedType(); 213 214 Value *MaskShAmt; 215 216 // ((1 << MaskShAmt) - 1) 217 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes()); 218 // (~(-1 << maskNbits)) 219 auto MaskB = m_Not(m_Shl(m_AllOnes(), m_Value(MaskShAmt))); 220 // (-1 l>> MaskShAmt) 221 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt)); 222 // ((-1 << MaskShAmt) l>> MaskShAmt) 223 auto MaskD = 224 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt)); 225 226 Value *X; 227 Constant *NewMask; 228 229 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) { 230 // Peek through an optional zext of the shift amount. 231 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 232 233 // Verify that it would be safe to try to add those two shift amounts. 234 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 235 MaskShAmt)) 236 return nullptr; 237 238 // Can we simplify (MaskShAmt+ShiftShAmt) ? 239 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst( 240 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 241 if (!SumOfShAmts) 242 return nullptr; // Did not simplify. 243 // In this pattern SumOfShAmts correlates with the number of low bits 244 // that shall remain in the root value (OuterShift). 245 246 // An extend of an undef value becomes zero because the high bits are never 247 // completely unknown. Replace the `undef` shift amounts with final 248 // shift bitwidth to ensure that the value remains undef when creating the 249 // subsequent shift op. 250 SumOfShAmts = Constant::replaceUndefsWith( 251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(), 252 ExtendedTy->getScalarSizeInBits())); 253 auto *ExtendedSumOfShAmts = ConstantFoldCastOperand( 254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.DL); 255 if (!ExtendedSumOfShAmts) 256 return nullptr; 257 258 // And compute the mask as usual: ~(-1 << (SumOfShAmts)) 259 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 260 Constant *ExtendedInvertedMask = ConstantFoldBinaryOpOperands( 261 Instruction::Shl, ExtendedAllOnes, ExtendedSumOfShAmts, Q.DL); 262 if (!ExtendedInvertedMask) 263 return nullptr; 264 265 NewMask = ConstantExpr::getNot(ExtendedInvertedMask); 266 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) || 267 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)), 268 m_Deferred(MaskShAmt)))) { 269 // Peek through an optional zext of the shift amount. 270 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt))); 271 272 // Verify that it would be safe to try to add those two shift amounts. 273 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked, 274 MaskShAmt)) 275 return nullptr; 276 277 // Can we simplify (ShiftShAmt-MaskShAmt) ? 278 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst( 279 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q)); 280 if (!ShAmtsDiff) 281 return nullptr; // Did not simplify. 282 // In this pattern ShAmtsDiff correlates with the number of high bits that 283 // shall be unset in the root value (OuterShift). 284 285 // An extend of an undef value becomes zero because the high bits are never 286 // completely unknown. Replace the `undef` shift amounts with negated 287 // bitwidth of innermost shift to ensure that the value remains undef when 288 // creating the subsequent shift op. 289 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits(); 290 ShAmtsDiff = Constant::replaceUndefsWith( 291 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(), 292 -WidestTyBitWidth)); 293 auto *ExtendedNumHighBitsToClear = ConstantFoldCastOperand( 294 Instruction::ZExt, 295 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(), 296 WidestTyBitWidth, 297 /*isSigned=*/false), 298 ShAmtsDiff), 299 ExtendedTy, Q.DL); 300 if (!ExtendedNumHighBitsToClear) 301 return nullptr; 302 303 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear)) 304 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy); 305 NewMask = ConstantFoldBinaryOpOperands(Instruction::LShr, ExtendedAllOnes, 306 ExtendedNumHighBitsToClear, Q.DL); 307 if (!NewMask) 308 return nullptr; 309 } else 310 return nullptr; // Don't know anything about this pattern. 311 312 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy); 313 314 // Does this mask has any unset bits? If not then we can just not apply it. 315 bool NeedMask = !match(NewMask, m_AllOnes()); 316 317 // If we need to apply a mask, there are several more restrictions we have. 318 if (NeedMask) { 319 // The old masking instruction must go away. 320 if (!Masked->hasOneUse()) 321 return nullptr; 322 // The original "masking" instruction must not have been`ashr`. 323 if (match(Masked, m_AShr(m_Value(), m_Value()))) 324 return nullptr; 325 } 326 327 // If we need to apply truncation, let's do it first, since we can. 328 // We have already ensured that the old truncation will go away. 329 if (HadTrunc) 330 X = Builder.CreateTrunc(X, NarrowestTy); 331 332 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits. 333 // We didn't change the Type of this outermost shift, so we can just do it. 334 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X, 335 OuterShift->getOperand(1)); 336 if (!NeedMask) 337 return NewShift; 338 339 Builder.Insert(NewShift); 340 return BinaryOperator::Create(Instruction::And, NewShift, NewMask); 341 } 342 343 /// If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ 344 /// shl) that itself has a shift-by-constant operand with identical opcode, we 345 /// may be able to convert that into 2 independent shifts followed by the logic 346 /// op. This eliminates a use of an intermediate value (reduces dependency 347 /// chain). 348 static Instruction *foldShiftOfShiftedBinOp(BinaryOperator &I, 349 InstCombiner::BuilderTy &Builder) { 350 assert(I.isShift() && "Expected a shift as input"); 351 auto *BinInst = dyn_cast<BinaryOperator>(I.getOperand(0)); 352 if (!BinInst || 353 (!BinInst->isBitwiseLogicOp() && 354 BinInst->getOpcode() != Instruction::Add && 355 BinInst->getOpcode() != Instruction::Sub) || 356 !BinInst->hasOneUse()) 357 return nullptr; 358 359 Constant *C0, *C1; 360 if (!match(I.getOperand(1), m_Constant(C1))) 361 return nullptr; 362 363 Instruction::BinaryOps ShiftOpcode = I.getOpcode(); 364 // Transform for add/sub only works with shl. 365 if ((BinInst->getOpcode() == Instruction::Add || 366 BinInst->getOpcode() == Instruction::Sub) && 367 ShiftOpcode != Instruction::Shl) 368 return nullptr; 369 370 Type *Ty = I.getType(); 371 372 // Find a matching shift by constant. The fold is not valid if the sum 373 // of the shift values equals or exceeds bitwidth. 374 Value *X, *Y; 375 auto matchFirstShift = [&](Value *V, Value *W) { 376 unsigned Size = Ty->getScalarSizeInBits(); 377 APInt Threshold(Size, Size); 378 return match(V, m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0))) && 379 (V->hasOneUse() || match(W, m_ImmConstant())) && 380 match(ConstantExpr::getAdd(C0, C1), 381 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 382 }; 383 384 // Logic ops and Add are commutative, so check each operand for a match. Sub 385 // is not so we cannot reoder if we match operand(1) and need to keep the 386 // operands in their original positions. 387 bool FirstShiftIsOp1 = false; 388 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1))) 389 Y = BinInst->getOperand(1); 390 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) { 391 Y = BinInst->getOperand(0); 392 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub; 393 } else 394 return nullptr; 395 396 // shift (binop (shift X, C0), Y), C1 -> binop (shift X, C0+C1), (shift Y, C1) 397 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1); 398 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC); 399 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1); 400 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1; 401 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2; 402 return BinaryOperator::Create(BinInst->getOpcode(), Op1, Op2); 403 } 404 405 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) { 406 if (Instruction *Phi = foldBinopWithPhiOperands(I)) 407 return Phi; 408 409 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 410 assert(Op0->getType() == Op1->getType()); 411 Type *Ty = I.getType(); 412 413 // If the shift amount is a one-use `sext`, we can demote it to `zext`. 414 Value *Y; 415 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) { 416 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName()); 417 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt); 418 } 419 420 // See if we can fold away this shift. 421 if (SimplifyDemandedInstructionBits(I)) 422 return &I; 423 424 // Try to fold constant and into select arguments. 425 if (isa<Constant>(Op0)) 426 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 427 if (Instruction *R = FoldOpIntoSelect(I, SI)) 428 return R; 429 430 Constant *CUI; 431 if (match(Op1, m_ImmConstant(CUI))) 432 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 433 return Res; 434 435 if (auto *NewShift = cast_or_null<Instruction>( 436 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ))) 437 return NewShift; 438 439 // Pre-shift a constant shifted by a variable amount with constant offset: 440 // C shift (A add nuw C1) --> (C shift C1) shift A 441 Value *A; 442 Constant *C, *C1; 443 if (match(Op0, m_Constant(C)) && 444 match(Op1, m_NUWAddLike(m_Value(A), m_Constant(C1)))) { 445 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1); 446 BinaryOperator *NewShiftOp = BinaryOperator::Create(I.getOpcode(), NewC, A); 447 if (I.getOpcode() == Instruction::Shl) { 448 NewShiftOp->setHasNoSignedWrap(I.hasNoSignedWrap()); 449 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 450 } else { 451 NewShiftOp->setIsExact(I.isExact()); 452 } 453 return NewShiftOp; 454 } 455 456 unsigned BitWidth = Ty->getScalarSizeInBits(); 457 458 const APInt *AC, *AddC; 459 // Try to pre-shift a constant shifted by a variable amount added with a 460 // negative number: 461 // C << (X - AddC) --> (C >> AddC) << X 462 // and 463 // C >> (X - AddC) --> (C << AddC) >> X 464 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) && 465 AddC->isNegative() && (-*AddC).ult(BitWidth)) { 466 assert(!AC->isZero() && "Expected simplify of shifted zero"); 467 unsigned PosOffset = (-*AddC).getZExtValue(); 468 469 auto isSuitableForPreShift = [PosOffset, &I, AC]() { 470 switch (I.getOpcode()) { 471 default: 472 return false; 473 case Instruction::Shl: 474 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) && 475 AC->eq(AC->lshr(PosOffset).shl(PosOffset)); 476 case Instruction::LShr: 477 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset)); 478 case Instruction::AShr: 479 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset)); 480 } 481 }; 482 if (isSuitableForPreShift()) { 483 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl 484 ? AC->lshr(PosOffset) 485 : AC->shl(PosOffset)); 486 BinaryOperator *NewShiftOp = 487 BinaryOperator::Create(I.getOpcode(), NewC, A); 488 if (I.getOpcode() == Instruction::Shl) { 489 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 490 } else { 491 NewShiftOp->setIsExact(); 492 } 493 return NewShiftOp; 494 } 495 } 496 497 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2. 498 // Because shifts by negative values (which could occur if A were negative) 499 // are undefined. 500 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) && 501 match(C, m_Power2())) { 502 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't 503 // demand the sign bit (and many others) here?? 504 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1)); 505 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName()); 506 return replaceOperand(I, 1, Rem); 507 } 508 509 if (Instruction *Logic = foldShiftOfShiftedBinOp(I, Builder)) 510 return Logic; 511 512 if (match(Op1, m_Or(m_Value(), m_SpecificInt(BitWidth - 1)))) 513 return replaceOperand(I, 1, ConstantInt::get(Ty, BitWidth - 1)); 514 515 Instruction *CmpIntr; 516 if ((I.getOpcode() == Instruction::LShr || 517 I.getOpcode() == Instruction::AShr) && 518 match(Op0, m_OneUse(m_Instruction(CmpIntr))) && 519 isa<CmpIntrinsic>(CmpIntr) && 520 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) { 521 Value *Cmp = 522 Builder.CreateICmp(cast<CmpIntrinsic>(CmpIntr)->getLTPredicate(), 523 CmpIntr->getOperand(0), CmpIntr->getOperand(1)); 524 return CastInst::Create(I.getOpcode() == Instruction::LShr 525 ? Instruction::ZExt 526 : Instruction::SExt, 527 Cmp, Ty); 528 } 529 530 return nullptr; 531 } 532 533 /// Return true if we can simplify two logical (either left or right) shifts 534 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2. 535 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, 536 Instruction *InnerShift, 537 InstCombinerImpl &IC, Instruction *CxtI) { 538 assert(InnerShift->isLogicalShift() && "Unexpected instruction type"); 539 540 // We need constant scalar or constant splat shifts. 541 const APInt *InnerShiftConst; 542 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst))) 543 return false; 544 545 // Two logical shifts in the same direction: 546 // shl (shl X, C1), C2 --> shl X, C1 + C2 547 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 548 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 549 if (IsInnerShl == IsOuterShl) 550 return true; 551 552 // Equal shift amounts in opposite directions become bitwise 'and': 553 // lshr (shl X, C), C --> and X, C' 554 // shl (lshr X, C), C --> and X, C' 555 if (*InnerShiftConst == OuterShAmt) 556 return true; 557 558 // If the 2nd shift is bigger than the 1st, we can fold: 559 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3 560 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3 561 // but it isn't profitable unless we know the and'd out bits are already zero. 562 // Also, check that the inner shift is valid (less than the type width) or 563 // we'll crash trying to produce the bit mask for the 'and'. 564 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits(); 565 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) { 566 unsigned InnerShAmt = InnerShiftConst->getZExtValue(); 567 unsigned MaskShift = 568 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt; 569 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift; 570 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI)) 571 return true; 572 } 573 574 return false; 575 } 576 577 /// See if we can compute the specified value, but shifted logically to the left 578 /// or right by some number of bits. This should return true if the expression 579 /// can be computed for the same cost as the current expression tree. This is 580 /// used to eliminate extraneous shifting from things like: 581 /// %C = shl i128 %A, 64 582 /// %D = shl i128 %B, 96 583 /// %E = or i128 %C, %D 584 /// %F = lshr i128 %E, 64 585 /// where the client will ask if E can be computed shifted right by 64-bits. If 586 /// this succeeds, getShiftedValue() will be called to produce the value. 587 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, 588 InstCombinerImpl &IC, Instruction *CxtI) { 589 // We can always evaluate immediate constants. 590 if (match(V, m_ImmConstant())) 591 return true; 592 593 Instruction *I = dyn_cast<Instruction>(V); 594 if (!I) return false; 595 596 // We can't mutate something that has multiple uses: doing so would 597 // require duplicating the instruction in general, which isn't profitable. 598 if (!I->hasOneUse()) return false; 599 600 switch (I->getOpcode()) { 601 default: return false; 602 case Instruction::And: 603 case Instruction::Or: 604 case Instruction::Xor: 605 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 606 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) && 607 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I); 608 609 case Instruction::Shl: 610 case Instruction::LShr: 611 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI); 612 613 case Instruction::Select: { 614 SelectInst *SI = cast<SelectInst>(I); 615 Value *TrueVal = SI->getTrueValue(); 616 Value *FalseVal = SI->getFalseValue(); 617 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) && 618 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI); 619 } 620 case Instruction::PHI: { 621 // We can change a phi if we can change all operands. Note that we never 622 // get into trouble with cyclic PHIs here because we only consider 623 // instructions with a single use. 624 PHINode *PN = cast<PHINode>(I); 625 for (Value *IncValue : PN->incoming_values()) 626 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN)) 627 return false; 628 return true; 629 } 630 case Instruction::Mul: { 631 const APInt *MulConst; 632 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`) 633 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) && 634 MulConst->isNegatedPowerOf2() && MulConst->countr_zero() == NumBits; 635 } 636 } 637 } 638 639 /// Fold OuterShift (InnerShift X, C1), C2. 640 /// See canEvaluateShiftedShift() for the constraints on these instructions. 641 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, 642 bool IsOuterShl, 643 InstCombiner::BuilderTy &Builder) { 644 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl; 645 Type *ShType = InnerShift->getType(); 646 unsigned TypeWidth = ShType->getScalarSizeInBits(); 647 648 // We only accept shifts-by-a-constant in canEvaluateShifted(). 649 const APInt *C1; 650 match(InnerShift->getOperand(1), m_APInt(C1)); 651 unsigned InnerShAmt = C1->getZExtValue(); 652 653 // Change the shift amount and clear the appropriate IR flags. 654 auto NewInnerShift = [&](unsigned ShAmt) { 655 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt)); 656 if (IsInnerShl) { 657 InnerShift->setHasNoUnsignedWrap(false); 658 InnerShift->setHasNoSignedWrap(false); 659 } else { 660 InnerShift->setIsExact(false); 661 } 662 return InnerShift; 663 }; 664 665 // Two logical shifts in the same direction: 666 // shl (shl X, C1), C2 --> shl X, C1 + C2 667 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2 668 if (IsInnerShl == IsOuterShl) { 669 // If this is an oversized composite shift, then unsigned shifts get 0. 670 if (InnerShAmt + OuterShAmt >= TypeWidth) 671 return Constant::getNullValue(ShType); 672 673 return NewInnerShift(InnerShAmt + OuterShAmt); 674 } 675 676 // Equal shift amounts in opposite directions become bitwise 'and': 677 // lshr (shl X, C), C --> and X, C' 678 // shl (lshr X, C), C --> and X, C' 679 if (InnerShAmt == OuterShAmt) { 680 APInt Mask = IsInnerShl 681 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt) 682 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt); 683 Value *And = Builder.CreateAnd(InnerShift->getOperand(0), 684 ConstantInt::get(ShType, Mask)); 685 if (auto *AndI = dyn_cast<Instruction>(And)) { 686 AndI->moveBefore(InnerShift->getIterator()); 687 AndI->takeName(InnerShift); 688 } 689 return And; 690 } 691 692 assert(InnerShAmt > OuterShAmt && 693 "Unexpected opposite direction logical shift pair"); 694 695 // In general, we would need an 'and' for this transform, but 696 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used. 697 // lshr (shl X, C1), C2 --> shl X, C1 - C2 698 // shl (lshr X, C1), C2 --> lshr X, C1 - C2 699 return NewInnerShift(InnerShAmt - OuterShAmt); 700 } 701 702 /// When canEvaluateShifted() returns true for an expression, this function 703 /// inserts the new computation that produces the shifted value. 704 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 705 InstCombinerImpl &IC, const DataLayout &DL) { 706 // We can always evaluate constants shifted. 707 if (Constant *C = dyn_cast<Constant>(V)) { 708 if (isLeftShift) 709 return IC.Builder.CreateShl(C, NumBits); 710 else 711 return IC.Builder.CreateLShr(C, NumBits); 712 } 713 714 Instruction *I = cast<Instruction>(V); 715 IC.addToWorklist(I); 716 717 switch (I->getOpcode()) { 718 default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); 719 case Instruction::And: 720 case Instruction::Or: 721 case Instruction::Xor: 722 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 723 I->setOperand( 724 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL)); 725 I->setOperand( 726 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 727 return I; 728 729 case Instruction::Shl: 730 case Instruction::LShr: 731 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift, 732 IC.Builder); 733 734 case Instruction::Select: 735 I->setOperand( 736 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL)); 737 I->setOperand( 738 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL)); 739 return I; 740 case Instruction::PHI: { 741 // We can change a phi if we can change all operands. Note that we never 742 // get into trouble with cyclic PHIs here because we only consider 743 // instructions with a single use. 744 PHINode *PN = cast<PHINode>(I); 745 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 746 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits, 747 isLeftShift, IC, DL)); 748 return PN; 749 } 750 case Instruction::Mul: { 751 assert(!isLeftShift && "Unexpected shift direction!"); 752 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0)); 753 IC.InsertNewInstWith(Neg, I->getIterator()); 754 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 755 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits); 756 auto *And = BinaryOperator::CreateAnd(Neg, 757 ConstantInt::get(I->getType(), Mask)); 758 And->takeName(I); 759 return IC.InsertNewInstWith(And, I->getIterator()); 760 } 761 } 762 } 763 764 // If this is a bitwise operator or add with a constant RHS we might be able 765 // to pull it through a shift. 766 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, 767 BinaryOperator *BO) { 768 switch (BO->getOpcode()) { 769 default: 770 return false; // Do not perform transform! 771 case Instruction::Add: 772 return Shift.getOpcode() == Instruction::Shl; 773 case Instruction::Or: 774 case Instruction::And: 775 return true; 776 case Instruction::Xor: 777 // Do not change a 'not' of logical shift because that would create a normal 778 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen. 779 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value()))); 780 } 781 } 782 783 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1, 784 BinaryOperator &I) { 785 // (C2 << X) << C1 --> (C2 << C1) << X 786 // (C2 >> X) >> C1 --> (C2 >> C1) >> X 787 Constant *C2; 788 Value *X; 789 bool IsLeftShift = I.getOpcode() == Instruction::Shl; 790 if (match(Op0, m_BinOp(I.getOpcode(), m_ImmConstant(C2), m_Value(X)))) { 791 Instruction *R = BinaryOperator::Create( 792 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X); 793 BinaryOperator *BO0 = cast<BinaryOperator>(Op0); 794 if (IsLeftShift) { 795 R->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() && 796 BO0->hasNoUnsignedWrap()); 797 R->setHasNoSignedWrap(I.hasNoSignedWrap() && BO0->hasNoSignedWrap()); 798 } else 799 R->setIsExact(I.isExact() && BO0->isExact()); 800 return R; 801 } 802 803 Type *Ty = I.getType(); 804 unsigned TypeBits = Ty->getScalarSizeInBits(); 805 806 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC) 807 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC) 808 const APInt *DivC; 809 if (!IsLeftShift && match(C1, m_SpecificIntAllowPoison(TypeBits - 1)) && 810 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() && 811 !DivC->isMinSignedValue()) { 812 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC)); 813 ICmpInst::Predicate Pred = 814 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE; 815 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC); 816 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt 817 : Instruction::ZExt; 818 return CastInst::Create(ExtOpcode, Cmp, Ty); 819 } 820 821 const APInt *Op1C; 822 if (!match(C1, m_APInt(Op1C))) 823 return nullptr; 824 825 assert(!Op1C->uge(TypeBits) && 826 "Shift over the type width should have been removed already"); 827 828 // See if we can propagate this shift into the input, this covers the trivial 829 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 830 if (I.getOpcode() != Instruction::AShr && 831 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) { 832 LLVM_DEBUG( 833 dbgs() << "ICE: GetShiftedValue propagating shift through expression" 834 " to eliminate shift:\n IN: " 835 << *Op0 << "\n SH: " << I << "\n"); 836 837 return replaceInstUsesWith( 838 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL)); 839 } 840 841 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I)) 842 return FoldedShift; 843 844 if (!Op0->hasOneUse()) 845 return nullptr; 846 847 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 848 // If the operand is a bitwise operator with a constant RHS, and the 849 // shift is the only use, we can pull it out of the shift. 850 const APInt *Op0C; 851 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) { 852 if (canShiftBinOpWithConstantRHS(I, Op0BO)) { 853 Value *NewRHS = 854 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1); 855 856 Value *NewShift = 857 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1); 858 NewShift->takeName(Op0BO); 859 860 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); 861 } 862 } 863 } 864 865 // If we have a select that conditionally executes some binary operator, 866 // see if we can pull it the select and operator through the shift. 867 // 868 // For example, turning: 869 // shl (select C, (add X, C1), X), C2 870 // Into: 871 // Y = shl X, C2 872 // select C, (add Y, C1 << C2), Y 873 Value *Cond; 874 BinaryOperator *TBO; 875 Value *FalseVal; 876 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)), 877 m_Value(FalseVal)))) { 878 const APInt *C; 879 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal && 880 match(TBO->getOperand(1), m_APInt(C)) && 881 canShiftBinOpWithConstantRHS(I, TBO)) { 882 Value *NewRHS = 883 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1); 884 885 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1); 886 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS); 887 return SelectInst::Create(Cond, NewOp, NewShift); 888 } 889 } 890 891 BinaryOperator *FBO; 892 Value *TrueVal; 893 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal), 894 m_OneUse(m_BinOp(FBO))))) { 895 const APInt *C; 896 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal && 897 match(FBO->getOperand(1), m_APInt(C)) && 898 canShiftBinOpWithConstantRHS(I, FBO)) { 899 Value *NewRHS = 900 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1); 901 902 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1); 903 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS); 904 return SelectInst::Create(Cond, NewShift, NewOp); 905 } 906 } 907 908 return nullptr; 909 } 910 911 // Tries to perform 912 // (lshr (add (zext X), (zext Y)), K) 913 // -> (icmp ult (add X, Y), X) 914 // where 915 // - The add's operands are zexts from a K-bits integer to a bigger type. 916 // - The add is only used by the shr, or by iK (or narrower) truncates. 917 // - The lshr type has more than 2 bits (other types are boolean math). 918 // - K > 1 919 // note that 920 // - The resulting add cannot have nuw/nsw, else on overflow we get a 921 // poison value and the transform isn't legal anymore. 922 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) { 923 assert(I.getOpcode() == Instruction::LShr); 924 925 Value *Add = I.getOperand(0); 926 Value *ShiftAmt = I.getOperand(1); 927 Type *Ty = I.getType(); 928 929 if (Ty->getScalarSizeInBits() < 3) 930 return nullptr; 931 932 const APInt *ShAmtAPInt = nullptr; 933 Value *X = nullptr, *Y = nullptr; 934 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) || 935 !match(Add, 936 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y)))))) 937 return nullptr; 938 939 const unsigned ShAmt = ShAmtAPInt->getZExtValue(); 940 if (ShAmt == 1) 941 return nullptr; 942 943 // X/Y are zexts from `ShAmt`-sized ints. 944 if (X->getType()->getScalarSizeInBits() != ShAmt || 945 Y->getType()->getScalarSizeInBits() != ShAmt) 946 return nullptr; 947 948 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates. 949 if (!Add->hasOneUse()) { 950 for (User *U : Add->users()) { 951 if (U == &I) 952 continue; 953 954 TruncInst *Trunc = dyn_cast<TruncInst>(U); 955 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt) 956 return nullptr; 957 } 958 } 959 960 // Insert at Add so that the newly created `NarrowAdd` will dominate it's 961 // users (i.e. `Add`'s users). 962 Instruction *AddInst = cast<Instruction>(Add); 963 Builder.SetInsertPoint(AddInst); 964 965 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed"); 966 Value *Overflow = 967 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow"); 968 969 // Replace the uses of the original add with a zext of the 970 // NarrowAdd's result. Note that all users at this stage are known to 971 // be ShAmt-sized truncs, or the lshr itself. 972 if (!Add->hasOneUse()) { 973 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty)); 974 eraseInstFromFunction(*AddInst); 975 } 976 977 // Replace the LShr with a zext of the overflow check. 978 return new ZExtInst(Overflow, Ty); 979 } 980 981 // Try to set nuw/nsw flags on shl or exact flag on lshr/ashr using knownbits. 982 static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q) { 983 assert(I.isShift() && "Expected a shift as input"); 984 // We already have all the flags. 985 if (I.getOpcode() == Instruction::Shl) { 986 if (I.hasNoUnsignedWrap() && I.hasNoSignedWrap()) 987 return false; 988 } else { 989 if (I.isExact()) 990 return false; 991 992 // shr (shl X, Y), Y 993 if (match(I.getOperand(0), m_Shl(m_Value(), m_Specific(I.getOperand(1))))) { 994 I.setIsExact(); 995 return true; 996 } 997 } 998 999 // Compute what we know about shift count. 1000 KnownBits KnownCnt = computeKnownBits(I.getOperand(1), /* Depth */ 0, Q); 1001 unsigned BitWidth = KnownCnt.getBitWidth(); 1002 // Since shift produces a poison value if RHS is equal to or larger than the 1003 // bit width, we can safely assume that RHS is less than the bit width. 1004 uint64_t MaxCnt = KnownCnt.getMaxValue().getLimitedValue(BitWidth - 1); 1005 1006 KnownBits KnownAmt = computeKnownBits(I.getOperand(0), /* Depth */ 0, Q); 1007 bool Changed = false; 1008 1009 if (I.getOpcode() == Instruction::Shl) { 1010 // If we have as many leading zeros than maximum shift cnt we have nuw. 1011 if (!I.hasNoUnsignedWrap() && MaxCnt <= KnownAmt.countMinLeadingZeros()) { 1012 I.setHasNoUnsignedWrap(); 1013 Changed = true; 1014 } 1015 // If we have more sign bits than maximum shift cnt we have nsw. 1016 if (!I.hasNoSignedWrap()) { 1017 if (MaxCnt < KnownAmt.countMinSignBits() || 1018 MaxCnt < ComputeNumSignBits(I.getOperand(0), Q.DL, /*Depth*/ 0, Q.AC, 1019 Q.CxtI, Q.DT)) { 1020 I.setHasNoSignedWrap(); 1021 Changed = true; 1022 } 1023 } 1024 return Changed; 1025 } 1026 1027 // If we have at least as many trailing zeros as maximum count then we have 1028 // exact. 1029 Changed = MaxCnt <= KnownAmt.countMinTrailingZeros(); 1030 I.setIsExact(Changed); 1031 1032 return Changed; 1033 } 1034 1035 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) { 1036 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1037 1038 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1), 1039 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q)) 1040 return replaceInstUsesWith(I, V); 1041 1042 if (Instruction *X = foldVectorBinop(I)) 1043 return X; 1044 1045 if (Instruction *V = commonShiftTransforms(I)) 1046 return V; 1047 1048 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder)) 1049 return V; 1050 1051 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1052 Type *Ty = I.getType(); 1053 unsigned BitWidth = Ty->getScalarSizeInBits(); 1054 1055 const APInt *C; 1056 if (match(Op1, m_APInt(C))) { 1057 unsigned ShAmtC = C->getZExtValue(); 1058 1059 // shl (zext X), C --> zext (shl X, C) 1060 // This is only valid if X would have zeros shifted out. 1061 Value *X; 1062 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) { 1063 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1064 if (ShAmtC < SrcWidth && 1065 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I)) 1066 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty); 1067 } 1068 1069 // (X >> C) << C --> X & (-1 << C) 1070 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) { 1071 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1072 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1073 } 1074 1075 const APInt *C1; 1076 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) && 1077 C1->ult(BitWidth)) { 1078 unsigned ShrAmt = C1->getZExtValue(); 1079 if (ShrAmt < ShAmtC) { 1080 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1) 1081 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 1082 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1083 NewShl->setHasNoUnsignedWrap( 1084 I.hasNoUnsignedWrap() || 1085 (ShrAmt && 1086 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr && 1087 I.hasNoSignedWrap())); 1088 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1089 return NewShl; 1090 } 1091 if (ShrAmt > ShAmtC) { 1092 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C) 1093 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 1094 auto *NewShr = BinaryOperator::Create( 1095 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff); 1096 NewShr->setIsExact(true); 1097 return NewShr; 1098 } 1099 } 1100 1101 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) && 1102 C1->ult(BitWidth)) { 1103 unsigned ShrAmt = C1->getZExtValue(); 1104 if (ShrAmt < ShAmtC) { 1105 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C) 1106 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt); 1107 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1108 NewShl->setHasNoUnsignedWrap( 1109 I.hasNoUnsignedWrap() || 1110 (ShrAmt && 1111 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr && 1112 I.hasNoSignedWrap())); 1113 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); 1114 Builder.Insert(NewShl); 1115 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1116 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1117 } 1118 if (ShrAmt > ShAmtC) { 1119 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C) 1120 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC); 1121 auto *OldShr = cast<BinaryOperator>(Op0); 1122 auto *NewShr = 1123 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff); 1124 NewShr->setIsExact(OldShr->isExact()); 1125 Builder.Insert(NewShr); 1126 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1127 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask)); 1128 } 1129 } 1130 1131 // Similar to above, but look through an intermediate trunc instruction. 1132 BinaryOperator *Shr; 1133 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) && 1134 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) { 1135 // The larger shift direction survives through the transform. 1136 unsigned ShrAmtC = C1->getZExtValue(); 1137 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC; 1138 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff); 1139 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl; 1140 1141 // If C1 > C: 1142 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C) 1143 // If C > C1: 1144 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C) 1145 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff"); 1146 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff"); 1147 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC)); 1148 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask)); 1149 } 1150 1151 // If we have an opposite shift by the same amount, we may be able to 1152 // reorder binops and shifts to eliminate math/logic. 1153 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 1154 switch (BinOpcode) { 1155 default: 1156 return false; 1157 case Instruction::Add: 1158 case Instruction::And: 1159 case Instruction::Or: 1160 case Instruction::Xor: 1161 case Instruction::Sub: 1162 // NOTE: Sub is not commutable and the tranforms below may not be valid 1163 // when the shift-right is operand 1 (RHS) of the sub. 1164 return true; 1165 } 1166 }; 1167 BinaryOperator *Op0BO; 1168 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) && 1169 isSuitableBinOpcode(Op0BO->getOpcode())) { 1170 // Commute so shift-right is on LHS of the binop. 1171 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C 1172 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C 1173 Value *Shr = Op0BO->getOperand(0); 1174 Value *Y = Op0BO->getOperand(1); 1175 Value *X; 1176 const APInt *CC; 1177 if (Op0BO->isCommutative() && Y->hasOneUse() && 1178 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) || 1179 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))), 1180 m_APInt(CC))))) 1181 std::swap(Shr, Y); 1182 1183 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C) 1184 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1185 // Y << C 1186 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1187 // (X bop (Y << C)) 1188 Value *B = 1189 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName()); 1190 unsigned Op1Val = C->getLimitedValue(BitWidth); 1191 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val); 1192 Constant *Mask = ConstantInt::get(Ty, Bits); 1193 return BinaryOperator::CreateAnd(B, Mask); 1194 } 1195 1196 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C) 1197 if (match(Shr, 1198 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))), 1199 m_APInt(CC))))) { 1200 // Y << C 1201 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName()); 1202 // X & (CC << C) 1203 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)), 1204 X->getName() + ".mask"); 1205 auto *NewOp = BinaryOperator::Create(Op0BO->getOpcode(), M, YS); 1206 if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0BO); 1207 Disjoint && Disjoint->isDisjoint()) 1208 cast<PossiblyDisjointInst>(NewOp)->setIsDisjoint(true); 1209 return NewOp; 1210 } 1211 } 1212 1213 // (C1 - X) << C --> (C1 << C) - (X << C) 1214 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) { 1215 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C)); 1216 Value *NewShift = Builder.CreateShl(X, Op1); 1217 return BinaryOperator::CreateSub(NewLHS, NewShift); 1218 } 1219 } 1220 1221 if (setShiftFlags(I, Q)) 1222 return &I; 1223 1224 // Transform (x >> y) << y to x & (-1 << y) 1225 // Valid for any type of right-shift. 1226 Value *X; 1227 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) { 1228 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1229 Value *Mask = Builder.CreateShl(AllOnes, Op1); 1230 return BinaryOperator::CreateAnd(Mask, X); 1231 } 1232 1233 // Transform (-1 >> y) << y to -1 << y 1234 if (match(Op0, m_LShr(m_AllOnes(), m_Specific(Op1)))) { 1235 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1236 return BinaryOperator::CreateShl(AllOnes, Op1); 1237 } 1238 1239 Constant *C1; 1240 if (match(Op1, m_ImmConstant(C1))) { 1241 Constant *C2; 1242 Value *X; 1243 // (X * C2) << C1 --> X * (C2 << C1) 1244 if (match(Op0, m_Mul(m_Value(X), m_ImmConstant(C2)))) 1245 return BinaryOperator::CreateMul(X, Builder.CreateShl(C2, C1)); 1246 1247 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0) 1248 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) { 1249 auto *NewC = Builder.CreateShl(ConstantInt::get(Ty, 1), C1); 1250 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1251 } 1252 } 1253 1254 if (match(Op0, m_One())) { 1255 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1 1256 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X)))) 1257 return BinaryOperator::CreateLShr( 1258 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X); 1259 1260 // Canonicalize "extract lowest set bit" using cttz to and-with-negate: 1261 // 1 << (cttz X) --> -X & X 1262 if (match(Op1, 1263 m_OneUse(m_Intrinsic<Intrinsic::cttz>(m_Value(X), m_Value())))) { 1264 Value *NegX = Builder.CreateNeg(X, "neg"); 1265 return BinaryOperator::CreateAnd(NegX, X); 1266 } 1267 } 1268 1269 return nullptr; 1270 } 1271 1272 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) { 1273 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1274 SQ.getWithInstruction(&I))) 1275 return replaceInstUsesWith(I, V); 1276 1277 if (Instruction *X = foldVectorBinop(I)) 1278 return X; 1279 1280 if (Instruction *R = commonShiftTransforms(I)) 1281 return R; 1282 1283 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1284 Type *Ty = I.getType(); 1285 Value *X; 1286 const APInt *C; 1287 unsigned BitWidth = Ty->getScalarSizeInBits(); 1288 1289 // (iN (~X) u>> (N - 1)) --> zext (X > -1) 1290 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) && 1291 match(Op1, m_SpecificIntAllowPoison(BitWidth - 1))) 1292 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty); 1293 1294 // ((X << nuw Z) sub nuw Y) >>u exact Z --> X sub nuw (Y >>u exact Z) 1295 Value *Y; 1296 if (I.isExact() && 1297 match(Op0, m_OneUse(m_NUWSub(m_NUWShl(m_Value(X), m_Specific(Op1)), 1298 m_Value(Y))))) { 1299 Value *NewLshr = Builder.CreateLShr(Y, Op1, "", /*isExact=*/true); 1300 auto *NewSub = BinaryOperator::CreateNUWSub(X, NewLshr); 1301 NewSub->setHasNoSignedWrap( 1302 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()); 1303 return NewSub; 1304 } 1305 1306 // Fold (X + Y) / 2 --> (X & Y) iff (X u<= 1) && (Y u<= 1) 1307 if (match(Op0, m_Add(m_Value(X), m_Value(Y))) && match(Op1, m_One()) && 1308 computeKnownBits(X, /*Depth=*/0, &I).countMaxActiveBits() <= 1 && 1309 computeKnownBits(Y, /*Depth=*/0, &I).countMaxActiveBits() <= 1) 1310 return BinaryOperator::CreateAnd(X, Y); 1311 1312 // (sub nuw X, (Y << nuw Z)) >>u exact Z --> (X >>u exact Z) sub nuw Y 1313 if (I.isExact() && 1314 match(Op0, m_OneUse(m_NUWSub(m_Value(X), 1315 m_NUWShl(m_Value(Y), m_Specific(Op1)))))) { 1316 Value *NewLshr = Builder.CreateLShr(X, Op1, "", /*isExact=*/true); 1317 auto *NewSub = BinaryOperator::CreateNUWSub(NewLshr, Y); 1318 NewSub->setHasNoSignedWrap( 1319 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()); 1320 return NewSub; 1321 } 1322 1323 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) { 1324 switch (BinOpcode) { 1325 default: 1326 return false; 1327 case Instruction::Add: 1328 case Instruction::And: 1329 case Instruction::Or: 1330 case Instruction::Xor: 1331 // Sub is handled separately. 1332 return true; 1333 } 1334 }; 1335 1336 // If both the binop and the shift are nuw, then: 1337 // ((X << nuw Z) binop nuw Y) >>u Z --> X binop nuw (Y >>u Z) 1338 if (match(Op0, m_OneUse(m_c_BinOp(m_NUWShl(m_Value(X), m_Specific(Op1)), 1339 m_Value(Y))))) { 1340 BinaryOperator *Op0OB = cast<BinaryOperator>(Op0); 1341 if (isSuitableBinOpcode(Op0OB->getOpcode())) { 1342 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op0); 1343 !OBO || OBO->hasNoUnsignedWrap()) { 1344 Value *NewLshr = Builder.CreateLShr( 1345 Y, Op1, "", I.isExact() && Op0OB->getOpcode() != Instruction::And); 1346 auto *NewBinOp = BinaryOperator::Create(Op0OB->getOpcode(), NewLshr, X); 1347 if (OBO) { 1348 NewBinOp->setHasNoUnsignedWrap(true); 1349 NewBinOp->setHasNoSignedWrap(OBO->hasNoSignedWrap()); 1350 } else if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0)) { 1351 cast<PossiblyDisjointInst>(NewBinOp)->setIsDisjoint( 1352 Disjoint->isDisjoint()); 1353 } 1354 return NewBinOp; 1355 } 1356 } 1357 } 1358 1359 if (match(Op1, m_APInt(C))) { 1360 unsigned ShAmtC = C->getZExtValue(); 1361 auto *II = dyn_cast<IntrinsicInst>(Op0); 1362 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC && 1363 (II->getIntrinsicID() == Intrinsic::ctlz || 1364 II->getIntrinsicID() == Intrinsic::cttz || 1365 II->getIntrinsicID() == Intrinsic::ctpop)) { 1366 // ctlz.i32(x)>>5 --> zext(x == 0) 1367 // cttz.i32(x)>>5 --> zext(x == 0) 1368 // ctpop.i32(x)>>5 --> zext(x == -1) 1369 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop; 1370 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0); 1371 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS); 1372 return new ZExtInst(Cmp, Ty); 1373 } 1374 1375 const APInt *C1; 1376 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) { 1377 if (C1->ult(ShAmtC)) { 1378 unsigned ShlAmtC = C1->getZExtValue(); 1379 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC); 1380 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1381 // (X <<nuw C1) >>u C --> X >>u (C - C1) 1382 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff); 1383 NewLShr->setIsExact(I.isExact()); 1384 return NewLShr; 1385 } 1386 if (Op0->hasOneUse()) { 1387 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C) 1388 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact()); 1389 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1390 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask)); 1391 } 1392 } else if (C1->ugt(ShAmtC)) { 1393 unsigned ShlAmtC = C1->getZExtValue(); 1394 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC); 1395 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) { 1396 // (X <<nuw C1) >>u C --> X <<nuw/nsw (C1 - C) 1397 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff); 1398 NewShl->setHasNoUnsignedWrap(true); 1399 NewShl->setHasNoSignedWrap(ShAmtC > 0); 1400 return NewShl; 1401 } 1402 if (Op0->hasOneUse()) { 1403 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C) 1404 Value *NewShl = Builder.CreateShl(X, ShiftDiff); 1405 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1406 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask)); 1407 } 1408 } else { 1409 assert(*C1 == ShAmtC); 1410 // (X << C) >>u C --> X & (-1 >>u C) 1411 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1412 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask)); 1413 } 1414 } 1415 1416 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C) 1417 // TODO: Consolidate with the more general transform that starts from shl 1418 // (the shifts are in the opposite order). 1419 if (match(Op0, 1420 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))), 1421 m_Value(Y))))) { 1422 Value *NewLshr = Builder.CreateLShr(Y, Op1); 1423 Value *NewAdd = Builder.CreateAdd(NewLshr, X); 1424 unsigned Op1Val = C->getLimitedValue(BitWidth); 1425 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val); 1426 Constant *Mask = ConstantInt::get(Ty, Bits); 1427 return BinaryOperator::CreateAnd(NewAdd, Mask); 1428 } 1429 1430 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && 1431 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) { 1432 assert(ShAmtC < X->getType()->getScalarSizeInBits() && 1433 "Big shift not simplified to zero?"); 1434 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN 1435 Value *NewLShr = Builder.CreateLShr(X, ShAmtC); 1436 return new ZExtInst(NewLShr, Ty); 1437 } 1438 1439 if (match(Op0, m_SExt(m_Value(X)))) { 1440 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits(); 1441 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) 1442 if (SrcTyBitWidth == 1) { 1443 auto *NewC = ConstantInt::get( 1444 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC)); 1445 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty)); 1446 } 1447 1448 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) && 1449 Op0->hasOneUse()) { 1450 // Are we moving the sign bit to the low bit and widening with high 1451 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN 1452 if (ShAmtC == BitWidth - 1) { 1453 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1); 1454 return new ZExtInst(NewLShr, Ty); 1455 } 1456 1457 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN 1458 if (ShAmtC == BitWidth - SrcTyBitWidth) { 1459 // The new shift amount can't be more than the narrow source type. 1460 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1); 1461 Value *AShr = Builder.CreateAShr(X, NewShAmt); 1462 return new ZExtInst(AShr, Ty); 1463 } 1464 } 1465 } 1466 1467 if (ShAmtC == BitWidth - 1) { 1468 // lshr i32 or(X,-X), 31 --> zext (X != 0) 1469 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1470 return new ZExtInst(Builder.CreateIsNotNull(X), Ty); 1471 1472 // lshr i32 (X -nsw Y), 31 --> zext (X < Y) 1473 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1474 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1475 1476 // Check if a number is negative and odd: 1477 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X 1478 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) { 1479 Value *Signbit = Builder.CreateLShr(X, ShAmtC); 1480 return BinaryOperator::CreateAnd(Signbit, X); 1481 } 1482 1483 // lshr iN (X - 1) & ~X, N-1 --> zext (X == 0) 1484 if (match(Op0, m_OneUse(m_c_And(m_Add(m_Value(X), m_AllOnes()), 1485 m_Not(m_Deferred(X)))))) 1486 return new ZExtInst(Builder.CreateIsNull(X), Ty); 1487 } 1488 1489 Instruction *TruncSrc; 1490 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) && 1491 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) { 1492 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1493 unsigned AmtSum = ShAmtC + C1->getZExtValue(); 1494 1495 // If the combined shift fits in the source width: 1496 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC 1497 // 1498 // If the first shift covers the number of bits truncated, then the 1499 // mask instruction is eliminated (and so the use check is relaxed). 1500 if (AmtSum < SrcWidth && 1501 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) { 1502 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift"); 1503 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName()); 1504 1505 // If the first shift does not cover the number of bits truncated, then 1506 // we require a mask to get rid of high bits in the result. 1507 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC); 1508 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC)); 1509 } 1510 } 1511 1512 const APInt *MulC; 1513 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) { 1514 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() && 1515 MulC->logBase2() == ShAmtC) { 1516 // Look for a "splat" mul pattern - it replicates bits across each half 1517 // of a value, so a right shift simplifies back to just X: 1518 // lshr i[2N] (mul nuw X, (2^N)+1), N --> X 1519 if (ShAmtC * 2 == BitWidth) 1520 return replaceInstUsesWith(I, X); 1521 1522 // lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N)) 1523 if (Op0->hasOneUse()) { 1524 auto *NewAdd = BinaryOperator::CreateNUWAdd( 1525 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "", 1526 I.isExact())); 1527 NewAdd->setHasNoSignedWrap( 1528 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()); 1529 return NewAdd; 1530 } 1531 } 1532 1533 // The one-use check is not strictly necessary, but codegen may not be 1534 // able to invert the transform and perf may suffer with an extra mul 1535 // instruction. 1536 if (Op0->hasOneUse()) { 1537 APInt NewMulC = MulC->lshr(ShAmtC); 1538 // if c is divisible by (1 << ShAmtC): 1539 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC) 1540 if (MulC->eq(NewMulC.shl(ShAmtC))) { 1541 auto *NewMul = 1542 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC)); 1543 assert(ShAmtC != 0 && 1544 "lshr X, 0 should be handled by simplifyLShrInst."); 1545 NewMul->setHasNoSignedWrap(true); 1546 return NewMul; 1547 } 1548 } 1549 } 1550 1551 // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N)) 1552 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) { 1553 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() && 1554 MulC->logBase2() == ShAmtC) { 1555 return BinaryOperator::CreateNSWAdd( 1556 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "", 1557 I.isExact())); 1558 } 1559 } 1560 1561 // Try to narrow bswap. 1562 // In the case where the shift amount equals the bitwidth difference, the 1563 // shift is eliminated. 1564 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>( 1565 m_OneUse(m_ZExt(m_Value(X))))))) { 1566 unsigned SrcWidth = X->getType()->getScalarSizeInBits(); 1567 unsigned WidthDiff = BitWidth - SrcWidth; 1568 if (SrcWidth % 16 == 0) { 1569 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X); 1570 if (ShAmtC >= WidthDiff) { 1571 // (bswap (zext X)) >> C --> zext (bswap X >> C') 1572 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff); 1573 return new ZExtInst(NewShift, Ty); 1574 } else { 1575 // (bswap (zext X)) >> C --> (zext (bswap X)) << C' 1576 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty); 1577 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC); 1578 return BinaryOperator::CreateShl(NewZExt, ShiftDiff); 1579 } 1580 } 1581 } 1582 1583 // Reduce add-carry of bools to logic: 1584 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY) 1585 Value *BoolX, *BoolY; 1586 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) && 1587 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) && 1588 BoolX->getType()->isIntOrIntVectorTy(1) && 1589 BoolY->getType()->isIntOrIntVectorTy(1) && 1590 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) { 1591 Value *And = Builder.CreateAnd(BoolX, BoolY); 1592 return new ZExtInst(And, Ty); 1593 } 1594 } 1595 1596 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1597 if (setShiftFlags(I, Q)) 1598 return &I; 1599 1600 // Transform (x << y) >> y to x & (-1 >> y) 1601 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) { 1602 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1603 Value *Mask = Builder.CreateLShr(AllOnes, Op1); 1604 return BinaryOperator::CreateAnd(Mask, X); 1605 } 1606 1607 // Transform (-1 << y) >> y to -1 >> y 1608 if (match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) { 1609 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty); 1610 return BinaryOperator::CreateLShr(AllOnes, Op1); 1611 } 1612 1613 if (Instruction *Overflow = foldLShrOverflowBit(I)) 1614 return Overflow; 1615 1616 return nullptr; 1617 } 1618 1619 Instruction * 1620 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract( 1621 BinaryOperator &OldAShr) { 1622 assert(OldAShr.getOpcode() == Instruction::AShr && 1623 "Must be called with arithmetic right-shift instruction only."); 1624 1625 // Check that constant C is a splat of the element-wise bitwidth of V. 1626 auto BitWidthSplat = [](Constant *C, Value *V) { 1627 return match( 1628 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, 1629 APInt(C->getType()->getScalarSizeInBits(), 1630 V->getType()->getScalarSizeInBits()))); 1631 }; 1632 1633 // It should look like variable-length sign-extension on the outside: 1634 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits) 1635 Value *NBits; 1636 Instruction *MaybeTrunc; 1637 Constant *C1, *C2; 1638 if (!match(&OldAShr, 1639 m_AShr(m_Shl(m_Instruction(MaybeTrunc), 1640 m_ZExtOrSelf(m_Sub(m_Constant(C1), 1641 m_ZExtOrSelf(m_Value(NBits))))), 1642 m_ZExtOrSelf(m_Sub(m_Constant(C2), 1643 m_ZExtOrSelf(m_Deferred(NBits)))))) || 1644 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr)) 1645 return nullptr; 1646 1647 // There may or may not be a truncation after outer two shifts. 1648 Instruction *HighBitExtract; 1649 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract))); 1650 bool HadTrunc = MaybeTrunc != HighBitExtract; 1651 1652 // And finally, the innermost part of the pattern must be a right-shift. 1653 Value *X, *NumLowBitsToSkip; 1654 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip)))) 1655 return nullptr; 1656 1657 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth. 1658 Constant *C0; 1659 if (!match(NumLowBitsToSkip, 1660 m_ZExtOrSelf( 1661 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) || 1662 !BitWidthSplat(C0, HighBitExtract)) 1663 return nullptr; 1664 1665 // Since the NBits is identical for all shifts, if the outermost and 1666 // innermost shifts are identical, then outermost shifts are redundant. 1667 // If we had truncation, do keep it though. 1668 if (HighBitExtract->getOpcode() == OldAShr.getOpcode()) 1669 return replaceInstUsesWith(OldAShr, MaybeTrunc); 1670 1671 // Else, if there was a truncation, then we need to ensure that one 1672 // instruction will go away. 1673 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) 1674 return nullptr; 1675 1676 // Finally, bypass two innermost shifts, and perform the outermost shift on 1677 // the operands of the innermost shift. 1678 Instruction *NewAShr = 1679 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip); 1680 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness. 1681 if (!HadTrunc) 1682 return NewAShr; 1683 1684 Builder.Insert(NewAShr); 1685 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType()); 1686 } 1687 1688 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) { 1689 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), 1690 SQ.getWithInstruction(&I))) 1691 return replaceInstUsesWith(I, V); 1692 1693 if (Instruction *X = foldVectorBinop(I)) 1694 return X; 1695 1696 if (Instruction *R = commonShiftTransforms(I)) 1697 return R; 1698 1699 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 1700 Type *Ty = I.getType(); 1701 unsigned BitWidth = Ty->getScalarSizeInBits(); 1702 const APInt *ShAmtAPInt; 1703 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) { 1704 unsigned ShAmt = ShAmtAPInt->getZExtValue(); 1705 1706 // If the shift amount equals the difference in width of the destination 1707 // and source scalar types: 1708 // ashr (shl (zext X), C), C --> sext X 1709 Value *X; 1710 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) && 1711 ShAmt == BitWidth - X->getType()->getScalarSizeInBits()) 1712 return new SExtInst(X, Ty); 1713 1714 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However, 1715 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. 1716 const APInt *ShOp1; 1717 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) && 1718 ShOp1->ult(BitWidth)) { 1719 unsigned ShlAmt = ShOp1->getZExtValue(); 1720 if (ShlAmt < ShAmt) { 1721 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1) 1722 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt); 1723 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff); 1724 NewAShr->setIsExact(I.isExact()); 1725 return NewAShr; 1726 } 1727 if (ShlAmt > ShAmt) { 1728 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2) 1729 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt); 1730 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff); 1731 NewShl->setHasNoSignedWrap(true); 1732 return NewShl; 1733 } 1734 } 1735 1736 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) && 1737 ShOp1->ult(BitWidth)) { 1738 unsigned AmtSum = ShAmt + ShOp1->getZExtValue(); 1739 // Oversized arithmetic shifts replicate the sign bit. 1740 AmtSum = std::min(AmtSum, BitWidth - 1); 1741 // (X >>s C1) >>s C2 --> X >>s (C1 + C2) 1742 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum)); 1743 } 1744 1745 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) && 1746 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) { 1747 // ashr (sext X), C --> sext (ashr X, C') 1748 Type *SrcTy = X->getType(); 1749 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1); 1750 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt)); 1751 return new SExtInst(NewSh, Ty); 1752 } 1753 1754 if (ShAmt == BitWidth - 1) { 1755 // ashr i32 or(X,-X), 31 --> sext (X != 0) 1756 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X))))) 1757 return new SExtInst(Builder.CreateIsNotNull(X), Ty); 1758 1759 // ashr i32 (X -nsw Y), 31 --> sext (X < Y) 1760 Value *Y; 1761 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y))))) 1762 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty); 1763 1764 // ashr iN (X - 1) & ~X, N-1 --> sext (X == 0) 1765 if (match(Op0, m_OneUse(m_c_And(m_Add(m_Value(X), m_AllOnes()), 1766 m_Not(m_Deferred(X)))))) 1767 return new SExtInst(Builder.CreateIsNull(X), Ty); 1768 } 1769 1770 const APInt *MulC; 1771 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC)))) && 1772 (BitWidth > 2 && (*MulC - 1).isPowerOf2() && 1773 MulC->logBase2() == ShAmt && 1774 (ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ { 1775 1776 // ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N)) 1777 auto *NewAdd = BinaryOperator::CreateNSWAdd( 1778 X, 1779 Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "", I.isExact())); 1780 NewAdd->setHasNoUnsignedWrap( 1781 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap()); 1782 return NewAdd; 1783 } 1784 } 1785 1786 const SimplifyQuery Q = SQ.getWithInstruction(&I); 1787 if (setShiftFlags(I, Q)) 1788 return &I; 1789 1790 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)` 1791 // as the pattern to splat the lowest bit. 1792 // FIXME: iff X is already masked, we don't need the one-use check. 1793 Value *X; 1794 if (match(Op1, m_SpecificIntAllowPoison(BitWidth - 1)) && 1795 match(Op0, m_OneUse(m_Shl(m_Value(X), 1796 m_SpecificIntAllowPoison(BitWidth - 1))))) { 1797 Constant *Mask = ConstantInt::get(Ty, 1); 1798 // Retain the knowledge about the ignored lanes. 1799 Mask = Constant::mergeUndefsWith( 1800 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)), 1801 cast<Constant>(cast<Instruction>(Op0)->getOperand(1))); 1802 X = Builder.CreateAnd(X, Mask); 1803 return BinaryOperator::CreateNeg(X); 1804 } 1805 1806 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I)) 1807 return R; 1808 1809 // See if we can turn a signed shr into an unsigned shr. 1810 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) { 1811 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1); 1812 Lshr->setIsExact(I.isExact()); 1813 return Lshr; 1814 } 1815 1816 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1 1817 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) { 1818 // Note that we must drop 'exact'-ness of the shift! 1819 // Note that we can't keep undef's in -1 vector constant! 1820 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not"); 1821 return BinaryOperator::CreateNot(NewAShr); 1822 } 1823 1824 return nullptr; 1825 } 1826