1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CmpInstAnalysis.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/OverflowInstAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/KnownBits.h" 42 #include "llvm/Transforms/InstCombine/InstCombiner.h" 43 #include <cassert> 44 #include <utility> 45 46 #define DEBUG_TYPE "instcombine" 47 #include "llvm/Transforms/Utils/InstructionWorklist.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 53 /// Replace a select operand based on an equality comparison with the identity 54 /// constant of a binop. 55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 56 const TargetLibraryInfo &TLI, 57 InstCombinerImpl &IC) { 58 // The select condition must be an equality compare with a constant operand. 59 Value *X; 60 Constant *C; 61 CmpPredicate Pred; 62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 63 return nullptr; 64 65 bool IsEq; 66 if (ICmpInst::isEquality(Pred)) 67 IsEq = Pred == ICmpInst::ICMP_EQ; 68 else if (Pred == FCmpInst::FCMP_OEQ) 69 IsEq = true; 70 else if (Pred == FCmpInst::FCMP_UNE) 71 IsEq = false; 72 else 73 return nullptr; 74 75 // A select operand must be a binop. 76 BinaryOperator *BO; 77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 78 return nullptr; 79 80 // The compare constant must be the identity constant for that binop. 81 // If this a floating-point compare with 0.0, any zero constant will do. 82 Type *Ty = BO->getType(); 83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 84 if (IdC != C) { 85 if (!IdC || !CmpInst::isFPPredicate(Pred)) 86 return nullptr; 87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 88 return nullptr; 89 } 90 91 // Last, match the compare variable operand with a binop operand. 92 Value *Y; 93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 94 return nullptr; 95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 98 // +0.0 compares equal to -0.0, and so it does not behave as required for this 99 // transform. Bail out if we can not exclude that possibility. 100 if (isa<FPMathOperator>(BO)) 101 if (!BO->hasNoSignedZeros() && 102 !cannotBeNegativeZero(Y, 0, 103 IC.getSimplifyQuery().getWithInstruction(&Sel))) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 111 } 112 113 /// This folds: 114 /// select (icmp eq (and X, C1)), TC, FC 115 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 116 /// To something like: 117 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 118 /// Or: 119 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 120 /// With some variations depending if FC is larger than TC, or the shift 121 /// isn't needed, or the bit widths don't match. 122 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 123 InstCombiner::BuilderTy &Builder) { 124 const APInt *SelTC, *SelFC; 125 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 126 !match(Sel.getFalseValue(), m_APInt(SelFC))) 127 return nullptr; 128 129 // If this is a vector select, we need a vector compare. 130 Type *SelType = Sel.getType(); 131 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 132 return nullptr; 133 134 Value *V; 135 APInt AndMask; 136 bool CreateAnd = false; 137 ICmpInst::Predicate Pred = Cmp->getPredicate(); 138 if (ICmpInst::isEquality(Pred)) { 139 if (!match(Cmp->getOperand(1), m_Zero())) 140 return nullptr; 141 142 V = Cmp->getOperand(0); 143 const APInt *AndRHS; 144 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 145 return nullptr; 146 147 AndMask = *AndRHS; 148 } else if (auto Res = decomposeBitTestICmp(Cmp->getOperand(0), 149 Cmp->getOperand(1), Pred)) { 150 assert(ICmpInst::isEquality(Res->Pred) && "Not equality test?"); 151 if (!Res->Mask.isPowerOf2()) 152 return nullptr; 153 154 V = Res->X; 155 AndMask = Res->Mask; 156 Pred = Res->Pred; 157 CreateAnd = true; 158 } else { 159 return nullptr; 160 } 161 if (Pred == ICmpInst::ICMP_NE) 162 std::swap(SelTC, SelFC); 163 164 // In general, when both constants are non-zero, we would need an offset to 165 // replace the select. This would require more instructions than we started 166 // with. But there's one special-case that we handle here because it can 167 // simplify/reduce the instructions. 168 const APInt &TC = *SelTC; 169 const APInt &FC = *SelFC; 170 if (!TC.isZero() && !FC.isZero()) { 171 if (TC.getBitWidth() != AndMask.getBitWidth()) 172 return nullptr; 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (CreateAnd && !Cmp->hasOneUse()) 176 return nullptr; 177 178 // (V & AndMaskC) == 0 ? TC : FC --> TC | (V & AndMaskC) 179 // (V & AndMaskC) == 0 ? TC : FC --> TC ^ (V & AndMaskC) 180 // (V & AndMaskC) == 0 ? TC : FC --> TC + (V & AndMaskC) 181 // (V & AndMaskC) == 0 ? TC : FC --> TC - (V & AndMaskC) 182 Constant *TCC = ConstantInt::get(SelType, TC); 183 Constant *FCC = ConstantInt::get(SelType, FC); 184 Constant *MaskC = ConstantInt::get(SelType, AndMask); 185 for (auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add, 186 Instruction::Sub}) { 187 if (ConstantFoldBinaryOpOperands(Opc, TCC, MaskC, Sel.getDataLayout()) == 188 FCC) { 189 if (CreateAnd) 190 V = Builder.CreateAnd(V, MaskC); 191 return Builder.CreateBinOp(Opc, TCC, V); 192 } 193 } 194 195 return nullptr; 196 } 197 198 // Make sure one of the select arms is a power-of-2. 199 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 200 return nullptr; 201 202 // Determine which shift is needed to transform result of the 'and' into the 203 // desired result. 204 const APInt &ValC = !TC.isZero() ? TC : FC; 205 unsigned ValZeros = ValC.logBase2(); 206 unsigned AndZeros = AndMask.logBase2(); 207 bool ShouldNotVal = !TC.isZero(); 208 209 // If we would need to create an 'and' + 'shift' + 'xor' to replace a 'select' 210 // + 'icmp', then this transformation would result in more instructions and 211 // potentially interfere with other folding. 212 if (CreateAnd && ShouldNotVal && ValZeros != AndZeros) 213 return nullptr; 214 215 // Insert the 'and' instruction on the input to the truncate. 216 if (CreateAnd) 217 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 218 219 // If types don't match, we can still convert the select by introducing a zext 220 // or a trunc of the 'and'. 221 if (ValZeros > AndZeros) { 222 V = Builder.CreateZExtOrTrunc(V, SelType); 223 V = Builder.CreateShl(V, ValZeros - AndZeros); 224 } else if (ValZeros < AndZeros) { 225 V = Builder.CreateLShr(V, AndZeros - ValZeros); 226 V = Builder.CreateZExtOrTrunc(V, SelType); 227 } else { 228 V = Builder.CreateZExtOrTrunc(V, SelType); 229 } 230 231 // Okay, now we know that everything is set up, we just don't know whether we 232 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 233 if (ShouldNotVal) 234 V = Builder.CreateXor(V, ValC); 235 236 return V; 237 } 238 239 /// We want to turn code that looks like this: 240 /// %C = or %A, %B 241 /// %D = select %cond, %C, %A 242 /// into: 243 /// %C = select %cond, %B, 0 244 /// %D = or %A, %C 245 /// 246 /// Assuming that the specified instruction is an operand to the select, return 247 /// a bitmask indicating which operands of this instruction are foldable if they 248 /// equal the other incoming value of the select. 249 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 250 switch (I->getOpcode()) { 251 case Instruction::Add: 252 case Instruction::FAdd: 253 case Instruction::Mul: 254 case Instruction::FMul: 255 case Instruction::And: 256 case Instruction::Or: 257 case Instruction::Xor: 258 return 3; // Can fold through either operand. 259 case Instruction::Sub: // Can only fold on the amount subtracted. 260 case Instruction::FSub: 261 case Instruction::FDiv: // Can only fold on the divisor amount. 262 case Instruction::Shl: // Can only fold on the shift amount. 263 case Instruction::LShr: 264 case Instruction::AShr: 265 return 1; 266 default: 267 return 0; // Cannot fold 268 } 269 } 270 271 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 272 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 273 Instruction *FI) { 274 // Don't break up min/max patterns. The hasOneUse checks below prevent that 275 // for most cases, but vector min/max with bitcasts can be transformed. If the 276 // one-use restrictions are eased for other patterns, we still don't want to 277 // obfuscate min/max. 278 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 279 match(&SI, m_SMax(m_Value(), m_Value())) || 280 match(&SI, m_UMin(m_Value(), m_Value())) || 281 match(&SI, m_UMax(m_Value(), m_Value())))) 282 return nullptr; 283 284 // If this is a cast from the same type, merge. 285 Value *Cond = SI.getCondition(); 286 Type *CondTy = Cond->getType(); 287 if (TI->getNumOperands() == 1 && TI->isCast()) { 288 Type *FIOpndTy = FI->getOperand(0)->getType(); 289 if (TI->getOperand(0)->getType() != FIOpndTy) 290 return nullptr; 291 292 // The select condition may be a vector. We may only change the operand 293 // type if the vector width remains the same (and matches the condition). 294 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 295 if (!FIOpndTy->isVectorTy() || 296 CondVTy->getElementCount() != 297 cast<VectorType>(FIOpndTy)->getElementCount()) 298 return nullptr; 299 300 // TODO: If the backend knew how to deal with casts better, we could 301 // remove this limitation. For now, there's too much potential to create 302 // worse codegen by promoting the select ahead of size-altering casts 303 // (PR28160). 304 // 305 // Note that ValueTracking's matchSelectPattern() looks through casts 306 // without checking 'hasOneUse' when it matches min/max patterns, so this 307 // transform may end up happening anyway. 308 if (TI->getOpcode() != Instruction::BitCast && 309 (!TI->hasOneUse() || !FI->hasOneUse())) 310 return nullptr; 311 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 312 // TODO: The one-use restrictions for a scalar select could be eased if 313 // the fold of a select in visitLoadInst() was enhanced to match a pattern 314 // that includes a cast. 315 return nullptr; 316 } 317 318 // Fold this by inserting a select from the input values. 319 Value *NewSI = 320 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 321 SI.getName() + ".v", &SI); 322 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 323 TI->getType()); 324 } 325 326 Value *OtherOpT, *OtherOpF; 327 bool MatchIsOpZero; 328 auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute, 329 bool Swapped = false) -> Value * { 330 assert(!(Commute && Swapped) && 331 "Commute and Swapped can't set at the same time"); 332 if (!Swapped) { 333 if (TI->getOperand(0) == FI->getOperand(0)) { 334 OtherOpT = TI->getOperand(1); 335 OtherOpF = FI->getOperand(1); 336 MatchIsOpZero = true; 337 return TI->getOperand(0); 338 } else if (TI->getOperand(1) == FI->getOperand(1)) { 339 OtherOpT = TI->getOperand(0); 340 OtherOpF = FI->getOperand(0); 341 MatchIsOpZero = false; 342 return TI->getOperand(1); 343 } 344 } 345 346 if (!Commute && !Swapped) 347 return nullptr; 348 349 // If we are allowing commute or swap of operands, then 350 // allow a cross-operand match. In that case, MatchIsOpZero 351 // means that TI's operand 0 (FI's operand 1) is the common op. 352 if (TI->getOperand(0) == FI->getOperand(1)) { 353 OtherOpT = TI->getOperand(1); 354 OtherOpF = FI->getOperand(0); 355 MatchIsOpZero = true; 356 return TI->getOperand(0); 357 } else if (TI->getOperand(1) == FI->getOperand(0)) { 358 OtherOpT = TI->getOperand(0); 359 OtherOpF = FI->getOperand(1); 360 MatchIsOpZero = false; 361 return TI->getOperand(1); 362 } 363 return nullptr; 364 }; 365 366 if (TI->hasOneUse() || FI->hasOneUse()) { 367 // Cond ? -X : -Y --> -(Cond ? X : Y) 368 Value *X, *Y; 369 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) { 370 // Intersect FMF from the fneg instructions and union those with the 371 // select. 372 FastMathFlags FMF = TI->getFastMathFlags(); 373 FMF &= FI->getFastMathFlags(); 374 FMF |= SI.getFastMathFlags(); 375 Value *NewSel = 376 Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 377 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 378 NewSelI->setFastMathFlags(FMF); 379 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 380 NewFNeg->setFastMathFlags(FMF); 381 return NewFNeg; 382 } 383 384 // Min/max intrinsic with a common operand can have the common operand 385 // pulled after the select. This is the same transform as below for binops, 386 // but specialized for intrinsic matching and without the restrictive uses 387 // clause. 388 auto *TII = dyn_cast<IntrinsicInst>(TI); 389 auto *FII = dyn_cast<IntrinsicInst>(FI); 390 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) { 391 if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) { 392 if (Value *MatchOp = getCommonOp(TI, FI, true)) { 393 Value *NewSel = 394 Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI); 395 return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp}); 396 } 397 } 398 399 // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1) 400 // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e 401 // 402 // select c, (ldexp v0, e0), (ldexp v1, e1) -> 403 // ldexp (select c, v0, v1), (select c, e0, e1) 404 if (TII->getIntrinsicID() == Intrinsic::ldexp) { 405 Value *LdexpVal0 = TII->getArgOperand(0); 406 Value *LdexpExp0 = TII->getArgOperand(1); 407 Value *LdexpVal1 = FII->getArgOperand(0); 408 Value *LdexpExp1 = FII->getArgOperand(1); 409 if (LdexpExp0->getType() == LdexpExp1->getType()) { 410 FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI); 411 FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags(); 412 FMF &= cast<FPMathOperator>(FII)->getFastMathFlags(); 413 FMF |= SelectFPOp->getFastMathFlags(); 414 415 Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1); 416 Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1); 417 418 CallInst *NewLdexp = Builder.CreateIntrinsic( 419 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp}); 420 NewLdexp->setFastMathFlags(FMF); 421 return replaceInstUsesWith(SI, NewLdexp); 422 } 423 } 424 } 425 426 auto CreateCmpSel = [&](std::optional<CmpPredicate> P, 427 bool Swapped) -> CmpInst * { 428 if (!P) 429 return nullptr; 430 auto *MatchOp = getCommonOp(TI, FI, ICmpInst::isEquality(*P), 431 ICmpInst::isRelational(*P) && Swapped); 432 if (!MatchOp) 433 return nullptr; 434 Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 435 SI.getName() + ".v", &SI); 436 return new ICmpInst(MatchIsOpZero ? *P 437 : ICmpInst::getSwappedCmpPredicate(*P), 438 MatchOp, NewSel); 439 }; 440 441 // icmp with a common operand also can have the common operand 442 // pulled after the select. 443 CmpPredicate TPred, FPred; 444 if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) && 445 match(FI, m_ICmp(FPred, m_Value(), m_Value()))) { 446 if (auto *R = 447 CreateCmpSel(CmpPredicate::getMatching(TPred, FPred), false)) 448 return R; 449 if (auto *R = 450 CreateCmpSel(CmpPredicate::getMatching( 451 TPred, ICmpInst::getSwappedCmpPredicate(FPred)), 452 true)) 453 return R; 454 } 455 } 456 457 // Only handle binary operators (including two-operand getelementptr) with 458 // one-use here. As with the cast case above, it may be possible to relax the 459 // one-use constraint, but that needs be examined carefully since it may not 460 // reduce the total number of instructions. 461 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 462 !TI->isSameOperationAs(FI) || 463 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 464 !TI->hasOneUse() || !FI->hasOneUse()) 465 return nullptr; 466 467 // Figure out if the operations have any operands in common. 468 Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative()); 469 if (!MatchOp) 470 return nullptr; 471 472 // If the select condition is a vector, the operands of the original select's 473 // operands also must be vectors. This may not be the case for getelementptr 474 // for example. 475 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 476 !OtherOpF->getType()->isVectorTy())) 477 return nullptr; 478 479 // If we are sinking div/rem after a select, we may need to freeze the 480 // condition because div/rem may induce immediate UB with a poison operand. 481 // For example, the following transform is not safe if Cond can ever be poison 482 // because we can replace poison with zero and then we have div-by-zero that 483 // didn't exist in the original code: 484 // Cond ? x/y : x/z --> x / (Cond ? y : z) 485 auto *BO = dyn_cast<BinaryOperator>(TI); 486 if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) { 487 // A udiv/urem with a common divisor is safe because UB can only occur with 488 // div-by-zero, and that would be present in the original code. 489 if (BO->getOpcode() == Instruction::SDiv || 490 BO->getOpcode() == Instruction::SRem || MatchIsOpZero) 491 Cond = Builder.CreateFreeze(Cond); 492 } 493 494 // If we reach here, they do have operations in common. 495 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 496 SI.getName() + ".v", &SI); 497 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 498 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 499 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 500 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 501 NewBO->copyIRFlags(TI); 502 NewBO->andIRFlags(FI); 503 return NewBO; 504 } 505 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 506 auto *FGEP = cast<GetElementPtrInst>(FI); 507 Type *ElementType = TGEP->getSourceElementType(); 508 return GetElementPtrInst::Create( 509 ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags()); 510 } 511 llvm_unreachable("Expected BinaryOperator or GEP"); 512 return nullptr; 513 } 514 515 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 516 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 517 return false; 518 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 519 } 520 521 /// Try to fold the select into one of the operands to allow further 522 /// optimization. 523 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 524 Value *FalseVal) { 525 // See the comment above getSelectFoldableOperands for a description of the 526 // transformation we are doing here. 527 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, 528 Value *FalseVal, 529 bool Swapped) -> Instruction * { 530 auto *TVI = dyn_cast<BinaryOperator>(TrueVal); 531 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal)) 532 return nullptr; 533 534 unsigned SFO = getSelectFoldableOperands(TVI); 535 unsigned OpToFold = 0; 536 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) 537 OpToFold = 1; 538 else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) 539 OpToFold = 2; 540 541 if (!OpToFold) 542 return nullptr; 543 544 FastMathFlags FMF; 545 if (isa<FPMathOperator>(&SI)) 546 FMF = SI.getFastMathFlags(); 547 Constant *C = ConstantExpr::getBinOpIdentity( 548 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); 549 Value *OOp = TVI->getOperand(2 - OpToFold); 550 // Avoid creating select between 2 constants unless it's selecting 551 // between 0, 1 and -1. 552 const APInt *OOpC; 553 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 554 if (isa<Constant>(OOp) && 555 (!OOpIsAPInt || !isSelect01(C->getUniqueInteger(), *OOpC))) 556 return nullptr; 557 558 // If the false value is a NaN then we have that the floating point math 559 // operation in the transformed code may not preserve the exact NaN 560 // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`. 561 // This makes the transformation incorrect since the original program would 562 // have preserved the exact NaN bit-pattern. 563 // Avoid the folding if the false value might be a NaN. 564 if (isa<FPMathOperator>(&SI) && 565 !computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN()) 566 return nullptr; 567 568 Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp, 569 Swapped ? OOp : C, "", &SI); 570 if (isa<FPMathOperator>(&SI)) 571 cast<Instruction>(NewSel)->setFastMathFlags(FMF); 572 NewSel->takeName(TVI); 573 BinaryOperator *BO = 574 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); 575 BO->copyIRFlags(TVI); 576 if (isa<FPMathOperator>(&SI)) { 577 // Merge poison generating flags from the select. 578 BO->setHasNoNaNs(BO->hasNoNaNs() && FMF.noNaNs()); 579 BO->setHasNoInfs(BO->hasNoInfs() && FMF.noInfs()); 580 // Merge no-signed-zeros flag from the select. 581 // Otherwise we may produce zeros with different sign. 582 BO->setHasNoSignedZeros(BO->hasNoSignedZeros() && FMF.noSignedZeros()); 583 } 584 return BO; 585 }; 586 587 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) 588 return R; 589 590 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) 591 return R; 592 593 return nullptr; 594 } 595 596 /// We want to turn: 597 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 598 /// into: 599 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 600 /// Note: 601 /// Z may be 0 if lshr is missing. 602 /// Worst-case scenario is that we will replace 5 instructions with 5 different 603 /// instructions, but we got rid of select. 604 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 605 Value *TVal, Value *FVal, 606 InstCombiner::BuilderTy &Builder) { 607 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 608 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 609 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 610 return nullptr; 611 612 // The TrueVal has general form of: and %B, 1 613 Value *B; 614 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 615 return nullptr; 616 617 // Where %B may be optionally shifted: lshr %X, %Z. 618 Value *X, *Z; 619 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 620 621 // The shift must be valid. 622 // TODO: This restricts the fold to constant shift amounts. Is there a way to 623 // handle variable shifts safely? PR47012 624 if (HasShift && 625 !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT, 626 APInt(SelType->getScalarSizeInBits(), 627 SelType->getScalarSizeInBits())))) 628 return nullptr; 629 630 if (!HasShift) 631 X = B; 632 633 Value *Y; 634 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 635 return nullptr; 636 637 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 638 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 639 Constant *One = ConstantInt::get(SelType, 1); 640 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 641 Value *FullMask = Builder.CreateOr(Y, MaskB); 642 Value *MaskedX = Builder.CreateAnd(X, FullMask); 643 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 644 return new ZExtInst(ICmpNeZero, SelType); 645 } 646 647 /// We want to turn: 648 /// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); 649 /// iff C1 is a mask and the number of its leading zeros is equal to C2 650 /// into: 651 /// shl X, C2 652 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, 653 Value *FVal, 654 InstCombiner::BuilderTy &Builder) { 655 CmpPredicate Pred; 656 Value *AndVal; 657 if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero()))) 658 return nullptr; 659 660 if (Pred == ICmpInst::ICMP_NE) { 661 Pred = ICmpInst::ICMP_EQ; 662 std::swap(TVal, FVal); 663 } 664 665 Value *X; 666 const APInt *C2, *C1; 667 if (Pred != ICmpInst::ICMP_EQ || 668 !match(AndVal, m_And(m_Value(X), m_APInt(C1))) || 669 !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2)))) 670 return nullptr; 671 672 if (!C1->isMask() || 673 C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue())) 674 return nullptr; 675 676 auto *FI = dyn_cast<Instruction>(FVal); 677 if (!FI) 678 return nullptr; 679 680 FI->setHasNoSignedWrap(false); 681 FI->setHasNoUnsignedWrap(false); 682 return FVal; 683 } 684 685 /// We want to turn: 686 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 687 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 688 /// into: 689 /// ashr (X, Y) 690 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 691 Value *FalseVal, 692 InstCombiner::BuilderTy &Builder) { 693 ICmpInst::Predicate Pred = IC->getPredicate(); 694 Value *CmpLHS = IC->getOperand(0); 695 Value *CmpRHS = IC->getOperand(1); 696 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 697 return nullptr; 698 699 Value *X, *Y; 700 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 701 if ((Pred != ICmpInst::ICMP_SGT || 702 !match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, 703 APInt::getAllOnes(Bitwidth)))) && 704 (Pred != ICmpInst::ICMP_SLT || 705 !match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, 706 APInt::getZero(Bitwidth))))) 707 return nullptr; 708 709 // Canonicalize so that ashr is in FalseVal. 710 if (Pred == ICmpInst::ICMP_SLT) 711 std::swap(TrueVal, FalseVal); 712 713 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 714 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 715 match(CmpLHS, m_Specific(X))) { 716 const auto *Ashr = cast<Instruction>(FalseVal); 717 // if lshr is not exact and ashr is, this new ashr must not be exact. 718 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 719 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 720 } 721 722 return nullptr; 723 } 724 725 /// We want to turn: 726 /// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) 727 /// into: 728 /// IF C2 u>= C1 729 /// (BinOp Y, (shl (and X, C1), C3)) 730 /// ELSE 731 /// (BinOp Y, (lshr (and X, C1), C3)) 732 /// iff: 733 /// 0 on the RHS is the identity value (i.e add, xor, shl, etc...) 734 /// C1 and C2 are both powers of 2 735 /// where: 736 /// IF C2 u>= C1 737 /// C3 = Log(C2) - Log(C1) 738 /// ELSE 739 /// C3 = Log(C1) - Log(C2) 740 /// 741 /// This transform handles cases where: 742 /// 1. The icmp predicate is inverted 743 /// 2. The select operands are reversed 744 /// 3. The magnitude of C2 and C1 are flipped 745 static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal, 746 Value *FalseVal, 747 InstCombiner::BuilderTy &Builder) { 748 // Only handle integer compares. Also, if this is a vector select, we need a 749 // vector compare. 750 if (!TrueVal->getType()->isIntOrIntVectorTy() || 751 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 752 return nullptr; 753 754 Value *CmpLHS = IC->getOperand(0); 755 Value *CmpRHS = IC->getOperand(1); 756 757 unsigned C1Log; 758 bool NeedAnd = false; 759 CmpInst::Predicate Pred = IC->getPredicate(); 760 if (IC->isEquality()) { 761 if (!match(CmpRHS, m_Zero())) 762 return nullptr; 763 764 const APInt *C1; 765 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 766 return nullptr; 767 768 C1Log = C1->logBase2(); 769 } else { 770 auto Res = decomposeBitTestICmp(CmpLHS, CmpRHS, Pred); 771 if (!Res || !Res->Mask.isPowerOf2()) 772 return nullptr; 773 774 CmpLHS = Res->X; 775 Pred = Res->Pred; 776 C1Log = Res->Mask.logBase2(); 777 NeedAnd = true; 778 } 779 780 Value *Y, *V = CmpLHS; 781 BinaryOperator *BinOp; 782 const APInt *C2; 783 bool NeedXor; 784 if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) { 785 Y = TrueVal; 786 BinOp = cast<BinaryOperator>(FalseVal); 787 NeedXor = Pred == ICmpInst::ICMP_NE; 788 } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) { 789 Y = FalseVal; 790 BinOp = cast<BinaryOperator>(TrueVal); 791 NeedXor = Pred == ICmpInst::ICMP_EQ; 792 } else { 793 return nullptr; 794 } 795 796 // Check that 0 on RHS is identity value for this binop. 797 auto *IdentityC = 798 ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(), 799 /*AllowRHSConstant*/ true); 800 if (IdentityC == nullptr || !IdentityC->isNullValue()) 801 return nullptr; 802 803 unsigned C2Log = C2->logBase2(); 804 805 bool NeedShift = C1Log != C2Log; 806 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 807 V->getType()->getScalarSizeInBits(); 808 809 // Make sure we don't create more instructions than we save. 810 if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) > 811 (IC->hasOneUse() + BinOp->hasOneUse())) 812 return nullptr; 813 814 if (NeedAnd) { 815 // Insert the AND instruction on the input to the truncate. 816 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 817 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 818 } 819 820 if (C2Log > C1Log) { 821 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 822 V = Builder.CreateShl(V, C2Log - C1Log); 823 } else if (C1Log > C2Log) { 824 V = Builder.CreateLShr(V, C1Log - C2Log); 825 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 826 } else 827 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 828 829 if (NeedXor) 830 V = Builder.CreateXor(V, *C2); 831 832 return Builder.CreateBinOp(BinOp->getOpcode(), Y, V); 833 } 834 835 /// Canonicalize a set or clear of a masked set of constant bits to 836 /// select-of-constants form. 837 static Instruction *foldSetClearBits(SelectInst &Sel, 838 InstCombiner::BuilderTy &Builder) { 839 Value *Cond = Sel.getCondition(); 840 Value *T = Sel.getTrueValue(); 841 Value *F = Sel.getFalseValue(); 842 Type *Ty = Sel.getType(); 843 Value *X; 844 const APInt *NotC, *C; 845 846 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 847 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 848 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 849 Constant *Zero = ConstantInt::getNullValue(Ty); 850 Constant *OrC = ConstantInt::get(Ty, *C); 851 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 852 return BinaryOperator::CreateOr(T, NewSel); 853 } 854 855 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 856 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 857 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 858 Constant *Zero = ConstantInt::getNullValue(Ty); 859 Constant *OrC = ConstantInt::get(Ty, *C); 860 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 861 return BinaryOperator::CreateOr(F, NewSel); 862 } 863 864 return nullptr; 865 } 866 867 // select (x == 0), 0, x * y --> freeze(y) * x 868 // select (y == 0), 0, x * y --> freeze(x) * y 869 // select (x == 0), undef, x * y --> freeze(y) * x 870 // select (x == undef), 0, x * y --> freeze(y) * x 871 // Usage of mul instead of 0 will make the result more poisonous, 872 // so the operand that was not checked in the condition should be frozen. 873 // The latter folding is applied only when a constant compared with x is 874 // is a vector consisting of 0 and undefs. If a constant compared with x 875 // is a scalar undefined value or undefined vector then an expression 876 // should be already folded into a constant. 877 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 878 auto *CondVal = SI.getCondition(); 879 auto *TrueVal = SI.getTrueValue(); 880 auto *FalseVal = SI.getFalseValue(); 881 Value *X, *Y; 882 CmpPredicate Predicate; 883 884 // Assuming that constant compared with zero is not undef (but it may be 885 // a vector with some undef elements). Otherwise (when a constant is undef) 886 // the select expression should be already simplified. 887 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 888 !ICmpInst::isEquality(Predicate)) 889 return nullptr; 890 891 if (Predicate == ICmpInst::ICMP_NE) 892 std::swap(TrueVal, FalseVal); 893 894 // Check that TrueVal is a constant instead of matching it with m_Zero() 895 // to handle the case when it is a scalar undef value or a vector containing 896 // non-zero elements that are masked by undef elements in the compare 897 // constant. 898 auto *TrueValC = dyn_cast<Constant>(TrueVal); 899 if (TrueValC == nullptr || 900 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 901 !isa<Instruction>(FalseVal)) 902 return nullptr; 903 904 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 905 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 906 // If X is compared with 0 then TrueVal could be either zero or undef. 907 // m_Zero match vectors containing some undef elements, but for scalars 908 // m_Undef should be used explicitly. 909 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 910 return nullptr; 911 912 auto *FalseValI = cast<Instruction>(FalseVal); 913 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 914 FalseValI->getIterator()); 915 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 916 return IC.replaceInstUsesWith(SI, FalseValI); 917 } 918 919 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 920 /// There are 8 commuted/swapped variants of this pattern. 921 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 922 const Value *TrueVal, 923 const Value *FalseVal, 924 InstCombiner::BuilderTy &Builder) { 925 ICmpInst::Predicate Pred = ICI->getPredicate(); 926 Value *A = ICI->getOperand(0); 927 Value *B = ICI->getOperand(1); 928 929 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 930 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0 931 if (match(TrueVal, m_Zero())) { 932 Pred = ICmpInst::getInversePredicate(Pred); 933 std::swap(TrueVal, FalseVal); 934 } 935 936 if (!match(FalseVal, m_Zero())) 937 return nullptr; 938 939 // ugt 0 is canonicalized to ne 0 and requires special handling 940 // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1) 941 if (Pred == ICmpInst::ICMP_NE) { 942 if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes()))) 943 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, 944 ConstantInt::get(A->getType(), 1)); 945 return nullptr; 946 } 947 948 if (!ICmpInst::isUnsigned(Pred)) 949 return nullptr; 950 951 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 952 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 953 std::swap(A, B); 954 Pred = ICmpInst::getSwappedPredicate(Pred); 955 } 956 957 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 958 "Unexpected isUnsigned predicate!"); 959 960 // Ensure the sub is of the form: 961 // (a > b) ? a - b : 0 -> usub.sat(a, b) 962 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 963 // Checking for both a-b and a+(-b) as a constant. 964 bool IsNegative = false; 965 const APInt *C; 966 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 967 (match(A, m_APInt(C)) && 968 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 969 IsNegative = true; 970 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 971 !(match(B, m_APInt(C)) && 972 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 973 return nullptr; 974 975 // If we are adding a negate and the sub and icmp are used anywhere else, we 976 // would end up with more instructions. 977 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 978 return nullptr; 979 980 // (a > b) ? a - b : 0 -> usub.sat(a, b) 981 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 982 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 983 if (IsNegative) 984 Result = Builder.CreateNeg(Result); 985 return Result; 986 } 987 988 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 989 InstCombiner::BuilderTy &Builder) { 990 if (!Cmp->hasOneUse()) 991 return nullptr; 992 993 // Match unsigned saturated add with constant. 994 Value *Cmp0 = Cmp->getOperand(0); 995 Value *Cmp1 = Cmp->getOperand(1); 996 ICmpInst::Predicate Pred = Cmp->getPredicate(); 997 Value *X; 998 const APInt *C; 999 1000 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 1001 // There are 8 commuted variants. 1002 // Canonicalize -1 (saturated result) to true value of the select. 1003 if (match(FVal, m_AllOnes())) { 1004 std::swap(TVal, FVal); 1005 Pred = CmpInst::getInversePredicate(Pred); 1006 } 1007 if (!match(TVal, m_AllOnes())) 1008 return nullptr; 1009 1010 // uge -1 is canonicalized to eq -1 and requires special handling 1011 // (a == -1) ? -1 : a + 1 -> uadd.sat(a, 1) 1012 if (Pred == ICmpInst::ICMP_EQ) { 1013 if (match(FVal, m_Add(m_Specific(Cmp0), m_One())) && 1014 match(Cmp1, m_AllOnes())) { 1015 return Builder.CreateBinaryIntrinsic( 1016 Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->getType(), 1)); 1017 } 1018 return nullptr; 1019 } 1020 1021 if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 1022 match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) && 1023 match(Cmp1, m_SpecificIntAllowPoison(~*C))) { 1024 // (X u> ~C) ? -1 : (X + C) --> uadd.sat(X, C) 1025 // (X u>= ~C)? -1 : (X + C) --> uadd.sat(X, C) 1026 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0, 1027 ConstantInt::get(Cmp0->getType(), *C)); 1028 } 1029 1030 // Negative one does not work here because X u> -1 ? -1, X + -1 is not a 1031 // saturated add. 1032 if (Pred == ICmpInst::ICMP_UGT && 1033 match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) && 1034 match(Cmp1, m_SpecificIntAllowPoison(~*C - 1)) && !C->isAllOnes()) { 1035 // (X u> ~C - 1) ? -1 : (X + C) --> uadd.sat(X, C) 1036 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0, 1037 ConstantInt::get(Cmp0->getType(), *C)); 1038 } 1039 1040 // Zero does not work here because X u>= 0 ? -1 : X -> is always -1, which is 1041 // not a saturated add. 1042 if (Pred == ICmpInst::ICMP_UGE && 1043 match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) && 1044 match(Cmp1, m_SpecificIntAllowPoison(-*C)) && !C->isZero()) { 1045 // (X u >= -C) ? -1 : (X + C) --> uadd.sat(X, C) 1046 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0, 1047 ConstantInt::get(Cmp0->getType(), *C)); 1048 } 1049 1050 // Canonicalize predicate to less-than or less-or-equal-than. 1051 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 1052 std::swap(Cmp0, Cmp1); 1053 Pred = CmpInst::getSwappedPredicate(Pred); 1054 } 1055 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 1056 return nullptr; 1057 1058 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 1059 // Strictness of the comparison is irrelevant. 1060 Value *Y; 1061 if (match(Cmp0, m_Not(m_Value(X))) && 1062 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 1063 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 1064 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 1065 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 1066 } 1067 // The 'not' op may be included in the sum but not the compare. 1068 // Strictness of the comparison is irrelevant. 1069 X = Cmp0; 1070 Y = Cmp1; 1071 if (match(FVal, m_c_Add(m_NotForbidPoison(m_Specific(X)), m_Specific(Y)))) { 1072 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 1073 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 1074 BinaryOperator *BO = cast<BinaryOperator>(FVal); 1075 return Builder.CreateBinaryIntrinsic( 1076 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 1077 } 1078 // The overflow may be detected via the add wrapping round. 1079 // This is only valid for strict comparison! 1080 if (Pred == ICmpInst::ICMP_ULT && 1081 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 1082 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 1083 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 1084 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 1085 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 1086 } 1087 1088 return nullptr; 1089 } 1090 1091 /// Try to match patterns with select and subtract as absolute difference. 1092 static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, 1093 InstCombiner::BuilderTy &Builder) { 1094 auto *TI = dyn_cast<Instruction>(TVal); 1095 auto *FI = dyn_cast<Instruction>(FVal); 1096 if (!TI || !FI) 1097 return nullptr; 1098 1099 // Normalize predicate to gt/lt rather than ge/le. 1100 ICmpInst::Predicate Pred = Cmp->getStrictPredicate(); 1101 Value *A = Cmp->getOperand(0); 1102 Value *B = Cmp->getOperand(1); 1103 1104 // Normalize "A - B" as the true value of the select. 1105 if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) { 1106 std::swap(FI, TI); 1107 Pred = ICmpInst::getSwappedPredicate(Pred); 1108 } 1109 1110 // With any pair of no-wrap subtracts: 1111 // (A > B) ? (A - B) : (B - A) --> abs(A - B) 1112 if (Pred == CmpInst::ICMP_SGT && 1113 match(TI, m_Sub(m_Specific(A), m_Specific(B))) && 1114 match(FI, m_Sub(m_Specific(B), m_Specific(A))) && 1115 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) && 1116 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) { 1117 // The remaining subtract is not "nuw" any more. 1118 // If there's one use of the subtract (no other use than the use we are 1119 // about to replace), then we know that the sub is "nsw" in this context 1120 // even if it was only "nuw" before. If there's another use, then we can't 1121 // add "nsw" to the existing instruction because it may not be safe in the 1122 // other user's context. 1123 TI->setHasNoUnsignedWrap(false); 1124 if (!TI->hasNoSignedWrap()) 1125 TI->setHasNoSignedWrap(TI->hasOneUse()); 1126 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue()); 1127 } 1128 1129 return nullptr; 1130 } 1131 1132 /// Fold the following code sequence: 1133 /// \code 1134 /// int a = ctlz(x & -x); 1135 // x ? 31 - a : a; 1136 // // or 1137 // x ? 31 - a : 32; 1138 /// \code 1139 /// 1140 /// into: 1141 /// cttz(x) 1142 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 1143 Value *FalseVal, 1144 InstCombiner::BuilderTy &Builder) { 1145 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 1146 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 1147 return nullptr; 1148 1149 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 1150 std::swap(TrueVal, FalseVal); 1151 1152 Value *Ctlz; 1153 if (!match(FalseVal, 1154 m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1)))) 1155 return nullptr; 1156 1157 if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>())) 1158 return nullptr; 1159 1160 if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth))) 1161 return nullptr; 1162 1163 Value *X = ICI->getOperand(0); 1164 auto *II = cast<IntrinsicInst>(Ctlz); 1165 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 1166 return nullptr; 1167 1168 Function *F = Intrinsic::getOrInsertDeclaration( 1169 II->getModule(), Intrinsic::cttz, II->getType()); 1170 return CallInst::Create(F, {X, II->getArgOperand(1)}); 1171 } 1172 1173 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 1174 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 1175 /// 1176 /// For example, we can fold the following code sequence: 1177 /// \code 1178 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 1179 /// %1 = icmp ne i32 %x, 0 1180 /// %2 = select i1 %1, i32 %0, i32 32 1181 /// \code 1182 /// 1183 /// into: 1184 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 1185 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 1186 InstCombinerImpl &IC) { 1187 ICmpInst::Predicate Pred = ICI->getPredicate(); 1188 Value *CmpLHS = ICI->getOperand(0); 1189 Value *CmpRHS = ICI->getOperand(1); 1190 1191 // Check if the select condition compares a value for equality. 1192 if (!ICI->isEquality()) 1193 return nullptr; 1194 1195 Value *SelectArg = FalseVal; 1196 Value *ValueOnZero = TrueVal; 1197 if (Pred == ICmpInst::ICMP_NE) 1198 std::swap(SelectArg, ValueOnZero); 1199 1200 // Skip zero extend/truncate. 1201 Value *Count = nullptr; 1202 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 1203 !match(SelectArg, m_Trunc(m_Value(Count)))) 1204 Count = SelectArg; 1205 1206 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 1207 // input to the cttz/ctlz is used as LHS for the compare instruction. 1208 Value *X; 1209 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) && 1210 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X)))) 1211 return nullptr; 1212 1213 // (X == 0) ? BitWidth : ctz(X) 1214 // (X == -1) ? BitWidth : ctz(~X) 1215 if ((X != CmpLHS || !match(CmpRHS, m_Zero())) && 1216 (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes()))) 1217 return nullptr; 1218 1219 IntrinsicInst *II = cast<IntrinsicInst>(Count); 1220 1221 // Check if the value propagated on zero is a constant number equal to the 1222 // sizeof in bits of 'Count'. 1223 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 1224 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 1225 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 1226 // true to false on this flag, so we can replace it for all users. 1227 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 1228 // A range annotation on the intrinsic may no longer be valid. 1229 II->dropPoisonGeneratingAnnotations(); 1230 IC.addToWorklist(II); 1231 return SelectArg; 1232 } 1233 1234 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 1235 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 1236 // not be used if the input is zero. Relax to 'zero is poison' for that case. 1237 if (II->hasOneUse() && SelectArg->hasOneUse() && 1238 !match(II->getArgOperand(1), m_One())) { 1239 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1240 // noundef attribute on the intrinsic may no longer be valid. 1241 II->dropUBImplyingAttrsAndMetadata(); 1242 IC.addToWorklist(II); 1243 } 1244 1245 return nullptr; 1246 } 1247 1248 static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal, 1249 InstCombinerImpl &IC) { 1250 Value *LHS, *RHS; 1251 // TODO: What to do with pointer min/max patterns? 1252 if (!TrueVal->getType()->isIntOrIntVectorTy()) 1253 return nullptr; 1254 1255 SelectPatternFlavor SPF = 1256 matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor; 1257 if (SPF == SelectPatternFlavor::SPF_ABS || 1258 SPF == SelectPatternFlavor::SPF_NABS) { 1259 if (!Cmp.hasOneUse() && !RHS->hasOneUse()) 1260 return nullptr; // TODO: Relax this restriction. 1261 1262 // Note that NSW flag can only be propagated for normal, non-negated abs! 1263 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1264 match(RHS, m_NSWNeg(m_Specific(LHS))); 1265 Constant *IntMinIsPoisonC = 1266 ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison); 1267 Value *Abs = 1268 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1269 1270 if (SPF == SelectPatternFlavor::SPF_NABS) 1271 return IC.Builder.CreateNeg(Abs); // Always without NSW flag! 1272 return Abs; 1273 } 1274 1275 if (SelectPatternResult::isMinOrMax(SPF)) { 1276 Intrinsic::ID IntrinsicID = getMinMaxIntrinsic(SPF); 1277 return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS); 1278 } 1279 1280 return nullptr; 1281 } 1282 1283 bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New, 1284 unsigned Depth) { 1285 // Conservatively limit replacement to two instructions upwards. 1286 if (Depth == 2) 1287 return false; 1288 1289 assert(!isa<Constant>(Old) && "Only replace non-constant values"); 1290 1291 auto *I = dyn_cast<Instruction>(V); 1292 if (!I || !I->hasOneUse() || 1293 !isSafeToSpeculativelyExecuteWithVariableReplaced(I)) 1294 return false; 1295 1296 // Forbid potentially lane-crossing instructions. 1297 if (Old->getType()->isVectorTy() && !isNotCrossLaneOperation(I)) 1298 return false; 1299 1300 bool Changed = false; 1301 for (Use &U : I->operands()) { 1302 if (U == Old) { 1303 replaceUse(U, New); 1304 Worklist.add(I); 1305 Changed = true; 1306 } else { 1307 Changed |= replaceInInstruction(U, Old, New, Depth + 1); 1308 } 1309 } 1310 return Changed; 1311 } 1312 1313 /// If we have a select with an equality comparison, then we know the value in 1314 /// one of the arms of the select. See if substituting this value into an arm 1315 /// and simplifying the result yields the same value as the other arm. 1316 /// 1317 /// To make this transform safe, we must drop poison-generating flags 1318 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1319 /// that poison from propagating. If the existing binop already had no 1320 /// poison-generating flags, then this transform can be done by instsimplify. 1321 /// 1322 /// Consider: 1323 /// %cmp = icmp eq i32 %x, 2147483647 1324 /// %add = add nsw i32 %x, 1 1325 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1326 /// 1327 /// We can't replace %sel with %add unless we strip away the flags. 1328 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1329 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1330 CmpInst &Cmp) { 1331 // Canonicalize the pattern to an equivalence on the predicate by swapping the 1332 // select operands. 1333 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1334 bool Swapped = false; 1335 if (Cmp.isEquivalence(/*Invert=*/true)) { 1336 std::swap(TrueVal, FalseVal); 1337 Swapped = true; 1338 } else if (!Cmp.isEquivalence()) { 1339 return nullptr; 1340 } 1341 1342 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1343 auto ReplaceOldOpWithNewOp = [&](Value *OldOp, 1344 Value *NewOp) -> Instruction * { 1345 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1346 // Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that 1347 // would lead to an infinite replacement cycle. 1348 // If we will be able to evaluate f(Y) to a constant, we can allow undef, 1349 // otherwise Y cannot be undef as we might pick different values for undef 1350 // in the cmp and in f(Y). 1351 if (TrueVal == OldOp && (isa<Constant>(OldOp) || !isa<Constant>(NewOp))) 1352 return nullptr; 1353 1354 if (Value *V = simplifyWithOpReplaced(TrueVal, OldOp, NewOp, SQ, 1355 /* AllowRefinement=*/true)) { 1356 // Need some guarantees about the new simplified op to ensure we don't inf 1357 // loop. 1358 // If we simplify to a constant, replace if we aren't creating new undef. 1359 if (match(V, m_ImmConstant()) && 1360 isGuaranteedNotToBeUndef(V, SQ.AC, &Sel, &DT)) 1361 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1362 1363 // If NewOp is a constant and OldOp is not replace iff NewOp doesn't 1364 // contain and undef elements. 1365 if (match(NewOp, m_ImmConstant()) || NewOp == V) { 1366 if (isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) 1367 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1368 return nullptr; 1369 } 1370 } 1371 1372 // Even if TrueVal does not simplify, we can directly replace a use of 1373 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1374 // else and is safe to speculatively execute (we may end up executing it 1375 // with different operands, which should not cause side-effects or trigger 1376 // undefined behavior). Only do this if CmpRHS is a constant, as 1377 // profitability is not clear for other cases. 1378 if (OldOp == CmpLHS && match(NewOp, m_ImmConstant()) && 1379 !match(OldOp, m_Constant()) && 1380 isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) 1381 if (replaceInInstruction(TrueVal, OldOp, NewOp)) 1382 return &Sel; 1383 return nullptr; 1384 }; 1385 1386 if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS)) 1387 return R; 1388 if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS)) 1389 return R; 1390 1391 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1392 if (!FalseInst) 1393 return nullptr; 1394 1395 // InstSimplify already performed this fold if it was possible subject to 1396 // current poison-generating flags. Check whether dropping poison-generating 1397 // flags enables the transform. 1398 1399 // Try each equivalence substitution possibility. 1400 // We have an 'EQ' comparison, so the select's false value will propagate. 1401 // Example: 1402 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1403 SmallVector<Instruction *> DropFlags; 1404 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1405 /* AllowRefinement */ false, 1406 &DropFlags) == TrueVal || 1407 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1408 /* AllowRefinement */ false, 1409 &DropFlags) == TrueVal) { 1410 for (Instruction *I : DropFlags) { 1411 I->dropPoisonGeneratingAnnotations(); 1412 Worklist.add(I); 1413 } 1414 1415 return replaceInstUsesWith(Sel, FalseVal); 1416 } 1417 1418 return nullptr; 1419 } 1420 1421 /// Fold the following code sequence: 1422 /// \code 1423 /// %XeqZ = icmp eq i64 %X, %Z 1424 /// %YeqZ = icmp eq i64 %Y, %Z 1425 /// %XeqY = icmp eq i64 %X, %Y 1426 /// %not.YeqZ = xor i1 %YeqZ, true 1427 /// %and = select i1 %not.YeqZ, i1 %XeqY, i1 false 1428 /// %equal = select i1 %XeqZ, i1 %YeqZ, i1 %and 1429 /// \code 1430 /// 1431 /// into: 1432 /// %equal = icmp eq i64 %X, %Y 1433 Instruction *InstCombinerImpl::foldSelectEqualityTest(SelectInst &Sel) { 1434 Value *X, *Y, *Z; 1435 Value *XeqY, *XeqZ = Sel.getCondition(), *YeqZ = Sel.getTrueValue(); 1436 1437 if (!match(XeqZ, m_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(X), m_Value(Z)))) 1438 return nullptr; 1439 1440 if (!match(YeqZ, 1441 m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(Y), m_Specific(Z)))) 1442 std::swap(X, Z); 1443 1444 if (!match(YeqZ, 1445 m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(Y), m_Specific(Z)))) 1446 return nullptr; 1447 1448 if (!match(Sel.getFalseValue(), 1449 m_c_LogicalAnd(m_Not(m_Specific(YeqZ)), m_Value(XeqY)))) 1450 return nullptr; 1451 1452 if (!match(XeqY, 1453 m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(X), m_Specific(Y)))) 1454 return nullptr; 1455 1456 cast<ICmpInst>(XeqY)->setSameSign(false); 1457 return replaceInstUsesWith(Sel, XeqY); 1458 } 1459 1460 // See if this is a pattern like: 1461 // %old_cmp1 = icmp slt i32 %x, C2 1462 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1463 // %old_x_offseted = add i32 %x, C1 1464 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1465 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1466 // This can be rewritten as more canonical pattern: 1467 // %new_cmp1 = icmp slt i32 %x, -C1 1468 // %new_cmp2 = icmp sge i32 %x, C0-C1 1469 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1470 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1471 // Iff -C1 s<= C2 s<= C0-C1 1472 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1473 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1474 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1475 InstCombiner::BuilderTy &Builder, 1476 InstCombiner &IC) { 1477 Value *X = Sel0.getTrueValue(); 1478 Value *Sel1 = Sel0.getFalseValue(); 1479 1480 // First match the condition of the outermost select. 1481 // Said condition must be one-use. 1482 if (!Cmp0.hasOneUse()) 1483 return nullptr; 1484 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1485 Value *Cmp00 = Cmp0.getOperand(0); 1486 Constant *C0; 1487 if (!match(Cmp0.getOperand(1), 1488 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1489 return nullptr; 1490 1491 if (!isa<SelectInst>(Sel1)) { 1492 Pred0 = ICmpInst::getInversePredicate(Pred0); 1493 std::swap(X, Sel1); 1494 } 1495 1496 // Canonicalize Cmp0 into ult or uge. 1497 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1498 switch (Pred0) { 1499 case ICmpInst::Predicate::ICMP_ULT: 1500 case ICmpInst::Predicate::ICMP_UGE: 1501 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1502 // have been simplified, it does not verify with undef inputs so ensure we 1503 // are not in a strange state. 1504 if (!match(C0, m_SpecificInt_ICMP( 1505 ICmpInst::Predicate::ICMP_NE, 1506 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1507 return nullptr; 1508 break; // Great! 1509 case ICmpInst::Predicate::ICMP_ULE: 1510 case ICmpInst::Predicate::ICMP_UGT: 1511 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1512 // C0, which again means it must not have any all-ones elements. 1513 if (!match(C0, 1514 m_SpecificInt_ICMP( 1515 ICmpInst::Predicate::ICMP_NE, 1516 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1517 return nullptr; // Can't do, have all-ones element[s]. 1518 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); 1519 C0 = InstCombiner::AddOne(C0); 1520 break; 1521 default: 1522 return nullptr; // Unknown predicate. 1523 } 1524 1525 // Now that we've canonicalized the ICmp, we know the X we expect; 1526 // the select in other hand should be one-use. 1527 if (!Sel1->hasOneUse()) 1528 return nullptr; 1529 1530 // If the types do not match, look through any truncs to the underlying 1531 // instruction. 1532 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1533 match(X, m_TruncOrSelf(m_Value(X))); 1534 1535 // We now can finish matching the condition of the outermost select: 1536 // it should either be the X itself, or an addition of some constant to X. 1537 Constant *C1; 1538 if (Cmp00 == X) 1539 C1 = ConstantInt::getNullValue(X->getType()); 1540 else if (!match(Cmp00, 1541 m_Add(m_Specific(X), 1542 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1543 return nullptr; 1544 1545 Value *Cmp1; 1546 CmpPredicate Pred1; 1547 Constant *C2; 1548 Value *ReplacementLow, *ReplacementHigh; 1549 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1550 m_Value(ReplacementHigh))) || 1551 !match(Cmp1, 1552 m_ICmp(Pred1, m_Specific(X), 1553 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1554 return nullptr; 1555 1556 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1557 return nullptr; // Not enough one-use instructions for the fold. 1558 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1559 // two comparisons we'll need to build. 1560 1561 // Canonicalize Cmp1 into the form we expect. 1562 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1563 switch (Pred1) { 1564 case ICmpInst::Predicate::ICMP_SLT: 1565 break; 1566 case ICmpInst::Predicate::ICMP_SLE: 1567 // We'd have to increment C2 by one, and for that it must not have signed 1568 // max element, but then it would have been canonicalized to 'slt' before 1569 // we get here. So we can't do anything useful with 'sle'. 1570 return nullptr; 1571 case ICmpInst::Predicate::ICMP_SGT: 1572 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1573 // which again means it must not have any signed max elements. 1574 if (!match(C2, 1575 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1576 APInt::getSignedMaxValue( 1577 C2->getType()->getScalarSizeInBits())))) 1578 return nullptr; // Can't do, have signed max element[s]. 1579 C2 = InstCombiner::AddOne(C2); 1580 [[fallthrough]]; 1581 case ICmpInst::Predicate::ICMP_SGE: 1582 // Also non-canonical, but here we don't need to change C2, 1583 // so we don't have any restrictions on C2, so we can just handle it. 1584 Pred1 = ICmpInst::Predicate::ICMP_SLT; 1585 std::swap(ReplacementLow, ReplacementHigh); 1586 break; 1587 default: 1588 return nullptr; // Unknown predicate. 1589 } 1590 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && 1591 "Unexpected predicate type."); 1592 1593 // The thresholds of this clamp-like pattern. 1594 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1595 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1596 1597 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || 1598 Pred0 == ICmpInst::Predicate::ICMP_UGE) && 1599 "Unexpected predicate type."); 1600 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1601 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1602 1603 // The fold has a precondition 1: C2 s>= ThresholdLow 1604 auto *Precond1 = ConstantFoldCompareInstOperands( 1605 ICmpInst::Predicate::ICMP_SGE, C2, ThresholdLowIncl, IC.getDataLayout()); 1606 if (!Precond1 || !match(Precond1, m_One())) 1607 return nullptr; 1608 // The fold has a precondition 2: C2 s<= ThresholdHigh 1609 auto *Precond2 = ConstantFoldCompareInstOperands( 1610 ICmpInst::Predicate::ICMP_SLE, C2, ThresholdHighExcl, IC.getDataLayout()); 1611 if (!Precond2 || !match(Precond2, m_One())) 1612 return nullptr; 1613 1614 // If we are matching from a truncated input, we need to sext the 1615 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1616 // are free to extend due to being constants. 1617 if (X->getType() != Sel0.getType()) { 1618 Constant *LowC, *HighC; 1619 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1620 !match(ReplacementHigh, m_ImmConstant(HighC))) 1621 return nullptr; 1622 const DataLayout &DL = Sel0.getDataLayout(); 1623 ReplacementLow = 1624 ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL); 1625 ReplacementHigh = 1626 ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL); 1627 assert(ReplacementLow && ReplacementHigh && 1628 "Constant folding of ImmConstant cannot fail"); 1629 } 1630 1631 // All good, finally emit the new pattern. 1632 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1633 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1634 Value *MaybeReplacedLow = 1635 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1636 1637 // Create the final select. If we looked through a truncate above, we will 1638 // need to retruncate the result. 1639 Value *MaybeReplacedHigh = Builder.CreateSelect( 1640 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1641 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1642 } 1643 1644 // If we have 1645 // %cmp = icmp [canonical predicate] i32 %x, C0 1646 // %r = select i1 %cmp, i32 %y, i32 C1 1647 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1648 // will have if we flip the strictness of the predicate (i.e. without changing 1649 // the result) is identical to the C1 in select. If it matches we can change 1650 // original comparison to one with swapped predicate, reuse the constant, 1651 // and swap the hands of select. 1652 static Instruction * 1653 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1654 InstCombinerImpl &IC) { 1655 CmpPredicate Pred; 1656 Value *X; 1657 Constant *C0; 1658 if (!match(&Cmp, m_OneUse(m_ICmp( 1659 Pred, m_Value(X), 1660 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1661 return nullptr; 1662 1663 // If comparison predicate is non-relational, we won't be able to do anything. 1664 if (ICmpInst::isEquality(Pred)) 1665 return nullptr; 1666 1667 // If comparison predicate is non-canonical, then we certainly won't be able 1668 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1669 if (!InstCombiner::isCanonicalPredicate(Pred)) 1670 return nullptr; 1671 1672 // If the [input] type of comparison and select type are different, lets abort 1673 // for now. We could try to compare constants with trunc/[zs]ext though. 1674 if (C0->getType() != Sel.getType()) 1675 return nullptr; 1676 1677 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1678 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1679 // Or should we just abandon this transform entirely? 1680 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1681 return nullptr; 1682 1683 1684 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1685 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1686 // At least one of these values we are selecting between must be a constant 1687 // else we'll never succeed. 1688 if (!match(SelVal0, m_AnyIntegralConstant()) && 1689 !match(SelVal1, m_AnyIntegralConstant())) 1690 return nullptr; 1691 1692 // Does this constant C match any of the `select` values? 1693 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1694 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1695 }; 1696 1697 // If C0 *already* matches true/false value of select, we are done. 1698 if (MatchesSelectValue(C0)) 1699 return nullptr; 1700 1701 // Check the constant we'd have with flipped-strictness predicate. 1702 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0); 1703 if (!FlippedStrictness) 1704 return nullptr; 1705 1706 // If said constant doesn't match either, then there is no hope, 1707 if (!MatchesSelectValue(FlippedStrictness->second)) 1708 return nullptr; 1709 1710 // It matched! Lets insert the new comparison just before select. 1711 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1712 IC.Builder.SetInsertPoint(&Sel); 1713 1714 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1715 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1716 Cmp.getName() + ".inv"); 1717 IC.replaceOperand(Sel, 0, NewCmp); 1718 Sel.swapValues(); 1719 Sel.swapProfMetadata(); 1720 1721 return &Sel; 1722 } 1723 1724 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, 1725 Value *FVal, 1726 InstCombiner::BuilderTy &Builder) { 1727 if (!Cmp->hasOneUse()) 1728 return nullptr; 1729 1730 const APInt *CmpC; 1731 if (!match(Cmp->getOperand(1), m_APIntAllowPoison(CmpC))) 1732 return nullptr; 1733 1734 // (X u< 2) ? -X : -1 --> sext (X != 0) 1735 Value *X = Cmp->getOperand(0); 1736 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && 1737 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) 1738 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1739 1740 // (X u> 1) ? -1 : -X --> sext (X != 0) 1741 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && 1742 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) 1743 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); 1744 1745 return nullptr; 1746 } 1747 1748 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI, 1749 InstCombiner::BuilderTy &Builder) { 1750 const APInt *CmpC; 1751 Value *V; 1752 CmpPredicate Pred; 1753 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) 1754 return nullptr; 1755 1756 // Match clamp away from min/max value as a max/min operation. 1757 Value *TVal = SI.getTrueValue(); 1758 Value *FVal = SI.getFalseValue(); 1759 if (Pred == ICmpInst::ICMP_EQ && V == FVal) { 1760 // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1) 1761 if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1762 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal); 1763 // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1) 1764 if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1765 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal); 1766 // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1) 1767 if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1))) 1768 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal); 1769 // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1) 1770 if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1))) 1771 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal); 1772 } 1773 1774 BinaryOperator *BO; 1775 const APInt *C; 1776 CmpInst::Predicate CPred; 1777 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) 1778 CPred = ICI->getPredicate(); 1779 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) 1780 CPred = ICI->getInversePredicate(); 1781 else 1782 return nullptr; 1783 1784 const APInt *BinOpC; 1785 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) 1786 return nullptr; 1787 1788 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) 1789 .binaryOp(BO->getOpcode(), *BinOpC); 1790 if (R == *C) { 1791 BO->dropPoisonGeneratingFlags(); 1792 return BO; 1793 } 1794 return nullptr; 1795 } 1796 1797 /// `A == MIN_INT ? B != MIN_INT : A < B` --> `A < B` 1798 /// `A == MAX_INT ? B != MAX_INT : A > B` --> `A > B` 1799 static Instruction *foldSelectWithExtremeEqCond(Value *CmpLHS, Value *CmpRHS, 1800 Value *TrueVal, 1801 Value *FalseVal) { 1802 Type *Ty = CmpLHS->getType(); 1803 1804 if (Ty->isPtrOrPtrVectorTy()) 1805 return nullptr; 1806 1807 CmpPredicate Pred; 1808 Value *B; 1809 1810 if (!match(FalseVal, m_c_ICmp(Pred, m_Specific(CmpLHS), m_Value(B)))) 1811 return nullptr; 1812 1813 Value *TValRHS; 1814 if (!match(TrueVal, m_SpecificICmp(ICmpInst::ICMP_NE, m_Specific(B), 1815 m_Value(TValRHS)))) 1816 return nullptr; 1817 1818 APInt C; 1819 unsigned BitWidth = Ty->getScalarSizeInBits(); 1820 1821 if (ICmpInst::isLT(Pred)) { 1822 C = CmpInst::isSigned(Pred) ? APInt::getSignedMinValue(BitWidth) 1823 : APInt::getMinValue(BitWidth); 1824 } else if (ICmpInst::isGT(Pred)) { 1825 C = CmpInst::isSigned(Pred) ? APInt::getSignedMaxValue(BitWidth) 1826 : APInt::getMaxValue(BitWidth); 1827 } else { 1828 return nullptr; 1829 } 1830 1831 if (!match(CmpRHS, m_SpecificInt(C)) || !match(TValRHS, m_SpecificInt(C))) 1832 return nullptr; 1833 1834 return new ICmpInst(Pred, CmpLHS, B); 1835 } 1836 1837 static Instruction *foldSelectICmpEq(SelectInst &SI, ICmpInst *ICI, 1838 InstCombinerImpl &IC) { 1839 ICmpInst::Predicate Pred = ICI->getPredicate(); 1840 if (!ICmpInst::isEquality(Pred)) 1841 return nullptr; 1842 1843 Value *TrueVal = SI.getTrueValue(); 1844 Value *FalseVal = SI.getFalseValue(); 1845 Value *CmpLHS = ICI->getOperand(0); 1846 Value *CmpRHS = ICI->getOperand(1); 1847 1848 if (Pred == ICmpInst::ICMP_NE) 1849 std::swap(TrueVal, FalseVal); 1850 1851 if (Instruction *Res = 1852 foldSelectWithExtremeEqCond(CmpLHS, CmpRHS, TrueVal, FalseVal)) 1853 return Res; 1854 1855 return nullptr; 1856 } 1857 1858 /// Fold `X Pred C1 ? X BOp C2 : C1 BOp C2` to `min/max(X, C1) BOp C2`. 1859 /// This allows for better canonicalization. 1860 static Value *foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, 1861 Value *FalseVal, 1862 IRBuilderBase &Builder) { 1863 BinaryOperator *BOp; 1864 Constant *C1, *C2, *C3; 1865 Value *X; 1866 CmpPredicate Predicate; 1867 1868 if (!match(Cmp, m_ICmp(Predicate, m_Value(X), m_Constant(C1)))) 1869 return nullptr; 1870 1871 if (!ICmpInst::isRelational(Predicate)) 1872 return nullptr; 1873 1874 if (match(TrueVal, m_Constant())) { 1875 std::swap(FalseVal, TrueVal); 1876 Predicate = ICmpInst::getInversePredicate(Predicate); 1877 } 1878 1879 if (!match(TrueVal, m_BinOp(BOp)) || !match(FalseVal, m_Constant(C3))) 1880 return nullptr; 1881 1882 unsigned Opcode = BOp->getOpcode(); 1883 1884 // This fold causes some regressions and is primarily intended for 1885 // add and sub. So we early exit for div and rem to minimize the 1886 // regressions. 1887 if (Instruction::isIntDivRem(Opcode)) 1888 return nullptr; 1889 1890 if (!match(BOp, m_OneUse(m_BinOp(m_Specific(X), m_Constant(C2))))) 1891 return nullptr; 1892 1893 Value *RHS; 1894 SelectPatternFlavor SPF; 1895 const DataLayout &DL = BOp->getDataLayout(); 1896 auto Flipped = getFlippedStrictnessPredicateAndConstant(Predicate, C1); 1897 1898 if (C3 == ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL)) { 1899 SPF = getSelectPattern(Predicate).Flavor; 1900 RHS = C1; 1901 } else if (Flipped && C3 == ConstantFoldBinaryOpOperands( 1902 Opcode, Flipped->second, C2, DL)) { 1903 SPF = getSelectPattern(Flipped->first).Flavor; 1904 RHS = Flipped->second; 1905 } else { 1906 return nullptr; 1907 } 1908 1909 Intrinsic::ID IntrinsicID = getMinMaxIntrinsic(SPF); 1910 Value *Intrinsic = Builder.CreateBinaryIntrinsic(IntrinsicID, X, RHS); 1911 return Builder.CreateBinOp(BOp->getOpcode(), Intrinsic, C2); 1912 } 1913 1914 /// Visit a SelectInst that has an ICmpInst as its first operand. 1915 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1916 ICmpInst *ICI) { 1917 if (Value *V = 1918 canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this)) 1919 return replaceInstUsesWith(SI, V); 1920 1921 if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder)) 1922 return replaceInstUsesWith(SI, V); 1923 1924 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder, *this)) 1925 return replaceInstUsesWith(SI, V); 1926 1927 if (Instruction *NewSel = 1928 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1929 return NewSel; 1930 1931 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1932 return replaceInstUsesWith(SI, V); 1933 1934 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1935 bool Changed = false; 1936 Value *TrueVal = SI.getTrueValue(); 1937 Value *FalseVal = SI.getFalseValue(); 1938 ICmpInst::Predicate Pred = ICI->getPredicate(); 1939 Value *CmpLHS = ICI->getOperand(0); 1940 Value *CmpRHS = ICI->getOperand(1); 1941 1942 if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *this)) 1943 return NewSel; 1944 1945 // Canonicalize a signbit condition to use zero constant by swapping: 1946 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV 1947 // To avoid conflicts (infinite loops) with other canonicalizations, this is 1948 // not applied with any constant select arm. 1949 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && 1950 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && 1951 ICI->hasOneUse()) { 1952 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); 1953 Builder.SetInsertPoint(&SI); 1954 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); 1955 replaceOperand(SI, 0, IsNeg); 1956 SI.swapValues(); 1957 SI.swapProfMetadata(); 1958 return &SI; 1959 } 1960 1961 if (Instruction *V = 1962 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1963 return V; 1964 1965 if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder)) 1966 return replaceInstUsesWith(SI, V); 1967 1968 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1969 return V; 1970 1971 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) 1972 return V; 1973 1974 if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder)) 1975 return replaceInstUsesWith(SI, V); 1976 1977 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1978 return replaceInstUsesWith(SI, V); 1979 1980 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *this)) 1981 return replaceInstUsesWith(SI, V); 1982 1983 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1984 return replaceInstUsesWith(SI, V); 1985 1986 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1987 return replaceInstUsesWith(SI, V); 1988 1989 if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder)) 1990 return replaceInstUsesWith(SI, V); 1991 1992 if (Value *V = foldSelectWithConstOpToBinOp(ICI, TrueVal, FalseVal, Builder)) 1993 return replaceInstUsesWith(SI, V); 1994 1995 return Changed ? &SI : nullptr; 1996 } 1997 1998 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1999 /// SPF2(SPF1(A, B), C) 2000 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 2001 SelectPatternFlavor SPF1, Value *A, 2002 Value *B, Instruction &Outer, 2003 SelectPatternFlavor SPF2, 2004 Value *C) { 2005 if (Outer.getType() != Inner->getType()) 2006 return nullptr; 2007 2008 if (C == A || C == B) { 2009 // MAX(MAX(A, B), B) -> MAX(A, B) 2010 // MIN(MIN(a, b), a) -> MIN(a, b) 2011 // TODO: This could be done in instsimplify. 2012 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 2013 return replaceInstUsesWith(Outer, Inner); 2014 } 2015 2016 return nullptr; 2017 } 2018 2019 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 2020 /// This is even legal for FP. 2021 static Instruction *foldAddSubSelect(SelectInst &SI, 2022 InstCombiner::BuilderTy &Builder) { 2023 Value *CondVal = SI.getCondition(); 2024 Value *TrueVal = SI.getTrueValue(); 2025 Value *FalseVal = SI.getFalseValue(); 2026 auto *TI = dyn_cast<Instruction>(TrueVal); 2027 auto *FI = dyn_cast<Instruction>(FalseVal); 2028 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 2029 return nullptr; 2030 2031 Instruction *AddOp = nullptr, *SubOp = nullptr; 2032 if ((TI->getOpcode() == Instruction::Sub && 2033 FI->getOpcode() == Instruction::Add) || 2034 (TI->getOpcode() == Instruction::FSub && 2035 FI->getOpcode() == Instruction::FAdd)) { 2036 AddOp = FI; 2037 SubOp = TI; 2038 } else if ((FI->getOpcode() == Instruction::Sub && 2039 TI->getOpcode() == Instruction::Add) || 2040 (FI->getOpcode() == Instruction::FSub && 2041 TI->getOpcode() == Instruction::FAdd)) { 2042 AddOp = TI; 2043 SubOp = FI; 2044 } 2045 2046 if (AddOp) { 2047 Value *OtherAddOp = nullptr; 2048 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 2049 OtherAddOp = AddOp->getOperand(1); 2050 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 2051 OtherAddOp = AddOp->getOperand(0); 2052 } 2053 2054 if (OtherAddOp) { 2055 // So at this point we know we have (Y -> OtherAddOp): 2056 // select C, (add X, Y), (sub X, Z) 2057 Value *NegVal; // Compute -Z 2058 if (SI.getType()->isFPOrFPVectorTy()) { 2059 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 2060 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 2061 FastMathFlags Flags = AddOp->getFastMathFlags(); 2062 Flags &= SubOp->getFastMathFlags(); 2063 NegInst->setFastMathFlags(Flags); 2064 } 2065 } else { 2066 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 2067 } 2068 2069 Value *NewTrueOp = OtherAddOp; 2070 Value *NewFalseOp = NegVal; 2071 if (AddOp != TI) 2072 std::swap(NewTrueOp, NewFalseOp); 2073 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 2074 SI.getName() + ".p", &SI); 2075 2076 if (SI.getType()->isFPOrFPVectorTy()) { 2077 Instruction *RI = 2078 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 2079 2080 FastMathFlags Flags = AddOp->getFastMathFlags(); 2081 Flags &= SubOp->getFastMathFlags(); 2082 RI->setFastMathFlags(Flags); 2083 return RI; 2084 } else 2085 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 2086 } 2087 } 2088 return nullptr; 2089 } 2090 2091 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 2092 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 2093 /// Along with a number of patterns similar to: 2094 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2095 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2096 static Instruction * 2097 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 2098 Value *CondVal = SI.getCondition(); 2099 Value *TrueVal = SI.getTrueValue(); 2100 Value *FalseVal = SI.getFalseValue(); 2101 2102 WithOverflowInst *II; 2103 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 2104 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 2105 return nullptr; 2106 2107 Value *X = II->getLHS(); 2108 Value *Y = II->getRHS(); 2109 2110 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 2111 Type *Ty = Limit->getType(); 2112 2113 CmpPredicate Pred; 2114 Value *TrueVal, *FalseVal, *Op; 2115 const APInt *C; 2116 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 2117 m_Value(TrueVal), m_Value(FalseVal)))) 2118 return false; 2119 2120 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 2121 auto IsMinMax = [&](Value *Min, Value *Max) { 2122 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 2123 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 2124 return match(Min, m_SpecificInt(MinVal)) && 2125 match(Max, m_SpecificInt(MaxVal)); 2126 }; 2127 2128 if (Op != X && Op != Y) 2129 return false; 2130 2131 if (IsAdd) { 2132 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2133 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2134 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2135 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2136 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 2137 IsMinMax(TrueVal, FalseVal)) 2138 return true; 2139 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2140 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2141 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2142 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2143 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2144 IsMinMax(FalseVal, TrueVal)) 2145 return true; 2146 } else { 2147 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2148 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2149 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 2150 IsMinMax(TrueVal, FalseVal)) 2151 return true; 2152 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2153 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2154 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 2155 IsMinMax(FalseVal, TrueVal)) 2156 return true; 2157 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2158 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2159 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 2160 IsMinMax(FalseVal, TrueVal)) 2161 return true; 2162 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2163 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2164 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 2165 IsMinMax(TrueVal, FalseVal)) 2166 return true; 2167 } 2168 2169 return false; 2170 }; 2171 2172 Intrinsic::ID NewIntrinsicID; 2173 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 2174 match(TrueVal, m_AllOnes())) 2175 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 2176 NewIntrinsicID = Intrinsic::uadd_sat; 2177 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 2178 match(TrueVal, m_Zero())) 2179 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 2180 NewIntrinsicID = Intrinsic::usub_sat; 2181 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 2182 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 2183 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2184 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2185 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2186 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2187 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2188 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 2189 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2190 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 2191 NewIntrinsicID = Intrinsic::sadd_sat; 2192 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 2193 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 2194 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2195 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2196 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2197 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2198 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2199 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 2200 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2201 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 2202 NewIntrinsicID = Intrinsic::ssub_sat; 2203 else 2204 return nullptr; 2205 2206 Function *F = Intrinsic::getOrInsertDeclaration(SI.getModule(), 2207 NewIntrinsicID, SI.getType()); 2208 return CallInst::Create(F, {X, Y}); 2209 } 2210 2211 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2212 Constant *C; 2213 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2214 !match(Sel.getFalseValue(), m_Constant(C))) 2215 return nullptr; 2216 2217 Instruction *ExtInst; 2218 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2219 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2220 return nullptr; 2221 2222 auto ExtOpcode = ExtInst->getOpcode(); 2223 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2224 return nullptr; 2225 2226 // If we are extending from a boolean type or if we can create a select that 2227 // has the same size operands as its condition, try to narrow the select. 2228 Value *X = ExtInst->getOperand(0); 2229 Type *SmallType = X->getType(); 2230 Value *Cond = Sel.getCondition(); 2231 auto *Cmp = dyn_cast<CmpInst>(Cond); 2232 if (!SmallType->isIntOrIntVectorTy(1) && 2233 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2234 return nullptr; 2235 2236 // If the constant is the same after truncation to the smaller type and 2237 // extension to the original type, we can narrow the select. 2238 Type *SelType = Sel.getType(); 2239 Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode); 2240 if (TruncC && ExtInst->hasOneUse()) { 2241 Value *TruncCVal = cast<Value>(TruncC); 2242 if (ExtInst == Sel.getFalseValue()) 2243 std::swap(X, TruncCVal); 2244 2245 // select Cond, (ext X), C --> ext(select Cond, X, C') 2246 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2247 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2248 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2249 } 2250 2251 return nullptr; 2252 } 2253 2254 /// Try to transform a vector select with a constant condition vector into a 2255 /// shuffle for easier combining with other shuffles and insert/extract. 2256 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2257 Value *CondVal = SI.getCondition(); 2258 Constant *CondC; 2259 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2260 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2261 return nullptr; 2262 2263 unsigned NumElts = CondValTy->getNumElements(); 2264 SmallVector<int, 16> Mask; 2265 Mask.reserve(NumElts); 2266 for (unsigned i = 0; i != NumElts; ++i) { 2267 Constant *Elt = CondC->getAggregateElement(i); 2268 if (!Elt) 2269 return nullptr; 2270 2271 if (Elt->isOneValue()) { 2272 // If the select condition element is true, choose from the 1st vector. 2273 Mask.push_back(i); 2274 } else if (Elt->isNullValue()) { 2275 // If the select condition element is false, choose from the 2nd vector. 2276 Mask.push_back(i + NumElts); 2277 } else if (isa<UndefValue>(Elt)) { 2278 // Undef in a select condition (choose one of the operands) does not mean 2279 // the same thing as undef in a shuffle mask (any value is acceptable), so 2280 // give up. 2281 return nullptr; 2282 } else { 2283 // Bail out on a constant expression. 2284 return nullptr; 2285 } 2286 } 2287 2288 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2289 } 2290 2291 /// If we have a select of vectors with a scalar condition, try to convert that 2292 /// to a vector select by splatting the condition. A splat may get folded with 2293 /// other operations in IR and having all operands of a select be vector types 2294 /// is likely better for vector codegen. 2295 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2296 InstCombinerImpl &IC) { 2297 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2298 if (!Ty) 2299 return nullptr; 2300 2301 // We can replace a single-use extract with constant index. 2302 Value *Cond = Sel.getCondition(); 2303 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2304 return nullptr; 2305 2306 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2307 // Splatting the extracted condition reduces code (we could directly create a 2308 // splat shuffle of the source vector to eliminate the intermediate step). 2309 return IC.replaceOperand( 2310 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2311 } 2312 2313 /// Reuse bitcasted operands between a compare and select: 2314 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2315 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2316 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2317 InstCombiner::BuilderTy &Builder) { 2318 Value *Cond = Sel.getCondition(); 2319 Value *TVal = Sel.getTrueValue(); 2320 Value *FVal = Sel.getFalseValue(); 2321 2322 CmpPredicate Pred; 2323 Value *A, *B; 2324 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2325 return nullptr; 2326 2327 // The select condition is a compare instruction. If the select's true/false 2328 // values are already the same as the compare operands, there's nothing to do. 2329 if (TVal == A || TVal == B || FVal == A || FVal == B) 2330 return nullptr; 2331 2332 Value *C, *D; 2333 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2334 return nullptr; 2335 2336 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2337 Value *TSrc, *FSrc; 2338 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2339 !match(FVal, m_BitCast(m_Value(FSrc)))) 2340 return nullptr; 2341 2342 // If the select true/false values are *different bitcasts* of the same source 2343 // operands, make the select operands the same as the compare operands and 2344 // cast the result. This is the canonical select form for min/max. 2345 Value *NewSel; 2346 if (TSrc == C && FSrc == D) { 2347 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2348 // bitcast (select (cmp A, B), A, B) 2349 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2350 } else if (TSrc == D && FSrc == C) { 2351 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2352 // bitcast (select (cmp A, B), B, A) 2353 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2354 } else { 2355 return nullptr; 2356 } 2357 return new BitCastInst(NewSel, Sel.getType()); 2358 } 2359 2360 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2361 /// instructions. 2362 /// 2363 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2364 /// selects between the returned value of the cmpxchg instruction its compare 2365 /// operand, the result of the select will always be equal to its false value. 2366 /// For example: 2367 /// 2368 /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2369 /// %val = extractvalue { i64, i1 } %cmpxchg, 0 2370 /// %success = extractvalue { i64, i1 } %cmpxchg, 1 2371 /// %sel = select i1 %success, i64 %compare, i64 %val 2372 /// ret i64 %sel 2373 /// 2374 /// The returned value of the cmpxchg instruction (%val) is the original value 2375 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %val 2376 /// must have been equal to %compare. Thus, the result of the select is always 2377 /// equal to %val, and the code can be simplified to: 2378 /// 2379 /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2380 /// %val = extractvalue { i64, i1 } %cmpxchg, 0 2381 /// ret i64 %val 2382 /// 2383 static Value *foldSelectCmpXchg(SelectInst &SI) { 2384 // A helper that determines if V is an extractvalue instruction whose 2385 // aggregate operand is a cmpxchg instruction and whose single index is equal 2386 // to I. If such conditions are true, the helper returns the cmpxchg 2387 // instruction; otherwise, a nullptr is returned. 2388 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2389 auto *Extract = dyn_cast<ExtractValueInst>(V); 2390 if (!Extract) 2391 return nullptr; 2392 if (Extract->getIndices()[0] != I) 2393 return nullptr; 2394 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2395 }; 2396 2397 // If the select has a single user, and this user is a select instruction that 2398 // we can simplify, skip the cmpxchg simplification for now. 2399 if (SI.hasOneUse()) 2400 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2401 if (Select->getCondition() == SI.getCondition()) 2402 if (Select->getFalseValue() == SI.getTrueValue() || 2403 Select->getTrueValue() == SI.getFalseValue()) 2404 return nullptr; 2405 2406 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2407 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2408 if (!CmpXchg) 2409 return nullptr; 2410 2411 // Check the true value case: The true value of the select is the returned 2412 // value of the same cmpxchg used by the condition, and the false value is the 2413 // cmpxchg instruction's compare operand. 2414 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2415 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2416 return SI.getFalseValue(); 2417 2418 // Check the false value case: The false value of the select is the returned 2419 // value of the same cmpxchg used by the condition, and the true value is the 2420 // cmpxchg instruction's compare operand. 2421 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2422 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2423 return SI.getFalseValue(); 2424 2425 return nullptr; 2426 } 2427 2428 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2429 /// into a funnel shift intrinsic. Example: 2430 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2431 /// --> call llvm.fshl.i32(a, a, b) 2432 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2433 /// --> call llvm.fshl.i32(a, b, c) 2434 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2435 /// --> call llvm.fshr.i32(a, b, c) 2436 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2437 InstCombiner::BuilderTy &Builder) { 2438 // This must be a power-of-2 type for a bitmasking transform to be valid. 2439 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2440 if (!isPowerOf2_32(Width)) 2441 return nullptr; 2442 2443 BinaryOperator *Or0, *Or1; 2444 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2445 return nullptr; 2446 2447 Value *SV0, *SV1, *SA0, *SA1; 2448 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2449 m_ZExtOrSelf(m_Value(SA0))))) || 2450 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2451 m_ZExtOrSelf(m_Value(SA1))))) || 2452 Or0->getOpcode() == Or1->getOpcode()) 2453 return nullptr; 2454 2455 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2456 if (Or0->getOpcode() == BinaryOperator::LShr) { 2457 std::swap(Or0, Or1); 2458 std::swap(SV0, SV1); 2459 std::swap(SA0, SA1); 2460 } 2461 assert(Or0->getOpcode() == BinaryOperator::Shl && 2462 Or1->getOpcode() == BinaryOperator::LShr && 2463 "Illegal or(shift,shift) pair"); 2464 2465 // Check the shift amounts to see if they are an opposite pair. 2466 Value *ShAmt; 2467 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2468 ShAmt = SA0; 2469 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2470 ShAmt = SA1; 2471 else 2472 return nullptr; 2473 2474 // We should now have this pattern: 2475 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2476 // The false value of the select must be a funnel-shift of the true value: 2477 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2478 bool IsFshl = (ShAmt == SA0); 2479 Value *TVal = Sel.getTrueValue(); 2480 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2481 return nullptr; 2482 2483 // Finally, see if the select is filtering out a shift-by-zero. 2484 Value *Cond = Sel.getCondition(); 2485 if (!match(Cond, m_OneUse(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(ShAmt), 2486 m_ZeroInt())))) 2487 return nullptr; 2488 2489 // If this is not a rotate then the select was blocking poison from the 2490 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2491 if (SV0 != SV1) { 2492 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2493 SV1 = Builder.CreateFreeze(SV1); 2494 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2495 SV0 = Builder.CreateFreeze(SV0); 2496 } 2497 2498 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2499 // Convert to funnel shift intrinsic. 2500 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2501 Function *F = 2502 Intrinsic::getOrInsertDeclaration(Sel.getModule(), IID, Sel.getType()); 2503 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2504 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2505 } 2506 2507 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2508 InstCombiner::BuilderTy &Builder) { 2509 Value *Cond = Sel.getCondition(); 2510 Value *TVal = Sel.getTrueValue(); 2511 Value *FVal = Sel.getFalseValue(); 2512 Type *SelType = Sel.getType(); 2513 2514 // Match select ?, TC, FC where the constants are equal but negated. 2515 // TODO: Generalize to handle a negated variable operand? 2516 const APFloat *TC, *FC; 2517 if (!match(TVal, m_APFloatAllowPoison(TC)) || 2518 !match(FVal, m_APFloatAllowPoison(FC)) || 2519 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2520 return nullptr; 2521 2522 assert(TC != FC && "Expected equal select arms to simplify"); 2523 2524 Value *X; 2525 const APInt *C; 2526 bool IsTrueIfSignSet; 2527 CmpPredicate Pred; 2528 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_ElementWiseBitCast(m_Value(X)), 2529 m_APInt(C)))) || 2530 !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType) 2531 return nullptr; 2532 2533 // If needed, negate the value that will be the sign argument of the copysign: 2534 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2535 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2536 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2537 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2538 // Note: FMF from the select can not be propagated to the new instructions. 2539 if (IsTrueIfSignSet ^ TC->isNegative()) 2540 X = Builder.CreateFNeg(X); 2541 2542 // Canonicalize the magnitude argument as the positive constant since we do 2543 // not care about its sign. 2544 Value *MagArg = ConstantFP::get(SelType, abs(*TC)); 2545 Function *F = Intrinsic::getOrInsertDeclaration( 2546 Sel.getModule(), Intrinsic::copysign, Sel.getType()); 2547 return CallInst::Create(F, { MagArg, X }); 2548 } 2549 2550 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2551 if (!isa<VectorType>(Sel.getType())) 2552 return nullptr; 2553 2554 Value *Cond = Sel.getCondition(); 2555 Value *TVal = Sel.getTrueValue(); 2556 Value *FVal = Sel.getFalseValue(); 2557 Value *C, *X, *Y; 2558 2559 if (match(Cond, m_VecReverse(m_Value(C)))) { 2560 auto createSelReverse = [&](Value *C, Value *X, Value *Y) { 2561 Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel); 2562 if (auto *I = dyn_cast<Instruction>(V)) 2563 I->copyIRFlags(&Sel); 2564 Module *M = Sel.getModule(); 2565 Function *F = Intrinsic::getOrInsertDeclaration( 2566 M, Intrinsic::vector_reverse, V->getType()); 2567 return CallInst::Create(F, V); 2568 }; 2569 2570 if (match(TVal, m_VecReverse(m_Value(X)))) { 2571 // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y) 2572 if (match(FVal, m_VecReverse(m_Value(Y))) && 2573 (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse())) 2574 return createSelReverse(C, X, Y); 2575 2576 // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat) 2577 if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal)) 2578 return createSelReverse(C, X, FVal); 2579 } 2580 // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y) 2581 else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) && 2582 (Cond->hasOneUse() || FVal->hasOneUse())) 2583 return createSelReverse(C, TVal, Y); 2584 } 2585 2586 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2587 if (!VecTy) 2588 return nullptr; 2589 2590 unsigned NumElts = VecTy->getNumElements(); 2591 APInt PoisonElts(NumElts, 0); 2592 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2593 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, PoisonElts)) { 2594 if (V != &Sel) 2595 return replaceInstUsesWith(Sel, V); 2596 return &Sel; 2597 } 2598 2599 // A select of a "select shuffle" with a common operand can be rearranged 2600 // to select followed by "select shuffle". Because of poison, this only works 2601 // in the case of a shuffle with no undefined mask elements. 2602 ArrayRef<int> Mask; 2603 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2604 !is_contained(Mask, PoisonMaskElem) && 2605 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2606 if (X == FVal) { 2607 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2608 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2609 return new ShuffleVectorInst(X, NewSel, Mask); 2610 } 2611 if (Y == FVal) { 2612 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2613 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2614 return new ShuffleVectorInst(NewSel, Y, Mask); 2615 } 2616 } 2617 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2618 !is_contained(Mask, PoisonMaskElem) && 2619 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2620 if (X == TVal) { 2621 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2622 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2623 return new ShuffleVectorInst(X, NewSel, Mask); 2624 } 2625 if (Y == TVal) { 2626 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2627 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2628 return new ShuffleVectorInst(NewSel, Y, Mask); 2629 } 2630 } 2631 2632 return nullptr; 2633 } 2634 2635 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2636 const DominatorTree &DT, 2637 InstCombiner::BuilderTy &Builder) { 2638 // Find the block's immediate dominator that ends with a conditional branch 2639 // that matches select's condition (maybe inverted). 2640 auto *IDomNode = DT[BB]->getIDom(); 2641 if (!IDomNode) 2642 return nullptr; 2643 BasicBlock *IDom = IDomNode->getBlock(); 2644 2645 Value *Cond = Sel.getCondition(); 2646 Value *IfTrue, *IfFalse; 2647 BasicBlock *TrueSucc, *FalseSucc; 2648 if (match(IDom->getTerminator(), 2649 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2650 m_BasicBlock(FalseSucc)))) { 2651 IfTrue = Sel.getTrueValue(); 2652 IfFalse = Sel.getFalseValue(); 2653 } else if (match(IDom->getTerminator(), 2654 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2655 m_BasicBlock(FalseSucc)))) { 2656 IfTrue = Sel.getFalseValue(); 2657 IfFalse = Sel.getTrueValue(); 2658 } else 2659 return nullptr; 2660 2661 // Make sure the branches are actually different. 2662 if (TrueSucc == FalseSucc) 2663 return nullptr; 2664 2665 // We want to replace select %cond, %a, %b with a phi that takes value %a 2666 // for all incoming edges that are dominated by condition `%cond == true`, 2667 // and value %b for edges dominated by condition `%cond == false`. If %a 2668 // or %b are also phis from the same basic block, we can go further and take 2669 // their incoming values from the corresponding blocks. 2670 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2671 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2672 DenseMap<BasicBlock *, Value *> Inputs; 2673 for (auto *Pred : predecessors(BB)) { 2674 // Check implication. 2675 BasicBlockEdge Incoming(Pred, BB); 2676 if (DT.dominates(TrueEdge, Incoming)) 2677 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2678 else if (DT.dominates(FalseEdge, Incoming)) 2679 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2680 else 2681 return nullptr; 2682 // Check availability. 2683 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2684 if (!DT.dominates(Insn, Pred->getTerminator())) 2685 return nullptr; 2686 } 2687 2688 Builder.SetInsertPoint(BB, BB->begin()); 2689 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2690 for (auto *Pred : predecessors(BB)) 2691 PN->addIncoming(Inputs[Pred], Pred); 2692 PN->takeName(&Sel); 2693 return PN; 2694 } 2695 2696 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2697 InstCombiner::BuilderTy &Builder) { 2698 // Try to replace this select with Phi in one of these blocks. 2699 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2700 CandidateBlocks.insert(Sel.getParent()); 2701 for (Value *V : Sel.operands()) 2702 if (auto *I = dyn_cast<Instruction>(V)) 2703 CandidateBlocks.insert(I->getParent()); 2704 2705 for (BasicBlock *BB : CandidateBlocks) 2706 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2707 return PN; 2708 return nullptr; 2709 } 2710 2711 /// Tries to reduce a pattern that arises when calculating the remainder of the 2712 /// Euclidean division. When the divisor is a power of two and is guaranteed not 2713 /// to be negative, a signed remainder can be folded with a bitwise and. 2714 /// 2715 /// (x % n) < 0 ? (x % n) + n : (x % n) 2716 /// -> x & (n - 1) 2717 static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC, 2718 IRBuilderBase &Builder) { 2719 Value *CondVal = SI.getCondition(); 2720 Value *TrueVal = SI.getTrueValue(); 2721 Value *FalseVal = SI.getFalseValue(); 2722 2723 CmpPredicate Pred; 2724 Value *Op, *RemRes, *Remainder; 2725 const APInt *C; 2726 bool TrueIfSigned = false; 2727 2728 if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) && 2729 isSignBitCheck(Pred, *C, TrueIfSigned))) 2730 return nullptr; 2731 2732 // If the sign bit is not set, we have a SGE/SGT comparison, and the operands 2733 // of the select are inverted. 2734 if (!TrueIfSigned) 2735 std::swap(TrueVal, FalseVal); 2736 2737 auto FoldToBitwiseAnd = [&](Value *Remainder) -> Instruction * { 2738 Value *Add = Builder.CreateAdd( 2739 Remainder, Constant::getAllOnesValue(RemRes->getType())); 2740 return BinaryOperator::CreateAnd(Op, Add); 2741 }; 2742 2743 // Match the general case: 2744 // %rem = srem i32 %x, %n 2745 // %cnd = icmp slt i32 %rem, 0 2746 // %add = add i32 %rem, %n 2747 // %sel = select i1 %cnd, i32 %add, i32 %rem 2748 if (match(TrueVal, m_c_Add(m_Specific(RemRes), m_Value(Remainder))) && 2749 match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) && 2750 IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero=*/true) && 2751 FalseVal == RemRes) 2752 return FoldToBitwiseAnd(Remainder); 2753 2754 // Match the case where the one arm has been replaced by constant 1: 2755 // %rem = srem i32 %n, 2 2756 // %cnd = icmp slt i32 %rem, 0 2757 // %sel = select i1 %cnd, i32 1, i32 %rem 2758 if (match(TrueVal, m_One()) && 2759 match(RemRes, m_SRem(m_Value(Op), m_SpecificInt(2))) && 2760 FalseVal == RemRes) 2761 return FoldToBitwiseAnd(ConstantInt::get(RemRes->getType(), 2)); 2762 2763 return nullptr; 2764 } 2765 2766 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2767 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2768 if (!FI) 2769 return nullptr; 2770 2771 Value *Cond = FI->getOperand(0); 2772 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2773 2774 // select (freeze(x == y)), x, y --> y 2775 // select (freeze(x != y)), x, y --> x 2776 // The freeze should be only used by this select. Otherwise, remaining uses of 2777 // the freeze can observe a contradictory value. 2778 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2779 // a = select c, x, y ; 2780 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2781 // ; to y, this can happen. 2782 CmpPredicate Pred; 2783 if (FI->hasOneUse() && 2784 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2785 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2786 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2787 } 2788 2789 return nullptr; 2790 } 2791 2792 /// Given that \p CondVal is known to be \p CondIsTrue, try to simplify \p SI. 2793 static Value *simplifyNestedSelectsUsingImpliedCond(SelectInst &SI, 2794 Value *CondVal, 2795 bool CondIsTrue, 2796 const DataLayout &DL) { 2797 Value *InnerCondVal = SI.getCondition(); 2798 Value *InnerTrueVal = SI.getTrueValue(); 2799 Value *InnerFalseVal = SI.getFalseValue(); 2800 assert(CondVal->getType() == InnerCondVal->getType() && 2801 "The type of inner condition must match with the outer."); 2802 if (auto Implied = isImpliedCondition(CondVal, InnerCondVal, DL, CondIsTrue)) 2803 return *Implied ? InnerTrueVal : InnerFalseVal; 2804 return nullptr; 2805 } 2806 2807 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2808 SelectInst &SI, 2809 bool IsAnd) { 2810 assert(Op->getType()->isIntOrIntVectorTy(1) && 2811 "Op must be either i1 or vector of i1."); 2812 if (SI.getCondition()->getType() != Op->getType()) 2813 return nullptr; 2814 if (Value *V = simplifyNestedSelectsUsingImpliedCond(SI, Op, IsAnd, DL)) 2815 return SelectInst::Create(Op, 2816 IsAnd ? V : ConstantInt::getTrue(Op->getType()), 2817 IsAnd ? ConstantInt::getFalse(Op->getType()) : V); 2818 return nullptr; 2819 } 2820 2821 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2822 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2823 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI, 2824 InstCombinerImpl &IC) { 2825 Value *CondVal = SI.getCondition(); 2826 2827 bool ChangedFMF = false; 2828 for (bool Swap : {false, true}) { 2829 Value *TrueVal = SI.getTrueValue(); 2830 Value *X = SI.getFalseValue(); 2831 CmpPredicate Pred; 2832 2833 if (Swap) 2834 std::swap(TrueVal, X); 2835 2836 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP()))) 2837 continue; 2838 2839 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false 2840 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true 2841 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) { 2842 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2843 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2844 return IC.replaceInstUsesWith(SI, Fabs); 2845 } 2846 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2847 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2848 return IC.replaceInstUsesWith(SI, Fabs); 2849 } 2850 } 2851 2852 if (!match(TrueVal, m_FNeg(m_Specific(X)))) 2853 return nullptr; 2854 2855 // Forward-propagate nnan and ninf from the fneg to the select. 2856 // If all inputs are not those values, then the select is not either. 2857 // Note: nsz is defined differently, so it may not be correct to propagate. 2858 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags(); 2859 if (FMF.noNaNs() && !SI.hasNoNaNs()) { 2860 SI.setHasNoNaNs(true); 2861 ChangedFMF = true; 2862 } 2863 if (FMF.noInfs() && !SI.hasNoInfs()) { 2864 SI.setHasNoInfs(true); 2865 ChangedFMF = true; 2866 } 2867 2868 // With nsz, when 'Swap' is false: 2869 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X) 2870 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x) 2871 // when 'Swap' is true: 2872 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X) 2873 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X) 2874 // 2875 // Note: We require "nnan" for this fold because fcmp ignores the signbit 2876 // of NAN, but IEEE-754 specifies the signbit of NAN values with 2877 // fneg/fabs operations. 2878 if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs()) 2879 return nullptr; 2880 2881 if (Swap) 2882 Pred = FCmpInst::getSwappedPredicate(Pred); 2883 2884 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2885 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE; 2886 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2887 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE; 2888 2889 if (IsLTOrLE) { 2890 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2891 return IC.replaceInstUsesWith(SI, Fabs); 2892 } 2893 if (IsGTOrGE) { 2894 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2895 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs); 2896 NewFNeg->setFastMathFlags(SI.getFastMathFlags()); 2897 return NewFNeg; 2898 } 2899 } 2900 2901 // Match select with (icmp slt (bitcast X to int), 0) 2902 // or (icmp sgt (bitcast X to int), -1) 2903 2904 for (bool Swap : {false, true}) { 2905 Value *TrueVal = SI.getTrueValue(); 2906 Value *X = SI.getFalseValue(); 2907 2908 if (Swap) 2909 std::swap(TrueVal, X); 2910 2911 CmpPredicate Pred; 2912 const APInt *C; 2913 bool TrueIfSigned; 2914 if (!match(CondVal, 2915 m_ICmp(Pred, m_ElementWiseBitCast(m_Specific(X)), m_APInt(C))) || 2916 !isSignBitCheck(Pred, *C, TrueIfSigned)) 2917 continue; 2918 if (!match(TrueVal, m_FNeg(m_Specific(X)))) 2919 return nullptr; 2920 if (Swap == TrueIfSigned && !CondVal->hasOneUse() && !TrueVal->hasOneUse()) 2921 return nullptr; 2922 2923 // Fold (IsNeg ? -X : X) or (!IsNeg ? X : -X) to fabs(X) 2924 // Fold (IsNeg ? X : -X) or (!IsNeg ? -X : X) to -fabs(X) 2925 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI); 2926 if (Swap != TrueIfSigned) 2927 return IC.replaceInstUsesWith(SI, Fabs); 2928 return UnaryOperator::CreateFNegFMF(Fabs, &SI); 2929 } 2930 2931 return ChangedFMF ? &SI : nullptr; 2932 } 2933 2934 // Match the following IR pattern: 2935 // %x.lowbits = and i8 %x, %lowbitmask 2936 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0 2937 // %x.biased = add i8 %x, %bias 2938 // %x.biased.highbits = and i8 %x.biased, %highbitmask 2939 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits 2940 // Define: 2941 // %alignment = add i8 %lowbitmask, 1 2942 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask) 2943 // and 2. %bias is equal to either %lowbitmask or %alignment, 2944 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment) 2945 // then this pattern can be transformed into: 2946 // %x.offset = add i8 %x, %lowbitmask 2947 // %x.roundedup = and i8 %x.offset, %highbitmask 2948 static Value * 2949 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI, 2950 InstCombiner::BuilderTy &Builder) { 2951 Value *Cond = SI.getCondition(); 2952 Value *X = SI.getTrueValue(); 2953 Value *XBiasedHighBits = SI.getFalseValue(); 2954 2955 CmpPredicate Pred; 2956 Value *XLowBits; 2957 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) || 2958 !ICmpInst::isEquality(Pred)) 2959 return nullptr; 2960 2961 if (Pred == ICmpInst::Predicate::ICMP_NE) 2962 std::swap(X, XBiasedHighBits); 2963 2964 // FIXME: we could support non non-splats here. 2965 2966 const APInt *LowBitMaskCst; 2967 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowPoison(LowBitMaskCst)))) 2968 return nullptr; 2969 2970 // Match even if the AND and ADD are swapped. 2971 const APInt *BiasCst, *HighBitMaskCst; 2972 if (!match(XBiasedHighBits, 2973 m_And(m_Add(m_Specific(X), m_APIntAllowPoison(BiasCst)), 2974 m_APIntAllowPoison(HighBitMaskCst))) && 2975 !match(XBiasedHighBits, 2976 m_Add(m_And(m_Specific(X), m_APIntAllowPoison(HighBitMaskCst)), 2977 m_APIntAllowPoison(BiasCst)))) 2978 return nullptr; 2979 2980 if (!LowBitMaskCst->isMask()) 2981 return nullptr; 2982 2983 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst; 2984 if (InvertedLowBitMaskCst != *HighBitMaskCst) 2985 return nullptr; 2986 2987 APInt AlignmentCst = *LowBitMaskCst + 1; 2988 2989 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst) 2990 return nullptr; 2991 2992 if (!XBiasedHighBits->hasOneUse()) { 2993 // We can't directly return XBiasedHighBits if it is more poisonous. 2994 if (*BiasCst == *LowBitMaskCst && impliesPoison(XBiasedHighBits, X)) 2995 return XBiasedHighBits; 2996 return nullptr; 2997 } 2998 2999 // FIXME: could we preserve undef's here? 3000 Type *Ty = X->getType(); 3001 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst), 3002 X->getName() + ".biased"); 3003 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst)); 3004 R->takeName(&SI); 3005 return R; 3006 } 3007 3008 namespace { 3009 struct DecomposedSelect { 3010 Value *Cond = nullptr; 3011 Value *TrueVal = nullptr; 3012 Value *FalseVal = nullptr; 3013 }; 3014 } // namespace 3015 3016 /// Folds patterns like: 3017 /// select c2 (select c1 a b) (select c1 b a) 3018 /// into: 3019 /// select (xor c1 c2) b a 3020 static Instruction * 3021 foldSelectOfSymmetricSelect(SelectInst &OuterSelVal, 3022 InstCombiner::BuilderTy &Builder) { 3023 3024 Value *OuterCond, *InnerCond, *InnerTrueVal, *InnerFalseVal; 3025 if (!match( 3026 &OuterSelVal, 3027 m_Select(m_Value(OuterCond), 3028 m_OneUse(m_Select(m_Value(InnerCond), m_Value(InnerTrueVal), 3029 m_Value(InnerFalseVal))), 3030 m_OneUse(m_Select(m_Deferred(InnerCond), 3031 m_Deferred(InnerFalseVal), 3032 m_Deferred(InnerTrueVal)))))) 3033 return nullptr; 3034 3035 if (OuterCond->getType() != InnerCond->getType()) 3036 return nullptr; 3037 3038 Value *Xor = Builder.CreateXor(InnerCond, OuterCond); 3039 return SelectInst::Create(Xor, InnerFalseVal, InnerTrueVal); 3040 } 3041 3042 /// Look for patterns like 3043 /// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false 3044 /// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f 3045 /// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel 3046 /// and rewrite it as 3047 /// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t 3048 /// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f 3049 static Instruction *foldNestedSelects(SelectInst &OuterSelVal, 3050 InstCombiner::BuilderTy &Builder) { 3051 // We must start with a `select`. 3052 DecomposedSelect OuterSel; 3053 match(&OuterSelVal, 3054 m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal), 3055 m_Value(OuterSel.FalseVal))); 3056 3057 // Canonicalize inversion of the outermost `select`'s condition. 3058 if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond)))) 3059 std::swap(OuterSel.TrueVal, OuterSel.FalseVal); 3060 3061 // The condition of the outermost select must be an `and`/`or`. 3062 if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value()))) 3063 return nullptr; 3064 3065 // Depending on the logical op, inner select might be in different hand. 3066 bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd()); 3067 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal; 3068 3069 // Profitability check - avoid increasing instruction count. 3070 if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}), 3071 [](Value *V) { return V->hasOneUse(); })) 3072 return nullptr; 3073 3074 // The appropriate hand of the outermost `select` must be a select itself. 3075 DecomposedSelect InnerSel; 3076 if (!match(InnerSelVal, 3077 m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal), 3078 m_Value(InnerSel.FalseVal)))) 3079 return nullptr; 3080 3081 // Canonicalize inversion of the innermost `select`'s condition. 3082 if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond)))) 3083 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 3084 3085 Value *AltCond = nullptr; 3086 auto matchOuterCond = [OuterSel, IsAndVariant, &AltCond](auto m_InnerCond) { 3087 // An unsimplified select condition can match both LogicalAnd and LogicalOr 3088 // (select true, true, false). Since below we assume that LogicalAnd implies 3089 // InnerSel match the FVal and vice versa for LogicalOr, we can't match the 3090 // alternative pattern here. 3091 return IsAndVariant ? match(OuterSel.Cond, 3092 m_c_LogicalAnd(m_InnerCond, m_Value(AltCond))) 3093 : match(OuterSel.Cond, 3094 m_c_LogicalOr(m_InnerCond, m_Value(AltCond))); 3095 }; 3096 3097 // Finally, match the condition that was driving the outermost `select`, 3098 // it should be a logical operation between the condition that was driving 3099 // the innermost `select` (after accounting for the possible inversions 3100 // of the condition), and some other condition. 3101 if (matchOuterCond(m_Specific(InnerSel.Cond))) { 3102 // Done! 3103 } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd( 3104 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) { 3105 // Done! 3106 std::swap(InnerSel.TrueVal, InnerSel.FalseVal); 3107 InnerSel.Cond = NotInnerCond; 3108 } else // Not the pattern we were looking for. 3109 return nullptr; 3110 3111 Value *SelInner = Builder.CreateSelect( 3112 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal, 3113 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal); 3114 SelInner->takeName(InnerSelVal); 3115 return SelectInst::Create(InnerSel.Cond, 3116 IsAndVariant ? SelInner : InnerSel.TrueVal, 3117 !IsAndVariant ? SelInner : InnerSel.FalseVal); 3118 } 3119 3120 /// Return true if V is poison or \p Expected given that ValAssumedPoison is 3121 /// already poison. For example, if ValAssumedPoison is `icmp samesign X, 10` 3122 /// and V is `icmp ne X, 5`, impliesPoisonOrCond returns true. 3123 static bool impliesPoisonOrCond(const Value *ValAssumedPoison, const Value *V, 3124 bool Expected) { 3125 if (impliesPoison(ValAssumedPoison, V)) 3126 return true; 3127 3128 // Handle the case that ValAssumedPoison is `icmp samesign pred X, C1` and V 3129 // is `icmp pred X, C2`, where C1 is well-defined. 3130 if (auto *ICmp = dyn_cast<ICmpInst>(ValAssumedPoison)) { 3131 Value *LHS = ICmp->getOperand(0); 3132 const APInt *RHSC1; 3133 const APInt *RHSC2; 3134 CmpPredicate Pred; 3135 if (ICmp->hasSameSign() && 3136 match(ICmp->getOperand(1), m_APIntForbidPoison(RHSC1)) && 3137 match(V, m_ICmp(Pred, m_Specific(LHS), m_APIntAllowPoison(RHSC2)))) { 3138 unsigned BitWidth = RHSC1->getBitWidth(); 3139 ConstantRange CRX = 3140 RHSC1->isNonNegative() 3141 ? ConstantRange(APInt::getSignedMinValue(BitWidth), 3142 APInt::getZero(BitWidth)) 3143 : ConstantRange(APInt::getZero(BitWidth), 3144 APInt::getSignedMinValue(BitWidth)); 3145 return CRX.icmp(Expected ? Pred : ICmpInst::getInverseCmpPredicate(Pred), 3146 *RHSC2); 3147 } 3148 } 3149 3150 return false; 3151 } 3152 3153 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) { 3154 Value *CondVal = SI.getCondition(); 3155 Value *TrueVal = SI.getTrueValue(); 3156 Value *FalseVal = SI.getFalseValue(); 3157 Type *SelType = SI.getType(); 3158 3159 // Avoid potential infinite loops by checking for non-constant condition. 3160 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 3161 // Scalar select must have simplified? 3162 if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) || 3163 TrueVal->getType() != CondVal->getType()) 3164 return nullptr; 3165 3166 auto *One = ConstantInt::getTrue(SelType); 3167 auto *Zero = ConstantInt::getFalse(SelType); 3168 Value *A, *B, *C, *D; 3169 3170 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 3171 // checks whether folding it does not convert a well-defined value into 3172 // poison. 3173 if (match(TrueVal, m_One())) { 3174 if (impliesPoisonOrCond(FalseVal, CondVal, /*Expected=*/false)) { 3175 // Change: A = select B, true, C --> A = or B, C 3176 return BinaryOperator::CreateOr(CondVal, FalseVal); 3177 } 3178 3179 if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_One(), m_Value(B)))) && 3180 impliesPoisonOrCond(FalseVal, B, /*Expected=*/false)) { 3181 // (A || B) || C --> A || (B | C) 3182 return replaceInstUsesWith( 3183 SI, Builder.CreateLogicalOr(A, Builder.CreateOr(B, FalseVal))); 3184 } 3185 3186 // (A && B) || (C && B) --> (A || C) && B 3187 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 3188 match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) && 3189 (CondVal->hasOneUse() || FalseVal->hasOneUse())) { 3190 bool CondLogicAnd = isa<SelectInst>(CondVal); 3191 bool FalseLogicAnd = isa<SelectInst>(FalseVal); 3192 auto AndFactorization = [&](Value *Common, Value *InnerCond, 3193 Value *InnerVal, 3194 bool SelFirst = false) -> Instruction * { 3195 Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal); 3196 if (SelFirst) 3197 std::swap(Common, InnerSel); 3198 if (FalseLogicAnd || (CondLogicAnd && Common == A)) 3199 return SelectInst::Create(Common, InnerSel, Zero); 3200 else 3201 return BinaryOperator::CreateAnd(Common, InnerSel); 3202 }; 3203 3204 if (A == C) 3205 return AndFactorization(A, B, D); 3206 if (A == D) 3207 return AndFactorization(A, B, C); 3208 if (B == C) 3209 return AndFactorization(B, A, D); 3210 if (B == D) 3211 return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd); 3212 } 3213 } 3214 3215 if (match(FalseVal, m_Zero())) { 3216 if (impliesPoisonOrCond(TrueVal, CondVal, /*Expected=*/true)) { 3217 // Change: A = select B, C, false --> A = and B, C 3218 return BinaryOperator::CreateAnd(CondVal, TrueVal); 3219 } 3220 3221 if (match(CondVal, m_OneUse(m_Select(m_Value(A), m_Value(B), m_Zero()))) && 3222 impliesPoisonOrCond(TrueVal, B, /*Expected=*/true)) { 3223 // (A && B) && C --> A && (B & C) 3224 return replaceInstUsesWith( 3225 SI, Builder.CreateLogicalAnd(A, Builder.CreateAnd(B, TrueVal))); 3226 } 3227 3228 // (A || B) && (C || B) --> (A && C) || B 3229 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3230 match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) && 3231 (CondVal->hasOneUse() || TrueVal->hasOneUse())) { 3232 bool CondLogicOr = isa<SelectInst>(CondVal); 3233 bool TrueLogicOr = isa<SelectInst>(TrueVal); 3234 auto OrFactorization = [&](Value *Common, Value *InnerCond, 3235 Value *InnerVal, 3236 bool SelFirst = false) -> Instruction * { 3237 Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero); 3238 if (SelFirst) 3239 std::swap(Common, InnerSel); 3240 if (TrueLogicOr || (CondLogicOr && Common == A)) 3241 return SelectInst::Create(Common, One, InnerSel); 3242 else 3243 return BinaryOperator::CreateOr(Common, InnerSel); 3244 }; 3245 3246 if (A == C) 3247 return OrFactorization(A, B, D); 3248 if (A == D) 3249 return OrFactorization(A, B, C); 3250 if (B == C) 3251 return OrFactorization(B, A, D); 3252 if (B == D) 3253 return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr); 3254 } 3255 } 3256 3257 // We match the "full" 0 or 1 constant here to avoid a potential infinite 3258 // loop with vectors that may have undefined/poison elements. 3259 // select a, false, b -> select !a, b, false 3260 if (match(TrueVal, m_Specific(Zero))) { 3261 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3262 return SelectInst::Create(NotCond, FalseVal, Zero); 3263 } 3264 // select a, b, true -> select !a, true, b 3265 if (match(FalseVal, m_Specific(One))) { 3266 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3267 return SelectInst::Create(NotCond, One, TrueVal); 3268 } 3269 3270 // DeMorgan in select form: !a && !b --> !(a || b) 3271 // select !a, !b, false --> not (select a, true, b) 3272 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3273 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 3274 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3275 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 3276 3277 // DeMorgan in select form: !a || !b --> !(a && b) 3278 // select !a, true, !b --> not (select a, b, false) 3279 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 3280 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 3281 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 3282 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 3283 3284 // select (select a, true, b), true, b -> select a, true, b 3285 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 3286 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 3287 return replaceOperand(SI, 0, A); 3288 // select (select a, b, false), b, false -> select a, b, false 3289 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 3290 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 3291 return replaceOperand(SI, 0, A); 3292 3293 // ~(A & B) & (A | B) --> A ^ B 3294 if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))), 3295 m_c_LogicalOr(m_Deferred(A), m_Deferred(B))))) 3296 return BinaryOperator::CreateXor(A, B); 3297 3298 // select (~a | c), a, b -> select a, (select c, true, b), false 3299 if (match(CondVal, 3300 m_OneUse(m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))))) { 3301 Value *OrV = Builder.CreateSelect(C, One, FalseVal); 3302 return SelectInst::Create(TrueVal, OrV, Zero); 3303 } 3304 // select (c & b), a, b -> select b, (select ~c, true, a), false 3305 if (match(CondVal, m_OneUse(m_c_And(m_Value(C), m_Specific(FalseVal))))) { 3306 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { 3307 Value *OrV = Builder.CreateSelect(NotC, One, TrueVal); 3308 return SelectInst::Create(FalseVal, OrV, Zero); 3309 } 3310 } 3311 // select (a | c), a, b -> select a, true, (select ~c, b, false) 3312 if (match(CondVal, m_OneUse(m_c_Or(m_Specific(TrueVal), m_Value(C))))) { 3313 if (Value *NotC = getFreelyInverted(C, C->hasOneUse(), &Builder)) { 3314 Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero); 3315 return SelectInst::Create(TrueVal, One, AndV); 3316 } 3317 } 3318 // select (c & ~b), a, b -> select b, true, (select c, a, false) 3319 if (match(CondVal, 3320 m_OneUse(m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))))) { 3321 Value *AndV = Builder.CreateSelect(C, TrueVal, Zero); 3322 return SelectInst::Create(FalseVal, One, AndV); 3323 } 3324 3325 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 3326 Use *Y = nullptr; 3327 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 3328 Value *Op1 = IsAnd ? TrueVal : FalseVal; 3329 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 3330 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 3331 InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator()); 3332 replaceUse(*Y, FI); 3333 return replaceInstUsesWith(SI, Op1); 3334 } 3335 3336 if (auto *V = foldBooleanAndOr(CondVal, Op1, SI, IsAnd, 3337 /*IsLogical=*/true)) 3338 return replaceInstUsesWith(SI, V); 3339 } 3340 3341 // select (a || b), c, false -> select a, c, false 3342 // select c, (a || b), false -> select c, a, false 3343 // if c implies that b is false. 3344 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3345 match(FalseVal, m_Zero())) { 3346 std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 3347 if (Res && *Res == false) 3348 return replaceOperand(SI, 0, A); 3349 } 3350 if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) && 3351 match(FalseVal, m_Zero())) { 3352 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL); 3353 if (Res && *Res == false) 3354 return replaceOperand(SI, 1, A); 3355 } 3356 // select c, true, (a && b) -> select c, true, a 3357 // select (a && b), true, c -> select a, true, c 3358 // if c = false implies that b = true 3359 if (match(TrueVal, m_One()) && 3360 match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) { 3361 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 3362 if (Res && *Res == true) 3363 return replaceOperand(SI, 2, A); 3364 } 3365 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) && 3366 match(TrueVal, m_One())) { 3367 std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 3368 if (Res && *Res == true) 3369 return replaceOperand(SI, 0, A); 3370 } 3371 3372 if (match(TrueVal, m_One())) { 3373 Value *C; 3374 3375 // (C && A) || (!C && B) --> sel C, A, B 3376 // (A && C) || (!C && B) --> sel C, A, B 3377 // (C && A) || (B && !C) --> sel C, A, B 3378 // (A && C) || (B && !C) --> sel C, A, B (may require freeze) 3379 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) && 3380 match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) { 3381 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3382 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3383 bool MayNeedFreeze = SelCond && SelFVal && 3384 match(SelFVal->getTrueValue(), 3385 m_Not(m_Specific(SelCond->getTrueValue()))); 3386 if (MayNeedFreeze) 3387 C = Builder.CreateFreeze(C); 3388 return SelectInst::Create(C, A, B); 3389 } 3390 3391 // (!C && A) || (C && B) --> sel C, B, A 3392 // (A && !C) || (C && B) --> sel C, B, A 3393 // (!C && A) || (B && C) --> sel C, B, A 3394 // (A && !C) || (B && C) --> sel C, B, A (may require freeze) 3395 if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) && 3396 match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) { 3397 auto *SelCond = dyn_cast<SelectInst>(CondVal); 3398 auto *SelFVal = dyn_cast<SelectInst>(FalseVal); 3399 bool MayNeedFreeze = SelCond && SelFVal && 3400 match(SelCond->getTrueValue(), 3401 m_Not(m_Specific(SelFVal->getTrueValue()))); 3402 if (MayNeedFreeze) 3403 C = Builder.CreateFreeze(C); 3404 return SelectInst::Create(C, B, A); 3405 } 3406 } 3407 3408 return nullptr; 3409 } 3410 3411 // Return true if we can safely remove the select instruction for std::bit_ceil 3412 // pattern. 3413 static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0, 3414 const APInt *Cond1, Value *CtlzOp, 3415 unsigned BitWidth, 3416 bool &ShouldDropNUW) { 3417 // The challenge in recognizing std::bit_ceil(X) is that the operand is used 3418 // for the CTLZ proper and select condition, each possibly with some 3419 // operation like add and sub. 3420 // 3421 // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the 3422 // select instruction would select 1, which allows us to get rid of the select 3423 // instruction. 3424 // 3425 // To see if we can do so, we do some symbolic execution with ConstantRange. 3426 // Specifically, we compute the range of values that Cond0 could take when 3427 // Cond == false. Then we successively transform the range until we obtain 3428 // the range of values that CtlzOp could take. 3429 // 3430 // Conceptually, we follow the def-use chain backward from Cond0 while 3431 // transforming the range for Cond0 until we meet the common ancestor of Cond0 3432 // and CtlzOp. Then we follow the def-use chain forward until we obtain the 3433 // range for CtlzOp. That said, we only follow at most one ancestor from 3434 // Cond0. Likewise, we only follow at most one ancestor from CtrlOp. 3435 3436 ConstantRange CR = ConstantRange::makeExactICmpRegion( 3437 CmpInst::getInversePredicate(Pred), *Cond1); 3438 3439 ShouldDropNUW = false; 3440 3441 // Match the operation that's used to compute CtlzOp from CommonAncestor. If 3442 // CtlzOp == CommonAncestor, return true as no operation is needed. If a 3443 // match is found, execute the operation on CR, update CR, and return true. 3444 // Otherwise, return false. 3445 auto MatchForward = [&](Value *CommonAncestor) { 3446 const APInt *C = nullptr; 3447 if (CtlzOp == CommonAncestor) 3448 return true; 3449 if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) { 3450 CR = CR.add(*C); 3451 return true; 3452 } 3453 if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) { 3454 ShouldDropNUW = true; 3455 CR = ConstantRange(*C).sub(CR); 3456 return true; 3457 } 3458 if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) { 3459 CR = CR.binaryNot(); 3460 return true; 3461 } 3462 return false; 3463 }; 3464 3465 const APInt *C = nullptr; 3466 Value *CommonAncestor; 3467 if (MatchForward(Cond0)) { 3468 // Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated. 3469 } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) { 3470 CR = CR.sub(*C); 3471 if (!MatchForward(CommonAncestor)) 3472 return false; 3473 // Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated. 3474 } else { 3475 return false; 3476 } 3477 3478 // Return true if all the values in the range are either 0 or negative (if 3479 // treated as signed). We do so by evaluating: 3480 // 3481 // CR - 1 u>= (1 << BitWidth) - 1. 3482 APInt IntMax = APInt::getSignMask(BitWidth) - 1; 3483 CR = CR.sub(APInt(BitWidth, 1)); 3484 return CR.icmp(ICmpInst::ICMP_UGE, IntMax); 3485 } 3486 3487 // Transform the std::bit_ceil(X) pattern like: 3488 // 3489 // %dec = add i32 %x, -1 3490 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3491 // %sub = sub i32 32, %ctlz 3492 // %shl = shl i32 1, %sub 3493 // %ugt = icmp ugt i32 %x, 1 3494 // %sel = select i1 %ugt, i32 %shl, i32 1 3495 // 3496 // into: 3497 // 3498 // %dec = add i32 %x, -1 3499 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false) 3500 // %neg = sub i32 0, %ctlz 3501 // %masked = and i32 %ctlz, 31 3502 // %shl = shl i32 1, %sub 3503 // 3504 // Note that the select is optimized away while the shift count is masked with 3505 // 31. We handle some variations of the input operand like std::bit_ceil(X + 3506 // 1). 3507 static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder, 3508 InstCombinerImpl &IC) { 3509 Type *SelType = SI.getType(); 3510 unsigned BitWidth = SelType->getScalarSizeInBits(); 3511 3512 Value *FalseVal = SI.getFalseValue(); 3513 Value *TrueVal = SI.getTrueValue(); 3514 CmpPredicate Pred; 3515 const APInt *Cond1; 3516 Value *Cond0, *Ctlz, *CtlzOp; 3517 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1)))) 3518 return nullptr; 3519 3520 if (match(TrueVal, m_One())) { 3521 std::swap(FalseVal, TrueVal); 3522 Pred = CmpInst::getInversePredicate(Pred); 3523 } 3524 3525 bool ShouldDropNUW; 3526 3527 if (!match(FalseVal, m_One()) || 3528 !match(TrueVal, 3529 m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth), 3530 m_Value(Ctlz)))))) || 3531 !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) || 3532 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth, 3533 ShouldDropNUW)) 3534 return nullptr; 3535 3536 if (ShouldDropNUW) 3537 cast<Instruction>(CtlzOp)->setHasNoUnsignedWrap(false); 3538 3539 // Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a 3540 // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth 3541 // is an integer constant. Masking with BitWidth-1 comes free on some 3542 // hardware as part of the shift instruction. 3543 3544 // Drop range attributes and re-infer them in the next iteration. 3545 cast<Instruction>(Ctlz)->dropPoisonGeneratingAnnotations(); 3546 IC.addToWorklist(cast<Instruction>(Ctlz)); 3547 Value *Neg = Builder.CreateNeg(Ctlz); 3548 Value *Masked = 3549 Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1)); 3550 return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1), 3551 Masked); 3552 } 3553 3554 // This function tries to fold the following operations: 3555 // (x < y) ? -1 : zext(x != y) 3556 // (x < y) ? -1 : zext(x > y) 3557 // (x > y) ? 1 : sext(x != y) 3558 // (x > y) ? 1 : sext(x < y) 3559 // Into ucmp/scmp(x, y), where signedness is determined by the signedness 3560 // of the comparison in the original sequence. 3561 Instruction *InstCombinerImpl::foldSelectToCmp(SelectInst &SI) { 3562 Value *TV = SI.getTrueValue(); 3563 Value *FV = SI.getFalseValue(); 3564 3565 CmpPredicate Pred; 3566 Value *LHS, *RHS; 3567 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) 3568 return nullptr; 3569 3570 if (!LHS->getType()->isIntOrIntVectorTy()) 3571 return nullptr; 3572 3573 // Try to swap operands and the predicate. We need to be careful when doing 3574 // so because two of the patterns have opposite predicates, so use the 3575 // constant inside select to determine if swapping operands would be 3576 // beneficial to us. 3577 if ((ICmpInst::isGT(Pred) && match(TV, m_AllOnes())) || 3578 (ICmpInst::isLT(Pred) && match(TV, m_One()))) { 3579 Pred = ICmpInst::getSwappedPredicate(Pred); 3580 std::swap(LHS, RHS); 3581 } 3582 bool IsSigned = ICmpInst::isSigned(Pred); 3583 3584 bool Replace = false; 3585 CmpPredicate ExtendedCmpPredicate; 3586 // (x < y) ? -1 : zext(x != y) 3587 // (x < y) ? -1 : zext(x > y) 3588 if (ICmpInst::isLT(Pred) && match(TV, m_AllOnes()) && 3589 match(FV, m_ZExt(m_c_ICmp(ExtendedCmpPredicate, m_Specific(LHS), 3590 m_Specific(RHS)))) && 3591 (ExtendedCmpPredicate == ICmpInst::ICMP_NE || 3592 ICmpInst::getSwappedPredicate(ExtendedCmpPredicate) == Pred)) 3593 Replace = true; 3594 3595 // (x > y) ? 1 : sext(x != y) 3596 // (x > y) ? 1 : sext(x < y) 3597 if (ICmpInst::isGT(Pred) && match(TV, m_One()) && 3598 match(FV, m_SExt(m_c_ICmp(ExtendedCmpPredicate, m_Specific(LHS), 3599 m_Specific(RHS)))) && 3600 (ExtendedCmpPredicate == ICmpInst::ICMP_NE || 3601 ICmpInst::getSwappedPredicate(ExtendedCmpPredicate) == Pred)) 3602 Replace = true; 3603 3604 // (x == y) ? 0 : (x > y ? 1 : -1) 3605 CmpPredicate FalseBranchSelectPredicate; 3606 const APInt *InnerTV, *InnerFV; 3607 if (Pred == ICmpInst::ICMP_EQ && match(TV, m_Zero()) && 3608 match(FV, m_Select(m_c_ICmp(FalseBranchSelectPredicate, m_Specific(LHS), 3609 m_Specific(RHS)), 3610 m_APInt(InnerTV), m_APInt(InnerFV)))) { 3611 if (!ICmpInst::isGT(FalseBranchSelectPredicate)) { 3612 FalseBranchSelectPredicate = 3613 ICmpInst::getSwappedPredicate(FalseBranchSelectPredicate); 3614 std::swap(LHS, RHS); 3615 } 3616 3617 if (!InnerTV->isOne()) { 3618 std::swap(InnerTV, InnerFV); 3619 std::swap(LHS, RHS); 3620 } 3621 3622 if (ICmpInst::isGT(FalseBranchSelectPredicate) && InnerTV->isOne() && 3623 InnerFV->isAllOnes()) { 3624 IsSigned = ICmpInst::isSigned(FalseBranchSelectPredicate); 3625 Replace = true; 3626 } 3627 } 3628 3629 Intrinsic::ID IID = IsSigned ? Intrinsic::scmp : Intrinsic::ucmp; 3630 if (Replace) 3631 return replaceInstUsesWith( 3632 SI, Builder.CreateIntrinsic(SI.getType(), IID, {LHS, RHS})); 3633 return nullptr; 3634 } 3635 3636 bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF, 3637 const Instruction *CtxI) const { 3638 KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI); 3639 3640 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() && 3641 (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN()); 3642 } 3643 3644 static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0, 3645 Value *Cmp1, Value *TrueVal, 3646 Value *FalseVal, Instruction &CtxI, 3647 bool SelectIsNSZ) { 3648 Value *MulRHS; 3649 if (match(Cmp1, m_PosZeroFP()) && 3650 match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) { 3651 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags(); 3652 // nsz must be on the select, it must be ignored on the multiply. We 3653 // need nnan and ninf on the multiply for the other value. 3654 FMF.setNoSignedZeros(SelectIsNSZ); 3655 return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI); 3656 } 3657 3658 return false; 3659 } 3660 3661 /// Check whether the KnownBits of a select arm may be affected by the 3662 /// select condition. 3663 static bool hasAffectedValue(Value *V, SmallPtrSetImpl<Value *> &Affected, 3664 unsigned Depth) { 3665 if (Depth == MaxAnalysisRecursionDepth) 3666 return false; 3667 3668 // Ignore the case where the select arm itself is affected. These cases 3669 // are handled more efficiently by other optimizations. 3670 if (Depth != 0 && Affected.contains(V)) 3671 return true; 3672 3673 if (auto *I = dyn_cast<Instruction>(V)) { 3674 if (isa<PHINode>(I)) { 3675 if (Depth == MaxAnalysisRecursionDepth - 1) 3676 return false; 3677 Depth = MaxAnalysisRecursionDepth - 2; 3678 } 3679 return any_of(I->operands(), [&](Value *Op) { 3680 return Op->getType()->isIntOrIntVectorTy() && 3681 hasAffectedValue(Op, Affected, Depth + 1); 3682 }); 3683 } 3684 3685 return false; 3686 } 3687 3688 // This transformation enables the possibility of transforming fcmp + sel into 3689 // a fmaxnum/fminnum intrinsic. 3690 static Value *foldSelectIntoAddConstant(SelectInst &SI, 3691 InstCombiner::BuilderTy &Builder) { 3692 // Do this transformation only when select instruction gives NaN and NSZ 3693 // guarantee. 3694 auto *SIFOp = dyn_cast<FPMathOperator>(&SI); 3695 if (!SIFOp || !SIFOp->hasNoSignedZeros() || !SIFOp->hasNoNaNs()) 3696 return nullptr; 3697 3698 auto TryFoldIntoAddConstant = 3699 [&Builder, &SI](CmpInst::Predicate Pred, Value *X, Value *Z, 3700 Instruction *FAdd, Constant *C, bool Swapped) -> Value * { 3701 // Only these relational predicates can be transformed into maxnum/minnum 3702 // intrinsic. 3703 if (!CmpInst::isRelational(Pred) || !match(Z, m_AnyZeroFP())) 3704 return nullptr; 3705 3706 if (!match(FAdd, m_FAdd(m_Specific(X), m_Specific(C)))) 3707 return nullptr; 3708 3709 Value *NewSelect = Builder.CreateSelect(SI.getCondition(), Swapped ? Z : X, 3710 Swapped ? X : Z, "", &SI); 3711 NewSelect->takeName(&SI); 3712 3713 Value *NewFAdd = Builder.CreateFAdd(NewSelect, C); 3714 NewFAdd->takeName(FAdd); 3715 3716 // Propagate FastMath flags 3717 FastMathFlags SelectFMF = SI.getFastMathFlags(); 3718 FastMathFlags FAddFMF = FAdd->getFastMathFlags(); 3719 FastMathFlags NewFMF = FastMathFlags::intersectRewrite(SelectFMF, FAddFMF) | 3720 FastMathFlags::unionValue(SelectFMF, FAddFMF); 3721 cast<Instruction>(NewFAdd)->setFastMathFlags(NewFMF); 3722 cast<Instruction>(NewSelect)->setFastMathFlags(NewFMF); 3723 3724 return NewFAdd; 3725 }; 3726 3727 // select((fcmp Pred, X, 0), (fadd X, C), C) 3728 // => fadd((select (fcmp Pred, X, 0), X, 0), C) 3729 // 3730 // Pred := OGT, OGE, OLT, OLE, UGT, UGE, ULT, and ULE 3731 Instruction *FAdd; 3732 Constant *C; 3733 Value *X, *Z; 3734 CmpPredicate Pred; 3735 3736 // Note: OneUse check for `Cmp` is necessary because it makes sure that other 3737 // InstCombine folds don't undo this transformation and cause an infinite 3738 // loop. Furthermore, it could also increase the operation count. 3739 if (match(&SI, m_Select(m_OneUse(m_FCmp(Pred, m_Value(X), m_Value(Z))), 3740 m_OneUse(m_Instruction(FAdd)), m_Constant(C)))) 3741 return TryFoldIntoAddConstant(Pred, X, Z, FAdd, C, /*Swapped=*/false); 3742 3743 if (match(&SI, m_Select(m_OneUse(m_FCmp(Pred, m_Value(X), m_Value(Z))), 3744 m_Constant(C), m_OneUse(m_Instruction(FAdd))))) 3745 return TryFoldIntoAddConstant(Pred, X, Z, FAdd, C, /*Swapped=*/true); 3746 3747 return nullptr; 3748 } 3749 3750 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 3751 Value *CondVal = SI.getCondition(); 3752 Value *TrueVal = SI.getTrueValue(); 3753 Value *FalseVal = SI.getFalseValue(); 3754 Type *SelType = SI.getType(); 3755 3756 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal, 3757 SQ.getWithInstruction(&SI))) 3758 return replaceInstUsesWith(SI, V); 3759 3760 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 3761 return I; 3762 3763 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 3764 return I; 3765 3766 // If the type of select is not an integer type or if the condition and 3767 // the selection type are not both scalar nor both vector types, there is no 3768 // point in attempting to match these patterns. 3769 Type *CondType = CondVal->getType(); 3770 if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() && 3771 CondType->isVectorTy() == SelType->isVectorTy()) { 3772 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, 3773 ConstantInt::getTrue(CondType), SQ, 3774 /* AllowRefinement */ true)) 3775 return replaceOperand(SI, 1, S); 3776 3777 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, 3778 ConstantInt::getFalse(CondType), SQ, 3779 /* AllowRefinement */ true)) 3780 return replaceOperand(SI, 2, S); 3781 3782 if (replaceInInstruction(TrueVal, CondVal, 3783 ConstantInt::getTrue(CondType)) || 3784 replaceInInstruction(FalseVal, CondVal, 3785 ConstantInt::getFalse(CondType))) 3786 return &SI; 3787 } 3788 3789 if (Instruction *R = foldSelectOfBools(SI)) 3790 return R; 3791 3792 // Selecting between two integer or vector splat integer constants? 3793 // 3794 // Note that we don't handle a scalar select of vectors: 3795 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 3796 // because that may need 3 instructions to splat the condition value: 3797 // extend, insertelement, shufflevector. 3798 // 3799 // Do not handle i1 TrueVal and FalseVal otherwise would result in 3800 // zext/sext i1 to i1. 3801 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 3802 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 3803 // select C, 1, 0 -> zext C to int 3804 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 3805 return new ZExtInst(CondVal, SelType); 3806 3807 // select C, -1, 0 -> sext C to int 3808 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 3809 return new SExtInst(CondVal, SelType); 3810 3811 // select C, 0, 1 -> zext !C to int 3812 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 3813 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3814 return new ZExtInst(NotCond, SelType); 3815 } 3816 3817 // select C, 0, -1 -> sext !C to int 3818 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 3819 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 3820 return new SExtInst(NotCond, SelType); 3821 } 3822 } 3823 3824 auto *SIFPOp = dyn_cast<FPMathOperator>(&SI); 3825 3826 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 3827 FCmpInst::Predicate Pred = FCmp->getPredicate(); 3828 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 3829 // Are we selecting a value based on a comparison of the two values? 3830 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 3831 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 3832 // Canonicalize to use ordered comparisons by swapping the select 3833 // operands. 3834 // 3835 // e.g. 3836 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 3837 if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) { 3838 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 3839 // FIXME: The FMF should propagate from the select, not the fcmp. 3840 Value *NewCond = Builder.CreateFCmpFMF(InvPred, Cmp0, Cmp1, FCmp, 3841 FCmp->getName() + ".inv"); 3842 Value *NewSel = 3843 Builder.CreateSelectFMF(NewCond, FalseVal, TrueVal, FCmp); 3844 return replaceInstUsesWith(SI, NewSel); 3845 } 3846 } 3847 3848 if (SIFPOp) { 3849 // Fold out scale-if-equals-zero pattern. 3850 // 3851 // This pattern appears in code with denormal range checks after it's 3852 // assumed denormals are treated as zero. This drops a canonicalization. 3853 3854 // TODO: Could relax the signed zero logic. We just need to know the sign 3855 // of the result matches (fmul x, y has the same sign as x). 3856 // 3857 // TODO: Handle always-canonicalizing variant that selects some value or 1 3858 // scaling factor in the fmul visitor. 3859 3860 // TODO: Handle ldexp too 3861 3862 Value *MatchCmp0 = nullptr; 3863 Value *MatchCmp1 = nullptr; 3864 3865 // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x 3866 // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x 3867 if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) { 3868 MatchCmp0 = FalseVal; 3869 MatchCmp1 = TrueVal; 3870 } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) { 3871 MatchCmp0 = TrueVal; 3872 MatchCmp1 = FalseVal; 3873 } 3874 3875 if (Cmp0 == MatchCmp0 && 3876 matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0, 3877 SI, SIFPOp->hasNoSignedZeros())) 3878 return replaceInstUsesWith(SI, Cmp0); 3879 } 3880 } 3881 3882 if (SIFPOp) { 3883 // TODO: Try to forward-propagate FMF from select arms to the select. 3884 3885 auto *FCmp = dyn_cast<FCmpInst>(CondVal); 3886 3887 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3888 // minnum/maxnum intrinsics. 3889 if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) { 3890 Value *X, *Y; 3891 if (match(&SI, m_OrdOrUnordFMax(m_Value(X), m_Value(Y)))) { 3892 Value *BinIntr = 3893 Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI); 3894 if (auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) 3895 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs()); 3896 return replaceInstUsesWith(SI, BinIntr); 3897 } 3898 3899 if (match(&SI, m_OrdOrUnordFMin(m_Value(X), m_Value(Y)))) { 3900 Value *BinIntr = 3901 Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI); 3902 if (auto *BinIntrInst = dyn_cast<Instruction>(BinIntr)) 3903 BinIntrInst->setHasNoNaNs(FCmp->hasNoNaNs()); 3904 return replaceInstUsesWith(SI, BinIntr); 3905 } 3906 } 3907 } 3908 3909 // Fold selecting to fabs. 3910 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this)) 3911 return Fabs; 3912 3913 // See if we are selecting two values based on a comparison of the two values. 3914 if (CmpInst *CI = dyn_cast<CmpInst>(CondVal)) 3915 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *CI)) 3916 return NewSel; 3917 3918 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 3919 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 3920 return Result; 3921 3922 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 3923 return Add; 3924 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 3925 return Add; 3926 if (Instruction *Or = foldSetClearBits(SI, Builder)) 3927 return Or; 3928 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3929 return Mul; 3930 3931 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3932 auto *TI = dyn_cast<Instruction>(TrueVal); 3933 auto *FI = dyn_cast<Instruction>(FalseVal); 3934 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3935 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3936 return IV; 3937 3938 if (Instruction *I = foldSelectExtConst(SI)) 3939 return I; 3940 3941 if (Instruction *I = foldSelectWithSRem(SI, *this, Builder)) 3942 return I; 3943 3944 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3945 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3946 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3947 bool Swap) -> GetElementPtrInst * { 3948 Value *Ptr = Gep->getPointerOperand(); 3949 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3950 !Gep->hasOneUse()) 3951 return nullptr; 3952 Value *Idx = Gep->getOperand(1); 3953 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3954 return nullptr; 3955 Type *ElementType = Gep->getSourceElementType(); 3956 Value *NewT = Idx; 3957 Value *NewF = Constant::getNullValue(Idx->getType()); 3958 if (Swap) 3959 std::swap(NewT, NewF); 3960 Value *NewSI = 3961 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3962 return GetElementPtrInst::Create(ElementType, Ptr, NewSI, 3963 Gep->getNoWrapFlags()); 3964 }; 3965 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3966 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3967 return NewGep; 3968 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3969 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3970 return NewGep; 3971 3972 // See if we can fold the select into one of our operands. 3973 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3974 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3975 return FoldI; 3976 3977 Value *LHS, *RHS; 3978 Instruction::CastOps CastOp; 3979 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3980 auto SPF = SPR.Flavor; 3981 if (SPF) { 3982 Value *LHS2, *RHS2; 3983 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3984 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3985 RHS2, SI, SPF, RHS)) 3986 return R; 3987 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3988 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3989 RHS2, SI, SPF, LHS)) 3990 return R; 3991 } 3992 3993 if (SelectPatternResult::isMinOrMax(SPF)) { 3994 // Canonicalize so that 3995 // - type casts are outside select patterns. 3996 // - float clamp is transformed to min/max pattern 3997 3998 bool IsCastNeeded = LHS->getType() != SelType; 3999 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 4000 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 4001 if (IsCastNeeded || 4002 (LHS->getType()->isFPOrFPVectorTy() && 4003 ((CmpLHS != LHS && CmpLHS != RHS) || 4004 (CmpRHS != LHS && CmpRHS != RHS)))) { 4005 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 4006 4007 Value *Cmp; 4008 if (CmpInst::isIntPredicate(MinMaxPred)) 4009 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 4010 else 4011 Cmp = Builder.CreateFCmpFMF(MinMaxPred, LHS, RHS, 4012 cast<Instruction>(SI.getCondition())); 4013 4014 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 4015 if (!IsCastNeeded) 4016 return replaceInstUsesWith(SI, NewSI); 4017 4018 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 4019 return replaceInstUsesWith(SI, NewCast); 4020 } 4021 } 4022 } 4023 4024 // See if we can fold the select into a phi node if the condition is a select. 4025 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 4026 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 4027 return NV; 4028 4029 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 4030 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 4031 // Fold nested selects if the inner condition can be implied by the outer 4032 // condition. 4033 if (Value *V = simplifyNestedSelectsUsingImpliedCond( 4034 *TrueSI, CondVal, /*CondIsTrue=*/true, DL)) 4035 return replaceOperand(SI, 1, V); 4036 4037 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 4038 // We choose this as normal form to enable folding on the And and 4039 // shortening paths for the values (this helps getUnderlyingObjects() for 4040 // example). 4041 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 4042 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 4043 replaceOperand(SI, 0, And); 4044 replaceOperand(SI, 1, TrueSI->getTrueValue()); 4045 return &SI; 4046 } 4047 } 4048 } 4049 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 4050 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 4051 // Fold nested selects if the inner condition can be implied by the outer 4052 // condition. 4053 if (Value *V = simplifyNestedSelectsUsingImpliedCond( 4054 *FalseSI, CondVal, /*CondIsTrue=*/false, DL)) 4055 return replaceOperand(SI, 2, V); 4056 4057 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 4058 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 4059 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 4060 replaceOperand(SI, 0, Or); 4061 replaceOperand(SI, 2, FalseSI->getFalseValue()); 4062 return &SI; 4063 } 4064 } 4065 } 4066 4067 // Try to simplify a binop sandwiched between 2 selects with the same 4068 // condition. This is not valid for div/rem because the select might be 4069 // preventing a division-by-zero. 4070 // TODO: A div/rem restriction is conservative; use something like 4071 // isSafeToSpeculativelyExecute(). 4072 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 4073 BinaryOperator *TrueBO; 4074 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) { 4075 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 4076 if (TrueBOSI->getCondition() == CondVal) { 4077 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 4078 Worklist.push(TrueBO); 4079 return &SI; 4080 } 4081 } 4082 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 4083 if (TrueBOSI->getCondition() == CondVal) { 4084 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 4085 Worklist.push(TrueBO); 4086 return &SI; 4087 } 4088 } 4089 } 4090 4091 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 4092 BinaryOperator *FalseBO; 4093 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) { 4094 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 4095 if (FalseBOSI->getCondition() == CondVal) { 4096 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 4097 Worklist.push(FalseBO); 4098 return &SI; 4099 } 4100 } 4101 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 4102 if (FalseBOSI->getCondition() == CondVal) { 4103 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 4104 Worklist.push(FalseBO); 4105 return &SI; 4106 } 4107 } 4108 } 4109 4110 Value *NotCond; 4111 if (match(CondVal, m_Not(m_Value(NotCond))) && 4112 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 4113 replaceOperand(SI, 0, NotCond); 4114 SI.swapValues(); 4115 SI.swapProfMetadata(); 4116 return &SI; 4117 } 4118 4119 if (Instruction *I = foldVectorSelect(SI)) 4120 return I; 4121 4122 // If we can compute the condition, there's no need for a select. 4123 // Like the above fold, we are attempting to reduce compile-time cost by 4124 // putting this fold here with limitations rather than in InstSimplify. 4125 // The motivation for this call into value tracking is to take advantage of 4126 // the assumption cache, so make sure that is populated. 4127 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 4128 KnownBits Known(1); 4129 computeKnownBits(CondVal, Known, 0, &SI); 4130 if (Known.One.isOne()) 4131 return replaceInstUsesWith(SI, TrueVal); 4132 if (Known.Zero.isOne()) 4133 return replaceInstUsesWith(SI, FalseVal); 4134 } 4135 4136 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 4137 return BitCastSel; 4138 4139 // Simplify selects that test the returned flag of cmpxchg instructions. 4140 if (Value *V = foldSelectCmpXchg(SI)) 4141 return replaceInstUsesWith(SI, V); 4142 4143 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 4144 return Select; 4145 4146 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 4147 return Funnel; 4148 4149 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 4150 return Copysign; 4151 4152 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 4153 return replaceInstUsesWith(SI, PN); 4154 4155 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 4156 return replaceInstUsesWith(SI, Fr); 4157 4158 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder)) 4159 return replaceInstUsesWith(SI, V); 4160 4161 if (Value *V = foldSelectIntoAddConstant(SI, Builder)) 4162 return replaceInstUsesWith(SI, V); 4163 4164 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 4165 // Load inst is intentionally not checked for hasOneUse() 4166 if (match(FalseVal, m_Zero()) && 4167 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 4168 m_CombineOr(m_Undef(), m_Zero()))) || 4169 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal), 4170 m_CombineOr(m_Undef(), m_Zero()))))) { 4171 auto *MaskedInst = cast<IntrinsicInst>(TrueVal); 4172 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 4173 MaskedInst->setArgOperand(3, FalseVal /* Zero */); 4174 return replaceInstUsesWith(SI, MaskedInst); 4175 } 4176 4177 Value *Mask; 4178 if (match(TrueVal, m_Zero()) && 4179 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 4180 m_CombineOr(m_Undef(), m_Zero()))) || 4181 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask), 4182 m_CombineOr(m_Undef(), m_Zero())))) && 4183 (CondVal->getType() == Mask->getType())) { 4184 // We can remove the select by ensuring the load zeros all lanes the 4185 // select would have. We determine this by proving there is no overlap 4186 // between the load and select masks. 4187 // (i.e (load_mask & select_mask) == 0 == no overlap) 4188 bool CanMergeSelectIntoLoad = false; 4189 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 4190 CanMergeSelectIntoLoad = match(V, m_Zero()); 4191 4192 if (CanMergeSelectIntoLoad) { 4193 auto *MaskedInst = cast<IntrinsicInst>(FalseVal); 4194 if (isa<UndefValue>(MaskedInst->getArgOperand(3))) 4195 MaskedInst->setArgOperand(3, TrueVal /* Zero */); 4196 return replaceInstUsesWith(SI, MaskedInst); 4197 } 4198 } 4199 4200 if (Instruction *I = foldSelectOfSymmetricSelect(SI, Builder)) 4201 return I; 4202 4203 if (Instruction *I = foldNestedSelects(SI, Builder)) 4204 return I; 4205 4206 // Match logical variants of the pattern, 4207 // and transform them iff that gets rid of inversions. 4208 // (~x) | y --> ~(x & (~y)) 4209 // (~x) & y --> ~(x | (~y)) 4210 if (sinkNotIntoOtherHandOfLogicalOp(SI)) 4211 return &SI; 4212 4213 if (Instruction *I = foldBitCeil(SI, Builder, *this)) 4214 return I; 4215 4216 if (Instruction *I = foldSelectToCmp(SI)) 4217 return I; 4218 4219 if (Instruction *I = foldSelectEqualityTest(SI)) 4220 return I; 4221 4222 // Fold: 4223 // (select A && B, T, F) -> (select A, (select B, T, F), F) 4224 // (select A || B, T, F) -> (select A, T, (select B, T, F)) 4225 // if (select B, T, F) is foldable. 4226 // TODO: preserve FMF flags 4227 auto FoldSelectWithAndOrCond = [&](bool IsAnd, Value *A, 4228 Value *B) -> Instruction * { 4229 if (Value *V = simplifySelectInst(B, TrueVal, FalseVal, 4230 SQ.getWithInstruction(&SI))) 4231 return SelectInst::Create(A, IsAnd ? V : TrueVal, IsAnd ? FalseVal : V); 4232 4233 // Is (select B, T, F) a SPF? 4234 if (CondVal->hasOneUse() && SelType->isIntOrIntVectorTy()) { 4235 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(B)) 4236 if (Value *V = canonicalizeSPF(*Cmp, TrueVal, FalseVal, *this)) 4237 return SelectInst::Create(A, IsAnd ? V : TrueVal, 4238 IsAnd ? FalseVal : V); 4239 } 4240 4241 return nullptr; 4242 }; 4243 4244 Value *LHS, *RHS; 4245 if (match(CondVal, m_And(m_Value(LHS), m_Value(RHS)))) { 4246 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) 4247 return I; 4248 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, RHS, LHS)) 4249 return I; 4250 } else if (match(CondVal, m_Or(m_Value(LHS), m_Value(RHS)))) { 4251 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) 4252 return I; 4253 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, RHS, LHS)) 4254 return I; 4255 } else { 4256 // We cannot swap the operands of logical and/or. 4257 // TODO: Can we swap the operands by inserting a freeze? 4258 if (match(CondVal, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) { 4259 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ true, LHS, RHS)) 4260 return I; 4261 } else if (match(CondVal, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) { 4262 if (Instruction *I = FoldSelectWithAndOrCond(/*IsAnd*/ false, LHS, RHS)) 4263 return I; 4264 } 4265 } 4266 4267 // select Cond, !X, X -> xor Cond, X 4268 if (CondVal->getType() == SI.getType() && isKnownInversion(FalseVal, TrueVal)) 4269 return BinaryOperator::CreateXor(CondVal, FalseVal); 4270 4271 // For vectors, this transform is only safe if the simplification does not 4272 // look through any lane-crossing operations. For now, limit to scalars only. 4273 if (SelType->isIntegerTy() && 4274 (!isa<Constant>(TrueVal) || !isa<Constant>(FalseVal))) { 4275 // Try to simplify select arms based on KnownBits implied by the condition. 4276 CondContext CC(CondVal); 4277 findValuesAffectedByCondition(CondVal, /*IsAssume=*/false, [&](Value *V) { 4278 CC.AffectedValues.insert(V); 4279 }); 4280 SimplifyQuery Q = SQ.getWithInstruction(&SI).getWithCondContext(CC); 4281 if (!CC.AffectedValues.empty()) { 4282 if (!isa<Constant>(TrueVal) && 4283 hasAffectedValue(TrueVal, CC.AffectedValues, /*Depth=*/0)) { 4284 KnownBits Known = llvm::computeKnownBits(TrueVal, /*Depth=*/0, Q); 4285 if (Known.isConstant()) 4286 return replaceOperand(SI, 1, 4287 ConstantInt::get(SelType, Known.getConstant())); 4288 } 4289 4290 CC.Invert = true; 4291 if (!isa<Constant>(FalseVal) && 4292 hasAffectedValue(FalseVal, CC.AffectedValues, /*Depth=*/0)) { 4293 KnownBits Known = llvm::computeKnownBits(FalseVal, /*Depth=*/0, Q); 4294 if (Known.isConstant()) 4295 return replaceOperand(SI, 2, 4296 ConstantInt::get(SelType, Known.getConstant())); 4297 } 4298 } 4299 } 4300 4301 // select (trunc nuw X to i1), X, Y --> select (trunc nuw X to i1), 1, Y 4302 // select (trunc nuw X to i1), Y, X --> select (trunc nuw X to i1), Y, 0 4303 // select (trunc nsw X to i1), X, Y --> select (trunc nsw X to i1), -1, Y 4304 // select (trunc nsw X to i1), Y, X --> select (trunc nsw X to i1), Y, 0 4305 Value *Trunc; 4306 if (match(CondVal, m_NUWTrunc(m_Value(Trunc)))) { 4307 if (TrueVal == Trunc) 4308 return replaceOperand(SI, 1, ConstantInt::get(TrueVal->getType(), 1)); 4309 if (FalseVal == Trunc) 4310 return replaceOperand(SI, 2, ConstantInt::get(FalseVal->getType(), 0)); 4311 } 4312 if (match(CondVal, m_NSWTrunc(m_Value(Trunc)))) { 4313 if (TrueVal == Trunc) 4314 return replaceOperand(SI, 1, 4315 Constant::getAllOnesValue(TrueVal->getType())); 4316 if (FalseVal == Trunc) 4317 return replaceOperand(SI, 2, ConstantInt::get(FalseVal->getType(), 0)); 4318 } 4319 4320 return nullptr; 4321 } 4322