xref: /llvm-project/llvm/lib/Transforms/InstCombine/InstCombineInternal.h (revision 0d9c027ad7fa36a607386e24d4928c9046f6ff56)
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/InstVisitor.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/InstCombine/InstCombiner.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <cassert>
32 
33 #define DEBUG_TYPE "instcombine"
34 #include "llvm/Transforms/Utils/InstructionWorklist.h"
35 
36 // As a default, let's assume that we want to be aggressive,
37 // and attempt to traverse with no limits in attempt to sink negation.
38 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
39 
40 // Let's guesstimate that most often we will end up visiting/producing
41 // fairly small number of new instructions.
42 static constexpr unsigned NegatorMaxNodesSSO = 16;
43 
44 namespace llvm {
45 
46 class AAResults;
47 class APInt;
48 class AssumptionCache;
49 class BlockFrequencyInfo;
50 class DataLayout;
51 class DominatorTree;
52 class GEPOperator;
53 class GlobalVariable;
54 class OptimizationRemarkEmitter;
55 class ProfileSummaryInfo;
56 class TargetLibraryInfo;
57 class User;
58 
59 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
60     : public InstCombiner,
61       public InstVisitor<InstCombinerImpl, Instruction *> {
62 public:
63   InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
64                    bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
65                    TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
66                    DominatorTree &DT, OptimizationRemarkEmitter &ORE,
67                    BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI,
68                    ProfileSummaryInfo *PSI, const DataLayout &DL,
69                    ReversePostOrderTraversal<BasicBlock *> &RPOT)
70       : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
71                      BFI, BPI, PSI, DL, RPOT) {}
72 
73   virtual ~InstCombinerImpl() = default;
74 
75   /// Perform early cleanup and prepare the InstCombine worklist.
76   bool prepareWorklist(Function &F);
77 
78   /// Run the combiner over the entire worklist until it is empty.
79   ///
80   /// \returns true if the IR is changed.
81   bool run();
82 
83   // Visitation implementation - Implement instruction combining for different
84   // instruction types.  The semantics are as follows:
85   // Return Value:
86   //    null        - No change was made
87   //     I          - Change was made, I is still valid, I may be dead though
88   //   otherwise    - Change was made, replace I with returned instruction
89   //
90   Instruction *visitFNeg(UnaryOperator &I);
91   Instruction *visitAdd(BinaryOperator &I);
92   Instruction *visitFAdd(BinaryOperator &I);
93   Value *OptimizePointerDifference(
94       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
95   Instruction *visitSub(BinaryOperator &I);
96   Instruction *visitFSub(BinaryOperator &I);
97   Instruction *visitMul(BinaryOperator &I);
98   Instruction *foldPowiReassoc(BinaryOperator &I);
99   Instruction *foldFMulReassoc(BinaryOperator &I);
100   Instruction *visitFMul(BinaryOperator &I);
101   Instruction *visitURem(BinaryOperator &I);
102   Instruction *visitSRem(BinaryOperator &I);
103   Instruction *visitFRem(BinaryOperator &I);
104   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
105   Instruction *commonIDivRemTransforms(BinaryOperator &I);
106   Instruction *commonIRemTransforms(BinaryOperator &I);
107   Instruction *commonIDivTransforms(BinaryOperator &I);
108   Instruction *visitUDiv(BinaryOperator &I);
109   Instruction *visitSDiv(BinaryOperator &I);
110   Instruction *visitFDiv(BinaryOperator &I);
111   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
112   Instruction *visitAnd(BinaryOperator &I);
113   Instruction *visitOr(BinaryOperator &I);
114   bool sinkNotIntoLogicalOp(Instruction &I);
115   bool sinkNotIntoOtherHandOfLogicalOp(Instruction &I);
116   Instruction *visitXor(BinaryOperator &I);
117   Instruction *visitShl(BinaryOperator &I);
118   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
119       BinaryOperator *Sh0, const SimplifyQuery &SQ,
120       bool AnalyzeForSignBitExtraction = false);
121   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
122       BinaryOperator &I);
123   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
124       BinaryOperator &OldAShr);
125   Instruction *visitAShr(BinaryOperator &I);
126   Instruction *visitLShr(BinaryOperator &I);
127   Instruction *commonShiftTransforms(BinaryOperator &I);
128   Instruction *visitFCmpInst(FCmpInst &I);
129   CmpInst *canonicalizeICmpPredicate(CmpInst &I);
130   Instruction *visitICmpInst(ICmpInst &I);
131   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
132                                    BinaryOperator &I);
133   Instruction *commonCastTransforms(CastInst &CI);
134   Instruction *visitTrunc(TruncInst &CI);
135   Instruction *visitZExt(ZExtInst &Zext);
136   Instruction *visitSExt(SExtInst &Sext);
137   Instruction *visitFPTrunc(FPTruncInst &CI);
138   Instruction *visitFPExt(CastInst &CI);
139   Instruction *visitFPToUI(FPToUIInst &FI);
140   Instruction *visitFPToSI(FPToSIInst &FI);
141   Instruction *visitUIToFP(CastInst &CI);
142   Instruction *visitSIToFP(CastInst &CI);
143   Instruction *visitPtrToInt(PtrToIntInst &CI);
144   Instruction *visitIntToPtr(IntToPtrInst &CI);
145   Instruction *visitBitCast(BitCastInst &CI);
146   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
147   Instruction *foldItoFPtoI(CastInst &FI);
148   Instruction *visitSelectInst(SelectInst &SI);
149   Instruction *visitCallInst(CallInst &CI);
150   Instruction *visitInvokeInst(InvokeInst &II);
151   Instruction *visitCallBrInst(CallBrInst &CBI);
152 
153   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
154   Instruction *visitPHINode(PHINode &PN);
155   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
156   Instruction *visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src);
157   Instruction *visitAllocaInst(AllocaInst &AI);
158   Instruction *visitAllocSite(Instruction &FI);
159   Instruction *visitFree(CallInst &FI, Value *FreedOp);
160   Instruction *visitLoadInst(LoadInst &LI);
161   Instruction *visitStoreInst(StoreInst &SI);
162   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
163   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
164   Instruction *visitBranchInst(BranchInst &BI);
165   Instruction *visitFenceInst(FenceInst &FI);
166   Instruction *visitSwitchInst(SwitchInst &SI);
167   Instruction *visitReturnInst(ReturnInst &RI);
168   Instruction *visitUnreachableInst(UnreachableInst &I);
169   Instruction *
170   foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
171   Instruction *visitInsertValueInst(InsertValueInst &IV);
172   Instruction *visitInsertElementInst(InsertElementInst &IE);
173   Instruction *visitExtractElementInst(ExtractElementInst &EI);
174   Instruction *simplifyBinOpSplats(ShuffleVectorInst &SVI);
175   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
176   Instruction *visitExtractValueInst(ExtractValueInst &EV);
177   Instruction *visitLandingPadInst(LandingPadInst &LI);
178   Instruction *visitVAEndInst(VAEndInst &I);
179   Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
180   bool freezeOtherUses(FreezeInst &FI);
181   Instruction *foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN);
182   Instruction *visitFreeze(FreezeInst &I);
183 
184   /// Specify what to return for unhandled instructions.
185   Instruction *visitInstruction(Instruction &I) { return nullptr; }
186 
187   /// True when DB dominates all uses of DI except UI.
188   /// UI must be in the same block as DI.
189   /// The routine checks that the DI parent and DB are different.
190   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
191                         const BasicBlock *DB) const;
192 
193   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
194   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
195                                  const unsigned SIOpd);
196 
197   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
198                                  const Twine &Suffix = "");
199 
200   KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF,
201                                    FPClassTest Interested = fcAllFlags,
202                                    const Instruction *CtxI = nullptr,
203                                    unsigned Depth = 0) const {
204     return llvm::computeKnownFPClass(
205         Val, FMF, Interested, Depth,
206         getSimplifyQuery().getWithInstruction(CtxI));
207   }
208 
209   KnownFPClass computeKnownFPClass(Value *Val,
210                                    FPClassTest Interested = fcAllFlags,
211                                    const Instruction *CtxI = nullptr,
212                                    unsigned Depth = 0) const {
213     return llvm::computeKnownFPClass(
214         Val, Interested, Depth, getSimplifyQuery().getWithInstruction(CtxI));
215   }
216 
217   /// Check if fmul \p MulVal, +0.0 will yield +0.0 (or signed zero is
218   /// ignorable).
219   bool fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
220                         const Instruction *CtxI) const;
221 
222   Constant *getLosslessTrunc(Constant *C, Type *TruncTy, unsigned ExtOp) {
223     Constant *TruncC = ConstantExpr::getTrunc(C, TruncTy);
224     Constant *ExtTruncC =
225         ConstantFoldCastOperand(ExtOp, TruncC, C->getType(), DL);
226     if (ExtTruncC && ExtTruncC == C)
227       return TruncC;
228     return nullptr;
229   }
230 
231   Constant *getLosslessUnsignedTrunc(Constant *C, Type *TruncTy) {
232     return getLosslessTrunc(C, TruncTy, Instruction::ZExt);
233   }
234 
235   Constant *getLosslessSignedTrunc(Constant *C, Type *TruncTy) {
236     return getLosslessTrunc(C, TruncTy, Instruction::SExt);
237   }
238 
239   std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>>
240   convertOrOfShiftsToFunnelShift(Instruction &Or);
241 
242 private:
243   bool annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
244   bool isDesirableIntType(unsigned BitWidth) const;
245   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
246   bool shouldChangeType(Type *From, Type *To) const;
247   Value *dyn_castNegVal(Value *V) const;
248 
249   /// Classify whether a cast is worth optimizing.
250   ///
251   /// This is a helper to decide whether the simplification of
252   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
253   ///
254   /// \param CI The cast we are interested in.
255   ///
256   /// \return true if this cast actually results in any code being generated and
257   /// if it cannot already be eliminated by some other transformation.
258   bool shouldOptimizeCast(CastInst *CI);
259 
260   /// Try to optimize a sequence of instructions checking if an operation
261   /// on LHS and RHS overflows.
262   ///
263   /// If this overflow check is done via one of the overflow check intrinsics,
264   /// then CtxI has to be the call instruction calling that intrinsic.  If this
265   /// overflow check is done by arithmetic followed by a compare, then CtxI has
266   /// to be the arithmetic instruction.
267   ///
268   /// If a simplification is possible, stores the simplified result of the
269   /// operation in OperationResult and result of the overflow check in
270   /// OverflowResult, and return true.  If no simplification is possible,
271   /// returns false.
272   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
273                              Value *LHS, Value *RHS,
274                              Instruction &CtxI, Value *&OperationResult,
275                              Constant *&OverflowResult);
276 
277   Instruction *visitCallBase(CallBase &Call);
278   Instruction *tryOptimizeCall(CallInst *CI);
279   bool transformConstExprCastCall(CallBase &Call);
280   Instruction *transformCallThroughTrampoline(CallBase &Call,
281                                               IntrinsicInst &Tramp);
282 
283   // Return (a, b) if (LHS, RHS) is known to be (a, b) or (b, a).
284   // Otherwise, return std::nullopt
285   // Currently it matches:
286   // - LHS = (select c, a, b), RHS = (select c, b, a)
287   // - LHS = (phi [a, BB0], [b, BB1]), RHS = (phi [b, BB0], [a, BB1])
288   // - LHS = min(a, b), RHS = max(a, b)
289   std::optional<std::pair<Value *, Value *>> matchSymmetricPair(Value *LHS,
290                                                                 Value *RHS);
291 
292   Value *simplifyMaskedLoad(IntrinsicInst &II);
293   Instruction *simplifyMaskedStore(IntrinsicInst &II);
294   Instruction *simplifyMaskedGather(IntrinsicInst &II);
295   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
296 
297   /// Transform (zext icmp) to bitwise / integer operations in order to
298   /// eliminate it.
299   ///
300   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
301   /// \parem CI The zext of the (zext icmp) pair we are interested in.
302   ///
303   /// \return null if the transformation cannot be performed. If the
304   /// transformation can be performed the new instruction that replaces the
305   /// (zext icmp) pair will be returned.
306   Instruction *transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext);
307 
308   Instruction *transformSExtICmp(ICmpInst *Cmp, SExtInst &Sext);
309 
310   bool willNotOverflowSignedAdd(const WithCache<const Value *> &LHS,
311                                 const WithCache<const Value *> &RHS,
312                                 const Instruction &CxtI) const {
313     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
314            OverflowResult::NeverOverflows;
315   }
316 
317   bool willNotOverflowUnsignedAdd(const WithCache<const Value *> &LHS,
318                                   const WithCache<const Value *> &RHS,
319                                   const Instruction &CxtI) const {
320     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
321            OverflowResult::NeverOverflows;
322   }
323 
324   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
325                           const Instruction &CxtI, bool IsSigned) const {
326     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
327                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
328   }
329 
330   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
331                                 const Instruction &CxtI) const {
332     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
333            OverflowResult::NeverOverflows;
334   }
335 
336   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
337                                   const Instruction &CxtI) const {
338     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
339            OverflowResult::NeverOverflows;
340   }
341 
342   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
343                           const Instruction &CxtI, bool IsSigned) const {
344     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
345                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
346   }
347 
348   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
349                                 const Instruction &CxtI) const {
350     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
351            OverflowResult::NeverOverflows;
352   }
353 
354   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
355                                   const Instruction &CxtI,
356                                   bool IsNSW = false) const {
357     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI, IsNSW) ==
358            OverflowResult::NeverOverflows;
359   }
360 
361   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
362                           const Instruction &CxtI, bool IsSigned) const {
363     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
364                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
365   }
366 
367   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
368                        const Value *RHS, const Instruction &CxtI,
369                        bool IsSigned) const {
370     switch (Opcode) {
371     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
372     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
373     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
374     default: llvm_unreachable("Unexpected opcode for overflow query");
375     }
376   }
377 
378   Value *EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP = false);
379   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
380   Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
381   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
382   Instruction *foldFBinOpOfIntCasts(BinaryOperator &I);
383   // Should only be called by `foldFBinOpOfIntCasts`.
384   Instruction *foldFBinOpOfIntCastsFromSign(
385       BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
386       Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown);
387   Instruction *foldBinopOfSextBoolToSelect(BinaryOperator &I);
388   Instruction *narrowBinOp(TruncInst &Trunc);
389   Instruction *narrowMaskedBinOp(BinaryOperator &And);
390   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
391   Instruction *narrowFunnelShift(TruncInst &Trunc);
392   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
393   Instruction *matchSAddSubSat(IntrinsicInst &MinMax1);
394   Instruction *foldNot(BinaryOperator &I);
395   Instruction *foldBinOpOfDisplacedShifts(BinaryOperator &I);
396 
397   /// Determine if a pair of casts can be replaced by a single cast.
398   ///
399   /// \param CI1 The first of a pair of casts.
400   /// \param CI2 The second of a pair of casts.
401   ///
402   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
403   /// Instruction::CastOps value for a cast that can replace the pair, casting
404   /// CI1->getSrcTy() to CI2->getDstTy().
405   ///
406   /// \see CastInst::isEliminableCastPair
407   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
408                                             const CastInst *CI2);
409   Value *simplifyIntToPtrRoundTripCast(Value *Val);
410 
411   Value *foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &I,
412                           bool IsAnd, bool IsLogical = false);
413   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
414 
415   Value *foldEqOfParts(Value *Cmp0, Value *Cmp1, bool IsAnd);
416 
417   Value *foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, ICmpInst *ICmp2,
418                                      bool IsAnd);
419 
420   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
421   /// NOTE: Unlike most of instcombine, this returns a Value which should
422   /// already be inserted into the function.
423   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd,
424                           bool IsLogicalSelect = false);
425 
426   Instruction *foldLogicOfIsFPClass(BinaryOperator &Operator, Value *LHS,
427                                     Value *RHS);
428 
429   Value *foldBooleanAndOr(Value *LHS, Value *RHS, Instruction &I, bool IsAnd,
430                           bool IsLogical);
431 
432   Value *reassociateBooleanAndOr(Value *LHS, Value *X, Value *Y, Instruction &I,
433                                  bool IsAnd, bool RHSIsLogical);
434 
435   Instruction *
436   canonicalizeConditionalNegationViaMathToSelect(BinaryOperator &i);
437 
438   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D,
439                               bool InvertFalseVal = false);
440   Value *getSelectCondition(Value *A, Value *B, bool ABIsTheSame);
441 
442   Instruction *foldLShrOverflowBit(BinaryOperator &I);
443   Instruction *foldExtractOfOverflowIntrinsic(ExtractValueInst &EV);
444   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
445   Instruction *foldIntrinsicIsFPClass(IntrinsicInst &II);
446   Instruction *foldFPSignBitOps(BinaryOperator &I);
447   Instruction *foldFDivConstantDivisor(BinaryOperator &I);
448 
449   // Optimize one of these forms:
450   //   and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
451   //   or i1 Op, SI  / select i1 Op, i1 true, i1 SI  (if IsAnd = false)
452   // into simplier select instruction using isImpliedCondition.
453   Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
454                                                  bool IsAnd);
455 
456   Instruction *hoistFNegAboveFMulFDiv(Value *FNegOp, Instruction &FMFSource);
457 
458 public:
459   /// Create and insert the idiom we use to indicate a block is unreachable
460   /// without having to rewrite the CFG from within InstCombine.
461   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
462     auto &Ctx = InsertAt->getContext();
463     auto *SI = new StoreInst(ConstantInt::getTrue(Ctx),
464                              PoisonValue::get(PointerType::getUnqual(Ctx)),
465                              /*isVolatile*/ false, Align(1));
466     InsertNewInstWith(SI, InsertAt->getIterator());
467   }
468 
469   /// Combiner aware instruction erasure.
470   ///
471   /// When dealing with an instruction that has side effects or produces a void
472   /// value, we can't rely on DCE to delete the instruction. Instead, visit
473   /// methods should return the value returned by this function.
474   Instruction *eraseInstFromFunction(Instruction &I) override {
475     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
476     assert(I.use_empty() && "Cannot erase instruction that is used!");
477     salvageDebugInfo(I);
478 
479     // Make sure that we reprocess all operands now that we reduced their
480     // use counts.
481     SmallVector<Value *> Ops(I.operands());
482     Worklist.remove(&I);
483     DC.removeValue(&I);
484     I.eraseFromParent();
485     for (Value *Op : Ops)
486       Worklist.handleUseCountDecrement(Op);
487     MadeIRChange = true;
488     return nullptr; // Don't do anything with FI
489   }
490 
491   OverflowResult computeOverflow(
492       Instruction::BinaryOps BinaryOp, bool IsSigned,
493       Value *LHS, Value *RHS, Instruction *CxtI) const;
494 
495   /// Performs a few simplifications for operators which are associative
496   /// or commutative.
497   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
498 
499   /// Tries to simplify binary operations which some other binary
500   /// operation distributes over.
501   ///
502   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
503   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
504   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
505   /// value, or null if it didn't simplify.
506   Value *foldUsingDistributiveLaws(BinaryOperator &I);
507 
508   /// Tries to simplify add operations using the definition of remainder.
509   ///
510   /// The definition of remainder is X % C = X - (X / C ) * C. The add
511   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
512   /// X % (C0 * C1)
513   Value *SimplifyAddWithRemainder(BinaryOperator &I);
514 
515   // Binary Op helper for select operations where the expression can be
516   // efficiently reorganized.
517   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
518                                         Value *RHS);
519 
520   // If `I` has operand `(ctpop (not x))`, fold `I` with `(sub nuw nsw
521   // BitWidth(x), (ctpop x))`.
522   Instruction *tryFoldInstWithCtpopWithNot(Instruction *I);
523 
524   // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
525   //    -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
526   // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
527   //    -> (BinOp (logic_shift (BinOp X, Y)), Mask)
528   Instruction *foldBinOpShiftWithShift(BinaryOperator &I);
529 
530   /// Tries to simplify binops of select and cast of the select condition.
531   ///
532   /// (Binop (cast C), (select C, T, F))
533   ///    -> (select C, C0, C1)
534   Instruction *foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I);
535 
536   /// This tries to simplify binary operations by factorizing out common terms
537   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
538   Value *tryFactorizationFolds(BinaryOperator &I);
539 
540   /// Match a select chain which produces one of three values based on whether
541   /// the LHS is less than, equal to, or greater than RHS respectively.
542   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
543   /// Equal and Greater values are saved in the matching process and returned to
544   /// the caller.
545   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
546                                ConstantInt *&Less, ConstantInt *&Equal,
547                                ConstantInt *&Greater);
548 
549   /// Attempts to replace I with a simpler value based on the demanded
550   /// bits.
551   Value *SimplifyDemandedUseBits(Instruction *I, const APInt &DemandedMask,
552                                  KnownBits &Known, unsigned Depth,
553                                  const SimplifyQuery &Q);
554   using InstCombiner::SimplifyDemandedBits;
555   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
556                             const APInt &DemandedMask, KnownBits &Known,
557                             unsigned Depth, const SimplifyQuery &Q) override;
558 
559   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
560   /// bits. It also tries to handle simplifications that can be done based on
561   /// DemandedMask, but without modifying the Instruction.
562   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
563                                          const APInt &DemandedMask,
564                                          KnownBits &Known, unsigned Depth,
565                                          const SimplifyQuery &Q);
566 
567   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
568   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
569   Value *simplifyShrShlDemandedBits(
570       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
571       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
572 
573   /// Tries to simplify operands to an integer instruction based on its
574   /// demanded bits.
575   bool SimplifyDemandedInstructionBits(Instruction &Inst);
576   bool SimplifyDemandedInstructionBits(Instruction &Inst, KnownBits &Known);
577 
578   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
579                                     APInt &PoisonElts, unsigned Depth = 0,
580                                     bool AllowMultipleUsers = false) override;
581 
582   /// Attempts to replace V with a simpler value based on the demanded
583   /// floating-point classes
584   Value *SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask,
585                                     KnownFPClass &Known, unsigned Depth,
586                                     Instruction *CxtI);
587   bool SimplifyDemandedFPClass(Instruction *I, unsigned Op,
588                                FPClassTest DemandedMask, KnownFPClass &Known,
589                                unsigned Depth = 0);
590 
591   /// Common transforms for add / disjoint or
592   Instruction *foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW,
593                                       bool NUW);
594 
595   /// Canonicalize the position of binops relative to shufflevector.
596   Instruction *foldVectorBinop(BinaryOperator &Inst);
597   Instruction *foldVectorSelect(SelectInst &Sel);
598   Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf);
599 
600   /// Given a binary operator, cast instruction, or select which has a PHI node
601   /// as operand #0, see if we can fold the instruction into the PHI (which is
602   /// only possible if all operands to the PHI are constants).
603   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN,
604                              bool AllowMultipleUses = false);
605 
606   /// For a binary operator with 2 phi operands, try to hoist the binary
607   /// operation before the phi. This can result in fewer instructions in
608   /// patterns where at least one set of phi operands simplifies.
609   /// Example:
610   /// BB3: binop (phi [X, BB1], [C1, BB2]), (phi [Y, BB1], [C2, BB2])
611   /// -->
612   /// BB1: BO = binop X, Y
613   /// BB3: phi [BO, BB1], [(binop C1, C2), BB2]
614   Instruction *foldBinopWithPhiOperands(BinaryOperator &BO);
615 
616   /// Given an instruction with a select as one operand and a constant as the
617   /// other operand, try to fold the binary operator into the select arguments.
618   /// This also works for Cast instructions, which obviously do not have a
619   /// second operand.
620   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
621                                 bool FoldWithMultiUse = false);
622 
623   /// This is a convenience wrapper function for the above two functions.
624   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
625 
626   Instruction *foldAddWithConstant(BinaryOperator &Add);
627 
628   Instruction *foldSquareSumInt(BinaryOperator &I);
629   Instruction *foldSquareSumFP(BinaryOperator &I);
630 
631   /// Try to rotate an operation below a PHI node, using PHI nodes for
632   /// its operands.
633   Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
634   Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
635   Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
636   Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
637   Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
638   Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
639   Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
640   Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
641 
642   /// If the phi is within a phi web, which is formed by the def-use chain
643   /// of phis and all the phis in the web are only used in the other phis.
644   /// In this case, these phis are dead and we will remove all of them.
645   bool foldDeadPhiWeb(PHINode &PN);
646 
647   /// If an integer typed PHI has only one use which is an IntToPtr operation,
648   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
649   /// insert a new pointer typed PHI and replace the original one.
650   bool foldIntegerTypedPHI(PHINode &PN);
651 
652   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
653   /// folded operation.
654   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
655 
656   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, CmpPredicate Cond,
657                            Instruction &I);
658   Instruction *foldSelectICmp(CmpPredicate Pred, SelectInst *SI, Value *RHS,
659                               const ICmpInst &I);
660   bool foldAllocaCmp(AllocaInst *Alloca);
661   Instruction *foldCmpLoadFromIndexedGlobal(LoadInst *LI,
662                                             GetElementPtrInst *GEP,
663                                             GlobalVariable *GV, CmpInst &ICI,
664                                             ConstantInt *AndCst = nullptr);
665   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
666                                     Constant *RHSC);
667   Instruction *foldICmpAddOpConst(Value *X, const APInt &C, CmpPredicate Pred);
668   Instruction *foldICmpWithCastOp(ICmpInst &ICmp);
669   Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp);
670 
671   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
672   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
673   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
674   Instruction *foldICmpUsingBoolRange(ICmpInst &I);
675   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
676   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
677   Instruction *foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp,
678                                                    const APInt &C);
679   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
680   Instruction *foldICmpWithMinMax(Instruction &I, MinMaxIntrinsic *MinMax,
681                                   Value *Z, CmpPredicate Pred);
682   Instruction *foldICmpEquality(ICmpInst &Cmp);
683   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
684   Instruction *foldSignBitTest(ICmpInst &I);
685   Instruction *foldICmpWithZero(ICmpInst &Cmp);
686 
687   Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
688 
689   Instruction *foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO,
690                                          const APInt &C);
691   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
692                                       ConstantInt *C);
693   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
694                                      const APInt &C);
695   Instruction *foldICmpTruncWithTruncOrExt(ICmpInst &Cmp,
696                                            const SimplifyQuery &Q);
697   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
698                                    const APInt &C);
699   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
700                                    const APInt &C);
701   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
702                                   const APInt &C);
703   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
704                                    const APInt &C);
705   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
706                                    const APInt &C);
707   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
708                                    const APInt &C);
709   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
710                                     const APInt &C);
711   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
712                                     const APInt &C);
713   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
714                                    const APInt &C);
715   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
716                                    const APInt &C);
717   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
718                                    const APInt &C);
719   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
720                                      const APInt &C1);
721   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
722                                 const APInt &C1, const APInt &C2);
723   Instruction *foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor,
724                                      const APInt &C);
725   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
726                                      const APInt &C2);
727   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
728                                      const APInt &C2);
729 
730   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
731                                                  BinaryOperator *BO,
732                                                  const APInt &C);
733   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
734                                              const APInt &C);
735   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
736                                                const APInt &C);
737   Instruction *foldICmpBitCast(ICmpInst &Cmp);
738   Instruction *foldICmpWithTrunc(ICmpInst &Cmp);
739   Instruction *foldICmpCommutative(CmpPredicate Pred, Value *Op0, Value *Op1,
740                                    ICmpInst &CxtI);
741 
742   // Helpers of visitSelectInst().
743   Instruction *foldSelectOfBools(SelectInst &SI);
744   Instruction *foldSelectToCmp(SelectInst &SI);
745   Instruction *foldSelectExtConst(SelectInst &Sel);
746   Instruction *foldSelectEqualityTest(SelectInst &SI);
747   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
748   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
749   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
750                             Value *A, Value *B, Instruction &Outer,
751                             SelectPatternFlavor SPF2, Value *C);
752   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
753   Instruction *foldSelectValueEquivalence(SelectInst &SI, CmpInst &CI);
754   bool replaceInInstruction(Value *V, Value *Old, Value *New,
755                             unsigned Depth = 0);
756 
757   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
758                          bool isSigned, bool Inside);
759   bool mergeStoreIntoSuccessor(StoreInst &SI);
760 
761   /// Given an initial instruction, check to see if it is the root of a
762   /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
763   /// intrinsic.
764   Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
765                                       bool MatchBitReversals);
766 
767   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
768   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
769 
770   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
771 
772   bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock);
773   void tryToSinkInstructionDbgValues(
774       Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
775       BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers);
776   void tryToSinkInstructionDbgVariableRecords(
777       Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
778       BasicBlock *DestBlock, SmallVectorImpl<DbgVariableRecord *> &DPUsers);
779 
780   bool removeInstructionsBeforeUnreachable(Instruction &I);
781   void addDeadEdge(BasicBlock *From, BasicBlock *To,
782                    SmallVectorImpl<BasicBlock *> &Worklist);
783   void handleUnreachableFrom(Instruction *I,
784                              SmallVectorImpl<BasicBlock *> &Worklist);
785   void handlePotentiallyDeadBlocks(SmallVectorImpl<BasicBlock *> &Worklist);
786   void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc);
787   void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser = nullptr);
788 
789   /// Take the exact integer log2 of the value. If DoFold is true, create the
790   /// actual instructions, otherwise return a non-null dummy value. Return
791   /// nullptr on failure. Note, if DoFold is true the caller must ensure that
792   /// takeLog2 will succeed, otherwise it may create stray instructions.
793   Value *takeLog2(Value *Op, unsigned Depth, bool AssumeNonZero, bool DoFold);
794 
795   Value *tryGetLog2(Value *Op, bool AssumeNonZero) {
796     if (takeLog2(Op, /*Depth=*/0, AssumeNonZero, /*DoFold=*/false))
797       return takeLog2(Op, /*Depth=*/0, AssumeNonZero, /*DoFold=*/true);
798     return nullptr;
799   }
800 };
801 
802 class Negator final {
803   /// Top-to-bottom, def-to-use negated instruction tree we produced.
804   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
805 
806   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
807   BuilderTy Builder;
808 
809   const DominatorTree &DT;
810 
811   const bool IsTrulyNegation;
812 
813   SmallDenseMap<Value *, Value *> NegationsCache;
814 
815   Negator(LLVMContext &C, const DataLayout &DL, const DominatorTree &DT,
816           bool IsTrulyNegation);
817 
818 #if LLVM_ENABLE_STATS
819   unsigned NumValuesVisitedInThisNegator = 0;
820   ~Negator();
821 #endif
822 
823   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
824                            Value * /*NegatedRoot*/>;
825 
826   std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
827 
828   [[nodiscard]] Value *visitImpl(Value *V, bool IsNSW, unsigned Depth);
829 
830   [[nodiscard]] Value *negate(Value *V, bool IsNSW, unsigned Depth);
831 
832   /// Recurse depth-first and attempt to sink the negation.
833   /// FIXME: use worklist?
834   [[nodiscard]] std::optional<Result> run(Value *Root, bool IsNSW);
835 
836   Negator(const Negator &) = delete;
837   Negator(Negator &&) = delete;
838   Negator &operator=(const Negator &) = delete;
839   Negator &operator=(Negator &&) = delete;
840 
841 public:
842   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
843   /// otherwise returns negated value.
844   [[nodiscard]] static Value *Negate(bool LHSIsZero, bool IsNSW, Value *Root,
845                                      InstCombinerImpl &IC);
846 };
847 
848 } // end namespace llvm
849 
850 #undef DEBUG_TYPE
851 
852 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
853