xref: /llvm-project/llvm/lib/Transforms/IPO/HotColdSplitting.cpp (revision 98ea1a81a28a6dd36941456c8ab4ce46f665f57a)
1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/PostDominators.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/DiagnosticInfo.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/EHPersonalities.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/ProfDataUtils.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/IPO.h"
55 #include "llvm/Transforms/Utils/CodeExtractor.h"
56 #include <cassert>
57 #include <limits>
58 #include <string>
59 
60 #define DEBUG_TYPE "hotcoldsplit"
61 
62 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
63 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
64 
65 using namespace llvm;
66 
67 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis",
68                                           cl::init(true), cl::Hidden);
69 
70 static cl::opt<int>
71     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
72                        cl::desc("Base penalty for splitting cold code (as a "
73                                 "multiple of TCC_Basic)"));
74 
75 static cl::opt<bool> EnableColdSection(
76     "enable-cold-section", cl::init(false), cl::Hidden,
77     cl::desc("Enable placement of extracted cold functions"
78              " into a separate section after hot-cold splitting."));
79 
80 static cl::opt<std::string>
81     ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"),
82                     cl::Hidden,
83                     cl::desc("Name for the section containing cold functions "
84                              "extracted by hot-cold splitting."));
85 
86 static cl::opt<int> MaxParametersForSplit(
87     "hotcoldsplit-max-params", cl::init(4), cl::Hidden,
88     cl::desc("Maximum number of parameters for a split function"));
89 
90 static cl::opt<int> ColdBranchProbDenom(
91     "hotcoldsplit-cold-probability-denom", cl::init(100), cl::Hidden,
92     cl::desc("Divisor of cold branch probability."
93              "BranchProbability = 1/ColdBranchProbDenom"));
94 
95 namespace {
96 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
97 // this function unless you modify the MBB version as well.
98 //
99 /// A no successor, non-return block probably ends in unreachable and is cold.
100 /// Also consider a block that ends in an indirect branch to be a return block,
101 /// since many targets use plain indirect branches to return.
102 bool blockEndsInUnreachable(const BasicBlock &BB) {
103   if (!succ_empty(&BB))
104     return false;
105   if (BB.empty())
106     return true;
107   const Instruction *I = BB.getTerminator();
108   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
109 }
110 
111 void analyzeProfMetadata(BasicBlock *BB,
112                          BranchProbability ColdProbThresh,
113                          SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks) {
114   // TODO: Handle branches with > 2 successors.
115   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
116   if (!CondBr)
117     return;
118 
119   uint64_t TrueWt, FalseWt;
120   if (!extractBranchWeights(*CondBr, TrueWt, FalseWt))
121     return;
122 
123   auto SumWt = TrueWt + FalseWt;
124   if (SumWt == 0)
125     return;
126 
127   auto TrueProb = BranchProbability::getBranchProbability(TrueWt, SumWt);
128   auto FalseProb = BranchProbability::getBranchProbability(FalseWt, SumWt);
129 
130   if (TrueProb <= ColdProbThresh)
131     AnnotatedColdBlocks.insert(CondBr->getSuccessor(0));
132 
133   if (FalseProb <= ColdProbThresh)
134     AnnotatedColdBlocks.insert(CondBr->getSuccessor(1));
135 }
136 
137 bool unlikelyExecuted(BasicBlock &BB) {
138   // Exception handling blocks are unlikely executed.
139   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
140     return true;
141 
142   // The block is cold if it calls/invokes a cold function. However, do not
143   // mark sanitizer traps as cold.
144   for (Instruction &I : BB)
145     if (auto *CB = dyn_cast<CallBase>(&I))
146       if (CB->hasFnAttr(Attribute::Cold) &&
147           !CB->getMetadata(LLVMContext::MD_nosanitize))
148         return true;
149 
150   // The block is cold if it has an unreachable terminator, unless it's
151   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
152   if (blockEndsInUnreachable(BB)) {
153     if (auto *CI =
154             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
155       if (CI->hasFnAttr(Attribute::NoReturn))
156         return false;
157     return true;
158   }
159 
160   return false;
161 }
162 
163 /// Check whether it's safe to outline \p BB.
164 static bool mayExtractBlock(const BasicBlock &BB) {
165   // EH pads are unsafe to outline because doing so breaks EH type tables. It
166   // follows that invoke instructions cannot be extracted, because CodeExtractor
167   // requires unwind destinations to be within the extraction region.
168   //
169   // Resumes that are not reachable from a cleanup landing pad are considered to
170   // be unreachable. It’s not safe to split them out either.
171 
172   if (BB.hasAddressTaken() || BB.isEHPad())
173     return false;
174   auto Term = BB.getTerminator();
175   if (isa<InvokeInst>(Term) || isa<ResumeInst>(Term))
176     return false;
177 
178   // Do not outline basic blocks that have token type instructions. e.g.,
179   // exception:
180   // %0 = cleanuppad within none []
181   // call void @"?terminate@@YAXXZ"() [ "funclet"(token %0) ]
182   // br label %continue-exception
183   if (llvm::any_of(
184           BB, [](const Instruction &I) { return I.getType()->isTokenTy(); })) {
185     return false;
186   }
187 
188   return true;
189 }
190 
191 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
192 /// If \p UpdateEntryCount is true (set when this is a new split function and
193 /// module has profile data), set entry count to 0 to ensure treated as cold.
194 /// Return true if the function is changed.
195 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
196   assert(!F.hasOptNone() && "Can't mark this cold");
197   bool Changed = false;
198   if (!F.hasFnAttribute(Attribute::Cold)) {
199     F.addFnAttr(Attribute::Cold);
200     Changed = true;
201   }
202   if (!F.hasFnAttribute(Attribute::MinSize)) {
203     F.addFnAttr(Attribute::MinSize);
204     Changed = true;
205   }
206   if (UpdateEntryCount) {
207     // Set the entry count to 0 to ensure it is placed in the unlikely text
208     // section when function sections are enabled.
209     F.setEntryCount(0);
210     Changed = true;
211   }
212 
213   return Changed;
214 }
215 
216 } // end anonymous namespace
217 
218 /// Check whether \p F is inherently cold.
219 bool HotColdSplitting::isFunctionCold(const Function &F) const {
220   if (F.hasFnAttribute(Attribute::Cold))
221     return true;
222 
223   if (F.getCallingConv() == CallingConv::Cold)
224     return true;
225 
226   if (PSI->isFunctionEntryCold(&F))
227     return true;
228 
229   return false;
230 }
231 
232 bool HotColdSplitting::isBasicBlockCold(
233     BasicBlock *BB, BranchProbability ColdProbThresh,
234     SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks,
235     BlockFrequencyInfo *BFI) const {
236   if (BFI) {
237     if (PSI->isColdBlock(BB, BFI))
238       return true;
239   } else {
240     // Find cold blocks of successors of BB during a reverse postorder traversal.
241     analyzeProfMetadata(BB, ColdProbThresh, AnnotatedColdBlocks);
242 
243     // A statically cold BB would be known before it is visited
244     // because the prof-data of incoming edges are 'analyzed' as part of RPOT.
245     if (AnnotatedColdBlocks.count(BB))
246       return true;
247   }
248 
249   if (EnableStaticAnalysis && unlikelyExecuted(*BB))
250     return true;
251 
252   return false;
253 }
254 
255 // Returns false if the function should not be considered for hot-cold split
256 // optimization.
257 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
258   if (F.hasFnAttribute(Attribute::AlwaysInline))
259     return false;
260 
261   if (F.hasFnAttribute(Attribute::NoInline))
262     return false;
263 
264   // A function marked `noreturn` may contain unreachable terminators: these
265   // should not be considered cold, as the function may be a trampoline.
266   if (F.hasFnAttribute(Attribute::NoReturn))
267     return false;
268 
269   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
270       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
271       F.hasFnAttribute(Attribute::SanitizeThread) ||
272       F.hasFnAttribute(Attribute::SanitizeMemory))
273     return false;
274 
275   // Do not outline scoped EH personality functions.
276   if (F.hasPersonalityFn())
277     if (isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
278       return false;
279 
280   return true;
281 }
282 
283 /// Get the benefit score of outlining \p Region.
284 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region,
285                                            TargetTransformInfo &TTI) {
286   // Sum up the code size costs of non-terminator instructions. Tight coupling
287   // with \ref getOutliningPenalty is needed to model the costs of terminators.
288   InstructionCost Benefit = 0;
289   for (BasicBlock *BB : Region)
290     for (Instruction &I : BB->instructionsWithoutDebug())
291       if (&I != BB->getTerminator())
292         Benefit +=
293             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
294 
295   return Benefit;
296 }
297 
298 /// Get the penalty score for outlining \p Region.
299 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
300                                unsigned NumInputs, unsigned NumOutputs) {
301   int Penalty = SplittingThreshold;
302   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
303 
304   // If the splitting threshold is set at or below zero, skip the usual
305   // profitability check.
306   if (SplittingThreshold <= 0)
307     return Penalty;
308 
309   // Find the number of distinct exit blocks for the region. Use a conservative
310   // check to determine whether control returns from the region.
311   bool NoBlocksReturn = true;
312   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
313   for (BasicBlock *BB : Region) {
314     // If a block has no successors, only assume it does not return if it's
315     // unreachable.
316     if (succ_empty(BB)) {
317       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
318       continue;
319     }
320 
321     for (BasicBlock *SuccBB : successors(BB)) {
322       if (!is_contained(Region, SuccBB)) {
323         NoBlocksReturn = false;
324         SuccsOutsideRegion.insert(SuccBB);
325       }
326     }
327   }
328 
329   // Count the number of phis in exit blocks with >= 2 incoming values from the
330   // outlining region. These phis are split (\ref severSplitPHINodesOfExits),
331   // and new outputs are created to supply the split phis. CodeExtractor can't
332   // report these new outputs until extraction begins, but it's important to
333   // factor the cost of the outputs into the cost calculation.
334   unsigned NumSplitExitPhis = 0;
335   for (BasicBlock *ExitBB : SuccsOutsideRegion) {
336     for (PHINode &PN : ExitBB->phis()) {
337       // Find all incoming values from the outlining region.
338       int NumIncomingVals = 0;
339       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
340         if (llvm::is_contained(Region, PN.getIncomingBlock(i))) {
341           ++NumIncomingVals;
342           if (NumIncomingVals > 1) {
343             ++NumSplitExitPhis;
344             break;
345           }
346         }
347     }
348   }
349 
350   // Apply a penalty for calling the split function. Factor in the cost of
351   // materializing all of the parameters.
352   int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis;
353   int NumParams = NumInputs + NumOutputsAndSplitPhis;
354   if (NumParams > MaxParametersForSplit) {
355     LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis
356                       << " outputs exceeds parameter limit ("
357                       << MaxParametersForSplit << ")\n");
358     return std::numeric_limits<int>::max();
359   }
360   const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic;
361   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n");
362   Penalty += CostForArgMaterialization * NumParams;
363 
364   // Apply the typical code size cost for an output alloca and its associated
365   // reload in the caller. Also penalize the associated store in the callee.
366   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis
367                     << " outputs/split phis\n");
368   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
369   Penalty += CostForRegionOutput * NumOutputsAndSplitPhis;
370 
371   // Apply a `noreturn` bonus.
372   if (NoBlocksReturn) {
373     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
374                       << " non-returning terminators\n");
375     Penalty -= Region.size();
376   }
377 
378   // Apply a penalty for having more than one successor outside of the region.
379   // This penalty accounts for the switch needed in the caller.
380   if (SuccsOutsideRegion.size() > 1) {
381     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
382                       << " non-region successors\n");
383     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
384   }
385 
386   return Penalty;
387 }
388 
389 // Determine if it is beneficial to split the \p Region.
390 bool HotColdSplitting::isSplittingBeneficial(CodeExtractor &CE,
391                                              const BlockSequence &Region,
392                                              TargetTransformInfo &TTI) {
393   assert(!Region.empty());
394 
395   // Perform a simple cost/benefit analysis to decide whether or not to permit
396   // splitting.
397   SetVector<Value *> Inputs, Outputs, Sinks;
398   CE.findInputsOutputs(Inputs, Outputs, Sinks);
399   InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI);
400   int OutliningPenalty =
401       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
402   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
403                     << ", penalty = " << OutliningPenalty << "\n");
404   if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty)
405     return false;
406 
407   return true;
408 }
409 
410 // Split the single \p EntryPoint cold region. \p CE is the region code
411 // extractor.
412 Function *HotColdSplitting::extractColdRegion(
413     BasicBlock &EntryPoint, CodeExtractor &CE,
414     const CodeExtractorAnalysisCache &CEAC, BlockFrequencyInfo *BFI,
415     TargetTransformInfo &TTI, OptimizationRemarkEmitter &ORE) {
416   Function *OrigF = EntryPoint.getParent();
417   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
418     User *U = *OutF->user_begin();
419     CallInst *CI = cast<CallInst>(U);
420     NumColdRegionsOutlined++;
421     if (TTI.useColdCCForColdCall(*OutF)) {
422       OutF->setCallingConv(CallingConv::Cold);
423       CI->setCallingConv(CallingConv::Cold);
424     }
425     CI->setIsNoInline();
426 
427     if (EnableColdSection)
428       OutF->setSection(ColdSectionName);
429     else {
430       if (OrigF->hasSection())
431         OutF->setSection(OrigF->getSection());
432     }
433 
434     markFunctionCold(*OutF, BFI != nullptr);
435 
436     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
437     ORE.emit([&]() {
438       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
439                                 &*EntryPoint.begin())
440              << ore::NV("Original", OrigF) << " split cold code into "
441              << ore::NV("Split", OutF);
442     });
443     return OutF;
444   }
445 
446   ORE.emit([&]() {
447     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
448                                     &*EntryPoint.begin())
449            << "Failed to extract region at block "
450            << ore::NV("Block", &EntryPoint);
451   });
452   return nullptr;
453 }
454 
455 /// A pair of (basic block, score).
456 using BlockTy = std::pair<BasicBlock *, unsigned>;
457 
458 namespace {
459 /// A maximal outlining region. This contains all blocks post-dominated by a
460 /// sink block, the sink block itself, and all blocks dominated by the sink.
461 /// If sink-predecessors and sink-successors cannot be extracted in one region,
462 /// the static constructor returns a list of suitable extraction regions.
463 class OutliningRegion {
464   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
465   /// viable sub-region entry point. Blocks with higher scores are better entry
466   /// points (i.e. they are more distant ancestors of the sink block).
467   SmallVector<BlockTy, 0> Blocks = {};
468 
469   /// The suggested entry point into the region. If the region has multiple
470   /// entry points, all blocks within the region may not be reachable from this
471   /// entry point.
472   BasicBlock *SuggestedEntryPoint = nullptr;
473 
474   /// Whether the entire function is cold.
475   bool EntireFunctionCold = false;
476 
477   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
478   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
479     return mayExtractBlock(BB) ? Score : 0;
480   }
481 
482   /// These scores should be lower than the score for predecessor blocks,
483   /// because regions starting at predecessor blocks are typically larger.
484   static constexpr unsigned ScoreForSuccBlock = 1;
485   static constexpr unsigned ScoreForSinkBlock = 1;
486 
487   OutliningRegion(const OutliningRegion &) = delete;
488   OutliningRegion &operator=(const OutliningRegion &) = delete;
489 
490 public:
491   OutliningRegion() = default;
492   OutliningRegion(OutliningRegion &&) = default;
493   OutliningRegion &operator=(OutliningRegion &&) = default;
494 
495   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
496                                              const DominatorTree &DT,
497                                              const PostDominatorTree &PDT) {
498     std::vector<OutliningRegion> Regions;
499     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
500 
501     Regions.emplace_back();
502     OutliningRegion *ColdRegion = &Regions.back();
503 
504     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
505       RegionBlocks.insert(BB);
506       ColdRegion->Blocks.emplace_back(BB, Score);
507     };
508 
509     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
510     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
511     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
512     unsigned BestScore = SinkScore;
513 
514     // Visit SinkBB's ancestors using inverse DFS.
515     auto PredIt = ++idf_begin(&SinkBB);
516     auto PredEnd = idf_end(&SinkBB);
517     while (PredIt != PredEnd) {
518       BasicBlock &PredBB = **PredIt;
519       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
520 
521       // If the predecessor is cold and has no predecessors, the entire
522       // function must be cold.
523       if (SinkPostDom && pred_empty(&PredBB)) {
524         ColdRegion->EntireFunctionCold = true;
525         return Regions;
526       }
527 
528       // If SinkBB does not post-dominate a predecessor, do not mark the
529       // predecessor (or any of its predecessors) cold.
530       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
531         PredIt.skipChildren();
532         continue;
533       }
534 
535       // Keep track of the post-dominated ancestor farthest away from the sink.
536       // The path length is always >= 2, ensuring that predecessor blocks are
537       // considered as entry points before the sink block.
538       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
539       if (PredScore > BestScore) {
540         ColdRegion->SuggestedEntryPoint = &PredBB;
541         BestScore = PredScore;
542       }
543 
544       addBlockToRegion(&PredBB, PredScore);
545       ++PredIt;
546     }
547 
548     // If the sink can be added to the cold region, do so. It's considered as
549     // an entry point before any sink-successor blocks.
550     //
551     // Otherwise, split cold sink-successor blocks using a separate region.
552     // This satisfies the requirement that all extraction blocks other than the
553     // first have predecessors within the extraction region.
554     if (mayExtractBlock(SinkBB)) {
555       addBlockToRegion(&SinkBB, SinkScore);
556       if (pred_empty(&SinkBB)) {
557         ColdRegion->EntireFunctionCold = true;
558         return Regions;
559       }
560     } else {
561       Regions.emplace_back();
562       ColdRegion = &Regions.back();
563       BestScore = 0;
564     }
565 
566     // Find all successors of SinkBB dominated by SinkBB using DFS.
567     auto SuccIt = ++df_begin(&SinkBB);
568     auto SuccEnd = df_end(&SinkBB);
569     while (SuccIt != SuccEnd) {
570       BasicBlock &SuccBB = **SuccIt;
571       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
572 
573       // Don't allow the backwards & forwards DFSes to mark the same block.
574       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
575 
576       // If SinkBB does not dominate a successor, do not mark the successor (or
577       // any of its successors) cold.
578       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
579         SuccIt.skipChildren();
580         continue;
581       }
582 
583       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
584       if (SuccScore > BestScore) {
585         ColdRegion->SuggestedEntryPoint = &SuccBB;
586         BestScore = SuccScore;
587       }
588 
589       addBlockToRegion(&SuccBB, SuccScore);
590       ++SuccIt;
591     }
592 
593     return Regions;
594   }
595 
596   /// Whether this region has nothing to extract.
597   bool empty() const { return !SuggestedEntryPoint; }
598 
599   /// The blocks in this region.
600   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
601 
602   /// Whether the entire function containing this region is cold.
603   bool isEntireFunctionCold() const { return EntireFunctionCold; }
604 
605   /// Remove a sub-region from this region and return it as a block sequence.
606   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
607     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
608 
609     // Remove blocks dominated by the suggested entry point from this region.
610     // During the removal, identify the next best entry point into the region.
611     // Ensure that the first extracted block is the suggested entry point.
612     BlockSequence SubRegion = {SuggestedEntryPoint};
613     BasicBlock *NextEntryPoint = nullptr;
614     unsigned NextScore = 0;
615     auto RegionEndIt = Blocks.end();
616     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
617       BasicBlock *BB = Block.first;
618       unsigned Score = Block.second;
619       bool InSubRegion =
620           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
621       if (!InSubRegion && Score > NextScore) {
622         NextEntryPoint = BB;
623         NextScore = Score;
624       }
625       if (InSubRegion && BB != SuggestedEntryPoint)
626         SubRegion.push_back(BB);
627       return InSubRegion;
628     });
629     Blocks.erase(RegionStartIt, RegionEndIt);
630 
631     // Update the suggested entry point.
632     SuggestedEntryPoint = NextEntryPoint;
633 
634     return SubRegion;
635   }
636 };
637 } // namespace
638 
639 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
640   // The set of cold blocks outlined.
641   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
642 
643   // The set of cold blocks cannot be outlined.
644   SmallPtrSet<BasicBlock *, 4> CannotBeOutlinedColdBlocks;
645 
646   // Set of cold blocks obtained with RPOT.
647   SmallPtrSet<BasicBlock *, 4> AnnotatedColdBlocks;
648 
649   // The worklist of non-intersecting regions left to outline. The first member
650   // of the pair is the entry point into the region to be outlined.
651   SmallVector<std::pair<BasicBlock *, CodeExtractor>, 2> OutliningWorklist;
652 
653   // Set up an RPO traversal. Experimentally, this performs better (outlines
654   // more) than a PO traversal, because we prevent region overlap by keeping
655   // the first region to contain a block.
656   ReversePostOrderTraversal<Function *> RPOT(&F);
657 
658   // Calculate domtrees lazily. This reduces compile-time significantly.
659   std::unique_ptr<DominatorTree> DT;
660   std::unique_ptr<PostDominatorTree> PDT;
661 
662   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
663   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
664   // be able to salvage its domtrees instead of recomputing them.
665   BlockFrequencyInfo *BFI = nullptr;
666   if (HasProfileSummary)
667     BFI = GetBFI(F);
668 
669   TargetTransformInfo &TTI = GetTTI(F);
670   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
671   AssumptionCache *AC = LookupAC(F);
672   auto ColdProbThresh = TTI.getPredictableBranchThreshold().getCompl();
673 
674   if (ColdBranchProbDenom.getNumOccurrences())
675     ColdProbThresh = BranchProbability(1, ColdBranchProbDenom.getValue());
676 
677   unsigned OutlinedFunctionID = 1;
678   // Find all cold regions.
679   for (BasicBlock *BB : RPOT) {
680     // This block is already part of some outlining region.
681     if (ColdBlocks.count(BB))
682       continue;
683 
684     // This block is already part of some region cannot be outlined.
685     if (CannotBeOutlinedColdBlocks.count(BB))
686       continue;
687 
688     if (!isBasicBlockCold(BB, ColdProbThresh, AnnotatedColdBlocks, BFI))
689       continue;
690 
691     LLVM_DEBUG({
692       dbgs() << "Found a cold block:\n";
693       BB->dump();
694     });
695 
696     if (!DT)
697       DT = std::make_unique<DominatorTree>(F);
698     if (!PDT)
699       PDT = std::make_unique<PostDominatorTree>(F);
700 
701     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
702     for (OutliningRegion &Region : Regions) {
703       if (Region.empty())
704         continue;
705 
706       if (Region.isEntireFunctionCold()) {
707         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
708         return markFunctionCold(F);
709       }
710 
711       do {
712         BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
713         LLVM_DEBUG({
714           dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
715           for (BasicBlock *BB : SubRegion)
716             BB->dump();
717         });
718 
719         // TODO: Pass BFI and BPI to update profile information.
720         CodeExtractor CE(
721             SubRegion, &*DT, /* AggregateArgs */ false, /* BFI */ nullptr,
722             /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
723             /* AllowAlloca */ false, /* AllocaBlock */ nullptr,
724             /* Suffix */ "cold." + std::to_string(OutlinedFunctionID));
725 
726         if (CE.isEligible() && isSplittingBeneficial(CE, SubRegion, TTI) &&
727             // If this outlining region intersects with another, drop the new
728             // region.
729             //
730             // TODO: It's theoretically possible to outline more by only keeping
731             // the largest region which contains a block, but the extra
732             // bookkeeping to do this is tricky/expensive.
733             none_of(SubRegion, [&](BasicBlock *Block) {
734               return ColdBlocks.contains(Block);
735             })) {
736           ColdBlocks.insert(SubRegion.begin(), SubRegion.end());
737 
738           LLVM_DEBUG({
739             for (auto *Block : SubRegion)
740               dbgs() << "  contains cold block:" << Block->getName() << "\n";
741           });
742 
743           OutliningWorklist.emplace_back(
744               std::make_pair(SubRegion[0], std::move(CE)));
745           ++OutlinedFunctionID;
746         } else {
747           // The cold block region cannot be outlined.
748           for (auto *Block : SubRegion)
749             if ((DT->dominates(BB, Block) && PDT->dominates(Block, BB)) ||
750                 (PDT->dominates(BB, Block) && DT->dominates(Block, BB)))
751               // Will skip this cold block in the loop to save the compile time
752               CannotBeOutlinedColdBlocks.insert(Block);
753         }
754       } while (!Region.empty());
755 
756       ++NumColdRegionsFound;
757     }
758   }
759 
760   if (OutliningWorklist.empty())
761     return false;
762 
763   // Outline single-entry cold regions, splitting up larger regions as needed.
764   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
765   CodeExtractorAnalysisCache CEAC(F);
766   for (auto &BCE : OutliningWorklist) {
767     Function *Outlined =
768         extractColdRegion(*BCE.first, BCE.second, CEAC, BFI, TTI, ORE);
769     assert(Outlined && "Should be outlined");
770     (void)Outlined;
771   }
772 
773   return true;
774 }
775 
776 bool HotColdSplitting::run(Module &M) {
777   bool Changed = false;
778   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
779   for (Function &F : M) {
780     // Do not touch declarations.
781     if (F.isDeclaration())
782       continue;
783 
784     // Do not modify `optnone` functions.
785     if (F.hasOptNone())
786       continue;
787 
788     // Detect inherently cold functions and mark them as such.
789     if (isFunctionCold(F)) {
790       Changed |= markFunctionCold(F);
791       continue;
792     }
793 
794     if (!shouldOutlineFrom(F)) {
795       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
796       continue;
797     }
798 
799     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
800     Changed |= outlineColdRegions(F, HasProfileSummary);
801   }
802   return Changed;
803 }
804 
805 PreservedAnalyses
806 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
807   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
808 
809   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
810     return FAM.getCachedResult<AssumptionAnalysis>(F);
811   };
812 
813   auto GBFI = [&FAM](Function &F) {
814     return &FAM.getResult<BlockFrequencyAnalysis>(F);
815   };
816 
817   std::function<TargetTransformInfo &(Function &)> GTTI =
818       [&FAM](Function &F) -> TargetTransformInfo & {
819     return FAM.getResult<TargetIRAnalysis>(F);
820   };
821 
822   std::unique_ptr<OptimizationRemarkEmitter> ORE;
823   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
824       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
825     ORE.reset(new OptimizationRemarkEmitter(&F));
826     return *ORE;
827   };
828 
829   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
830 
831   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
832     return PreservedAnalyses::none();
833   return PreservedAnalyses::all();
834 }
835