1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AssumptionCache.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/PostDominators.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/EHPersonalities.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/ProfDataUtils.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/IPO.h" 55 #include "llvm/Transforms/Utils/CodeExtractor.h" 56 #include <cassert> 57 #include <limits> 58 #include <string> 59 60 #define DEBUG_TYPE "hotcoldsplit" 61 62 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 63 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 64 65 using namespace llvm; 66 67 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 68 cl::init(true), cl::Hidden); 69 70 static cl::opt<int> 71 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 72 cl::desc("Base penalty for splitting cold code (as a " 73 "multiple of TCC_Basic)")); 74 75 static cl::opt<bool> EnableColdSection( 76 "enable-cold-section", cl::init(false), cl::Hidden, 77 cl::desc("Enable placement of extracted cold functions" 78 " into a separate section after hot-cold splitting.")); 79 80 static cl::opt<std::string> 81 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 82 cl::Hidden, 83 cl::desc("Name for the section containing cold functions " 84 "extracted by hot-cold splitting.")); 85 86 static cl::opt<int> MaxParametersForSplit( 87 "hotcoldsplit-max-params", cl::init(4), cl::Hidden, 88 cl::desc("Maximum number of parameters for a split function")); 89 90 static cl::opt<int> ColdBranchProbDenom( 91 "hotcoldsplit-cold-probability-denom", cl::init(100), cl::Hidden, 92 cl::desc("Divisor of cold branch probability." 93 "BranchProbability = 1/ColdBranchProbDenom")); 94 95 namespace { 96 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 97 // this function unless you modify the MBB version as well. 98 // 99 /// A no successor, non-return block probably ends in unreachable and is cold. 100 /// Also consider a block that ends in an indirect branch to be a return block, 101 /// since many targets use plain indirect branches to return. 102 bool blockEndsInUnreachable(const BasicBlock &BB) { 103 if (!succ_empty(&BB)) 104 return false; 105 if (BB.empty()) 106 return true; 107 const Instruction *I = BB.getTerminator(); 108 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 109 } 110 111 void analyzeProfMetadata(BasicBlock *BB, 112 BranchProbability ColdProbThresh, 113 SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks) { 114 // TODO: Handle branches with > 2 successors. 115 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 116 if (!CondBr) 117 return; 118 119 uint64_t TrueWt, FalseWt; 120 if (!extractBranchWeights(*CondBr, TrueWt, FalseWt)) 121 return; 122 123 auto SumWt = TrueWt + FalseWt; 124 if (SumWt == 0) 125 return; 126 127 auto TrueProb = BranchProbability::getBranchProbability(TrueWt, SumWt); 128 auto FalseProb = BranchProbability::getBranchProbability(FalseWt, SumWt); 129 130 if (TrueProb <= ColdProbThresh) 131 AnnotatedColdBlocks.insert(CondBr->getSuccessor(0)); 132 133 if (FalseProb <= ColdProbThresh) 134 AnnotatedColdBlocks.insert(CondBr->getSuccessor(1)); 135 } 136 137 bool unlikelyExecuted(BasicBlock &BB) { 138 // Exception handling blocks are unlikely executed. 139 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 140 return true; 141 142 // The block is cold if it calls/invokes a cold function. However, do not 143 // mark sanitizer traps as cold. 144 for (Instruction &I : BB) 145 if (auto *CB = dyn_cast<CallBase>(&I)) 146 if (CB->hasFnAttr(Attribute::Cold) && 147 !CB->getMetadata(LLVMContext::MD_nosanitize)) 148 return true; 149 150 // The block is cold if it has an unreachable terminator, unless it's 151 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 152 if (blockEndsInUnreachable(BB)) { 153 if (auto *CI = 154 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 155 if (CI->hasFnAttr(Attribute::NoReturn)) 156 return false; 157 return true; 158 } 159 160 return false; 161 } 162 163 /// Check whether it's safe to outline \p BB. 164 static bool mayExtractBlock(const BasicBlock &BB) { 165 // EH pads are unsafe to outline because doing so breaks EH type tables. It 166 // follows that invoke instructions cannot be extracted, because CodeExtractor 167 // requires unwind destinations to be within the extraction region. 168 // 169 // Resumes that are not reachable from a cleanup landing pad are considered to 170 // be unreachable. It’s not safe to split them out either. 171 172 if (BB.hasAddressTaken() || BB.isEHPad()) 173 return false; 174 auto Term = BB.getTerminator(); 175 if (isa<InvokeInst>(Term) || isa<ResumeInst>(Term)) 176 return false; 177 178 // Do not outline basic blocks that have token type instructions. e.g., 179 // exception: 180 // %0 = cleanuppad within none [] 181 // call void @"?terminate@@YAXXZ"() [ "funclet"(token %0) ] 182 // br label %continue-exception 183 if (llvm::any_of( 184 BB, [](const Instruction &I) { return I.getType()->isTokenTy(); })) { 185 return false; 186 } 187 188 return true; 189 } 190 191 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 192 /// If \p UpdateEntryCount is true (set when this is a new split function and 193 /// module has profile data), set entry count to 0 to ensure treated as cold. 194 /// Return true if the function is changed. 195 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 196 assert(!F.hasOptNone() && "Can't mark this cold"); 197 bool Changed = false; 198 if (!F.hasFnAttribute(Attribute::Cold)) { 199 F.addFnAttr(Attribute::Cold); 200 Changed = true; 201 } 202 if (!F.hasFnAttribute(Attribute::MinSize)) { 203 F.addFnAttr(Attribute::MinSize); 204 Changed = true; 205 } 206 if (UpdateEntryCount) { 207 // Set the entry count to 0 to ensure it is placed in the unlikely text 208 // section when function sections are enabled. 209 F.setEntryCount(0); 210 Changed = true; 211 } 212 213 return Changed; 214 } 215 216 } // end anonymous namespace 217 218 /// Check whether \p F is inherently cold. 219 bool HotColdSplitting::isFunctionCold(const Function &F) const { 220 if (F.hasFnAttribute(Attribute::Cold)) 221 return true; 222 223 if (F.getCallingConv() == CallingConv::Cold) 224 return true; 225 226 if (PSI->isFunctionEntryCold(&F)) 227 return true; 228 229 return false; 230 } 231 232 bool HotColdSplitting::isBasicBlockCold( 233 BasicBlock *BB, BranchProbability ColdProbThresh, 234 SmallPtrSetImpl<BasicBlock *> &AnnotatedColdBlocks, 235 BlockFrequencyInfo *BFI) const { 236 if (BFI) { 237 if (PSI->isColdBlock(BB, BFI)) 238 return true; 239 } else { 240 // Find cold blocks of successors of BB during a reverse postorder traversal. 241 analyzeProfMetadata(BB, ColdProbThresh, AnnotatedColdBlocks); 242 243 // A statically cold BB would be known before it is visited 244 // because the prof-data of incoming edges are 'analyzed' as part of RPOT. 245 if (AnnotatedColdBlocks.count(BB)) 246 return true; 247 } 248 249 if (EnableStaticAnalysis && unlikelyExecuted(*BB)) 250 return true; 251 252 return false; 253 } 254 255 // Returns false if the function should not be considered for hot-cold split 256 // optimization. 257 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 258 if (F.hasFnAttribute(Attribute::AlwaysInline)) 259 return false; 260 261 if (F.hasFnAttribute(Attribute::NoInline)) 262 return false; 263 264 // A function marked `noreturn` may contain unreachable terminators: these 265 // should not be considered cold, as the function may be a trampoline. 266 if (F.hasFnAttribute(Attribute::NoReturn)) 267 return false; 268 269 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 270 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 271 F.hasFnAttribute(Attribute::SanitizeThread) || 272 F.hasFnAttribute(Attribute::SanitizeMemory)) 273 return false; 274 275 // Do not outline scoped EH personality functions. 276 if (F.hasPersonalityFn()) 277 if (isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 278 return false; 279 280 return true; 281 } 282 283 /// Get the benefit score of outlining \p Region. 284 static InstructionCost getOutliningBenefit(ArrayRef<BasicBlock *> Region, 285 TargetTransformInfo &TTI) { 286 // Sum up the code size costs of non-terminator instructions. Tight coupling 287 // with \ref getOutliningPenalty is needed to model the costs of terminators. 288 InstructionCost Benefit = 0; 289 for (BasicBlock *BB : Region) 290 for (Instruction &I : BB->instructionsWithoutDebug()) 291 if (&I != BB->getTerminator()) 292 Benefit += 293 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 294 295 return Benefit; 296 } 297 298 /// Get the penalty score for outlining \p Region. 299 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 300 unsigned NumInputs, unsigned NumOutputs) { 301 int Penalty = SplittingThreshold; 302 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 303 304 // If the splitting threshold is set at or below zero, skip the usual 305 // profitability check. 306 if (SplittingThreshold <= 0) 307 return Penalty; 308 309 // Find the number of distinct exit blocks for the region. Use a conservative 310 // check to determine whether control returns from the region. 311 bool NoBlocksReturn = true; 312 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 313 for (BasicBlock *BB : Region) { 314 // If a block has no successors, only assume it does not return if it's 315 // unreachable. 316 if (succ_empty(BB)) { 317 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 318 continue; 319 } 320 321 for (BasicBlock *SuccBB : successors(BB)) { 322 if (!is_contained(Region, SuccBB)) { 323 NoBlocksReturn = false; 324 SuccsOutsideRegion.insert(SuccBB); 325 } 326 } 327 } 328 329 // Count the number of phis in exit blocks with >= 2 incoming values from the 330 // outlining region. These phis are split (\ref severSplitPHINodesOfExits), 331 // and new outputs are created to supply the split phis. CodeExtractor can't 332 // report these new outputs until extraction begins, but it's important to 333 // factor the cost of the outputs into the cost calculation. 334 unsigned NumSplitExitPhis = 0; 335 for (BasicBlock *ExitBB : SuccsOutsideRegion) { 336 for (PHINode &PN : ExitBB->phis()) { 337 // Find all incoming values from the outlining region. 338 int NumIncomingVals = 0; 339 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) 340 if (llvm::is_contained(Region, PN.getIncomingBlock(i))) { 341 ++NumIncomingVals; 342 if (NumIncomingVals > 1) { 343 ++NumSplitExitPhis; 344 break; 345 } 346 } 347 } 348 } 349 350 // Apply a penalty for calling the split function. Factor in the cost of 351 // materializing all of the parameters. 352 int NumOutputsAndSplitPhis = NumOutputs + NumSplitExitPhis; 353 int NumParams = NumInputs + NumOutputsAndSplitPhis; 354 if (NumParams > MaxParametersForSplit) { 355 LLVM_DEBUG(dbgs() << NumInputs << " inputs and " << NumOutputsAndSplitPhis 356 << " outputs exceeds parameter limit (" 357 << MaxParametersForSplit << ")\n"); 358 return std::numeric_limits<int>::max(); 359 } 360 const int CostForArgMaterialization = 2 * TargetTransformInfo::TCC_Basic; 361 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumParams << " params\n"); 362 Penalty += CostForArgMaterialization * NumParams; 363 364 // Apply the typical code size cost for an output alloca and its associated 365 // reload in the caller. Also penalize the associated store in the callee. 366 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputsAndSplitPhis 367 << " outputs/split phis\n"); 368 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 369 Penalty += CostForRegionOutput * NumOutputsAndSplitPhis; 370 371 // Apply a `noreturn` bonus. 372 if (NoBlocksReturn) { 373 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 374 << " non-returning terminators\n"); 375 Penalty -= Region.size(); 376 } 377 378 // Apply a penalty for having more than one successor outside of the region. 379 // This penalty accounts for the switch needed in the caller. 380 if (SuccsOutsideRegion.size() > 1) { 381 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 382 << " non-region successors\n"); 383 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 384 } 385 386 return Penalty; 387 } 388 389 // Determine if it is beneficial to split the \p Region. 390 bool HotColdSplitting::isSplittingBeneficial(CodeExtractor &CE, 391 const BlockSequence &Region, 392 TargetTransformInfo &TTI) { 393 assert(!Region.empty()); 394 395 // Perform a simple cost/benefit analysis to decide whether or not to permit 396 // splitting. 397 SetVector<Value *> Inputs, Outputs, Sinks; 398 CE.findInputsOutputs(Inputs, Outputs, Sinks); 399 InstructionCost OutliningBenefit = getOutliningBenefit(Region, TTI); 400 int OutliningPenalty = 401 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 402 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 403 << ", penalty = " << OutliningPenalty << "\n"); 404 if (!OutliningBenefit.isValid() || OutliningBenefit <= OutliningPenalty) 405 return false; 406 407 return true; 408 } 409 410 // Split the single \p EntryPoint cold region. \p CE is the region code 411 // extractor. 412 Function *HotColdSplitting::extractColdRegion( 413 BasicBlock &EntryPoint, CodeExtractor &CE, 414 const CodeExtractorAnalysisCache &CEAC, BlockFrequencyInfo *BFI, 415 TargetTransformInfo &TTI, OptimizationRemarkEmitter &ORE) { 416 Function *OrigF = EntryPoint.getParent(); 417 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 418 User *U = *OutF->user_begin(); 419 CallInst *CI = cast<CallInst>(U); 420 NumColdRegionsOutlined++; 421 if (TTI.useColdCCForColdCall(*OutF)) { 422 OutF->setCallingConv(CallingConv::Cold); 423 CI->setCallingConv(CallingConv::Cold); 424 } 425 CI->setIsNoInline(); 426 427 if (EnableColdSection) 428 OutF->setSection(ColdSectionName); 429 else { 430 if (OrigF->hasSection()) 431 OutF->setSection(OrigF->getSection()); 432 } 433 434 markFunctionCold(*OutF, BFI != nullptr); 435 436 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 437 ORE.emit([&]() { 438 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 439 &*EntryPoint.begin()) 440 << ore::NV("Original", OrigF) << " split cold code into " 441 << ore::NV("Split", OutF); 442 }); 443 return OutF; 444 } 445 446 ORE.emit([&]() { 447 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 448 &*EntryPoint.begin()) 449 << "Failed to extract region at block " 450 << ore::NV("Block", &EntryPoint); 451 }); 452 return nullptr; 453 } 454 455 /// A pair of (basic block, score). 456 using BlockTy = std::pair<BasicBlock *, unsigned>; 457 458 namespace { 459 /// A maximal outlining region. This contains all blocks post-dominated by a 460 /// sink block, the sink block itself, and all blocks dominated by the sink. 461 /// If sink-predecessors and sink-successors cannot be extracted in one region, 462 /// the static constructor returns a list of suitable extraction regions. 463 class OutliningRegion { 464 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 465 /// viable sub-region entry point. Blocks with higher scores are better entry 466 /// points (i.e. they are more distant ancestors of the sink block). 467 SmallVector<BlockTy, 0> Blocks = {}; 468 469 /// The suggested entry point into the region. If the region has multiple 470 /// entry points, all blocks within the region may not be reachable from this 471 /// entry point. 472 BasicBlock *SuggestedEntryPoint = nullptr; 473 474 /// Whether the entire function is cold. 475 bool EntireFunctionCold = false; 476 477 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 478 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 479 return mayExtractBlock(BB) ? Score : 0; 480 } 481 482 /// These scores should be lower than the score for predecessor blocks, 483 /// because regions starting at predecessor blocks are typically larger. 484 static constexpr unsigned ScoreForSuccBlock = 1; 485 static constexpr unsigned ScoreForSinkBlock = 1; 486 487 OutliningRegion(const OutliningRegion &) = delete; 488 OutliningRegion &operator=(const OutliningRegion &) = delete; 489 490 public: 491 OutliningRegion() = default; 492 OutliningRegion(OutliningRegion &&) = default; 493 OutliningRegion &operator=(OutliningRegion &&) = default; 494 495 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 496 const DominatorTree &DT, 497 const PostDominatorTree &PDT) { 498 std::vector<OutliningRegion> Regions; 499 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 500 501 Regions.emplace_back(); 502 OutliningRegion *ColdRegion = &Regions.back(); 503 504 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 505 RegionBlocks.insert(BB); 506 ColdRegion->Blocks.emplace_back(BB, Score); 507 }; 508 509 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 510 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 511 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 512 unsigned BestScore = SinkScore; 513 514 // Visit SinkBB's ancestors using inverse DFS. 515 auto PredIt = ++idf_begin(&SinkBB); 516 auto PredEnd = idf_end(&SinkBB); 517 while (PredIt != PredEnd) { 518 BasicBlock &PredBB = **PredIt; 519 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 520 521 // If the predecessor is cold and has no predecessors, the entire 522 // function must be cold. 523 if (SinkPostDom && pred_empty(&PredBB)) { 524 ColdRegion->EntireFunctionCold = true; 525 return Regions; 526 } 527 528 // If SinkBB does not post-dominate a predecessor, do not mark the 529 // predecessor (or any of its predecessors) cold. 530 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 531 PredIt.skipChildren(); 532 continue; 533 } 534 535 // Keep track of the post-dominated ancestor farthest away from the sink. 536 // The path length is always >= 2, ensuring that predecessor blocks are 537 // considered as entry points before the sink block. 538 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 539 if (PredScore > BestScore) { 540 ColdRegion->SuggestedEntryPoint = &PredBB; 541 BestScore = PredScore; 542 } 543 544 addBlockToRegion(&PredBB, PredScore); 545 ++PredIt; 546 } 547 548 // If the sink can be added to the cold region, do so. It's considered as 549 // an entry point before any sink-successor blocks. 550 // 551 // Otherwise, split cold sink-successor blocks using a separate region. 552 // This satisfies the requirement that all extraction blocks other than the 553 // first have predecessors within the extraction region. 554 if (mayExtractBlock(SinkBB)) { 555 addBlockToRegion(&SinkBB, SinkScore); 556 if (pred_empty(&SinkBB)) { 557 ColdRegion->EntireFunctionCold = true; 558 return Regions; 559 } 560 } else { 561 Regions.emplace_back(); 562 ColdRegion = &Regions.back(); 563 BestScore = 0; 564 } 565 566 // Find all successors of SinkBB dominated by SinkBB using DFS. 567 auto SuccIt = ++df_begin(&SinkBB); 568 auto SuccEnd = df_end(&SinkBB); 569 while (SuccIt != SuccEnd) { 570 BasicBlock &SuccBB = **SuccIt; 571 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 572 573 // Don't allow the backwards & forwards DFSes to mark the same block. 574 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 575 576 // If SinkBB does not dominate a successor, do not mark the successor (or 577 // any of its successors) cold. 578 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 579 SuccIt.skipChildren(); 580 continue; 581 } 582 583 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 584 if (SuccScore > BestScore) { 585 ColdRegion->SuggestedEntryPoint = &SuccBB; 586 BestScore = SuccScore; 587 } 588 589 addBlockToRegion(&SuccBB, SuccScore); 590 ++SuccIt; 591 } 592 593 return Regions; 594 } 595 596 /// Whether this region has nothing to extract. 597 bool empty() const { return !SuggestedEntryPoint; } 598 599 /// The blocks in this region. 600 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 601 602 /// Whether the entire function containing this region is cold. 603 bool isEntireFunctionCold() const { return EntireFunctionCold; } 604 605 /// Remove a sub-region from this region and return it as a block sequence. 606 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 607 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 608 609 // Remove blocks dominated by the suggested entry point from this region. 610 // During the removal, identify the next best entry point into the region. 611 // Ensure that the first extracted block is the suggested entry point. 612 BlockSequence SubRegion = {SuggestedEntryPoint}; 613 BasicBlock *NextEntryPoint = nullptr; 614 unsigned NextScore = 0; 615 auto RegionEndIt = Blocks.end(); 616 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 617 BasicBlock *BB = Block.first; 618 unsigned Score = Block.second; 619 bool InSubRegion = 620 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 621 if (!InSubRegion && Score > NextScore) { 622 NextEntryPoint = BB; 623 NextScore = Score; 624 } 625 if (InSubRegion && BB != SuggestedEntryPoint) 626 SubRegion.push_back(BB); 627 return InSubRegion; 628 }); 629 Blocks.erase(RegionStartIt, RegionEndIt); 630 631 // Update the suggested entry point. 632 SuggestedEntryPoint = NextEntryPoint; 633 634 return SubRegion; 635 } 636 }; 637 } // namespace 638 639 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 640 // The set of cold blocks outlined. 641 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 642 643 // The set of cold blocks cannot be outlined. 644 SmallPtrSet<BasicBlock *, 4> CannotBeOutlinedColdBlocks; 645 646 // Set of cold blocks obtained with RPOT. 647 SmallPtrSet<BasicBlock *, 4> AnnotatedColdBlocks; 648 649 // The worklist of non-intersecting regions left to outline. The first member 650 // of the pair is the entry point into the region to be outlined. 651 SmallVector<std::pair<BasicBlock *, CodeExtractor>, 2> OutliningWorklist; 652 653 // Set up an RPO traversal. Experimentally, this performs better (outlines 654 // more) than a PO traversal, because we prevent region overlap by keeping 655 // the first region to contain a block. 656 ReversePostOrderTraversal<Function *> RPOT(&F); 657 658 // Calculate domtrees lazily. This reduces compile-time significantly. 659 std::unique_ptr<DominatorTree> DT; 660 std::unique_ptr<PostDominatorTree> PDT; 661 662 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 663 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 664 // be able to salvage its domtrees instead of recomputing them. 665 BlockFrequencyInfo *BFI = nullptr; 666 if (HasProfileSummary) 667 BFI = GetBFI(F); 668 669 TargetTransformInfo &TTI = GetTTI(F); 670 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 671 AssumptionCache *AC = LookupAC(F); 672 auto ColdProbThresh = TTI.getPredictableBranchThreshold().getCompl(); 673 674 if (ColdBranchProbDenom.getNumOccurrences()) 675 ColdProbThresh = BranchProbability(1, ColdBranchProbDenom.getValue()); 676 677 unsigned OutlinedFunctionID = 1; 678 // Find all cold regions. 679 for (BasicBlock *BB : RPOT) { 680 // This block is already part of some outlining region. 681 if (ColdBlocks.count(BB)) 682 continue; 683 684 // This block is already part of some region cannot be outlined. 685 if (CannotBeOutlinedColdBlocks.count(BB)) 686 continue; 687 688 if (!isBasicBlockCold(BB, ColdProbThresh, AnnotatedColdBlocks, BFI)) 689 continue; 690 691 LLVM_DEBUG({ 692 dbgs() << "Found a cold block:\n"; 693 BB->dump(); 694 }); 695 696 if (!DT) 697 DT = std::make_unique<DominatorTree>(F); 698 if (!PDT) 699 PDT = std::make_unique<PostDominatorTree>(F); 700 701 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 702 for (OutliningRegion &Region : Regions) { 703 if (Region.empty()) 704 continue; 705 706 if (Region.isEntireFunctionCold()) { 707 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 708 return markFunctionCold(F); 709 } 710 711 do { 712 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 713 LLVM_DEBUG({ 714 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 715 for (BasicBlock *BB : SubRegion) 716 BB->dump(); 717 }); 718 719 // TODO: Pass BFI and BPI to update profile information. 720 CodeExtractor CE( 721 SubRegion, &*DT, /* AggregateArgs */ false, /* BFI */ nullptr, 722 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 723 /* AllowAlloca */ false, /* AllocaBlock */ nullptr, 724 /* Suffix */ "cold." + std::to_string(OutlinedFunctionID)); 725 726 if (CE.isEligible() && isSplittingBeneficial(CE, SubRegion, TTI) && 727 // If this outlining region intersects with another, drop the new 728 // region. 729 // 730 // TODO: It's theoretically possible to outline more by only keeping 731 // the largest region which contains a block, but the extra 732 // bookkeeping to do this is tricky/expensive. 733 none_of(SubRegion, [&](BasicBlock *Block) { 734 return ColdBlocks.contains(Block); 735 })) { 736 ColdBlocks.insert(SubRegion.begin(), SubRegion.end()); 737 738 LLVM_DEBUG({ 739 for (auto *Block : SubRegion) 740 dbgs() << " contains cold block:" << Block->getName() << "\n"; 741 }); 742 743 OutliningWorklist.emplace_back( 744 std::make_pair(SubRegion[0], std::move(CE))); 745 ++OutlinedFunctionID; 746 } else { 747 // The cold block region cannot be outlined. 748 for (auto *Block : SubRegion) 749 if ((DT->dominates(BB, Block) && PDT->dominates(Block, BB)) || 750 (PDT->dominates(BB, Block) && DT->dominates(Block, BB))) 751 // Will skip this cold block in the loop to save the compile time 752 CannotBeOutlinedColdBlocks.insert(Block); 753 } 754 } while (!Region.empty()); 755 756 ++NumColdRegionsFound; 757 } 758 } 759 760 if (OutliningWorklist.empty()) 761 return false; 762 763 // Outline single-entry cold regions, splitting up larger regions as needed. 764 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 765 CodeExtractorAnalysisCache CEAC(F); 766 for (auto &BCE : OutliningWorklist) { 767 Function *Outlined = 768 extractColdRegion(*BCE.first, BCE.second, CEAC, BFI, TTI, ORE); 769 assert(Outlined && "Should be outlined"); 770 (void)Outlined; 771 } 772 773 return true; 774 } 775 776 bool HotColdSplitting::run(Module &M) { 777 bool Changed = false; 778 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 779 for (Function &F : M) { 780 // Do not touch declarations. 781 if (F.isDeclaration()) 782 continue; 783 784 // Do not modify `optnone` functions. 785 if (F.hasOptNone()) 786 continue; 787 788 // Detect inherently cold functions and mark them as such. 789 if (isFunctionCold(F)) { 790 Changed |= markFunctionCold(F); 791 continue; 792 } 793 794 if (!shouldOutlineFrom(F)) { 795 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 796 continue; 797 } 798 799 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 800 Changed |= outlineColdRegions(F, HasProfileSummary); 801 } 802 return Changed; 803 } 804 805 PreservedAnalyses 806 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 807 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 808 809 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 810 return FAM.getCachedResult<AssumptionAnalysis>(F); 811 }; 812 813 auto GBFI = [&FAM](Function &F) { 814 return &FAM.getResult<BlockFrequencyAnalysis>(F); 815 }; 816 817 std::function<TargetTransformInfo &(Function &)> GTTI = 818 [&FAM](Function &F) -> TargetTransformInfo & { 819 return FAM.getResult<TargetIRAnalysis>(F); 820 }; 821 822 std::unique_ptr<OptimizationRemarkEmitter> ORE; 823 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 824 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 825 ORE.reset(new OptimizationRemarkEmitter(&F)); 826 return *ORE; 827 }; 828 829 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 830 831 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 832 return PreservedAnalyses::none(); 833 return PreservedAnalyses::all(); 834 } 835