1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass deletes dead arguments from internal functions. Dead argument 10 // elimination removes arguments which are directly dead, as well as arguments 11 // only passed into function calls as dead arguments of other functions. This 12 // pass also deletes dead return values in a similar way. 13 // 14 // This pass is often useful as a cleanup pass to run after aggressive 15 // interprocedural passes, which add possibly-dead arguments or return values. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/AttributeMask.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DIBuilder.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/NoFolder.h" 38 #include "llvm/IR/PassManager.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/IR/User.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/IPO.h" 49 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50 #include <cassert> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "deadargelim" 57 58 STATISTIC(NumArgumentsEliminated, "Number of unread args removed"); 59 STATISTIC(NumRetValsEliminated, "Number of unused return values removed"); 60 STATISTIC(NumArgumentsReplacedWithPoison, 61 "Number of unread args replaced with poison"); 62 63 namespace { 64 65 /// The dead argument elimination pass. 66 class DAE : public ModulePass { 67 protected: 68 // DAH uses this to specify a different ID. 69 explicit DAE(char &ID) : ModulePass(ID) {} 70 71 public: 72 static char ID; // Pass identification, replacement for typeid 73 74 DAE() : ModulePass(ID) { 75 initializeDAEPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnModule(Module &M) override { 79 if (skipModule(M)) 80 return false; 81 DeadArgumentEliminationPass DAEP(shouldHackArguments()); 82 ModuleAnalysisManager DummyMAM; 83 PreservedAnalyses PA = DAEP.run(M, DummyMAM); 84 return !PA.areAllPreserved(); 85 } 86 87 virtual bool shouldHackArguments() const { return false; } 88 }; 89 90 bool isMustTailCalleeAnalyzable(const CallBase &CB) { 91 assert(CB.isMustTailCall()); 92 return CB.getCalledFunction() && !CB.getCalledFunction()->isDeclaration(); 93 } 94 95 } // end anonymous namespace 96 97 char DAE::ID = 0; 98 99 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false) 100 101 namespace { 102 103 /// The DeadArgumentHacking pass, same as dead argument elimination, but deletes 104 /// arguments to functions which are external. This is only for use by bugpoint. 105 struct DAH : public DAE { 106 static char ID; 107 108 DAH() : DAE(ID) {} 109 110 bool shouldHackArguments() const override { return true; } 111 }; 112 113 } // end anonymous namespace 114 115 char DAH::ID = 0; 116 117 INITIALIZE_PASS(DAH, "deadarghaX0r", 118 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)", false, 119 false) 120 121 /// This pass removes arguments from functions which are not used by the body of 122 /// the function. 123 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); } 124 125 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); } 126 127 /// If this is an function that takes a ... list, and if llvm.vastart is never 128 /// called, the varargs list is dead for the function. 129 bool DeadArgumentEliminationPass::deleteDeadVarargs(Function &F) { 130 assert(F.getFunctionType()->isVarArg() && "Function isn't varargs!"); 131 if (F.isDeclaration() || !F.hasLocalLinkage()) 132 return false; 133 134 // Ensure that the function is only directly called. 135 if (F.hasAddressTaken()) 136 return false; 137 138 // Don't touch naked functions. The assembly might be using an argument, or 139 // otherwise rely on the frame layout in a way that this analysis will not 140 // see. 141 if (F.hasFnAttribute(Attribute::Naked)) { 142 return false; 143 } 144 145 // Okay, we know we can transform this function if safe. Scan its body 146 // looking for calls marked musttail or calls to llvm.vastart. 147 for (BasicBlock &BB : F) { 148 for (Instruction &I : BB) { 149 CallInst *CI = dyn_cast<CallInst>(&I); 150 if (!CI) 151 continue; 152 if (CI->isMustTailCall()) 153 return false; 154 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 155 if (II->getIntrinsicID() == Intrinsic::vastart) 156 return false; 157 } 158 } 159 } 160 161 // If we get here, there are no calls to llvm.vastart in the function body, 162 // remove the "..." and adjust all the calls. 163 164 // Start by computing a new prototype for the function, which is the same as 165 // the old function, but doesn't have isVarArg set. 166 FunctionType *FTy = F.getFunctionType(); 167 168 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end()); 169 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false); 170 unsigned NumArgs = Params.size(); 171 172 // Create the new function body and insert it into the module... 173 Function *NF = Function::Create(NFTy, F.getLinkage(), F.getAddressSpace()); 174 NF->copyAttributesFrom(&F); 175 NF->setComdat(F.getComdat()); 176 F.getParent()->getFunctionList().insert(F.getIterator(), NF); 177 NF->takeName(&F); 178 NF->IsNewDbgInfoFormat = F.IsNewDbgInfoFormat; 179 180 // Loop over all the callers of the function, transforming the call sites 181 // to pass in a smaller number of arguments into the new function. 182 // 183 std::vector<Value *> Args; 184 for (User *U : llvm::make_early_inc_range(F.users())) { 185 CallBase *CB = dyn_cast<CallBase>(U); 186 if (!CB) 187 continue; 188 189 // Pass all the same arguments. 190 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs); 191 192 // Drop any attributes that were on the vararg arguments. 193 AttributeList PAL = CB->getAttributes(); 194 if (!PAL.isEmpty()) { 195 SmallVector<AttributeSet, 8> ArgAttrs; 196 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) 197 ArgAttrs.push_back(PAL.getParamAttrs(ArgNo)); 198 PAL = AttributeList::get(F.getContext(), PAL.getFnAttrs(), 199 PAL.getRetAttrs(), ArgAttrs); 200 } 201 202 SmallVector<OperandBundleDef, 1> OpBundles; 203 CB->getOperandBundlesAsDefs(OpBundles); 204 205 CallBase *NewCB = nullptr; 206 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) { 207 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 208 Args, OpBundles, "", CB->getIterator()); 209 } else { 210 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB->getIterator()); 211 cast<CallInst>(NewCB)->setTailCallKind( 212 cast<CallInst>(CB)->getTailCallKind()); 213 } 214 NewCB->setCallingConv(CB->getCallingConv()); 215 NewCB->setAttributes(PAL); 216 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 217 218 Args.clear(); 219 220 if (!CB->use_empty()) 221 CB->replaceAllUsesWith(NewCB); 222 223 NewCB->takeName(CB); 224 225 // Finally, remove the old call from the program, reducing the use-count of 226 // F. 227 CB->eraseFromParent(); 228 } 229 230 // Since we have now created the new function, splice the body of the old 231 // function right into the new function, leaving the old rotting hulk of the 232 // function empty. 233 NF->splice(NF->begin(), &F); 234 235 // Loop over the argument list, transferring uses of the old arguments over to 236 // the new arguments, also transferring over the names as well. While we're 237 // at it, remove the dead arguments from the DeadArguments list. 238 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(), 239 I2 = NF->arg_begin(); 240 I != E; ++I, ++I2) { 241 // Move the name and users over to the new version. 242 I->replaceAllUsesWith(&*I2); 243 I2->takeName(&*I); 244 } 245 246 // Clone metadata from the old function, including debug info descriptor. 247 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 248 F.getAllMetadata(MDs); 249 for (auto [KindID, Node] : MDs) 250 NF->addMetadata(KindID, *Node); 251 252 // Fix up any BlockAddresses that refer to the function. 253 F.replaceAllUsesWith(NF); 254 // Delete the bitcast that we just created, so that NF does not 255 // appear to be address-taken. 256 NF->removeDeadConstantUsers(); 257 // Finally, nuke the old function. 258 F.eraseFromParent(); 259 return true; 260 } 261 262 /// Checks if the given function has any arguments that are unused, and changes 263 /// the caller parameters to be poison instead. 264 bool DeadArgumentEliminationPass::removeDeadArgumentsFromCallers(Function &F) { 265 // We cannot change the arguments if this TU does not define the function or 266 // if the linker may choose a function body from another TU, even if the 267 // nominal linkage indicates that other copies of the function have the same 268 // semantics. In the below example, the dead load from %p may not have been 269 // eliminated from the linker-chosen copy of f, so replacing %p with poison 270 // in callers may introduce undefined behavior. 271 // 272 // define linkonce_odr void @f(i32* %p) { 273 // %v = load i32 %p 274 // ret void 275 // } 276 if (!F.hasExactDefinition()) 277 return false; 278 279 // Functions with local linkage should already have been handled, except if 280 // they are fully alive (e.g., called indirectly) and except for the fragile 281 // (variadic) ones. In these cases, we may still be able to improve their 282 // statically known call sites. 283 if ((F.hasLocalLinkage() && !LiveFunctions.count(&F)) && 284 !F.getFunctionType()->isVarArg()) 285 return false; 286 287 // Don't touch naked functions. The assembly might be using an argument, or 288 // otherwise rely on the frame layout in a way that this analysis will not 289 // see. 290 if (F.hasFnAttribute(Attribute::Naked)) 291 return false; 292 293 if (F.use_empty()) 294 return false; 295 296 SmallVector<unsigned, 8> UnusedArgs; 297 bool Changed = false; 298 299 AttributeMask UBImplyingAttributes = 300 AttributeFuncs::getUBImplyingAttributes(); 301 for (Argument &Arg : F.args()) { 302 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() && 303 !Arg.hasPassPointeeByValueCopyAttr()) { 304 if (Arg.isUsedByMetadata()) { 305 Arg.replaceAllUsesWith(PoisonValue::get(Arg.getType())); 306 Changed = true; 307 } 308 UnusedArgs.push_back(Arg.getArgNo()); 309 F.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes); 310 } 311 } 312 313 if (UnusedArgs.empty()) 314 return false; 315 316 for (Use &U : F.uses()) { 317 CallBase *CB = dyn_cast<CallBase>(U.getUser()); 318 if (!CB || !CB->isCallee(&U) || 319 CB->getFunctionType() != F.getFunctionType()) 320 continue; 321 322 // Now go through all unused args and replace them with poison. 323 for (unsigned ArgNo : UnusedArgs) { 324 Value *Arg = CB->getArgOperand(ArgNo); 325 CB->setArgOperand(ArgNo, PoisonValue::get(Arg->getType())); 326 CB->removeParamAttrs(ArgNo, UBImplyingAttributes); 327 328 ++NumArgumentsReplacedWithPoison; 329 Changed = true; 330 } 331 } 332 333 return Changed; 334 } 335 336 /// Convenience function that returns the number of return values. It returns 0 337 /// for void functions and 1 for functions not returning a struct. It returns 338 /// the number of struct elements for functions returning a struct. 339 static unsigned numRetVals(const Function *F) { 340 Type *RetTy = F->getReturnType(); 341 if (RetTy->isVoidTy()) 342 return 0; 343 if (StructType *STy = dyn_cast<StructType>(RetTy)) 344 return STy->getNumElements(); 345 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 346 return ATy->getNumElements(); 347 return 1; 348 } 349 350 /// Returns the sub-type a function will return at a given Idx. Should 351 /// correspond to the result type of an ExtractValue instruction executed with 352 /// just that one Idx (i.e. only top-level structure is considered). 353 static Type *getRetComponentType(const Function *F, unsigned Idx) { 354 Type *RetTy = F->getReturnType(); 355 assert(!RetTy->isVoidTy() && "void type has no subtype"); 356 357 if (StructType *STy = dyn_cast<StructType>(RetTy)) 358 return STy->getElementType(Idx); 359 if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy)) 360 return ATy->getElementType(); 361 return RetTy; 362 } 363 364 /// Checks Use for liveness in LiveValues. If Use is not live, it adds Use to 365 /// the MaybeLiveUses argument. Returns the determined liveness of Use. 366 DeadArgumentEliminationPass::Liveness 367 DeadArgumentEliminationPass::markIfNotLive(RetOrArg Use, 368 UseVector &MaybeLiveUses) { 369 // We're live if our use or its Function is already marked as live. 370 if (isLive(Use)) 371 return Live; 372 373 // We're maybe live otherwise, but remember that we must become live if 374 // Use becomes live. 375 MaybeLiveUses.push_back(Use); 376 return MaybeLive; 377 } 378 379 /// Looks at a single use of an argument or return value and determines if it 380 /// should be alive or not. Adds this use to MaybeLiveUses if it causes the 381 /// used value to become MaybeLive. 382 /// 383 /// RetValNum is the return value number to use when this use is used in a 384 /// return instruction. This is used in the recursion, you should always leave 385 /// it at 0. 386 DeadArgumentEliminationPass::Liveness 387 DeadArgumentEliminationPass::surveyUse(const Use *U, UseVector &MaybeLiveUses, 388 unsigned RetValNum) { 389 const User *V = U->getUser(); 390 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) { 391 // The value is returned from a function. It's only live when the 392 // function's return value is live. We use RetValNum here, for the case 393 // that U is really a use of an insertvalue instruction that uses the 394 // original Use. 395 const Function *F = RI->getParent()->getParent(); 396 if (RetValNum != -1U) { 397 RetOrArg Use = createRet(F, RetValNum); 398 // We might be live, depending on the liveness of Use. 399 return markIfNotLive(Use, MaybeLiveUses); 400 } 401 402 DeadArgumentEliminationPass::Liveness Result = MaybeLive; 403 for (unsigned Ri = 0; Ri < numRetVals(F); ++Ri) { 404 RetOrArg Use = createRet(F, Ri); 405 // We might be live, depending on the liveness of Use. If any 406 // sub-value is live, then the entire value is considered live. This 407 // is a conservative choice, and better tracking is possible. 408 DeadArgumentEliminationPass::Liveness SubResult = 409 markIfNotLive(Use, MaybeLiveUses); 410 if (Result != Live) 411 Result = SubResult; 412 } 413 return Result; 414 } 415 416 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) { 417 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex() && 418 IV->hasIndices()) 419 // The use we are examining is inserted into an aggregate. Our liveness 420 // depends on all uses of that aggregate, but if it is used as a return 421 // value, only index at which we were inserted counts. 422 RetValNum = *IV->idx_begin(); 423 424 // Note that if we are used as the aggregate operand to the insertvalue, 425 // we don't change RetValNum, but do survey all our uses. 426 427 Liveness Result = MaybeLive; 428 for (const Use &UU : IV->uses()) { 429 Result = surveyUse(&UU, MaybeLiveUses, RetValNum); 430 if (Result == Live) 431 break; 432 } 433 return Result; 434 } 435 436 if (const auto *CB = dyn_cast<CallBase>(V)) { 437 const Function *F = CB->getCalledFunction(); 438 if (F) { 439 // Used in a direct call. 440 441 // The function argument is live if it is used as a bundle operand. 442 if (CB->isBundleOperand(U)) 443 return Live; 444 445 // Find the argument number. We know for sure that this use is an 446 // argument, since if it was the function argument this would be an 447 // indirect call and that we know can't be looking at a value of the 448 // label type (for the invoke instruction). 449 unsigned ArgNo = CB->getArgOperandNo(U); 450 451 if (ArgNo >= F->getFunctionType()->getNumParams()) 452 // The value is passed in through a vararg! Must be live. 453 return Live; 454 455 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) && 456 "Argument is not where we expected it"); 457 458 // Value passed to a normal call. It's only live when the corresponding 459 // argument to the called function turns out live. 460 RetOrArg Use = createArg(F, ArgNo); 461 return markIfNotLive(Use, MaybeLiveUses); 462 } 463 } 464 // Used in any other way? Value must be live. 465 return Live; 466 } 467 468 /// Looks at all the uses of the given value 469 /// Returns the Liveness deduced from the uses of this value. 470 /// 471 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If 472 /// the result is Live, MaybeLiveUses might be modified but its content should 473 /// be ignored (since it might not be complete). 474 DeadArgumentEliminationPass::Liveness 475 DeadArgumentEliminationPass::surveyUses(const Value *V, 476 UseVector &MaybeLiveUses) { 477 // Assume it's dead (which will only hold if there are no uses at all..). 478 Liveness Result = MaybeLive; 479 // Check each use. 480 for (const Use &U : V->uses()) { 481 Result = surveyUse(&U, MaybeLiveUses); 482 if (Result == Live) 483 break; 484 } 485 return Result; 486 } 487 488 /// Performs the initial survey of the specified function, checking out whether 489 /// it uses any of its incoming arguments or whether any callers use the return 490 /// value. This fills in the LiveValues set and Uses map. 491 /// 492 /// We consider arguments of non-internal functions to be intrinsically alive as 493 /// well as arguments to functions which have their "address taken". 494 void DeadArgumentEliminationPass::surveyFunction(const Function &F) { 495 // Functions with inalloca/preallocated parameters are expecting args in a 496 // particular register and memory layout. 497 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) || 498 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 499 markLive(F); 500 return; 501 } 502 503 // Don't touch naked functions. The assembly might be using an argument, or 504 // otherwise rely on the frame layout in a way that this analysis will not 505 // see. 506 if (F.hasFnAttribute(Attribute::Naked)) { 507 markLive(F); 508 return; 509 } 510 511 unsigned RetCount = numRetVals(&F); 512 513 // Assume all return values are dead 514 using RetVals = SmallVector<Liveness, 5>; 515 516 RetVals RetValLiveness(RetCount, MaybeLive); 517 518 using RetUses = SmallVector<UseVector, 5>; 519 520 // These vectors map each return value to the uses that make it MaybeLive, so 521 // we can add those to the Uses map if the return value really turns out to be 522 // MaybeLive. Initialized to a list of RetCount empty lists. 523 RetUses MaybeLiveRetUses(RetCount); 524 525 bool HasMustTailCalls = false; 526 for (const BasicBlock &BB : F) { 527 // If we have any returns of `musttail` results - the signature can't 528 // change 529 if (const auto *TC = BB.getTerminatingMustTailCall()) { 530 HasMustTailCalls = true; 531 // In addition, if the called function is not locally defined (or unknown, 532 // if this is an indirect call), we can't change the callsite and thus 533 // can't change this function's signature either. 534 if (!isMustTailCalleeAnalyzable(*TC)) { 535 markLive(F); 536 return; 537 } 538 } 539 } 540 541 if (HasMustTailCalls) { 542 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 543 << " has musttail calls\n"); 544 } 545 546 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) { 547 markLive(F); 548 return; 549 } 550 551 LLVM_DEBUG( 552 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: " 553 << F.getName() << "\n"); 554 // Keep track of the number of live retvals, so we can skip checks once all 555 // of them turn out to be live. 556 unsigned NumLiveRetVals = 0; 557 558 bool HasMustTailCallers = false; 559 560 // Loop all uses of the function. 561 for (const Use &U : F.uses()) { 562 // If the function is PASSED IN as an argument, its address has been 563 // taken. 564 const auto *CB = dyn_cast<CallBase>(U.getUser()); 565 if (!CB || !CB->isCallee(&U) || 566 CB->getFunctionType() != F.getFunctionType()) { 567 markLive(F); 568 return; 569 } 570 571 // The number of arguments for `musttail` call must match the number of 572 // arguments of the caller 573 if (CB->isMustTailCall()) 574 HasMustTailCallers = true; 575 576 // If we end up here, we are looking at a direct call to our function. 577 578 // Now, check how our return value(s) is/are used in this caller. Don't 579 // bother checking return values if all of them are live already. 580 if (NumLiveRetVals == RetCount) 581 continue; 582 583 // Check all uses of the return value. 584 for (const Use &UU : CB->uses()) { 585 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(UU.getUser())) { 586 // This use uses a part of our return value, survey the uses of 587 // that part and store the results for this index only. 588 unsigned Idx = *Ext->idx_begin(); 589 if (RetValLiveness[Idx] != Live) { 590 RetValLiveness[Idx] = surveyUses(Ext, MaybeLiveRetUses[Idx]); 591 if (RetValLiveness[Idx] == Live) 592 NumLiveRetVals++; 593 } 594 } else { 595 // Used by something else than extractvalue. Survey, but assume that the 596 // result applies to all sub-values. 597 UseVector MaybeLiveAggregateUses; 598 if (surveyUse(&UU, MaybeLiveAggregateUses) == Live) { 599 NumLiveRetVals = RetCount; 600 RetValLiveness.assign(RetCount, Live); 601 break; 602 } 603 604 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 605 if (RetValLiveness[Ri] != Live) 606 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(), 607 MaybeLiveAggregateUses.end()); 608 } 609 } 610 } 611 } 612 613 if (HasMustTailCallers) { 614 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName() 615 << " has musttail callers\n"); 616 } 617 618 // Now we've inspected all callers, record the liveness of our return values. 619 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 620 markValue(createRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]); 621 622 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: " 623 << F.getName() << "\n"); 624 625 // Now, check all of our arguments. 626 unsigned ArgI = 0; 627 UseVector MaybeLiveArgUses; 628 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end(); 629 AI != E; ++AI, ++ArgI) { 630 Liveness Result; 631 if (F.getFunctionType()->isVarArg() || HasMustTailCallers || 632 HasMustTailCalls) { 633 // Variadic functions will already have a va_arg function expanded inside 634 // them, making them potentially very sensitive to ABI changes resulting 635 // from removing arguments entirely, so don't. For example AArch64 handles 636 // register and stack HFAs very differently, and this is reflected in the 637 // IR which has already been generated. 638 // 639 // `musttail` calls to this function restrict argument removal attempts. 640 // The signature of the caller must match the signature of the function. 641 // 642 // `musttail` calls in this function prevents us from changing its 643 // signature 644 Result = Live; 645 } else { 646 // See what the effect of this use is (recording any uses that cause 647 // MaybeLive in MaybeLiveArgUses). 648 Result = surveyUses(&*AI, MaybeLiveArgUses); 649 } 650 651 // Mark the result. 652 markValue(createArg(&F, ArgI), Result, MaybeLiveArgUses); 653 // Clear the vector again for the next iteration. 654 MaybeLiveArgUses.clear(); 655 } 656 } 657 658 /// Marks the liveness of RA depending on L. If L is MaybeLive, it also takes 659 /// all uses in MaybeLiveUses and records them in Uses, such that RA will be 660 /// marked live if any use in MaybeLiveUses gets marked live later on. 661 void DeadArgumentEliminationPass::markValue(const RetOrArg &RA, Liveness L, 662 const UseVector &MaybeLiveUses) { 663 switch (L) { 664 case Live: 665 markLive(RA); 666 break; 667 case MaybeLive: 668 assert(!isLive(RA) && "Use is already live!"); 669 for (const auto &MaybeLiveUse : MaybeLiveUses) { 670 if (isLive(MaybeLiveUse)) { 671 // A use is live, so this value is live. 672 markLive(RA); 673 break; 674 } 675 // Note any uses of this value, so this value can be 676 // marked live whenever one of the uses becomes live. 677 Uses.emplace(MaybeLiveUse, RA); 678 } 679 break; 680 } 681 } 682 683 /// Mark the given Function as alive, meaning that it cannot be changed in any 684 /// way. Additionally, mark any values that are used as this function's 685 /// parameters or by its return values (according to Uses) live as well. 686 void DeadArgumentEliminationPass::markLive(const Function &F) { 687 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: " 688 << F.getName() << "\n"); 689 // Mark the function as live. 690 LiveFunctions.insert(&F); 691 // Mark all arguments as live. 692 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI) 693 propagateLiveness(createArg(&F, ArgI)); 694 // Mark all return values as live. 695 for (unsigned Ri = 0, E = numRetVals(&F); Ri != E; ++Ri) 696 propagateLiveness(createRet(&F, Ri)); 697 } 698 699 /// Mark the given return value or argument as live. Additionally, mark any 700 /// values that are used by this value (according to Uses) live as well. 701 void DeadArgumentEliminationPass::markLive(const RetOrArg &RA) { 702 if (isLive(RA)) 703 return; // Already marked Live. 704 705 LiveValues.insert(RA); 706 707 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking " 708 << RA.getDescription() << " live\n"); 709 propagateLiveness(RA); 710 } 711 712 bool DeadArgumentEliminationPass::isLive(const RetOrArg &RA) { 713 return LiveFunctions.count(RA.F) || LiveValues.count(RA); 714 } 715 716 /// Given that RA is a live value, propagate it's liveness to any other values 717 /// it uses (according to Uses). 718 void DeadArgumentEliminationPass::propagateLiveness(const RetOrArg &RA) { 719 // We don't use upper_bound (or equal_range) here, because our recursive call 720 // to ourselves is likely to cause the upper_bound (which is the first value 721 // not belonging to RA) to become erased and the iterator invalidated. 722 UseMap::iterator Begin = Uses.lower_bound(RA); 723 UseMap::iterator E = Uses.end(); 724 UseMap::iterator I; 725 for (I = Begin; I != E && I->first == RA; ++I) 726 markLive(I->second); 727 728 // Erase RA from the Uses map (from the lower bound to wherever we ended up 729 // after the loop). 730 Uses.erase(Begin, I); 731 } 732 733 /// Remove any arguments and return values from F that are not in LiveValues. 734 /// Transform the function and all the callees of the function to not have these 735 /// arguments and return values. 736 bool DeadArgumentEliminationPass::removeDeadStuffFromFunction(Function *F) { 737 // Don't modify fully live functions 738 if (LiveFunctions.count(F)) 739 return false; 740 741 // Start by computing a new prototype for the function, which is the same as 742 // the old function, but has fewer arguments and a different return type. 743 FunctionType *FTy = F->getFunctionType(); 744 std::vector<Type *> Params; 745 746 // Keep track of if we have a live 'returned' argument 747 bool HasLiveReturnedArg = false; 748 749 // Set up to build a new list of parameter attributes. 750 SmallVector<AttributeSet, 8> ArgAttrVec; 751 const AttributeList &PAL = F->getAttributes(); 752 OptimizationRemarkEmitter ORE(F); 753 754 // Remember which arguments are still alive. 755 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false); 756 // Construct the new parameter list from non-dead arguments. Also construct 757 // a new set of parameter attributes to correspond. Skip the first parameter 758 // attribute, since that belongs to the return value. 759 unsigned ArgI = 0; 760 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; 761 ++I, ++ArgI) { 762 RetOrArg Arg = createArg(F, ArgI); 763 if (LiveValues.erase(Arg)) { 764 Params.push_back(I->getType()); 765 ArgAlive[ArgI] = true; 766 ArgAttrVec.push_back(PAL.getParamAttrs(ArgI)); 767 HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned); 768 } else { 769 ++NumArgumentsEliminated; 770 771 ORE.emit([&]() { 772 return OptimizationRemark(DEBUG_TYPE, "ArgumentRemoved", F) 773 << "eliminating argument " << ore::NV("ArgName", I->getName()) 774 << "(" << ore::NV("ArgIndex", ArgI) << ")"; 775 }); 776 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument " 777 << ArgI << " (" << I->getName() << ") from " 778 << F->getName() << "\n"); 779 } 780 } 781 782 // Find out the new return value. 783 Type *RetTy = FTy->getReturnType(); 784 Type *NRetTy = nullptr; 785 unsigned RetCount = numRetVals(F); 786 787 // -1 means unused, other numbers are the new index 788 SmallVector<int, 5> NewRetIdxs(RetCount, -1); 789 std::vector<Type *> RetTypes; 790 791 // If there is a function with a live 'returned' argument but a dead return 792 // value, then there are two possible actions: 793 // 1) Eliminate the return value and take off the 'returned' attribute on the 794 // argument. 795 // 2) Retain the 'returned' attribute and treat the return value (but not the 796 // entire function) as live so that it is not eliminated. 797 // 798 // It's not clear in the general case which option is more profitable because, 799 // even in the absence of explicit uses of the return value, code generation 800 // is free to use the 'returned' attribute to do things like eliding 801 // save/restores of registers across calls. Whether this happens is target and 802 // ABI-specific as well as depending on the amount of register pressure, so 803 // there's no good way for an IR-level pass to figure this out. 804 // 805 // Fortunately, the only places where 'returned' is currently generated by 806 // the FE are places where 'returned' is basically free and almost always a 807 // performance win, so the second option can just be used always for now. 808 // 809 // This should be revisited if 'returned' is ever applied more liberally. 810 if (RetTy->isVoidTy() || HasLiveReturnedArg) { 811 NRetTy = RetTy; 812 } else { 813 // Look at each of the original return values individually. 814 for (unsigned Ri = 0; Ri != RetCount; ++Ri) { 815 RetOrArg Ret = createRet(F, Ri); 816 if (LiveValues.erase(Ret)) { 817 RetTypes.push_back(getRetComponentType(F, Ri)); 818 NewRetIdxs[Ri] = RetTypes.size() - 1; 819 } else { 820 ++NumRetValsEliminated; 821 822 ORE.emit([&]() { 823 return OptimizationRemark(DEBUG_TYPE, "ReturnValueRemoved", F) 824 << "removing return value " << std::to_string(Ri); 825 }); 826 LLVM_DEBUG( 827 dbgs() << "DeadArgumentEliminationPass - Removing return value " 828 << Ri << " from " << F->getName() << "\n"); 829 } 830 } 831 if (RetTypes.size() > 1) { 832 // More than one return type? Reduce it down to size. 833 if (StructType *STy = dyn_cast<StructType>(RetTy)) { 834 // Make the new struct packed if we used to return a packed struct 835 // already. 836 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked()); 837 } else { 838 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return"); 839 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size()); 840 } 841 } else if (RetTypes.size() == 1) 842 // One return type? Just a simple value then, but only if we didn't use to 843 // return a struct with that simple value before. 844 NRetTy = RetTypes.front(); 845 else if (RetTypes.empty()) 846 // No return types? Make it void, but only if we didn't use to return {}. 847 NRetTy = Type::getVoidTy(F->getContext()); 848 } 849 850 assert(NRetTy && "No new return type found?"); 851 852 // The existing function return attributes. 853 AttrBuilder RAttrs(F->getContext(), PAL.getRetAttrs()); 854 855 // Remove any incompatible attributes, but only if we removed all return 856 // values. Otherwise, ensure that we don't have any conflicting attributes 857 // here. Currently, this should not be possible, but special handling might be 858 // required when new return value attributes are added. 859 if (NRetTy->isVoidTy()) 860 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy, PAL.getRetAttrs())); 861 else 862 assert(!RAttrs.overlaps( 863 AttributeFuncs::typeIncompatible(NRetTy, PAL.getRetAttrs())) && 864 "Return attributes no longer compatible?"); 865 866 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 867 868 // Strip allocsize attributes. They might refer to the deleted arguments. 869 AttributeSet FnAttrs = 870 PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize); 871 872 // Reconstruct the AttributesList based on the vector we constructed. 873 assert(ArgAttrVec.size() == Params.size()); 874 AttributeList NewPAL = 875 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 876 877 // Create the new function type based on the recomputed parameters. 878 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg()); 879 880 // No change? 881 if (NFTy == FTy) 882 return false; 883 884 // Create the new function body and insert it into the module... 885 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace()); 886 NF->copyAttributesFrom(F); 887 NF->setComdat(F->getComdat()); 888 NF->setAttributes(NewPAL); 889 // Insert the new function before the old function, so we won't be processing 890 // it again. 891 F->getParent()->getFunctionList().insert(F->getIterator(), NF); 892 NF->takeName(F); 893 NF->IsNewDbgInfoFormat = F->IsNewDbgInfoFormat; 894 895 // Loop over all the callers of the function, transforming the call sites to 896 // pass in a smaller number of arguments into the new function. 897 std::vector<Value *> Args; 898 while (!F->use_empty()) { 899 CallBase &CB = cast<CallBase>(*F->user_back()); 900 901 ArgAttrVec.clear(); 902 const AttributeList &CallPAL = CB.getAttributes(); 903 904 // Adjust the call return attributes in case the function was changed to 905 // return void. 906 AttrBuilder RAttrs(F->getContext(), CallPAL.getRetAttrs()); 907 RAttrs.remove( 908 AttributeFuncs::typeIncompatible(NRetTy, CallPAL.getRetAttrs())); 909 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs); 910 911 // Declare these outside of the loops, so we can reuse them for the second 912 // loop, which loops the varargs. 913 auto *I = CB.arg_begin(); 914 unsigned Pi = 0; 915 // Loop over those operands, corresponding to the normal arguments to the 916 // original function, and add those that are still alive. 917 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi) 918 if (ArgAlive[Pi]) { 919 Args.push_back(*I); 920 // Get original parameter attributes, but skip return attributes. 921 AttributeSet Attrs = CallPAL.getParamAttrs(Pi); 922 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) { 923 // If the return type has changed, then get rid of 'returned' on the 924 // call site. The alternative is to make all 'returned' attributes on 925 // call sites keep the return value alive just like 'returned' 926 // attributes on function declaration, but it's less clearly a win and 927 // this is not an expected case anyway 928 ArgAttrVec.push_back(AttributeSet::get( 929 F->getContext(), AttrBuilder(F->getContext(), Attrs) 930 .removeAttribute(Attribute::Returned))); 931 } else { 932 // Otherwise, use the original attributes. 933 ArgAttrVec.push_back(Attrs); 934 } 935 } 936 937 // Push any varargs arguments on the list. Don't forget their attributes. 938 for (auto *E = CB.arg_end(); I != E; ++I, ++Pi) { 939 Args.push_back(*I); 940 ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi)); 941 } 942 943 // Reconstruct the AttributesList based on the vector we constructed. 944 assert(ArgAttrVec.size() == Args.size()); 945 946 // Again, be sure to remove any allocsize attributes, since their indices 947 // may now be incorrect. 948 AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute( 949 F->getContext(), Attribute::AllocSize); 950 951 AttributeList NewCallPAL = 952 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec); 953 954 SmallVector<OperandBundleDef, 1> OpBundles; 955 CB.getOperandBundlesAsDefs(OpBundles); 956 957 CallBase *NewCB = nullptr; 958 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 959 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), 960 Args, OpBundles, "", CB.getParent()); 961 } else { 962 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", CB.getIterator()); 963 cast<CallInst>(NewCB)->setTailCallKind( 964 cast<CallInst>(&CB)->getTailCallKind()); 965 } 966 NewCB->setCallingConv(CB.getCallingConv()); 967 NewCB->setAttributes(NewCallPAL); 968 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg}); 969 Args.clear(); 970 ArgAttrVec.clear(); 971 972 if (!CB.use_empty() || CB.isUsedByMetadata()) { 973 if (NewCB->getType() == CB.getType()) { 974 // Return type not changed? Just replace users then. 975 CB.replaceAllUsesWith(NewCB); 976 NewCB->takeName(&CB); 977 } else if (NewCB->getType()->isVoidTy()) { 978 // If the return value is dead, replace any uses of it with poison 979 // (any non-debug value uses will get removed later on). 980 CB.replaceAllUsesWith(PoisonValue::get(CB.getType())); 981 } else { 982 assert((RetTy->isStructTy() || RetTy->isArrayTy()) && 983 "Return type changed, but not into a void. The old return type" 984 " must have been a struct or an array!"); 985 Instruction *InsertPt = &CB; 986 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 987 BasicBlock *NewEdge = 988 SplitEdge(NewCB->getParent(), II->getNormalDest()); 989 InsertPt = &*NewEdge->getFirstInsertionPt(); 990 } 991 992 // We used to return a struct or array. Instead of doing smart stuff 993 // with all the uses, we will just rebuild it using extract/insertvalue 994 // chaining and let instcombine clean that up. 995 // 996 // Start out building up our return value from poison 997 Value *RetVal = PoisonValue::get(RetTy); 998 for (unsigned Ri = 0; Ri != RetCount; ++Ri) 999 if (NewRetIdxs[Ri] != -1) { 1000 Value *V; 1001 IRBuilder<NoFolder> IRB(InsertPt); 1002 if (RetTypes.size() > 1) 1003 // We are still returning a struct, so extract the value from our 1004 // return value 1005 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret"); 1006 else 1007 // We are now returning a single element, so just insert that 1008 V = NewCB; 1009 // Insert the value at the old position 1010 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret"); 1011 } 1012 // Now, replace all uses of the old call instruction with the return 1013 // struct we built 1014 CB.replaceAllUsesWith(RetVal); 1015 NewCB->takeName(&CB); 1016 } 1017 } 1018 1019 // Finally, remove the old call from the program, reducing the use-count of 1020 // F. 1021 CB.eraseFromParent(); 1022 } 1023 1024 // Since we have now created the new function, splice the body of the old 1025 // function right into the new function, leaving the old rotting hulk of the 1026 // function empty. 1027 NF->splice(NF->begin(), F); 1028 1029 // Loop over the argument list, transferring uses of the old arguments over to 1030 // the new arguments, also transferring over the names as well. 1031 ArgI = 0; 1032 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), 1033 I2 = NF->arg_begin(); 1034 I != E; ++I, ++ArgI) 1035 if (ArgAlive[ArgI]) { 1036 // If this is a live argument, move the name and users over to the new 1037 // version. 1038 I->replaceAllUsesWith(&*I2); 1039 I2->takeName(&*I); 1040 ++I2; 1041 } else { 1042 // If this argument is dead, replace any uses of it with poison 1043 // (any non-debug value uses will get removed later on). 1044 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 1045 } 1046 1047 // If we change the return value of the function we must rewrite any return 1048 // instructions. Check this now. 1049 if (F->getReturnType() != NF->getReturnType()) 1050 for (BasicBlock &BB : *NF) 1051 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) { 1052 IRBuilder<NoFolder> IRB(RI); 1053 Value *RetVal = nullptr; 1054 1055 if (!NFTy->getReturnType()->isVoidTy()) { 1056 assert(RetTy->isStructTy() || RetTy->isArrayTy()); 1057 // The original return value was a struct or array, insert 1058 // extractvalue/insertvalue chains to extract only the values we need 1059 // to return and insert them into our new result. 1060 // This does generate messy code, but we'll let it to instcombine to 1061 // clean that up. 1062 Value *OldRet = RI->getOperand(0); 1063 // Start out building up our return value from poison 1064 RetVal = PoisonValue::get(NRetTy); 1065 for (unsigned RetI = 0; RetI != RetCount; ++RetI) 1066 if (NewRetIdxs[RetI] != -1) { 1067 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret"); 1068 1069 if (RetTypes.size() > 1) { 1070 // We're still returning a struct, so reinsert the value into 1071 // our new return value at the new index 1072 1073 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI], 1074 "newret"); 1075 } else { 1076 // We are now only returning a simple value, so just return the 1077 // extracted value. 1078 RetVal = EV; 1079 } 1080 } 1081 } 1082 // Replace the return instruction with one returning the new return 1083 // value (possibly 0 if we became void). 1084 auto *NewRet = 1085 ReturnInst::Create(F->getContext(), RetVal, RI->getIterator()); 1086 NewRet->setDebugLoc(RI->getDebugLoc()); 1087 RI->eraseFromParent(); 1088 } 1089 1090 // Clone metadata from the old function, including debug info descriptor. 1091 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; 1092 F->getAllMetadata(MDs); 1093 for (auto [KindID, Node] : MDs) 1094 NF->addMetadata(KindID, *Node); 1095 1096 // If either the return value(s) or argument(s) are removed, then probably the 1097 // function does not follow standard calling conventions anymore. Hence, add 1098 // DW_CC_nocall to DISubroutineType to inform debugger that it may not be safe 1099 // to call this function or try to interpret the return value. 1100 if (NFTy != FTy && NF->getSubprogram()) { 1101 DISubprogram *SP = NF->getSubprogram(); 1102 auto Temp = SP->getType()->cloneWithCC(llvm::dwarf::DW_CC_nocall); 1103 SP->replaceType(MDNode::replaceWithPermanent(std::move(Temp))); 1104 } 1105 1106 // Now that the old function is dead, delete it. 1107 F->eraseFromParent(); 1108 1109 return true; 1110 } 1111 1112 void DeadArgumentEliminationPass::propagateVirtMustcallLiveness( 1113 const Module &M) { 1114 // If a function was marked "live", and it has musttail callers, they in turn 1115 // can't change either. 1116 LiveFuncSet NewLiveFuncs(LiveFunctions); 1117 while (!NewLiveFuncs.empty()) { 1118 LiveFuncSet Temp; 1119 for (const auto *F : NewLiveFuncs) 1120 for (const auto *U : F->users()) 1121 if (const auto *CB = dyn_cast<CallBase>(U)) 1122 if (CB->isMustTailCall()) 1123 if (!LiveFunctions.count(CB->getParent()->getParent())) 1124 Temp.insert(CB->getParent()->getParent()); 1125 NewLiveFuncs.clear(); 1126 NewLiveFuncs.insert(Temp.begin(), Temp.end()); 1127 for (const auto *F : Temp) 1128 markLive(*F); 1129 } 1130 } 1131 1132 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M, 1133 ModuleAnalysisManager &) { 1134 bool Changed = false; 1135 1136 // First pass: Do a simple check to see if any functions can have their "..." 1137 // removed. We can do this if they never call va_start. This loop cannot be 1138 // fused with the next loop, because deleting a function invalidates 1139 // information computed while surveying other functions. 1140 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n"); 1141 for (Function &F : llvm::make_early_inc_range(M)) 1142 if (F.getFunctionType()->isVarArg()) 1143 Changed |= deleteDeadVarargs(F); 1144 1145 // Second phase: Loop through the module, determining which arguments are 1146 // live. We assume all arguments are dead unless proven otherwise (allowing us 1147 // to determine that dead arguments passed into recursive functions are dead). 1148 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n"); 1149 for (auto &F : M) 1150 surveyFunction(F); 1151 1152 propagateVirtMustcallLiveness(M); 1153 1154 // Now, remove all dead arguments and return values from each function in 1155 // turn. We use make_early_inc_range here because functions will probably get 1156 // removed (i.e. replaced by new ones). 1157 for (Function &F : llvm::make_early_inc_range(M)) 1158 Changed |= removeDeadStuffFromFunction(&F); 1159 1160 // Finally, look for any unused parameters in functions with non-local 1161 // linkage and replace the passed in parameters with poison. 1162 for (auto &F : M) 1163 Changed |= removeDeadArgumentsFromCallers(F); 1164 1165 if (!Changed) 1166 return PreservedAnalyses::all(); 1167 return PreservedAnalyses::none(); 1168 } 1169