1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the X86 implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86InstrInfo.h" 14 #include "X86.h" 15 #include "X86InstrBuilder.h" 16 #include "X86InstrFoldTables.h" 17 #include "X86MachineFunctionInfo.h" 18 #include "X86Subtarget.h" 19 #include "X86TargetMachine.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCExpr.h" 41 #include "llvm/MC/MCInst.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <optional> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86-instr-info" 52 53 #define GET_INSTRINFO_CTOR_DTOR 54 #include "X86GenInstrInfo.inc" 55 56 static cl::opt<bool> 57 NoFusing("disable-spill-fusing", 58 cl::desc("Disable fusing of spill code into instructions"), 59 cl::Hidden); 60 static cl::opt<bool> 61 PrintFailedFusing("print-failed-fuse-candidates", 62 cl::desc("Print instructions that the allocator wants to" 63 " fuse, but the X86 backend currently can't"), 64 cl::Hidden); 65 static cl::opt<bool> 66 ReMatPICStubLoad("remat-pic-stub-load", 67 cl::desc("Re-materialize load from stub in PIC mode"), 68 cl::init(false), cl::Hidden); 69 static cl::opt<unsigned> 70 PartialRegUpdateClearance("partial-reg-update-clearance", 71 cl::desc("Clearance between two register writes " 72 "for inserting XOR to avoid partial " 73 "register update"), 74 cl::init(64), cl::Hidden); 75 static cl::opt<unsigned> UndefRegClearance( 76 "undef-reg-clearance", 77 cl::desc("How many idle instructions we would like before " 78 "certain undef register reads"), 79 cl::init(128), cl::Hidden); 80 81 // Pin the vtable to this file. 82 void X86InstrInfo::anchor() {} 83 84 X86InstrInfo::X86InstrInfo(X86Subtarget &STI) 85 : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 86 : X86::ADJCALLSTACKDOWN32), 87 (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 88 : X86::ADJCALLSTACKUP32), 89 X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)), 90 Subtarget(STI), RI(STI.getTargetTriple()) {} 91 92 const TargetRegisterClass * 93 X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 94 const TargetRegisterInfo *TRI, 95 const MachineFunction &MF) const { 96 auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF); 97 // If the target does not have egpr, then r16-r31 will be resereved for all 98 // instructions. 99 if (!RC || !Subtarget.hasEGPR()) 100 return RC; 101 102 if (X86II::canUseApxExtendedReg(MCID)) 103 return RC; 104 105 switch (RC->getID()) { 106 default: 107 return RC; 108 case X86::GR8RegClassID: 109 return &X86::GR8_NOREX2RegClass; 110 case X86::GR16RegClassID: 111 return &X86::GR16_NOREX2RegClass; 112 case X86::GR32RegClassID: 113 return &X86::GR32_NOREX2RegClass; 114 case X86::GR64RegClassID: 115 return &X86::GR64_NOREX2RegClass; 116 case X86::GR32_NOSPRegClassID: 117 return &X86::GR32_NOREX2_NOSPRegClass; 118 case X86::GR64_NOSPRegClassID: 119 return &X86::GR64_NOREX2_NOSPRegClass; 120 } 121 } 122 123 bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 124 Register &SrcReg, Register &DstReg, 125 unsigned &SubIdx) const { 126 switch (MI.getOpcode()) { 127 default: 128 break; 129 case X86::MOVSX16rr8: 130 case X86::MOVZX16rr8: 131 case X86::MOVSX32rr8: 132 case X86::MOVZX32rr8: 133 case X86::MOVSX64rr8: 134 if (!Subtarget.is64Bit()) 135 // It's not always legal to reference the low 8-bit of the larger 136 // register in 32-bit mode. 137 return false; 138 [[fallthrough]]; 139 case X86::MOVSX32rr16: 140 case X86::MOVZX32rr16: 141 case X86::MOVSX64rr16: 142 case X86::MOVSX64rr32: { 143 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 144 // Be conservative. 145 return false; 146 SrcReg = MI.getOperand(1).getReg(); 147 DstReg = MI.getOperand(0).getReg(); 148 switch (MI.getOpcode()) { 149 default: 150 llvm_unreachable("Unreachable!"); 151 case X86::MOVSX16rr8: 152 case X86::MOVZX16rr8: 153 case X86::MOVSX32rr8: 154 case X86::MOVZX32rr8: 155 case X86::MOVSX64rr8: 156 SubIdx = X86::sub_8bit; 157 break; 158 case X86::MOVSX32rr16: 159 case X86::MOVZX32rr16: 160 case X86::MOVSX64rr16: 161 SubIdx = X86::sub_16bit; 162 break; 163 case X86::MOVSX64rr32: 164 SubIdx = X86::sub_32bit; 165 break; 166 } 167 return true; 168 } 169 } 170 return false; 171 } 172 173 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { 174 if (MI.mayLoad() || MI.mayStore()) 175 return false; 176 177 // Some target-independent operations that trivially lower to data-invariant 178 // instructions. 179 if (MI.isCopyLike() || MI.isInsertSubreg()) 180 return true; 181 182 unsigned Opcode = MI.getOpcode(); 183 using namespace X86; 184 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 185 // However, they set flags and are perhaps the most surprisingly constant 186 // time operations so we call them out here separately. 187 if (isIMUL(Opcode)) 188 return true; 189 // Bit scanning and counting instructions that are somewhat surprisingly 190 // constant time as they scan across bits and do other fairly complex 191 // operations like popcnt, but are believed to be constant time on x86. 192 // However, these set flags. 193 if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) || 194 isTZCNT(Opcode)) 195 return true; 196 // Bit manipulation instructions are effectively combinations of basic 197 // arithmetic ops, and should still execute in constant time. These also 198 // set flags. 199 if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) || 200 isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) || 201 isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) || 202 isTZMSK(Opcode)) 203 return true; 204 // Bit extracting and clearing instructions should execute in constant time, 205 // and set flags. 206 if (isBEXTR(Opcode) || isBZHI(Opcode)) 207 return true; 208 // Shift and rotate. 209 if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) || 210 isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode)) 211 return true; 212 // Basic arithmetic is constant time on the input but does set flags. 213 if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) || 214 isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode)) 215 return true; 216 // Arithmetic with just 32-bit and 64-bit variants and no immediates. 217 if (isANDN(Opcode)) 218 return true; 219 // Unary arithmetic operations. 220 if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode)) 221 return true; 222 // Unlike other arithmetic, NOT doesn't set EFLAGS. 223 if (isNOT(Opcode)) 224 return true; 225 // Various move instructions used to zero or sign extend things. Note that we 226 // intentionally don't support the _NOREX variants as we can't handle that 227 // register constraint anyways. 228 if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode)) 229 return true; 230 // Arithmetic instructions that are both constant time and don't set flags. 231 if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode)) 232 return true; 233 // LEA doesn't actually access memory, and its arithmetic is constant time. 234 if (isLEA(Opcode)) 235 return true; 236 // By default, assume that the instruction is not data invariant. 237 return false; 238 } 239 240 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { 241 switch (MI.getOpcode()) { 242 default: 243 // By default, assume that the load will immediately leak. 244 return false; 245 246 // On x86 it is believed that imul is constant time w.r.t. the loaded data. 247 // However, they set flags and are perhaps the most surprisingly constant 248 // time operations so we call them out here separately. 249 case X86::IMUL16rm: 250 case X86::IMUL16rmi: 251 case X86::IMUL32rm: 252 case X86::IMUL32rmi: 253 case X86::IMUL64rm: 254 case X86::IMUL64rmi32: 255 256 // Bit scanning and counting instructions that are somewhat surprisingly 257 // constant time as they scan across bits and do other fairly complex 258 // operations like popcnt, but are believed to be constant time on x86. 259 // However, these set flags. 260 case X86::BSF16rm: 261 case X86::BSF32rm: 262 case X86::BSF64rm: 263 case X86::BSR16rm: 264 case X86::BSR32rm: 265 case X86::BSR64rm: 266 case X86::LZCNT16rm: 267 case X86::LZCNT32rm: 268 case X86::LZCNT64rm: 269 case X86::POPCNT16rm: 270 case X86::POPCNT32rm: 271 case X86::POPCNT64rm: 272 case X86::TZCNT16rm: 273 case X86::TZCNT32rm: 274 case X86::TZCNT64rm: 275 276 // Bit manipulation instructions are effectively combinations of basic 277 // arithmetic ops, and should still execute in constant time. These also 278 // set flags. 279 case X86::BLCFILL32rm: 280 case X86::BLCFILL64rm: 281 case X86::BLCI32rm: 282 case X86::BLCI64rm: 283 case X86::BLCIC32rm: 284 case X86::BLCIC64rm: 285 case X86::BLCMSK32rm: 286 case X86::BLCMSK64rm: 287 case X86::BLCS32rm: 288 case X86::BLCS64rm: 289 case X86::BLSFILL32rm: 290 case X86::BLSFILL64rm: 291 case X86::BLSI32rm: 292 case X86::BLSI64rm: 293 case X86::BLSIC32rm: 294 case X86::BLSIC64rm: 295 case X86::BLSMSK32rm: 296 case X86::BLSMSK64rm: 297 case X86::BLSR32rm: 298 case X86::BLSR64rm: 299 case X86::TZMSK32rm: 300 case X86::TZMSK64rm: 301 302 // Bit extracting and clearing instructions should execute in constant time, 303 // and set flags. 304 case X86::BEXTR32rm: 305 case X86::BEXTR64rm: 306 case X86::BEXTRI32mi: 307 case X86::BEXTRI64mi: 308 case X86::BZHI32rm: 309 case X86::BZHI64rm: 310 311 // Basic arithmetic is constant time on the input but does set flags. 312 case X86::ADC8rm: 313 case X86::ADC16rm: 314 case X86::ADC32rm: 315 case X86::ADC64rm: 316 case X86::ADD8rm: 317 case X86::ADD16rm: 318 case X86::ADD32rm: 319 case X86::ADD64rm: 320 case X86::AND8rm: 321 case X86::AND16rm: 322 case X86::AND32rm: 323 case X86::AND64rm: 324 case X86::ANDN32rm: 325 case X86::ANDN64rm: 326 case X86::OR8rm: 327 case X86::OR16rm: 328 case X86::OR32rm: 329 case X86::OR64rm: 330 case X86::SBB8rm: 331 case X86::SBB16rm: 332 case X86::SBB32rm: 333 case X86::SBB64rm: 334 case X86::SUB8rm: 335 case X86::SUB16rm: 336 case X86::SUB32rm: 337 case X86::SUB64rm: 338 case X86::XOR8rm: 339 case X86::XOR16rm: 340 case X86::XOR32rm: 341 case X86::XOR64rm: 342 343 // Integer multiply w/o affecting flags is still believed to be constant 344 // time on x86. Called out separately as this is among the most surprising 345 // instructions to exhibit that behavior. 346 case X86::MULX32rm: 347 case X86::MULX64rm: 348 349 // Arithmetic instructions that are both constant time and don't set flags. 350 case X86::RORX32mi: 351 case X86::RORX64mi: 352 case X86::SARX32rm: 353 case X86::SARX64rm: 354 case X86::SHLX32rm: 355 case X86::SHLX64rm: 356 case X86::SHRX32rm: 357 case X86::SHRX64rm: 358 359 // Conversions are believed to be constant time and don't set flags. 360 case X86::CVTTSD2SI64rm: 361 case X86::VCVTTSD2SI64rm: 362 case X86::VCVTTSD2SI64Zrm: 363 case X86::CVTTSD2SIrm: 364 case X86::VCVTTSD2SIrm: 365 case X86::VCVTTSD2SIZrm: 366 case X86::CVTTSS2SI64rm: 367 case X86::VCVTTSS2SI64rm: 368 case X86::VCVTTSS2SI64Zrm: 369 case X86::CVTTSS2SIrm: 370 case X86::VCVTTSS2SIrm: 371 case X86::VCVTTSS2SIZrm: 372 case X86::CVTSI2SDrm: 373 case X86::VCVTSI2SDrm: 374 case X86::VCVTSI2SDZrm: 375 case X86::CVTSI2SSrm: 376 case X86::VCVTSI2SSrm: 377 case X86::VCVTSI2SSZrm: 378 case X86::CVTSI642SDrm: 379 case X86::VCVTSI642SDrm: 380 case X86::VCVTSI642SDZrm: 381 case X86::CVTSI642SSrm: 382 case X86::VCVTSI642SSrm: 383 case X86::VCVTSI642SSZrm: 384 case X86::CVTSS2SDrm: 385 case X86::VCVTSS2SDrm: 386 case X86::VCVTSS2SDZrm: 387 case X86::CVTSD2SSrm: 388 case X86::VCVTSD2SSrm: 389 case X86::VCVTSD2SSZrm: 390 // AVX512 added unsigned integer conversions. 391 case X86::VCVTTSD2USI64Zrm: 392 case X86::VCVTTSD2USIZrm: 393 case X86::VCVTTSS2USI64Zrm: 394 case X86::VCVTTSS2USIZrm: 395 case X86::VCVTUSI2SDZrm: 396 case X86::VCVTUSI642SDZrm: 397 case X86::VCVTUSI2SSZrm: 398 case X86::VCVTUSI642SSZrm: 399 400 // Loads to register don't set flags. 401 case X86::MOV8rm: 402 case X86::MOV8rm_NOREX: 403 case X86::MOV16rm: 404 case X86::MOV32rm: 405 case X86::MOV64rm: 406 case X86::MOVSX16rm8: 407 case X86::MOVSX32rm16: 408 case X86::MOVSX32rm8: 409 case X86::MOVSX32rm8_NOREX: 410 case X86::MOVSX64rm16: 411 case X86::MOVSX64rm32: 412 case X86::MOVSX64rm8: 413 case X86::MOVZX16rm8: 414 case X86::MOVZX32rm16: 415 case X86::MOVZX32rm8: 416 case X86::MOVZX32rm8_NOREX: 417 case X86::MOVZX64rm16: 418 case X86::MOVZX64rm8: 419 return true; 420 } 421 } 422 423 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { 424 const MachineFunction *MF = MI.getParent()->getParent(); 425 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 426 427 if (isFrameInstr(MI)) { 428 int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign()); 429 SPAdj -= getFrameAdjustment(MI); 430 if (!isFrameSetup(MI)) 431 SPAdj = -SPAdj; 432 return SPAdj; 433 } 434 435 // To know whether a call adjusts the stack, we need information 436 // that is bound to the following ADJCALLSTACKUP pseudo. 437 // Look for the next ADJCALLSTACKUP that follows the call. 438 if (MI.isCall()) { 439 const MachineBasicBlock *MBB = MI.getParent(); 440 auto I = ++MachineBasicBlock::const_iterator(MI); 441 for (auto E = MBB->end(); I != E; ++I) { 442 if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall()) 443 break; 444 } 445 446 // If we could not find a frame destroy opcode, then it has already 447 // been simplified, so we don't care. 448 if (I->getOpcode() != getCallFrameDestroyOpcode()) 449 return 0; 450 451 return -(I->getOperand(1).getImm()); 452 } 453 454 // Currently handle only PUSHes we can reasonably expect to see 455 // in call sequences 456 switch (MI.getOpcode()) { 457 default: 458 return 0; 459 case X86::PUSH32r: 460 case X86::PUSH32rmm: 461 case X86::PUSH32rmr: 462 case X86::PUSH32i: 463 return 4; 464 case X86::PUSH64r: 465 case X86::PUSH64rmm: 466 case X86::PUSH64rmr: 467 case X86::PUSH64i32: 468 return 8; 469 } 470 } 471 472 /// Return true and the FrameIndex if the specified 473 /// operand and follow operands form a reference to the stack frame. 474 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, 475 int &FrameIndex) const { 476 if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && 477 MI.getOperand(Op + X86::AddrScaleAmt).isImm() && 478 MI.getOperand(Op + X86::AddrIndexReg).isReg() && 479 MI.getOperand(Op + X86::AddrDisp).isImm() && 480 MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && 481 MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && 482 MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { 483 FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); 484 return true; 485 } 486 return false; 487 } 488 489 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { 490 switch (Opcode) { 491 default: 492 return false; 493 case X86::MOV8rm: 494 case X86::KMOVBkm: 495 case X86::KMOVBkm_EVEX: 496 MemBytes = 1; 497 return true; 498 case X86::MOV16rm: 499 case X86::KMOVWkm: 500 case X86::KMOVWkm_EVEX: 501 case X86::VMOVSHZrm: 502 case X86::VMOVSHZrm_alt: 503 MemBytes = 2; 504 return true; 505 case X86::MOV32rm: 506 case X86::MOVSSrm: 507 case X86::MOVSSrm_alt: 508 case X86::VMOVSSrm: 509 case X86::VMOVSSrm_alt: 510 case X86::VMOVSSZrm: 511 case X86::VMOVSSZrm_alt: 512 case X86::KMOVDkm: 513 case X86::KMOVDkm_EVEX: 514 MemBytes = 4; 515 return true; 516 case X86::MOV64rm: 517 case X86::LD_Fp64m: 518 case X86::MOVSDrm: 519 case X86::MOVSDrm_alt: 520 case X86::VMOVSDrm: 521 case X86::VMOVSDrm_alt: 522 case X86::VMOVSDZrm: 523 case X86::VMOVSDZrm_alt: 524 case X86::MMX_MOVD64rm: 525 case X86::MMX_MOVQ64rm: 526 case X86::KMOVQkm: 527 case X86::KMOVQkm_EVEX: 528 MemBytes = 8; 529 return true; 530 case X86::MOVAPSrm: 531 case X86::MOVUPSrm: 532 case X86::MOVAPDrm: 533 case X86::MOVUPDrm: 534 case X86::MOVDQArm: 535 case X86::MOVDQUrm: 536 case X86::VMOVAPSrm: 537 case X86::VMOVUPSrm: 538 case X86::VMOVAPDrm: 539 case X86::VMOVUPDrm: 540 case X86::VMOVDQArm: 541 case X86::VMOVDQUrm: 542 case X86::VMOVAPSZ128rm: 543 case X86::VMOVUPSZ128rm: 544 case X86::VMOVAPSZ128rm_NOVLX: 545 case X86::VMOVUPSZ128rm_NOVLX: 546 case X86::VMOVAPDZ128rm: 547 case X86::VMOVUPDZ128rm: 548 case X86::VMOVDQU8Z128rm: 549 case X86::VMOVDQU16Z128rm: 550 case X86::VMOVDQA32Z128rm: 551 case X86::VMOVDQU32Z128rm: 552 case X86::VMOVDQA64Z128rm: 553 case X86::VMOVDQU64Z128rm: 554 MemBytes = 16; 555 return true; 556 case X86::VMOVAPSYrm: 557 case X86::VMOVUPSYrm: 558 case X86::VMOVAPDYrm: 559 case X86::VMOVUPDYrm: 560 case X86::VMOVDQAYrm: 561 case X86::VMOVDQUYrm: 562 case X86::VMOVAPSZ256rm: 563 case X86::VMOVUPSZ256rm: 564 case X86::VMOVAPSZ256rm_NOVLX: 565 case X86::VMOVUPSZ256rm_NOVLX: 566 case X86::VMOVAPDZ256rm: 567 case X86::VMOVUPDZ256rm: 568 case X86::VMOVDQU8Z256rm: 569 case X86::VMOVDQU16Z256rm: 570 case X86::VMOVDQA32Z256rm: 571 case X86::VMOVDQU32Z256rm: 572 case X86::VMOVDQA64Z256rm: 573 case X86::VMOVDQU64Z256rm: 574 MemBytes = 32; 575 return true; 576 case X86::VMOVAPSZrm: 577 case X86::VMOVUPSZrm: 578 case X86::VMOVAPDZrm: 579 case X86::VMOVUPDZrm: 580 case X86::VMOVDQU8Zrm: 581 case X86::VMOVDQU16Zrm: 582 case X86::VMOVDQA32Zrm: 583 case X86::VMOVDQU32Zrm: 584 case X86::VMOVDQA64Zrm: 585 case X86::VMOVDQU64Zrm: 586 MemBytes = 64; 587 return true; 588 } 589 } 590 591 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { 592 switch (Opcode) { 593 default: 594 return false; 595 case X86::MOV8mr: 596 case X86::KMOVBmk: 597 case X86::KMOVBmk_EVEX: 598 MemBytes = 1; 599 return true; 600 case X86::MOV16mr: 601 case X86::KMOVWmk: 602 case X86::KMOVWmk_EVEX: 603 case X86::VMOVSHZmr: 604 MemBytes = 2; 605 return true; 606 case X86::MOV32mr: 607 case X86::MOVSSmr: 608 case X86::VMOVSSmr: 609 case X86::VMOVSSZmr: 610 case X86::KMOVDmk: 611 case X86::KMOVDmk_EVEX: 612 MemBytes = 4; 613 return true; 614 case X86::MOV64mr: 615 case X86::ST_FpP64m: 616 case X86::MOVSDmr: 617 case X86::VMOVSDmr: 618 case X86::VMOVSDZmr: 619 case X86::MMX_MOVD64mr: 620 case X86::MMX_MOVQ64mr: 621 case X86::MMX_MOVNTQmr: 622 case X86::KMOVQmk: 623 case X86::KMOVQmk_EVEX: 624 MemBytes = 8; 625 return true; 626 case X86::MOVAPSmr: 627 case X86::MOVUPSmr: 628 case X86::MOVAPDmr: 629 case X86::MOVUPDmr: 630 case X86::MOVDQAmr: 631 case X86::MOVDQUmr: 632 case X86::VMOVAPSmr: 633 case X86::VMOVUPSmr: 634 case X86::VMOVAPDmr: 635 case X86::VMOVUPDmr: 636 case X86::VMOVDQAmr: 637 case X86::VMOVDQUmr: 638 case X86::VMOVUPSZ128mr: 639 case X86::VMOVAPSZ128mr: 640 case X86::VMOVUPSZ128mr_NOVLX: 641 case X86::VMOVAPSZ128mr_NOVLX: 642 case X86::VMOVUPDZ128mr: 643 case X86::VMOVAPDZ128mr: 644 case X86::VMOVDQA32Z128mr: 645 case X86::VMOVDQU32Z128mr: 646 case X86::VMOVDQA64Z128mr: 647 case X86::VMOVDQU64Z128mr: 648 case X86::VMOVDQU8Z128mr: 649 case X86::VMOVDQU16Z128mr: 650 MemBytes = 16; 651 return true; 652 case X86::VMOVUPSYmr: 653 case X86::VMOVAPSYmr: 654 case X86::VMOVUPDYmr: 655 case X86::VMOVAPDYmr: 656 case X86::VMOVDQUYmr: 657 case X86::VMOVDQAYmr: 658 case X86::VMOVUPSZ256mr: 659 case X86::VMOVAPSZ256mr: 660 case X86::VMOVUPSZ256mr_NOVLX: 661 case X86::VMOVAPSZ256mr_NOVLX: 662 case X86::VMOVUPDZ256mr: 663 case X86::VMOVAPDZ256mr: 664 case X86::VMOVDQU8Z256mr: 665 case X86::VMOVDQU16Z256mr: 666 case X86::VMOVDQA32Z256mr: 667 case X86::VMOVDQU32Z256mr: 668 case X86::VMOVDQA64Z256mr: 669 case X86::VMOVDQU64Z256mr: 670 MemBytes = 32; 671 return true; 672 case X86::VMOVUPSZmr: 673 case X86::VMOVAPSZmr: 674 case X86::VMOVUPDZmr: 675 case X86::VMOVAPDZmr: 676 case X86::VMOVDQU8Zmr: 677 case X86::VMOVDQU16Zmr: 678 case X86::VMOVDQA32Zmr: 679 case X86::VMOVDQU32Zmr: 680 case X86::VMOVDQA64Zmr: 681 case X86::VMOVDQU64Zmr: 682 MemBytes = 64; 683 return true; 684 } 685 return false; 686 } 687 688 Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 689 int &FrameIndex) const { 690 unsigned Dummy; 691 return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); 692 } 693 694 Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 695 int &FrameIndex, 696 unsigned &MemBytes) const { 697 if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) 698 if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) 699 return MI.getOperand(0).getReg(); 700 return 0; 701 } 702 703 Register X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 704 int &FrameIndex) const { 705 unsigned Dummy; 706 if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { 707 unsigned Reg; 708 if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) 709 return Reg; 710 // Check for post-frame index elimination operations 711 SmallVector<const MachineMemOperand *, 1> Accesses; 712 if (hasLoadFromStackSlot(MI, Accesses)) { 713 FrameIndex = 714 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 715 ->getFrameIndex(); 716 return MI.getOperand(0).getReg(); 717 } 718 } 719 return 0; 720 } 721 722 Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 723 int &FrameIndex) const { 724 unsigned Dummy; 725 return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); 726 } 727 728 Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, 729 int &FrameIndex, 730 unsigned &MemBytes) const { 731 if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) 732 if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && 733 isFrameOperand(MI, 0, FrameIndex)) 734 return MI.getOperand(X86::AddrNumOperands).getReg(); 735 return 0; 736 } 737 738 Register X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 739 int &FrameIndex) const { 740 unsigned Dummy; 741 if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { 742 unsigned Reg; 743 if ((Reg = isStoreToStackSlot(MI, FrameIndex))) 744 return Reg; 745 // Check for post-frame index elimination operations 746 SmallVector<const MachineMemOperand *, 1> Accesses; 747 if (hasStoreToStackSlot(MI, Accesses)) { 748 FrameIndex = 749 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 750 ->getFrameIndex(); 751 return MI.getOperand(X86::AddrNumOperands).getReg(); 752 } 753 } 754 return 0; 755 } 756 757 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. 758 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) { 759 // Don't waste compile time scanning use-def chains of physregs. 760 if (!BaseReg.isVirtual()) 761 return false; 762 bool isPICBase = false; 763 for (const MachineInstr &DefMI : MRI.def_instructions(BaseReg)) { 764 if (DefMI.getOpcode() != X86::MOVPC32r) 765 return false; 766 assert(!isPICBase && "More than one PIC base?"); 767 isPICBase = true; 768 } 769 return isPICBase; 770 } 771 772 bool X86InstrInfo::isReallyTriviallyReMaterializable( 773 const MachineInstr &MI) const { 774 switch (MI.getOpcode()) { 775 default: 776 // This function should only be called for opcodes with the ReMaterializable 777 // flag set. 778 llvm_unreachable("Unknown rematerializable operation!"); 779 break; 780 case X86::IMPLICIT_DEF: 781 // Defer to generic logic. 782 break; 783 case X86::LOAD_STACK_GUARD: 784 case X86::LD_Fp032: 785 case X86::LD_Fp064: 786 case X86::LD_Fp080: 787 case X86::LD_Fp132: 788 case X86::LD_Fp164: 789 case X86::LD_Fp180: 790 case X86::AVX1_SETALLONES: 791 case X86::AVX2_SETALLONES: 792 case X86::AVX512_128_SET0: 793 case X86::AVX512_256_SET0: 794 case X86::AVX512_512_SET0: 795 case X86::AVX512_512_SETALLONES: 796 case X86::AVX512_FsFLD0SD: 797 case X86::AVX512_FsFLD0SH: 798 case X86::AVX512_FsFLD0SS: 799 case X86::AVX512_FsFLD0F128: 800 case X86::AVX_SET0: 801 case X86::FsFLD0SD: 802 case X86::FsFLD0SS: 803 case X86::FsFLD0SH: 804 case X86::FsFLD0F128: 805 case X86::KSET0D: 806 case X86::KSET0Q: 807 case X86::KSET0W: 808 case X86::KSET1D: 809 case X86::KSET1Q: 810 case X86::KSET1W: 811 case X86::MMX_SET0: 812 case X86::MOV32ImmSExti8: 813 case X86::MOV32r0: 814 case X86::MOV32r1: 815 case X86::MOV32r_1: 816 case X86::MOV32ri64: 817 case X86::MOV64ImmSExti8: 818 case X86::V_SET0: 819 case X86::V_SETALLONES: 820 case X86::MOV16ri: 821 case X86::MOV32ri: 822 case X86::MOV64ri: 823 case X86::MOV64ri32: 824 case X86::MOV8ri: 825 case X86::PTILEZEROV: 826 return true; 827 828 case X86::MOV8rm: 829 case X86::MOV8rm_NOREX: 830 case X86::MOV16rm: 831 case X86::MOV32rm: 832 case X86::MOV64rm: 833 case X86::MOVSSrm: 834 case X86::MOVSSrm_alt: 835 case X86::MOVSDrm: 836 case X86::MOVSDrm_alt: 837 case X86::MOVAPSrm: 838 case X86::MOVUPSrm: 839 case X86::MOVAPDrm: 840 case X86::MOVUPDrm: 841 case X86::MOVDQArm: 842 case X86::MOVDQUrm: 843 case X86::VMOVSSrm: 844 case X86::VMOVSSrm_alt: 845 case X86::VMOVSDrm: 846 case X86::VMOVSDrm_alt: 847 case X86::VMOVAPSrm: 848 case X86::VMOVUPSrm: 849 case X86::VMOVAPDrm: 850 case X86::VMOVUPDrm: 851 case X86::VMOVDQArm: 852 case X86::VMOVDQUrm: 853 case X86::VMOVAPSYrm: 854 case X86::VMOVUPSYrm: 855 case X86::VMOVAPDYrm: 856 case X86::VMOVUPDYrm: 857 case X86::VMOVDQAYrm: 858 case X86::VMOVDQUYrm: 859 case X86::MMX_MOVD64rm: 860 case X86::MMX_MOVQ64rm: 861 case X86::VBROADCASTSSrm: 862 case X86::VBROADCASTSSYrm: 863 case X86::VBROADCASTSDYrm: 864 // AVX-512 865 case X86::VPBROADCASTBZ128rm: 866 case X86::VPBROADCASTBZ256rm: 867 case X86::VPBROADCASTBZrm: 868 case X86::VBROADCASTF32X2Z256rm: 869 case X86::VBROADCASTF32X2Zrm: 870 case X86::VBROADCASTI32X2Z128rm: 871 case X86::VBROADCASTI32X2Z256rm: 872 case X86::VBROADCASTI32X2Zrm: 873 case X86::VPBROADCASTWZ128rm: 874 case X86::VPBROADCASTWZ256rm: 875 case X86::VPBROADCASTWZrm: 876 case X86::VPBROADCASTDZ128rm: 877 case X86::VPBROADCASTDZ256rm: 878 case X86::VPBROADCASTDZrm: 879 case X86::VBROADCASTSSZ128rm: 880 case X86::VBROADCASTSSZ256rm: 881 case X86::VBROADCASTSSZrm: 882 case X86::VPBROADCASTQZ128rm: 883 case X86::VPBROADCASTQZ256rm: 884 case X86::VPBROADCASTQZrm: 885 case X86::VBROADCASTSDZ256rm: 886 case X86::VBROADCASTSDZrm: 887 case X86::VMOVSSZrm: 888 case X86::VMOVSSZrm_alt: 889 case X86::VMOVSDZrm: 890 case X86::VMOVSDZrm_alt: 891 case X86::VMOVSHZrm: 892 case X86::VMOVSHZrm_alt: 893 case X86::VMOVAPDZ128rm: 894 case X86::VMOVAPDZ256rm: 895 case X86::VMOVAPDZrm: 896 case X86::VMOVAPSZ128rm: 897 case X86::VMOVAPSZ256rm: 898 case X86::VMOVAPSZ128rm_NOVLX: 899 case X86::VMOVAPSZ256rm_NOVLX: 900 case X86::VMOVAPSZrm: 901 case X86::VMOVDQA32Z128rm: 902 case X86::VMOVDQA32Z256rm: 903 case X86::VMOVDQA32Zrm: 904 case X86::VMOVDQA64Z128rm: 905 case X86::VMOVDQA64Z256rm: 906 case X86::VMOVDQA64Zrm: 907 case X86::VMOVDQU16Z128rm: 908 case X86::VMOVDQU16Z256rm: 909 case X86::VMOVDQU16Zrm: 910 case X86::VMOVDQU32Z128rm: 911 case X86::VMOVDQU32Z256rm: 912 case X86::VMOVDQU32Zrm: 913 case X86::VMOVDQU64Z128rm: 914 case X86::VMOVDQU64Z256rm: 915 case X86::VMOVDQU64Zrm: 916 case X86::VMOVDQU8Z128rm: 917 case X86::VMOVDQU8Z256rm: 918 case X86::VMOVDQU8Zrm: 919 case X86::VMOVUPDZ128rm: 920 case X86::VMOVUPDZ256rm: 921 case X86::VMOVUPDZrm: 922 case X86::VMOVUPSZ128rm: 923 case X86::VMOVUPSZ256rm: 924 case X86::VMOVUPSZ128rm_NOVLX: 925 case X86::VMOVUPSZ256rm_NOVLX: 926 case X86::VMOVUPSZrm: { 927 // Loads from constant pools are trivially rematerializable. 928 if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && 929 MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 930 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 931 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 932 MI.isDereferenceableInvariantLoad()) { 933 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 934 if (BaseReg == 0 || BaseReg == X86::RIP) 935 return true; 936 // Allow re-materialization of PIC load. 937 if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) { 938 const MachineFunction &MF = *MI.getParent()->getParent(); 939 const MachineRegisterInfo &MRI = MF.getRegInfo(); 940 if (regIsPICBase(BaseReg, MRI)) 941 return true; 942 } 943 } 944 break; 945 } 946 947 case X86::LEA32r: 948 case X86::LEA64r: { 949 if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && 950 MI.getOperand(1 + X86::AddrIndexReg).isReg() && 951 MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && 952 !MI.getOperand(1 + X86::AddrDisp).isReg()) { 953 // lea fi#, lea GV, etc. are all rematerializable. 954 if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) 955 return true; 956 Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); 957 if (BaseReg == 0) 958 return true; 959 // Allow re-materialization of lea PICBase + x. 960 const MachineFunction &MF = *MI.getParent()->getParent(); 961 const MachineRegisterInfo &MRI = MF.getRegInfo(); 962 if (regIsPICBase(BaseReg, MRI)) 963 return true; 964 } 965 break; 966 } 967 } 968 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 969 } 970 971 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, 972 MachineBasicBlock::iterator I, 973 Register DestReg, unsigned SubIdx, 974 const MachineInstr &Orig, 975 const TargetRegisterInfo &TRI) const { 976 bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); 977 if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) != 978 MachineBasicBlock::LQR_Dead) { 979 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side 980 // effects. 981 int Value; 982 switch (Orig.getOpcode()) { 983 case X86::MOV32r0: 984 Value = 0; 985 break; 986 case X86::MOV32r1: 987 Value = 1; 988 break; 989 case X86::MOV32r_1: 990 Value = -1; 991 break; 992 default: 993 llvm_unreachable("Unexpected instruction!"); 994 } 995 996 const DebugLoc &DL = Orig.getDebugLoc(); 997 BuildMI(MBB, I, DL, get(X86::MOV32ri)) 998 .add(Orig.getOperand(0)) 999 .addImm(Value); 1000 } else { 1001 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1002 MBB.insert(I, MI); 1003 } 1004 1005 MachineInstr &NewMI = *std::prev(I); 1006 NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1007 } 1008 1009 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. 1010 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { 1011 for (const MachineOperand &MO : MI.operands()) { 1012 if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && 1013 !MO.isDead()) { 1014 return true; 1015 } 1016 } 1017 return false; 1018 } 1019 1020 /// Check whether the shift count for a machine operand is non-zero. 1021 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, 1022 unsigned ShiftAmtOperandIdx) { 1023 // The shift count is six bits with the REX.W prefix and five bits without. 1024 unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; 1025 unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); 1026 return Imm & ShiftCountMask; 1027 } 1028 1029 /// Check whether the given shift count is appropriate 1030 /// can be represented by a LEA instruction. 1031 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { 1032 // Left shift instructions can be transformed into load-effective-address 1033 // instructions if we can encode them appropriately. 1034 // A LEA instruction utilizes a SIB byte to encode its scale factor. 1035 // The SIB.scale field is two bits wide which means that we can encode any 1036 // shift amount less than 4. 1037 return ShAmt < 4 && ShAmt > 0; 1038 } 1039 1040 static bool findRedundantFlagInstr(MachineInstr &CmpInstr, 1041 MachineInstr &CmpValDefInstr, 1042 const MachineRegisterInfo *MRI, 1043 MachineInstr **AndInstr, 1044 const TargetRegisterInfo *TRI, 1045 bool &NoSignFlag, bool &ClearsOverflowFlag) { 1046 if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG && 1047 CmpInstr.getOpcode() == X86::TEST64rr) && 1048 !(CmpValDefInstr.getOpcode() == X86::COPY && 1049 CmpInstr.getOpcode() == X86::TEST16rr)) 1050 return false; 1051 1052 // CmpInstr is a TEST16rr/TEST64rr instruction, and 1053 // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two 1054 // registers are identical. 1055 assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && 1056 "CmpInstr is an analyzable TEST16rr/TEST64rr, and " 1057 "`X86InstrInfo::analyzeCompare` requires two reg operands are the" 1058 "same."); 1059 1060 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that 1061 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case 1062 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is 1063 // redundant. 1064 assert( 1065 (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && 1066 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr " 1067 "is a user of COPY sub16bit."); 1068 MachineInstr *VregDefInstr = nullptr; 1069 if (CmpInstr.getOpcode() == X86::TEST16rr) { 1070 if (!CmpValDefInstr.getOperand(1).getReg().isVirtual()) 1071 return false; 1072 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg()); 1073 if (!VregDefInstr) 1074 return false; 1075 // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit 1076 // size, others 32/64 bit ops would test higher bits which test16rr don't 1077 // want to. 1078 if (!((VregDefInstr->getOpcode() == X86::AND32ri || 1079 VregDefInstr->getOpcode() == X86::AND64ri32) && 1080 isUInt<16>(VregDefInstr->getOperand(2).getImm()))) 1081 return false; 1082 } 1083 1084 if (CmpInstr.getOpcode() == X86::TEST64rr) { 1085 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is 1086 // typically 0. 1087 if (CmpValDefInstr.getOperand(1).getImm() != 0) 1088 return false; 1089 1090 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically 1091 // sub_32bit or sub_xmm. 1092 if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit) 1093 return false; 1094 1095 VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg()); 1096 } 1097 1098 assert(VregDefInstr && "Must have a definition (SSA)"); 1099 1100 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB 1101 // to simplify the subsequent analysis. 1102 // 1103 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of 1104 // `CmpValDefInstr.getParent()`, this could be handled. 1105 if (VregDefInstr->getParent() != CmpValDefInstr.getParent()) 1106 return false; 1107 1108 if (X86::isAND(VregDefInstr->getOpcode())) { 1109 // Get a sequence of instructions like 1110 // %reg = and* ... // Set EFLAGS 1111 // ... // EFLAGS not changed 1112 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit 1113 // test64rr %extended_reg, %extended_reg, implicit-def $eflags 1114 // or 1115 // %reg = and32* ... 1116 // ... // EFLAGS not changed. 1117 // %src_reg = copy %reg.sub_16bit:gr32 1118 // test16rr %src_reg, %src_reg, implicit-def $eflags 1119 // 1120 // If subsequent readers use a subset of bits that don't change 1121 // after `and*` instructions, it's likely that the test64rr could 1122 // be optimized away. 1123 for (const MachineInstr &Instr : 1124 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)), 1125 MachineBasicBlock::iterator(CmpValDefInstr))) { 1126 // There are instructions between 'VregDefInstr' and 1127 // 'CmpValDefInstr' that modifies EFLAGS. 1128 if (Instr.modifiesRegister(X86::EFLAGS, TRI)) 1129 return false; 1130 } 1131 1132 *AndInstr = VregDefInstr; 1133 1134 // AND instruction will essentially update SF and clear OF, so 1135 // NoSignFlag should be false in the sense that SF is modified by `AND`. 1136 // 1137 // However, the implementation artifically sets `NoSignFlag` to true 1138 // to poison the SF bit; that is to say, if SF is looked at later, the 1139 // optimization (to erase TEST64rr) will be disabled. 1140 // 1141 // The reason to poison SF bit is that SF bit value could be different 1142 // in the `AND` and `TEST` operation; signed bit is not known for `AND`, 1143 // and is known to be 0 as a result of `TEST64rr`. 1144 // 1145 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into 1146 // the AND instruction and using the static information to guide peephole 1147 // optimization if possible. For example, it's possible to fold a 1148 // conditional move into a copy if the relevant EFLAG bits could be deduced 1149 // from an immediate operand of and operation. 1150 // 1151 NoSignFlag = true; 1152 // ClearsOverflowFlag is true for AND operation (no surprise). 1153 ClearsOverflowFlag = true; 1154 return true; 1155 } 1156 return false; 1157 } 1158 1159 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, 1160 unsigned Opc, bool AllowSP, Register &NewSrc, 1161 bool &isKill, MachineOperand &ImplicitOp, 1162 LiveVariables *LV, LiveIntervals *LIS) const { 1163 MachineFunction &MF = *MI.getParent()->getParent(); 1164 const TargetRegisterClass *RC; 1165 if (AllowSP) { 1166 RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; 1167 } else { 1168 RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; 1169 } 1170 Register SrcReg = Src.getReg(); 1171 isKill = MI.killsRegister(SrcReg, /*TRI=*/nullptr); 1172 1173 // For both LEA64 and LEA32 the register already has essentially the right 1174 // type (32-bit or 64-bit) we may just need to forbid SP. 1175 if (Opc != X86::LEA64_32r) { 1176 NewSrc = SrcReg; 1177 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1178 1179 if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 // This is for an LEA64_32r and incoming registers are 32-bit. One way or 1186 // another we need to add 64-bit registers to the final MI. 1187 if (SrcReg.isPhysical()) { 1188 ImplicitOp = Src; 1189 ImplicitOp.setImplicit(); 1190 1191 NewSrc = getX86SubSuperRegister(SrcReg, 64); 1192 assert(NewSrc.isValid() && "Invalid Operand"); 1193 assert(!Src.isUndef() && "Undef op doesn't need optimization"); 1194 } else { 1195 // Virtual register of the wrong class, we have to create a temporary 64-bit 1196 // vreg to feed into the LEA. 1197 NewSrc = MF.getRegInfo().createVirtualRegister(RC); 1198 MachineInstr *Copy = 1199 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1200 .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) 1201 .addReg(SrcReg, getKillRegState(isKill)); 1202 1203 // Which is obviously going to be dead after we're done with it. 1204 isKill = true; 1205 1206 if (LV) 1207 LV->replaceKillInstruction(SrcReg, MI, *Copy); 1208 1209 if (LIS) { 1210 SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy); 1211 SlotIndex Idx = LIS->getInstructionIndex(MI); 1212 LiveInterval &LI = LIS->getInterval(SrcReg); 1213 LiveRange::Segment *S = LI.getSegmentContaining(Idx); 1214 if (S->end.getBaseIndex() == Idx) 1215 S->end = CopyIdx.getRegSlot(); 1216 } 1217 } 1218 1219 // We've set all the parameters without issue. 1220 return true; 1221 } 1222 1223 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, 1224 MachineInstr &MI, 1225 LiveVariables *LV, 1226 LiveIntervals *LIS, 1227 bool Is8BitOp) const { 1228 // We handle 8-bit adds and various 16-bit opcodes in the switch below. 1229 MachineBasicBlock &MBB = *MI.getParent(); 1230 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 1231 assert((Is8BitOp || 1232 RegInfo.getTargetRegisterInfo()->getRegSizeInBits( 1233 *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && 1234 "Unexpected type for LEA transform"); 1235 1236 // TODO: For a 32-bit target, we need to adjust the LEA variables with 1237 // something like this: 1238 // Opcode = X86::LEA32r; 1239 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1240 // OutRegLEA = 1241 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) 1242 // : RegInfo.createVirtualRegister(&X86::GR32RegClass); 1243 if (!Subtarget.is64Bit()) 1244 return nullptr; 1245 1246 unsigned Opcode = X86::LEA64_32r; 1247 Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1248 Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); 1249 Register InRegLEA2; 1250 1251 // Build and insert into an implicit UNDEF value. This is OK because 1252 // we will be shifting and then extracting the lower 8/16-bits. 1253 // This has the potential to cause partial register stall. e.g. 1254 // movw (%rbp,%rcx,2), %dx 1255 // leal -65(%rdx), %esi 1256 // But testing has shown this *does* help performance in 64-bit mode (at 1257 // least on modern x86 machines). 1258 MachineBasicBlock::iterator MBBI = MI.getIterator(); 1259 Register Dest = MI.getOperand(0).getReg(); 1260 Register Src = MI.getOperand(1).getReg(); 1261 Register Src2; 1262 bool IsDead = MI.getOperand(0).isDead(); 1263 bool IsKill = MI.getOperand(1).isKill(); 1264 unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; 1265 assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); 1266 MachineInstr *ImpDef = 1267 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); 1268 MachineInstr *InsMI = 1269 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1270 .addReg(InRegLEA, RegState::Define, SubReg) 1271 .addReg(Src, getKillRegState(IsKill)); 1272 MachineInstr *ImpDef2 = nullptr; 1273 MachineInstr *InsMI2 = nullptr; 1274 1275 MachineInstrBuilder MIB = 1276 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); 1277 switch (MIOpc) { 1278 default: 1279 llvm_unreachable("Unreachable!"); 1280 case X86::SHL8ri: 1281 case X86::SHL16ri: { 1282 unsigned ShAmt = MI.getOperand(2).getImm(); 1283 MIB.addReg(0) 1284 .addImm(1LL << ShAmt) 1285 .addReg(InRegLEA, RegState::Kill) 1286 .addImm(0) 1287 .addReg(0); 1288 break; 1289 } 1290 case X86::INC8r: 1291 case X86::INC16r: 1292 addRegOffset(MIB, InRegLEA, true, 1); 1293 break; 1294 case X86::DEC8r: 1295 case X86::DEC16r: 1296 addRegOffset(MIB, InRegLEA, true, -1); 1297 break; 1298 case X86::ADD8ri: 1299 case X86::ADD8ri_DB: 1300 case X86::ADD16ri: 1301 case X86::ADD16ri_DB: 1302 addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); 1303 break; 1304 case X86::ADD8rr: 1305 case X86::ADD8rr_DB: 1306 case X86::ADD16rr: 1307 case X86::ADD16rr_DB: { 1308 Src2 = MI.getOperand(2).getReg(); 1309 bool IsKill2 = MI.getOperand(2).isKill(); 1310 assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); 1311 if (Src == Src2) { 1312 // ADD8rr/ADD16rr killed %reg1028, %reg1028 1313 // just a single insert_subreg. 1314 addRegReg(MIB, InRegLEA, true, InRegLEA, false); 1315 } else { 1316 if (Subtarget.is64Bit()) 1317 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 1318 else 1319 InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); 1320 // Build and insert into an implicit UNDEF value. This is OK because 1321 // we will be shifting and then extracting the lower 8/16-bits. 1322 ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), 1323 InRegLEA2); 1324 InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1325 .addReg(InRegLEA2, RegState::Define, SubReg) 1326 .addReg(Src2, getKillRegState(IsKill2)); 1327 addRegReg(MIB, InRegLEA, true, InRegLEA2, true); 1328 } 1329 if (LV && IsKill2 && InsMI2) 1330 LV->replaceKillInstruction(Src2, MI, *InsMI2); 1331 break; 1332 } 1333 } 1334 1335 MachineInstr *NewMI = MIB; 1336 MachineInstr *ExtMI = 1337 BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) 1338 .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) 1339 .addReg(OutRegLEA, RegState::Kill, SubReg); 1340 1341 if (LV) { 1342 // Update live variables. 1343 LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); 1344 if (InRegLEA2) 1345 LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI); 1346 LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); 1347 if (IsKill) 1348 LV->replaceKillInstruction(Src, MI, *InsMI); 1349 if (IsDead) 1350 LV->replaceKillInstruction(Dest, MI, *ExtMI); 1351 } 1352 1353 if (LIS) { 1354 LIS->InsertMachineInstrInMaps(*ImpDef); 1355 SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI); 1356 if (ImpDef2) 1357 LIS->InsertMachineInstrInMaps(*ImpDef2); 1358 SlotIndex Ins2Idx; 1359 if (InsMI2) 1360 Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2); 1361 SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI); 1362 SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI); 1363 LIS->getInterval(InRegLEA); 1364 LIS->getInterval(OutRegLEA); 1365 if (InRegLEA2) 1366 LIS->getInterval(InRegLEA2); 1367 1368 // Move the use of Src up to InsMI. 1369 LiveInterval &SrcLI = LIS->getInterval(Src); 1370 LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx); 1371 if (SrcSeg->end == NewIdx.getRegSlot()) 1372 SrcSeg->end = InsIdx.getRegSlot(); 1373 1374 if (InsMI2) { 1375 // Move the use of Src2 up to InsMI2. 1376 LiveInterval &Src2LI = LIS->getInterval(Src2); 1377 LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx); 1378 if (Src2Seg->end == NewIdx.getRegSlot()) 1379 Src2Seg->end = Ins2Idx.getRegSlot(); 1380 } 1381 1382 // Move the definition of Dest down to ExtMI. 1383 LiveInterval &DestLI = LIS->getInterval(Dest); 1384 LiveRange::Segment *DestSeg = 1385 DestLI.getSegmentContaining(NewIdx.getRegSlot()); 1386 assert(DestSeg->start == NewIdx.getRegSlot() && 1387 DestSeg->valno->def == NewIdx.getRegSlot()); 1388 DestSeg->start = ExtIdx.getRegSlot(); 1389 DestSeg->valno->def = ExtIdx.getRegSlot(); 1390 } 1391 1392 return ExtMI; 1393 } 1394 1395 /// This method must be implemented by targets that 1396 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 1397 /// may be able to convert a two-address instruction into a true 1398 /// three-address instruction on demand. This allows the X86 target (for 1399 /// example) to convert ADD and SHL instructions into LEA instructions if they 1400 /// would require register copies due to two-addressness. 1401 /// 1402 /// This method returns a null pointer if the transformation cannot be 1403 /// performed, otherwise it returns the new instruction. 1404 /// 1405 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI, 1406 LiveVariables *LV, 1407 LiveIntervals *LIS) const { 1408 // The following opcodes also sets the condition code register(s). Only 1409 // convert them to equivalent lea if the condition code register def's 1410 // are dead! 1411 if (hasLiveCondCodeDef(MI)) 1412 return nullptr; 1413 1414 MachineFunction &MF = *MI.getParent()->getParent(); 1415 // All instructions input are two-addr instructions. Get the known operands. 1416 const MachineOperand &Dest = MI.getOperand(0); 1417 const MachineOperand &Src = MI.getOperand(1); 1418 1419 // Ideally, operations with undef should be folded before we get here, but we 1420 // can't guarantee it. Bail out because optimizing undefs is a waste of time. 1421 // Without this, we have to forward undef state to new register operands to 1422 // avoid machine verifier errors. 1423 if (Src.isUndef()) 1424 return nullptr; 1425 if (MI.getNumOperands() > 2) 1426 if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) 1427 return nullptr; 1428 1429 MachineInstr *NewMI = nullptr; 1430 Register SrcReg, SrcReg2; 1431 bool Is64Bit = Subtarget.is64Bit(); 1432 1433 bool Is8BitOp = false; 1434 unsigned NumRegOperands = 2; 1435 unsigned MIOpc = MI.getOpcode(); 1436 switch (MIOpc) { 1437 default: 1438 llvm_unreachable("Unreachable!"); 1439 case X86::SHL64ri: { 1440 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1441 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1442 if (!isTruncatedShiftCountForLEA(ShAmt)) 1443 return nullptr; 1444 1445 // LEA can't handle RSP. 1446 if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass( 1447 Src.getReg(), &X86::GR64_NOSPRegClass)) 1448 return nullptr; 1449 1450 NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) 1451 .add(Dest) 1452 .addReg(0) 1453 .addImm(1LL << ShAmt) 1454 .add(Src) 1455 .addImm(0) 1456 .addReg(0); 1457 break; 1458 } 1459 case X86::SHL32ri: { 1460 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1461 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1462 if (!isTruncatedShiftCountForLEA(ShAmt)) 1463 return nullptr; 1464 1465 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1466 1467 // LEA can't handle ESP. 1468 bool isKill; 1469 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1470 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1471 ImplicitOp, LV, LIS)) 1472 return nullptr; 1473 1474 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1475 .add(Dest) 1476 .addReg(0) 1477 .addImm(1LL << ShAmt) 1478 .addReg(SrcReg, getKillRegState(isKill)) 1479 .addImm(0) 1480 .addReg(0); 1481 if (ImplicitOp.getReg() != 0) 1482 MIB.add(ImplicitOp); 1483 NewMI = MIB; 1484 1485 // Add kills if classifyLEAReg created a new register. 1486 if (LV && SrcReg != Src.getReg()) 1487 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1488 break; 1489 } 1490 case X86::SHL8ri: 1491 Is8BitOp = true; 1492 [[fallthrough]]; 1493 case X86::SHL16ri: { 1494 assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); 1495 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 1496 if (!isTruncatedShiftCountForLEA(ShAmt)) 1497 return nullptr; 1498 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1499 } 1500 case X86::INC64r: 1501 case X86::INC32r: { 1502 assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); 1503 unsigned Opc = MIOpc == X86::INC64r 1504 ? X86::LEA64r 1505 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1506 bool isKill; 1507 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1508 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1509 ImplicitOp, LV, LIS)) 1510 return nullptr; 1511 1512 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1513 .add(Dest) 1514 .addReg(SrcReg, getKillRegState(isKill)); 1515 if (ImplicitOp.getReg() != 0) 1516 MIB.add(ImplicitOp); 1517 1518 NewMI = addOffset(MIB, 1); 1519 1520 // Add kills if classifyLEAReg created a new register. 1521 if (LV && SrcReg != Src.getReg()) 1522 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1523 break; 1524 } 1525 case X86::DEC64r: 1526 case X86::DEC32r: { 1527 assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); 1528 unsigned Opc = MIOpc == X86::DEC64r 1529 ? X86::LEA64r 1530 : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); 1531 1532 bool isKill; 1533 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1534 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, 1535 ImplicitOp, LV, LIS)) 1536 return nullptr; 1537 1538 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1539 .add(Dest) 1540 .addReg(SrcReg, getKillRegState(isKill)); 1541 if (ImplicitOp.getReg() != 0) 1542 MIB.add(ImplicitOp); 1543 1544 NewMI = addOffset(MIB, -1); 1545 1546 // Add kills if classifyLEAReg created a new register. 1547 if (LV && SrcReg != Src.getReg()) 1548 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1549 break; 1550 } 1551 case X86::DEC8r: 1552 case X86::INC8r: 1553 Is8BitOp = true; 1554 [[fallthrough]]; 1555 case X86::DEC16r: 1556 case X86::INC16r: 1557 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1558 case X86::ADD64rr: 1559 case X86::ADD64rr_DB: 1560 case X86::ADD32rr: 1561 case X86::ADD32rr_DB: { 1562 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1563 unsigned Opc; 1564 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) 1565 Opc = X86::LEA64r; 1566 else 1567 Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1568 1569 const MachineOperand &Src2 = MI.getOperand(2); 1570 bool isKill2; 1571 MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); 1572 if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2, 1573 ImplicitOp2, LV, LIS)) 1574 return nullptr; 1575 1576 bool isKill; 1577 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1578 if (Src.getReg() == Src2.getReg()) { 1579 // Don't call classify LEAReg a second time on the same register, in case 1580 // the first call inserted a COPY from Src2 and marked it as killed. 1581 isKill = isKill2; 1582 SrcReg = SrcReg2; 1583 } else { 1584 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1585 ImplicitOp, LV, LIS)) 1586 return nullptr; 1587 } 1588 1589 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); 1590 if (ImplicitOp.getReg() != 0) 1591 MIB.add(ImplicitOp); 1592 if (ImplicitOp2.getReg() != 0) 1593 MIB.add(ImplicitOp2); 1594 1595 NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); 1596 1597 // Add kills if classifyLEAReg created a new register. 1598 if (LV) { 1599 if (SrcReg2 != Src2.getReg()) 1600 LV->getVarInfo(SrcReg2).Kills.push_back(NewMI); 1601 if (SrcReg != SrcReg2 && SrcReg != Src.getReg()) 1602 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1603 } 1604 NumRegOperands = 3; 1605 break; 1606 } 1607 case X86::ADD8rr: 1608 case X86::ADD8rr_DB: 1609 Is8BitOp = true; 1610 [[fallthrough]]; 1611 case X86::ADD16rr: 1612 case X86::ADD16rr_DB: 1613 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1614 case X86::ADD64ri32: 1615 case X86::ADD64ri32_DB: 1616 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1617 NewMI = addOffset( 1618 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), 1619 MI.getOperand(2)); 1620 break; 1621 case X86::ADD32ri: 1622 case X86::ADD32ri_DB: { 1623 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1624 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1625 1626 bool isKill; 1627 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1628 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1629 ImplicitOp, LV, LIS)) 1630 return nullptr; 1631 1632 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1633 .add(Dest) 1634 .addReg(SrcReg, getKillRegState(isKill)); 1635 if (ImplicitOp.getReg() != 0) 1636 MIB.add(ImplicitOp); 1637 1638 NewMI = addOffset(MIB, MI.getOperand(2)); 1639 1640 // Add kills if classifyLEAReg created a new register. 1641 if (LV && SrcReg != Src.getReg()) 1642 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1643 break; 1644 } 1645 case X86::ADD8ri: 1646 case X86::ADD8ri_DB: 1647 Is8BitOp = true; 1648 [[fallthrough]]; 1649 case X86::ADD16ri: 1650 case X86::ADD16ri_DB: 1651 return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); 1652 case X86::SUB8ri: 1653 case X86::SUB16ri: 1654 /// FIXME: Support these similar to ADD8ri/ADD16ri*. 1655 return nullptr; 1656 case X86::SUB32ri: { 1657 if (!MI.getOperand(2).isImm()) 1658 return nullptr; 1659 int64_t Imm = MI.getOperand(2).getImm(); 1660 if (!isInt<32>(-Imm)) 1661 return nullptr; 1662 1663 assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); 1664 unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; 1665 1666 bool isKill; 1667 MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); 1668 if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, 1669 ImplicitOp, LV, LIS)) 1670 return nullptr; 1671 1672 MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1673 .add(Dest) 1674 .addReg(SrcReg, getKillRegState(isKill)); 1675 if (ImplicitOp.getReg() != 0) 1676 MIB.add(ImplicitOp); 1677 1678 NewMI = addOffset(MIB, -Imm); 1679 1680 // Add kills if classifyLEAReg created a new register. 1681 if (LV && SrcReg != Src.getReg()) 1682 LV->getVarInfo(SrcReg).Kills.push_back(NewMI); 1683 break; 1684 } 1685 1686 case X86::SUB64ri32: { 1687 if (!MI.getOperand(2).isImm()) 1688 return nullptr; 1689 int64_t Imm = MI.getOperand(2).getImm(); 1690 if (!isInt<32>(-Imm)) 1691 return nullptr; 1692 1693 assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); 1694 1695 MachineInstrBuilder MIB = 1696 BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src); 1697 NewMI = addOffset(MIB, -Imm); 1698 break; 1699 } 1700 1701 case X86::VMOVDQU8Z128rmk: 1702 case X86::VMOVDQU8Z256rmk: 1703 case X86::VMOVDQU8Zrmk: 1704 case X86::VMOVDQU16Z128rmk: 1705 case X86::VMOVDQU16Z256rmk: 1706 case X86::VMOVDQU16Zrmk: 1707 case X86::VMOVDQU32Z128rmk: 1708 case X86::VMOVDQA32Z128rmk: 1709 case X86::VMOVDQU32Z256rmk: 1710 case X86::VMOVDQA32Z256rmk: 1711 case X86::VMOVDQU32Zrmk: 1712 case X86::VMOVDQA32Zrmk: 1713 case X86::VMOVDQU64Z128rmk: 1714 case X86::VMOVDQA64Z128rmk: 1715 case X86::VMOVDQU64Z256rmk: 1716 case X86::VMOVDQA64Z256rmk: 1717 case X86::VMOVDQU64Zrmk: 1718 case X86::VMOVDQA64Zrmk: 1719 case X86::VMOVUPDZ128rmk: 1720 case X86::VMOVAPDZ128rmk: 1721 case X86::VMOVUPDZ256rmk: 1722 case X86::VMOVAPDZ256rmk: 1723 case X86::VMOVUPDZrmk: 1724 case X86::VMOVAPDZrmk: 1725 case X86::VMOVUPSZ128rmk: 1726 case X86::VMOVAPSZ128rmk: 1727 case X86::VMOVUPSZ256rmk: 1728 case X86::VMOVAPSZ256rmk: 1729 case X86::VMOVUPSZrmk: 1730 case X86::VMOVAPSZrmk: 1731 case X86::VBROADCASTSDZ256rmk: 1732 case X86::VBROADCASTSDZrmk: 1733 case X86::VBROADCASTSSZ128rmk: 1734 case X86::VBROADCASTSSZ256rmk: 1735 case X86::VBROADCASTSSZrmk: 1736 case X86::VPBROADCASTDZ128rmk: 1737 case X86::VPBROADCASTDZ256rmk: 1738 case X86::VPBROADCASTDZrmk: 1739 case X86::VPBROADCASTQZ128rmk: 1740 case X86::VPBROADCASTQZ256rmk: 1741 case X86::VPBROADCASTQZrmk: { 1742 unsigned Opc; 1743 switch (MIOpc) { 1744 default: 1745 llvm_unreachable("Unreachable!"); 1746 case X86::VMOVDQU8Z128rmk: 1747 Opc = X86::VPBLENDMBZ128rmk; 1748 break; 1749 case X86::VMOVDQU8Z256rmk: 1750 Opc = X86::VPBLENDMBZ256rmk; 1751 break; 1752 case X86::VMOVDQU8Zrmk: 1753 Opc = X86::VPBLENDMBZrmk; 1754 break; 1755 case X86::VMOVDQU16Z128rmk: 1756 Opc = X86::VPBLENDMWZ128rmk; 1757 break; 1758 case X86::VMOVDQU16Z256rmk: 1759 Opc = X86::VPBLENDMWZ256rmk; 1760 break; 1761 case X86::VMOVDQU16Zrmk: 1762 Opc = X86::VPBLENDMWZrmk; 1763 break; 1764 case X86::VMOVDQU32Z128rmk: 1765 Opc = X86::VPBLENDMDZ128rmk; 1766 break; 1767 case X86::VMOVDQU32Z256rmk: 1768 Opc = X86::VPBLENDMDZ256rmk; 1769 break; 1770 case X86::VMOVDQU32Zrmk: 1771 Opc = X86::VPBLENDMDZrmk; 1772 break; 1773 case X86::VMOVDQU64Z128rmk: 1774 Opc = X86::VPBLENDMQZ128rmk; 1775 break; 1776 case X86::VMOVDQU64Z256rmk: 1777 Opc = X86::VPBLENDMQZ256rmk; 1778 break; 1779 case X86::VMOVDQU64Zrmk: 1780 Opc = X86::VPBLENDMQZrmk; 1781 break; 1782 case X86::VMOVUPDZ128rmk: 1783 Opc = X86::VBLENDMPDZ128rmk; 1784 break; 1785 case X86::VMOVUPDZ256rmk: 1786 Opc = X86::VBLENDMPDZ256rmk; 1787 break; 1788 case X86::VMOVUPDZrmk: 1789 Opc = X86::VBLENDMPDZrmk; 1790 break; 1791 case X86::VMOVUPSZ128rmk: 1792 Opc = X86::VBLENDMPSZ128rmk; 1793 break; 1794 case X86::VMOVUPSZ256rmk: 1795 Opc = X86::VBLENDMPSZ256rmk; 1796 break; 1797 case X86::VMOVUPSZrmk: 1798 Opc = X86::VBLENDMPSZrmk; 1799 break; 1800 case X86::VMOVDQA32Z128rmk: 1801 Opc = X86::VPBLENDMDZ128rmk; 1802 break; 1803 case X86::VMOVDQA32Z256rmk: 1804 Opc = X86::VPBLENDMDZ256rmk; 1805 break; 1806 case X86::VMOVDQA32Zrmk: 1807 Opc = X86::VPBLENDMDZrmk; 1808 break; 1809 case X86::VMOVDQA64Z128rmk: 1810 Opc = X86::VPBLENDMQZ128rmk; 1811 break; 1812 case X86::VMOVDQA64Z256rmk: 1813 Opc = X86::VPBLENDMQZ256rmk; 1814 break; 1815 case X86::VMOVDQA64Zrmk: 1816 Opc = X86::VPBLENDMQZrmk; 1817 break; 1818 case X86::VMOVAPDZ128rmk: 1819 Opc = X86::VBLENDMPDZ128rmk; 1820 break; 1821 case X86::VMOVAPDZ256rmk: 1822 Opc = X86::VBLENDMPDZ256rmk; 1823 break; 1824 case X86::VMOVAPDZrmk: 1825 Opc = X86::VBLENDMPDZrmk; 1826 break; 1827 case X86::VMOVAPSZ128rmk: 1828 Opc = X86::VBLENDMPSZ128rmk; 1829 break; 1830 case X86::VMOVAPSZ256rmk: 1831 Opc = X86::VBLENDMPSZ256rmk; 1832 break; 1833 case X86::VMOVAPSZrmk: 1834 Opc = X86::VBLENDMPSZrmk; 1835 break; 1836 case X86::VBROADCASTSDZ256rmk: 1837 Opc = X86::VBLENDMPDZ256rmbk; 1838 break; 1839 case X86::VBROADCASTSDZrmk: 1840 Opc = X86::VBLENDMPDZrmbk; 1841 break; 1842 case X86::VBROADCASTSSZ128rmk: 1843 Opc = X86::VBLENDMPSZ128rmbk; 1844 break; 1845 case X86::VBROADCASTSSZ256rmk: 1846 Opc = X86::VBLENDMPSZ256rmbk; 1847 break; 1848 case X86::VBROADCASTSSZrmk: 1849 Opc = X86::VBLENDMPSZrmbk; 1850 break; 1851 case X86::VPBROADCASTDZ128rmk: 1852 Opc = X86::VPBLENDMDZ128rmbk; 1853 break; 1854 case X86::VPBROADCASTDZ256rmk: 1855 Opc = X86::VPBLENDMDZ256rmbk; 1856 break; 1857 case X86::VPBROADCASTDZrmk: 1858 Opc = X86::VPBLENDMDZrmbk; 1859 break; 1860 case X86::VPBROADCASTQZ128rmk: 1861 Opc = X86::VPBLENDMQZ128rmbk; 1862 break; 1863 case X86::VPBROADCASTQZ256rmk: 1864 Opc = X86::VPBLENDMQZ256rmbk; 1865 break; 1866 case X86::VPBROADCASTQZrmk: 1867 Opc = X86::VPBLENDMQZrmbk; 1868 break; 1869 } 1870 1871 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 1872 .add(Dest) 1873 .add(MI.getOperand(2)) 1874 .add(Src) 1875 .add(MI.getOperand(3)) 1876 .add(MI.getOperand(4)) 1877 .add(MI.getOperand(5)) 1878 .add(MI.getOperand(6)) 1879 .add(MI.getOperand(7)); 1880 NumRegOperands = 4; 1881 break; 1882 } 1883 1884 case X86::VMOVDQU8Z128rrk: 1885 case X86::VMOVDQU8Z256rrk: 1886 case X86::VMOVDQU8Zrrk: 1887 case X86::VMOVDQU16Z128rrk: 1888 case X86::VMOVDQU16Z256rrk: 1889 case X86::VMOVDQU16Zrrk: 1890 case X86::VMOVDQU32Z128rrk: 1891 case X86::VMOVDQA32Z128rrk: 1892 case X86::VMOVDQU32Z256rrk: 1893 case X86::VMOVDQA32Z256rrk: 1894 case X86::VMOVDQU32Zrrk: 1895 case X86::VMOVDQA32Zrrk: 1896 case X86::VMOVDQU64Z128rrk: 1897 case X86::VMOVDQA64Z128rrk: 1898 case X86::VMOVDQU64Z256rrk: 1899 case X86::VMOVDQA64Z256rrk: 1900 case X86::VMOVDQU64Zrrk: 1901 case X86::VMOVDQA64Zrrk: 1902 case X86::VMOVUPDZ128rrk: 1903 case X86::VMOVAPDZ128rrk: 1904 case X86::VMOVUPDZ256rrk: 1905 case X86::VMOVAPDZ256rrk: 1906 case X86::VMOVUPDZrrk: 1907 case X86::VMOVAPDZrrk: 1908 case X86::VMOVUPSZ128rrk: 1909 case X86::VMOVAPSZ128rrk: 1910 case X86::VMOVUPSZ256rrk: 1911 case X86::VMOVAPSZ256rrk: 1912 case X86::VMOVUPSZrrk: 1913 case X86::VMOVAPSZrrk: { 1914 unsigned Opc; 1915 switch (MIOpc) { 1916 default: 1917 llvm_unreachable("Unreachable!"); 1918 case X86::VMOVDQU8Z128rrk: 1919 Opc = X86::VPBLENDMBZ128rrk; 1920 break; 1921 case X86::VMOVDQU8Z256rrk: 1922 Opc = X86::VPBLENDMBZ256rrk; 1923 break; 1924 case X86::VMOVDQU8Zrrk: 1925 Opc = X86::VPBLENDMBZrrk; 1926 break; 1927 case X86::VMOVDQU16Z128rrk: 1928 Opc = X86::VPBLENDMWZ128rrk; 1929 break; 1930 case X86::VMOVDQU16Z256rrk: 1931 Opc = X86::VPBLENDMWZ256rrk; 1932 break; 1933 case X86::VMOVDQU16Zrrk: 1934 Opc = X86::VPBLENDMWZrrk; 1935 break; 1936 case X86::VMOVDQU32Z128rrk: 1937 Opc = X86::VPBLENDMDZ128rrk; 1938 break; 1939 case X86::VMOVDQU32Z256rrk: 1940 Opc = X86::VPBLENDMDZ256rrk; 1941 break; 1942 case X86::VMOVDQU32Zrrk: 1943 Opc = X86::VPBLENDMDZrrk; 1944 break; 1945 case X86::VMOVDQU64Z128rrk: 1946 Opc = X86::VPBLENDMQZ128rrk; 1947 break; 1948 case X86::VMOVDQU64Z256rrk: 1949 Opc = X86::VPBLENDMQZ256rrk; 1950 break; 1951 case X86::VMOVDQU64Zrrk: 1952 Opc = X86::VPBLENDMQZrrk; 1953 break; 1954 case X86::VMOVUPDZ128rrk: 1955 Opc = X86::VBLENDMPDZ128rrk; 1956 break; 1957 case X86::VMOVUPDZ256rrk: 1958 Opc = X86::VBLENDMPDZ256rrk; 1959 break; 1960 case X86::VMOVUPDZrrk: 1961 Opc = X86::VBLENDMPDZrrk; 1962 break; 1963 case X86::VMOVUPSZ128rrk: 1964 Opc = X86::VBLENDMPSZ128rrk; 1965 break; 1966 case X86::VMOVUPSZ256rrk: 1967 Opc = X86::VBLENDMPSZ256rrk; 1968 break; 1969 case X86::VMOVUPSZrrk: 1970 Opc = X86::VBLENDMPSZrrk; 1971 break; 1972 case X86::VMOVDQA32Z128rrk: 1973 Opc = X86::VPBLENDMDZ128rrk; 1974 break; 1975 case X86::VMOVDQA32Z256rrk: 1976 Opc = X86::VPBLENDMDZ256rrk; 1977 break; 1978 case X86::VMOVDQA32Zrrk: 1979 Opc = X86::VPBLENDMDZrrk; 1980 break; 1981 case X86::VMOVDQA64Z128rrk: 1982 Opc = X86::VPBLENDMQZ128rrk; 1983 break; 1984 case X86::VMOVDQA64Z256rrk: 1985 Opc = X86::VPBLENDMQZ256rrk; 1986 break; 1987 case X86::VMOVDQA64Zrrk: 1988 Opc = X86::VPBLENDMQZrrk; 1989 break; 1990 case X86::VMOVAPDZ128rrk: 1991 Opc = X86::VBLENDMPDZ128rrk; 1992 break; 1993 case X86::VMOVAPDZ256rrk: 1994 Opc = X86::VBLENDMPDZ256rrk; 1995 break; 1996 case X86::VMOVAPDZrrk: 1997 Opc = X86::VBLENDMPDZrrk; 1998 break; 1999 case X86::VMOVAPSZ128rrk: 2000 Opc = X86::VBLENDMPSZ128rrk; 2001 break; 2002 case X86::VMOVAPSZ256rrk: 2003 Opc = X86::VBLENDMPSZ256rrk; 2004 break; 2005 case X86::VMOVAPSZrrk: 2006 Opc = X86::VBLENDMPSZrrk; 2007 break; 2008 } 2009 2010 NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) 2011 .add(Dest) 2012 .add(MI.getOperand(2)) 2013 .add(Src) 2014 .add(MI.getOperand(3)); 2015 NumRegOperands = 4; 2016 break; 2017 } 2018 } 2019 2020 if (!NewMI) 2021 return nullptr; 2022 2023 if (LV) { // Update live variables 2024 for (unsigned I = 0; I < NumRegOperands; ++I) { 2025 MachineOperand &Op = MI.getOperand(I); 2026 if (Op.isReg() && (Op.isDead() || Op.isKill())) 2027 LV->replaceKillInstruction(Op.getReg(), MI, *NewMI); 2028 } 2029 } 2030 2031 MachineBasicBlock &MBB = *MI.getParent(); 2032 MBB.insert(MI.getIterator(), NewMI); // Insert the new inst 2033 2034 if (LIS) { 2035 LIS->ReplaceMachineInstrInMaps(MI, *NewMI); 2036 if (SrcReg) 2037 LIS->getInterval(SrcReg); 2038 if (SrcReg2) 2039 LIS->getInterval(SrcReg2); 2040 } 2041 2042 return NewMI; 2043 } 2044 2045 /// This determines which of three possible cases of a three source commute 2046 /// the source indexes correspond to taking into account any mask operands. 2047 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't 2048 /// possible. 2049 /// Case 0 - Possible to commute the first and second operands. 2050 /// Case 1 - Possible to commute the first and third operands. 2051 /// Case 2 - Possible to commute the second and third operands. 2052 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, 2053 unsigned SrcOpIdx2) { 2054 // Put the lowest index to SrcOpIdx1 to simplify the checks below. 2055 if (SrcOpIdx1 > SrcOpIdx2) 2056 std::swap(SrcOpIdx1, SrcOpIdx2); 2057 2058 unsigned Op1 = 1, Op2 = 2, Op3 = 3; 2059 if (X86II::isKMasked(TSFlags)) { 2060 Op2++; 2061 Op3++; 2062 } 2063 2064 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) 2065 return 0; 2066 if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) 2067 return 1; 2068 if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) 2069 return 2; 2070 llvm_unreachable("Unknown three src commute case."); 2071 } 2072 2073 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( 2074 const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, 2075 const X86InstrFMA3Group &FMA3Group) const { 2076 2077 unsigned Opc = MI.getOpcode(); 2078 2079 // TODO: Commuting the 1st operand of FMA*_Int requires some additional 2080 // analysis. The commute optimization is legal only if all users of FMA*_Int 2081 // use only the lowest element of the FMA*_Int instruction. Such analysis are 2082 // not implemented yet. So, just return 0 in that case. 2083 // When such analysis are available this place will be the right place for 2084 // calling it. 2085 assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && 2086 "Intrinsic instructions can't commute operand 1"); 2087 2088 // Determine which case this commute is or if it can't be done. 2089 unsigned Case = 2090 getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); 2091 assert(Case < 3 && "Unexpected case number!"); 2092 2093 // Define the FMA forms mapping array that helps to map input FMA form 2094 // to output FMA form to preserve the operation semantics after 2095 // commuting the operands. 2096 const unsigned Form132Index = 0; 2097 const unsigned Form213Index = 1; 2098 const unsigned Form231Index = 2; 2099 static const unsigned FormMapping[][3] = { 2100 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; 2101 // FMA132 A, C, b; ==> FMA231 C, A, b; 2102 // FMA213 B, A, c; ==> FMA213 A, B, c; 2103 // FMA231 C, A, b; ==> FMA132 A, C, b; 2104 {Form231Index, Form213Index, Form132Index}, 2105 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; 2106 // FMA132 A, c, B; ==> FMA132 B, c, A; 2107 // FMA213 B, a, C; ==> FMA231 C, a, B; 2108 // FMA231 C, a, B; ==> FMA213 B, a, C; 2109 {Form132Index, Form231Index, Form213Index}, 2110 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; 2111 // FMA132 a, C, B; ==> FMA213 a, B, C; 2112 // FMA213 b, A, C; ==> FMA132 b, C, A; 2113 // FMA231 c, A, B; ==> FMA231 c, B, A; 2114 {Form213Index, Form132Index, Form231Index}}; 2115 2116 unsigned FMAForms[3]; 2117 FMAForms[0] = FMA3Group.get132Opcode(); 2118 FMAForms[1] = FMA3Group.get213Opcode(); 2119 FMAForms[2] = FMA3Group.get231Opcode(); 2120 2121 // Everything is ready, just adjust the FMA opcode and return it. 2122 for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++) 2123 if (Opc == FMAForms[FormIndex]) 2124 return FMAForms[FormMapping[Case][FormIndex]]; 2125 2126 llvm_unreachable("Illegal FMA3 format"); 2127 } 2128 2129 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, 2130 unsigned SrcOpIdx2) { 2131 // Determine which case this commute is or if it can't be done. 2132 unsigned Case = 2133 getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); 2134 assert(Case < 3 && "Unexpected case value!"); 2135 2136 // For each case we need to swap two pairs of bits in the final immediate. 2137 static const uint8_t SwapMasks[3][4] = { 2138 {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5. 2139 {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6. 2140 {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6. 2141 }; 2142 2143 uint8_t Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 2144 // Clear out the bits we are swapping. 2145 uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | 2146 SwapMasks[Case][2] | SwapMasks[Case][3]); 2147 // If the immediate had a bit of the pair set, then set the opposite bit. 2148 if (Imm & SwapMasks[Case][0]) 2149 NewImm |= SwapMasks[Case][1]; 2150 if (Imm & SwapMasks[Case][1]) 2151 NewImm |= SwapMasks[Case][0]; 2152 if (Imm & SwapMasks[Case][2]) 2153 NewImm |= SwapMasks[Case][3]; 2154 if (Imm & SwapMasks[Case][3]) 2155 NewImm |= SwapMasks[Case][2]; 2156 MI.getOperand(MI.getNumOperands() - 1).setImm(NewImm); 2157 } 2158 2159 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be 2160 // commuted. 2161 static bool isCommutableVPERMV3Instruction(unsigned Opcode) { 2162 #define VPERM_CASES(Suffix) \ 2163 case X86::VPERMI2##Suffix##Z128rr: \ 2164 case X86::VPERMT2##Suffix##Z128rr: \ 2165 case X86::VPERMI2##Suffix##Z256rr: \ 2166 case X86::VPERMT2##Suffix##Z256rr: \ 2167 case X86::VPERMI2##Suffix##Zrr: \ 2168 case X86::VPERMT2##Suffix##Zrr: \ 2169 case X86::VPERMI2##Suffix##Z128rm: \ 2170 case X86::VPERMT2##Suffix##Z128rm: \ 2171 case X86::VPERMI2##Suffix##Z256rm: \ 2172 case X86::VPERMT2##Suffix##Z256rm: \ 2173 case X86::VPERMI2##Suffix##Zrm: \ 2174 case X86::VPERMT2##Suffix##Zrm: \ 2175 case X86::VPERMI2##Suffix##Z128rrkz: \ 2176 case X86::VPERMT2##Suffix##Z128rrkz: \ 2177 case X86::VPERMI2##Suffix##Z256rrkz: \ 2178 case X86::VPERMT2##Suffix##Z256rrkz: \ 2179 case X86::VPERMI2##Suffix##Zrrkz: \ 2180 case X86::VPERMT2##Suffix##Zrrkz: \ 2181 case X86::VPERMI2##Suffix##Z128rmkz: \ 2182 case X86::VPERMT2##Suffix##Z128rmkz: \ 2183 case X86::VPERMI2##Suffix##Z256rmkz: \ 2184 case X86::VPERMT2##Suffix##Z256rmkz: \ 2185 case X86::VPERMI2##Suffix##Zrmkz: \ 2186 case X86::VPERMT2##Suffix##Zrmkz: 2187 2188 #define VPERM_CASES_BROADCAST(Suffix) \ 2189 VPERM_CASES(Suffix) \ 2190 case X86::VPERMI2##Suffix##Z128rmb: \ 2191 case X86::VPERMT2##Suffix##Z128rmb: \ 2192 case X86::VPERMI2##Suffix##Z256rmb: \ 2193 case X86::VPERMT2##Suffix##Z256rmb: \ 2194 case X86::VPERMI2##Suffix##Zrmb: \ 2195 case X86::VPERMT2##Suffix##Zrmb: \ 2196 case X86::VPERMI2##Suffix##Z128rmbkz: \ 2197 case X86::VPERMT2##Suffix##Z128rmbkz: \ 2198 case X86::VPERMI2##Suffix##Z256rmbkz: \ 2199 case X86::VPERMT2##Suffix##Z256rmbkz: \ 2200 case X86::VPERMI2##Suffix##Zrmbkz: \ 2201 case X86::VPERMT2##Suffix##Zrmbkz: 2202 2203 switch (Opcode) { 2204 default: 2205 return false; 2206 VPERM_CASES(B) 2207 VPERM_CASES_BROADCAST(D) 2208 VPERM_CASES_BROADCAST(PD) 2209 VPERM_CASES_BROADCAST(PS) 2210 VPERM_CASES_BROADCAST(Q) 2211 VPERM_CASES(W) 2212 return true; 2213 } 2214 #undef VPERM_CASES_BROADCAST 2215 #undef VPERM_CASES 2216 } 2217 2218 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching 2219 // from the I opcode to the T opcode and vice versa. 2220 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { 2221 #define VPERM_CASES(Orig, New) \ 2222 case X86::Orig##Z128rr: \ 2223 return X86::New##Z128rr; \ 2224 case X86::Orig##Z128rrkz: \ 2225 return X86::New##Z128rrkz; \ 2226 case X86::Orig##Z128rm: \ 2227 return X86::New##Z128rm; \ 2228 case X86::Orig##Z128rmkz: \ 2229 return X86::New##Z128rmkz; \ 2230 case X86::Orig##Z256rr: \ 2231 return X86::New##Z256rr; \ 2232 case X86::Orig##Z256rrkz: \ 2233 return X86::New##Z256rrkz; \ 2234 case X86::Orig##Z256rm: \ 2235 return X86::New##Z256rm; \ 2236 case X86::Orig##Z256rmkz: \ 2237 return X86::New##Z256rmkz; \ 2238 case X86::Orig##Zrr: \ 2239 return X86::New##Zrr; \ 2240 case X86::Orig##Zrrkz: \ 2241 return X86::New##Zrrkz; \ 2242 case X86::Orig##Zrm: \ 2243 return X86::New##Zrm; \ 2244 case X86::Orig##Zrmkz: \ 2245 return X86::New##Zrmkz; 2246 2247 #define VPERM_CASES_BROADCAST(Orig, New) \ 2248 VPERM_CASES(Orig, New) \ 2249 case X86::Orig##Z128rmb: \ 2250 return X86::New##Z128rmb; \ 2251 case X86::Orig##Z128rmbkz: \ 2252 return X86::New##Z128rmbkz; \ 2253 case X86::Orig##Z256rmb: \ 2254 return X86::New##Z256rmb; \ 2255 case X86::Orig##Z256rmbkz: \ 2256 return X86::New##Z256rmbkz; \ 2257 case X86::Orig##Zrmb: \ 2258 return X86::New##Zrmb; \ 2259 case X86::Orig##Zrmbkz: \ 2260 return X86::New##Zrmbkz; 2261 2262 switch (Opcode) { 2263 VPERM_CASES(VPERMI2B, VPERMT2B) 2264 VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) 2265 VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) 2266 VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) 2267 VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) 2268 VPERM_CASES(VPERMI2W, VPERMT2W) 2269 VPERM_CASES(VPERMT2B, VPERMI2B) 2270 VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) 2271 VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) 2272 VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) 2273 VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) 2274 VPERM_CASES(VPERMT2W, VPERMI2W) 2275 } 2276 2277 llvm_unreachable("Unreachable!"); 2278 #undef VPERM_CASES_BROADCAST 2279 #undef VPERM_CASES 2280 } 2281 2282 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 2283 unsigned OpIdx1, 2284 unsigned OpIdx2) const { 2285 auto CloneIfNew = [&](MachineInstr &MI) { 2286 return std::exchange(NewMI, false) 2287 ? MI.getParent()->getParent()->CloneMachineInstr(&MI) 2288 : &MI; 2289 }; 2290 MachineInstr *WorkingMI = nullptr; 2291 unsigned Opc = MI.getOpcode(); 2292 2293 #define CASE_ND(OP) \ 2294 case X86::OP: \ 2295 case X86::OP##_ND: 2296 2297 switch (Opc) { 2298 // SHLD B, C, I <-> SHRD C, B, (BitWidth - I) 2299 CASE_ND(SHRD16rri8) 2300 CASE_ND(SHLD16rri8) 2301 CASE_ND(SHRD32rri8) 2302 CASE_ND(SHLD32rri8) 2303 CASE_ND(SHRD64rri8) 2304 CASE_ND(SHLD64rri8) { 2305 unsigned Size; 2306 switch (Opc) { 2307 default: 2308 llvm_unreachable("Unreachable!"); 2309 #define FROM_TO_SIZE(A, B, S) \ 2310 case X86::A: \ 2311 Opc = X86::B; \ 2312 Size = S; \ 2313 break; \ 2314 case X86::A##_ND: \ 2315 Opc = X86::B##_ND; \ 2316 Size = S; \ 2317 break; \ 2318 case X86::B: \ 2319 Opc = X86::A; \ 2320 Size = S; \ 2321 break; \ 2322 case X86::B##_ND: \ 2323 Opc = X86::A##_ND; \ 2324 Size = S; \ 2325 break; 2326 2327 FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16) 2328 FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32) 2329 FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64) 2330 #undef FROM_TO_SIZE 2331 } 2332 WorkingMI = CloneIfNew(MI); 2333 WorkingMI->setDesc(get(Opc)); 2334 WorkingMI->getOperand(3).setImm(Size - MI.getOperand(3).getImm()); 2335 break; 2336 } 2337 case X86::PFSUBrr: 2338 case X86::PFSUBRrr: 2339 // PFSUB x, y: x = x - y 2340 // PFSUBR x, y: x = y - x 2341 WorkingMI = CloneIfNew(MI); 2342 WorkingMI->setDesc( 2343 get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr)); 2344 break; 2345 case X86::BLENDPDrri: 2346 case X86::BLENDPSrri: 2347 case X86::VBLENDPDrri: 2348 case X86::VBLENDPSrri: 2349 // If we're optimizing for size, try to use MOVSD/MOVSS. 2350 if (MI.getParent()->getParent()->getFunction().hasOptSize()) { 2351 unsigned Mask = (Opc == X86::BLENDPDrri || Opc == X86::VBLENDPDrri) ? 0x03: 0x0F; 2352 if ((MI.getOperand(3).getImm() ^ Mask) == 1) { 2353 #define FROM_TO(FROM, TO) \ 2354 case X86::FROM: \ 2355 Opc = X86::TO; \ 2356 break; 2357 switch (Opc) { 2358 default: 2359 llvm_unreachable("Unreachable!"); 2360 FROM_TO(BLENDPDrri, MOVSDrr) 2361 FROM_TO(BLENDPSrri, MOVSSrr) 2362 FROM_TO(VBLENDPDrri, VMOVSDrr) 2363 FROM_TO(VBLENDPSrri, VMOVSSrr) 2364 } 2365 WorkingMI = CloneIfNew(MI); 2366 WorkingMI->setDesc(get(Opc)); 2367 WorkingMI->removeOperand(3); 2368 break; 2369 } 2370 #undef FROM_TO 2371 } 2372 [[fallthrough]]; 2373 case X86::PBLENDWrri: 2374 case X86::VBLENDPDYrri: 2375 case X86::VBLENDPSYrri: 2376 case X86::VPBLENDDrri: 2377 case X86::VPBLENDWrri: 2378 case X86::VPBLENDDYrri: 2379 case X86::VPBLENDWYrri: { 2380 int8_t Mask; 2381 switch (Opc) { 2382 default: 2383 llvm_unreachable("Unreachable!"); 2384 case X86::BLENDPDrri: 2385 Mask = (int8_t)0x03; 2386 break; 2387 case X86::BLENDPSrri: 2388 Mask = (int8_t)0x0F; 2389 break; 2390 case X86::PBLENDWrri: 2391 Mask = (int8_t)0xFF; 2392 break; 2393 case X86::VBLENDPDrri: 2394 Mask = (int8_t)0x03; 2395 break; 2396 case X86::VBLENDPSrri: 2397 Mask = (int8_t)0x0F; 2398 break; 2399 case X86::VBLENDPDYrri: 2400 Mask = (int8_t)0x0F; 2401 break; 2402 case X86::VBLENDPSYrri: 2403 Mask = (int8_t)0xFF; 2404 break; 2405 case X86::VPBLENDDrri: 2406 Mask = (int8_t)0x0F; 2407 break; 2408 case X86::VPBLENDWrri: 2409 Mask = (int8_t)0xFF; 2410 break; 2411 case X86::VPBLENDDYrri: 2412 Mask = (int8_t)0xFF; 2413 break; 2414 case X86::VPBLENDWYrri: 2415 Mask = (int8_t)0xFF; 2416 break; 2417 } 2418 // Only the least significant bits of Imm are used. 2419 // Using int8_t to ensure it will be sign extended to the int64_t that 2420 // setImm takes in order to match isel behavior. 2421 int8_t Imm = MI.getOperand(3).getImm() & Mask; 2422 WorkingMI = CloneIfNew(MI); 2423 WorkingMI->getOperand(3).setImm(Mask ^ Imm); 2424 break; 2425 } 2426 case X86::INSERTPSrri: 2427 case X86::VINSERTPSrri: 2428 case X86::VINSERTPSZrri: { 2429 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 2430 unsigned ZMask = Imm & 15; 2431 unsigned DstIdx = (Imm >> 4) & 3; 2432 unsigned SrcIdx = (Imm >> 6) & 3; 2433 2434 // We can commute insertps if we zero 2 of the elements, the insertion is 2435 // "inline" and we don't override the insertion with a zero. 2436 if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && 2437 llvm::popcount(ZMask) == 2) { 2438 unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15); 2439 assert(AltIdx < 4 && "Illegal insertion index"); 2440 unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; 2441 WorkingMI = CloneIfNew(MI); 2442 WorkingMI->getOperand(MI.getNumOperands() - 1).setImm(AltImm); 2443 break; 2444 } 2445 return nullptr; 2446 } 2447 case X86::MOVSDrr: 2448 case X86::MOVSSrr: 2449 case X86::VMOVSDrr: 2450 case X86::VMOVSSrr: { 2451 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. 2452 if (Subtarget.hasSSE41()) { 2453 unsigned Mask; 2454 switch (Opc) { 2455 default: 2456 llvm_unreachable("Unreachable!"); 2457 case X86::MOVSDrr: 2458 Opc = X86::BLENDPDrri; 2459 Mask = 0x02; 2460 break; 2461 case X86::MOVSSrr: 2462 Opc = X86::BLENDPSrri; 2463 Mask = 0x0E; 2464 break; 2465 case X86::VMOVSDrr: 2466 Opc = X86::VBLENDPDrri; 2467 Mask = 0x02; 2468 break; 2469 case X86::VMOVSSrr: 2470 Opc = X86::VBLENDPSrri; 2471 Mask = 0x0E; 2472 break; 2473 } 2474 2475 WorkingMI = CloneIfNew(MI); 2476 WorkingMI->setDesc(get(Opc)); 2477 WorkingMI->addOperand(MachineOperand::CreateImm(Mask)); 2478 break; 2479 } 2480 2481 WorkingMI = CloneIfNew(MI); 2482 WorkingMI->setDesc(get(X86::SHUFPDrri)); 2483 WorkingMI->addOperand(MachineOperand::CreateImm(0x02)); 2484 break; 2485 } 2486 case X86::SHUFPDrri: { 2487 // Commute to MOVSD. 2488 assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); 2489 WorkingMI = CloneIfNew(MI); 2490 WorkingMI->setDesc(get(X86::MOVSDrr)); 2491 WorkingMI->removeOperand(3); 2492 break; 2493 } 2494 case X86::PCLMULQDQrri: 2495 case X86::VPCLMULQDQrri: 2496 case X86::VPCLMULQDQYrri: 2497 case X86::VPCLMULQDQZrri: 2498 case X86::VPCLMULQDQZ128rri: 2499 case X86::VPCLMULQDQZ256rri: { 2500 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] 2501 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] 2502 unsigned Imm = MI.getOperand(3).getImm(); 2503 unsigned Src1Hi = Imm & 0x01; 2504 unsigned Src2Hi = Imm & 0x10; 2505 WorkingMI = CloneIfNew(MI); 2506 WorkingMI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); 2507 break; 2508 } 2509 case X86::VPCMPBZ128rri: 2510 case X86::VPCMPUBZ128rri: 2511 case X86::VPCMPBZ256rri: 2512 case X86::VPCMPUBZ256rri: 2513 case X86::VPCMPBZrri: 2514 case X86::VPCMPUBZrri: 2515 case X86::VPCMPDZ128rri: 2516 case X86::VPCMPUDZ128rri: 2517 case X86::VPCMPDZ256rri: 2518 case X86::VPCMPUDZ256rri: 2519 case X86::VPCMPDZrri: 2520 case X86::VPCMPUDZrri: 2521 case X86::VPCMPQZ128rri: 2522 case X86::VPCMPUQZ128rri: 2523 case X86::VPCMPQZ256rri: 2524 case X86::VPCMPUQZ256rri: 2525 case X86::VPCMPQZrri: 2526 case X86::VPCMPUQZrri: 2527 case X86::VPCMPWZ128rri: 2528 case X86::VPCMPUWZ128rri: 2529 case X86::VPCMPWZ256rri: 2530 case X86::VPCMPUWZ256rri: 2531 case X86::VPCMPWZrri: 2532 case X86::VPCMPUWZrri: 2533 case X86::VPCMPBZ128rrik: 2534 case X86::VPCMPUBZ128rrik: 2535 case X86::VPCMPBZ256rrik: 2536 case X86::VPCMPUBZ256rrik: 2537 case X86::VPCMPBZrrik: 2538 case X86::VPCMPUBZrrik: 2539 case X86::VPCMPDZ128rrik: 2540 case X86::VPCMPUDZ128rrik: 2541 case X86::VPCMPDZ256rrik: 2542 case X86::VPCMPUDZ256rrik: 2543 case X86::VPCMPDZrrik: 2544 case X86::VPCMPUDZrrik: 2545 case X86::VPCMPQZ128rrik: 2546 case X86::VPCMPUQZ128rrik: 2547 case X86::VPCMPQZ256rrik: 2548 case X86::VPCMPUQZ256rrik: 2549 case X86::VPCMPQZrrik: 2550 case X86::VPCMPUQZrrik: 2551 case X86::VPCMPWZ128rrik: 2552 case X86::VPCMPUWZ128rrik: 2553 case X86::VPCMPWZ256rrik: 2554 case X86::VPCMPUWZ256rrik: 2555 case X86::VPCMPWZrrik: 2556 case X86::VPCMPUWZrrik: 2557 WorkingMI = CloneIfNew(MI); 2558 // Flip comparison mode immediate (if necessary). 2559 WorkingMI->getOperand(MI.getNumOperands() - 1) 2560 .setImm(X86::getSwappedVPCMPImm( 2561 MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7)); 2562 break; 2563 case X86::VPCOMBri: 2564 case X86::VPCOMUBri: 2565 case X86::VPCOMDri: 2566 case X86::VPCOMUDri: 2567 case X86::VPCOMQri: 2568 case X86::VPCOMUQri: 2569 case X86::VPCOMWri: 2570 case X86::VPCOMUWri: 2571 WorkingMI = CloneIfNew(MI); 2572 // Flip comparison mode immediate (if necessary). 2573 WorkingMI->getOperand(3).setImm( 2574 X86::getSwappedVPCOMImm(MI.getOperand(3).getImm() & 0x7)); 2575 break; 2576 case X86::VCMPSDZrri: 2577 case X86::VCMPSSZrri: 2578 case X86::VCMPPDZrri: 2579 case X86::VCMPPSZrri: 2580 case X86::VCMPSHZrri: 2581 case X86::VCMPPHZrri: 2582 case X86::VCMPPHZ128rri: 2583 case X86::VCMPPHZ256rri: 2584 case X86::VCMPPDZ128rri: 2585 case X86::VCMPPSZ128rri: 2586 case X86::VCMPPDZ256rri: 2587 case X86::VCMPPSZ256rri: 2588 case X86::VCMPPDZrrik: 2589 case X86::VCMPPSZrrik: 2590 case X86::VCMPPDZ128rrik: 2591 case X86::VCMPPSZ128rrik: 2592 case X86::VCMPPDZ256rrik: 2593 case X86::VCMPPSZ256rrik: 2594 WorkingMI = CloneIfNew(MI); 2595 WorkingMI->getOperand(MI.getNumExplicitOperands() - 1) 2596 .setImm(X86::getSwappedVCMPImm( 2597 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f)); 2598 break; 2599 case X86::VPERM2F128rri: 2600 case X86::VPERM2I128rri: 2601 // Flip permute source immediate. 2602 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. 2603 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. 2604 WorkingMI = CloneIfNew(MI); 2605 WorkingMI->getOperand(3).setImm((MI.getOperand(3).getImm() & 0xFF) ^ 0x22); 2606 break; 2607 case X86::MOVHLPSrr: 2608 case X86::UNPCKHPDrr: 2609 case X86::VMOVHLPSrr: 2610 case X86::VUNPCKHPDrr: 2611 case X86::VMOVHLPSZrr: 2612 case X86::VUNPCKHPDZ128rr: 2613 assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); 2614 2615 switch (Opc) { 2616 default: 2617 llvm_unreachable("Unreachable!"); 2618 case X86::MOVHLPSrr: 2619 Opc = X86::UNPCKHPDrr; 2620 break; 2621 case X86::UNPCKHPDrr: 2622 Opc = X86::MOVHLPSrr; 2623 break; 2624 case X86::VMOVHLPSrr: 2625 Opc = X86::VUNPCKHPDrr; 2626 break; 2627 case X86::VUNPCKHPDrr: 2628 Opc = X86::VMOVHLPSrr; 2629 break; 2630 case X86::VMOVHLPSZrr: 2631 Opc = X86::VUNPCKHPDZ128rr; 2632 break; 2633 case X86::VUNPCKHPDZ128rr: 2634 Opc = X86::VMOVHLPSZrr; 2635 break; 2636 } 2637 WorkingMI = CloneIfNew(MI); 2638 WorkingMI->setDesc(get(Opc)); 2639 break; 2640 CASE_ND(CMOV16rr) 2641 CASE_ND(CMOV32rr) 2642 CASE_ND(CMOV64rr) { 2643 WorkingMI = CloneIfNew(MI); 2644 unsigned OpNo = MI.getDesc().getNumOperands() - 1; 2645 X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm()); 2646 WorkingMI->getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); 2647 break; 2648 } 2649 case X86::VPTERNLOGDZrri: 2650 case X86::VPTERNLOGDZrmi: 2651 case X86::VPTERNLOGDZ128rri: 2652 case X86::VPTERNLOGDZ128rmi: 2653 case X86::VPTERNLOGDZ256rri: 2654 case X86::VPTERNLOGDZ256rmi: 2655 case X86::VPTERNLOGQZrri: 2656 case X86::VPTERNLOGQZrmi: 2657 case X86::VPTERNLOGQZ128rri: 2658 case X86::VPTERNLOGQZ128rmi: 2659 case X86::VPTERNLOGQZ256rri: 2660 case X86::VPTERNLOGQZ256rmi: 2661 case X86::VPTERNLOGDZrrik: 2662 case X86::VPTERNLOGDZ128rrik: 2663 case X86::VPTERNLOGDZ256rrik: 2664 case X86::VPTERNLOGQZrrik: 2665 case X86::VPTERNLOGQZ128rrik: 2666 case X86::VPTERNLOGQZ256rrik: 2667 case X86::VPTERNLOGDZrrikz: 2668 case X86::VPTERNLOGDZrmikz: 2669 case X86::VPTERNLOGDZ128rrikz: 2670 case X86::VPTERNLOGDZ128rmikz: 2671 case X86::VPTERNLOGDZ256rrikz: 2672 case X86::VPTERNLOGDZ256rmikz: 2673 case X86::VPTERNLOGQZrrikz: 2674 case X86::VPTERNLOGQZrmikz: 2675 case X86::VPTERNLOGQZ128rrikz: 2676 case X86::VPTERNLOGQZ128rmikz: 2677 case X86::VPTERNLOGQZ256rrikz: 2678 case X86::VPTERNLOGQZ256rmikz: 2679 case X86::VPTERNLOGDZ128rmbi: 2680 case X86::VPTERNLOGDZ256rmbi: 2681 case X86::VPTERNLOGDZrmbi: 2682 case X86::VPTERNLOGQZ128rmbi: 2683 case X86::VPTERNLOGQZ256rmbi: 2684 case X86::VPTERNLOGQZrmbi: 2685 case X86::VPTERNLOGDZ128rmbikz: 2686 case X86::VPTERNLOGDZ256rmbikz: 2687 case X86::VPTERNLOGDZrmbikz: 2688 case X86::VPTERNLOGQZ128rmbikz: 2689 case X86::VPTERNLOGQZ256rmbikz: 2690 case X86::VPTERNLOGQZrmbikz: { 2691 WorkingMI = CloneIfNew(MI); 2692 commuteVPTERNLOG(*WorkingMI, OpIdx1, OpIdx2); 2693 break; 2694 } 2695 default: 2696 if (isCommutableVPERMV3Instruction(Opc)) { 2697 WorkingMI = CloneIfNew(MI); 2698 WorkingMI->setDesc(get(getCommutedVPERMV3Opcode(Opc))); 2699 break; 2700 } 2701 2702 if (auto *FMA3Group = getFMA3Group(Opc, MI.getDesc().TSFlags)) { 2703 WorkingMI = CloneIfNew(MI); 2704 WorkingMI->setDesc( 2705 get(getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group))); 2706 break; 2707 } 2708 } 2709 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2710 } 2711 2712 bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, 2713 unsigned &SrcOpIdx1, 2714 unsigned &SrcOpIdx2, 2715 bool IsIntrinsic) const { 2716 uint64_t TSFlags = MI.getDesc().TSFlags; 2717 2718 unsigned FirstCommutableVecOp = 1; 2719 unsigned LastCommutableVecOp = 3; 2720 unsigned KMaskOp = -1U; 2721 if (X86II::isKMasked(TSFlags)) { 2722 // For k-zero-masked operations it is Ok to commute the first vector 2723 // operand. Unless this is an intrinsic instruction. 2724 // For regular k-masked operations a conservative choice is done as the 2725 // elements of the first vector operand, for which the corresponding bit 2726 // in the k-mask operand is set to 0, are copied to the result of the 2727 // instruction. 2728 // TODO/FIXME: The commute still may be legal if it is known that the 2729 // k-mask operand is set to either all ones or all zeroes. 2730 // It is also Ok to commute the 1st operand if all users of MI use only 2731 // the elements enabled by the k-mask operand. For example, 2732 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] 2733 // : v1[i]; 2734 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> 2735 // // Ok, to commute v1 in FMADD213PSZrk. 2736 2737 // The k-mask operand has index = 2 for masked and zero-masked operations. 2738 KMaskOp = 2; 2739 2740 // The operand with index = 1 is used as a source for those elements for 2741 // which the corresponding bit in the k-mask is set to 0. 2742 if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) 2743 FirstCommutableVecOp = 3; 2744 2745 LastCommutableVecOp++; 2746 } else if (IsIntrinsic) { 2747 // Commuting the first operand of an intrinsic instruction isn't possible 2748 // unless we can prove that only the lowest element of the result is used. 2749 FirstCommutableVecOp = 2; 2750 } 2751 2752 if (isMem(MI, LastCommutableVecOp)) 2753 LastCommutableVecOp--; 2754 2755 // Only the first RegOpsNum operands are commutable. 2756 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means 2757 // that the operand is not specified/fixed. 2758 if (SrcOpIdx1 != CommuteAnyOperandIndex && 2759 (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || 2760 SrcOpIdx1 == KMaskOp)) 2761 return false; 2762 if (SrcOpIdx2 != CommuteAnyOperandIndex && 2763 (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || 2764 SrcOpIdx2 == KMaskOp)) 2765 return false; 2766 2767 // Look for two different register operands assumed to be commutable 2768 // regardless of the FMA opcode. The FMA opcode is adjusted later. 2769 if (SrcOpIdx1 == CommuteAnyOperandIndex || 2770 SrcOpIdx2 == CommuteAnyOperandIndex) { 2771 unsigned CommutableOpIdx2 = SrcOpIdx2; 2772 2773 // At least one of operands to be commuted is not specified and 2774 // this method is free to choose appropriate commutable operands. 2775 if (SrcOpIdx1 == SrcOpIdx2) 2776 // Both of operands are not fixed. By default set one of commutable 2777 // operands to the last register operand of the instruction. 2778 CommutableOpIdx2 = LastCommutableVecOp; 2779 else if (SrcOpIdx2 == CommuteAnyOperandIndex) 2780 // Only one of operands is not fixed. 2781 CommutableOpIdx2 = SrcOpIdx1; 2782 2783 // CommutableOpIdx2 is well defined now. Let's choose another commutable 2784 // operand and assign its index to CommutableOpIdx1. 2785 Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); 2786 2787 unsigned CommutableOpIdx1; 2788 for (CommutableOpIdx1 = LastCommutableVecOp; 2789 CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { 2790 // Just ignore and skip the k-mask operand. 2791 if (CommutableOpIdx1 == KMaskOp) 2792 continue; 2793 2794 // The commuted operands must have different registers. 2795 // Otherwise, the commute transformation does not change anything and 2796 // is useless then. 2797 if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) 2798 break; 2799 } 2800 2801 // No appropriate commutable operands were found. 2802 if (CommutableOpIdx1 < FirstCommutableVecOp) 2803 return false; 2804 2805 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 2806 // to return those values. 2807 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, 2808 CommutableOpIdx2)) 2809 return false; 2810 } 2811 2812 return true; 2813 } 2814 2815 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2816 unsigned &SrcOpIdx1, 2817 unsigned &SrcOpIdx2) const { 2818 const MCInstrDesc &Desc = MI.getDesc(); 2819 if (!Desc.isCommutable()) 2820 return false; 2821 2822 switch (MI.getOpcode()) { 2823 case X86::CMPSDrri: 2824 case X86::CMPSSrri: 2825 case X86::CMPPDrri: 2826 case X86::CMPPSrri: 2827 case X86::VCMPSDrri: 2828 case X86::VCMPSSrri: 2829 case X86::VCMPPDrri: 2830 case X86::VCMPPSrri: 2831 case X86::VCMPPDYrri: 2832 case X86::VCMPPSYrri: 2833 case X86::VCMPSDZrri: 2834 case X86::VCMPSSZrri: 2835 case X86::VCMPPDZrri: 2836 case X86::VCMPPSZrri: 2837 case X86::VCMPSHZrri: 2838 case X86::VCMPPHZrri: 2839 case X86::VCMPPHZ128rri: 2840 case X86::VCMPPHZ256rri: 2841 case X86::VCMPPDZ128rri: 2842 case X86::VCMPPSZ128rri: 2843 case X86::VCMPPDZ256rri: 2844 case X86::VCMPPSZ256rri: 2845 case X86::VCMPPDZrrik: 2846 case X86::VCMPPSZrrik: 2847 case X86::VCMPPDZ128rrik: 2848 case X86::VCMPPSZ128rrik: 2849 case X86::VCMPPDZ256rrik: 2850 case X86::VCMPPSZ256rrik: { 2851 unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; 2852 2853 // Float comparison can be safely commuted for 2854 // Ordered/Unordered/Equal/NotEqual tests 2855 unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; 2856 switch (Imm) { 2857 default: 2858 // EVEX versions can be commuted. 2859 if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) 2860 break; 2861 return false; 2862 case 0x00: // EQUAL 2863 case 0x03: // UNORDERED 2864 case 0x04: // NOT EQUAL 2865 case 0x07: // ORDERED 2866 break; 2867 } 2868 2869 // The indices of the commutable operands are 1 and 2 (or 2 and 3 2870 // when masked). 2871 // Assign them to the returned operand indices here. 2872 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, 2873 2 + OpOffset); 2874 } 2875 case X86::MOVSSrr: 2876 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can 2877 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since 2878 // AVX implies sse4.1. 2879 if (Subtarget.hasSSE41()) 2880 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2881 return false; 2882 case X86::SHUFPDrri: 2883 // We can commute this to MOVSD. 2884 if (MI.getOperand(3).getImm() == 0x02) 2885 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2886 return false; 2887 case X86::MOVHLPSrr: 2888 case X86::UNPCKHPDrr: 2889 case X86::VMOVHLPSrr: 2890 case X86::VUNPCKHPDrr: 2891 case X86::VMOVHLPSZrr: 2892 case X86::VUNPCKHPDZ128rr: 2893 if (Subtarget.hasSSE2()) 2894 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2895 return false; 2896 case X86::VPTERNLOGDZrri: 2897 case X86::VPTERNLOGDZrmi: 2898 case X86::VPTERNLOGDZ128rri: 2899 case X86::VPTERNLOGDZ128rmi: 2900 case X86::VPTERNLOGDZ256rri: 2901 case X86::VPTERNLOGDZ256rmi: 2902 case X86::VPTERNLOGQZrri: 2903 case X86::VPTERNLOGQZrmi: 2904 case X86::VPTERNLOGQZ128rri: 2905 case X86::VPTERNLOGQZ128rmi: 2906 case X86::VPTERNLOGQZ256rri: 2907 case X86::VPTERNLOGQZ256rmi: 2908 case X86::VPTERNLOGDZrrik: 2909 case X86::VPTERNLOGDZ128rrik: 2910 case X86::VPTERNLOGDZ256rrik: 2911 case X86::VPTERNLOGQZrrik: 2912 case X86::VPTERNLOGQZ128rrik: 2913 case X86::VPTERNLOGQZ256rrik: 2914 case X86::VPTERNLOGDZrrikz: 2915 case X86::VPTERNLOGDZrmikz: 2916 case X86::VPTERNLOGDZ128rrikz: 2917 case X86::VPTERNLOGDZ128rmikz: 2918 case X86::VPTERNLOGDZ256rrikz: 2919 case X86::VPTERNLOGDZ256rmikz: 2920 case X86::VPTERNLOGQZrrikz: 2921 case X86::VPTERNLOGQZrmikz: 2922 case X86::VPTERNLOGQZ128rrikz: 2923 case X86::VPTERNLOGQZ128rmikz: 2924 case X86::VPTERNLOGQZ256rrikz: 2925 case X86::VPTERNLOGQZ256rmikz: 2926 case X86::VPTERNLOGDZ128rmbi: 2927 case X86::VPTERNLOGDZ256rmbi: 2928 case X86::VPTERNLOGDZrmbi: 2929 case X86::VPTERNLOGQZ128rmbi: 2930 case X86::VPTERNLOGQZ256rmbi: 2931 case X86::VPTERNLOGQZrmbi: 2932 case X86::VPTERNLOGDZ128rmbikz: 2933 case X86::VPTERNLOGDZ256rmbikz: 2934 case X86::VPTERNLOGDZrmbikz: 2935 case X86::VPTERNLOGQZ128rmbikz: 2936 case X86::VPTERNLOGQZ256rmbikz: 2937 case X86::VPTERNLOGQZrmbikz: 2938 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 2939 case X86::VPDPWSSDYrr: 2940 case X86::VPDPWSSDrr: 2941 case X86::VPDPWSSDSYrr: 2942 case X86::VPDPWSSDSrr: 2943 case X86::VPDPWUUDrr: 2944 case X86::VPDPWUUDYrr: 2945 case X86::VPDPWUUDSrr: 2946 case X86::VPDPWUUDSYrr: 2947 case X86::VPDPBSSDSrr: 2948 case X86::VPDPBSSDSYrr: 2949 case X86::VPDPBSSDrr: 2950 case X86::VPDPBSSDYrr: 2951 case X86::VPDPBUUDSrr: 2952 case X86::VPDPBUUDSYrr: 2953 case X86::VPDPBUUDrr: 2954 case X86::VPDPBUUDYrr: 2955 case X86::VPDPBSSDSZ128r: 2956 case X86::VPDPBSSDSZ128rk: 2957 case X86::VPDPBSSDSZ128rkz: 2958 case X86::VPDPBSSDSZ256r: 2959 case X86::VPDPBSSDSZ256rk: 2960 case X86::VPDPBSSDSZ256rkz: 2961 case X86::VPDPBSSDSZr: 2962 case X86::VPDPBSSDSZrk: 2963 case X86::VPDPBSSDSZrkz: 2964 case X86::VPDPBSSDZ128r: 2965 case X86::VPDPBSSDZ128rk: 2966 case X86::VPDPBSSDZ128rkz: 2967 case X86::VPDPBSSDZ256r: 2968 case X86::VPDPBSSDZ256rk: 2969 case X86::VPDPBSSDZ256rkz: 2970 case X86::VPDPBSSDZr: 2971 case X86::VPDPBSSDZrk: 2972 case X86::VPDPBSSDZrkz: 2973 case X86::VPDPBUUDSZ128r: 2974 case X86::VPDPBUUDSZ128rk: 2975 case X86::VPDPBUUDSZ128rkz: 2976 case X86::VPDPBUUDSZ256r: 2977 case X86::VPDPBUUDSZ256rk: 2978 case X86::VPDPBUUDSZ256rkz: 2979 case X86::VPDPBUUDSZr: 2980 case X86::VPDPBUUDSZrk: 2981 case X86::VPDPBUUDSZrkz: 2982 case X86::VPDPBUUDZ128r: 2983 case X86::VPDPBUUDZ128rk: 2984 case X86::VPDPBUUDZ128rkz: 2985 case X86::VPDPBUUDZ256r: 2986 case X86::VPDPBUUDZ256rk: 2987 case X86::VPDPBUUDZ256rkz: 2988 case X86::VPDPBUUDZr: 2989 case X86::VPDPBUUDZrk: 2990 case X86::VPDPBUUDZrkz: 2991 case X86::VPDPWSSDZ128r: 2992 case X86::VPDPWSSDZ128rk: 2993 case X86::VPDPWSSDZ128rkz: 2994 case X86::VPDPWSSDZ256r: 2995 case X86::VPDPWSSDZ256rk: 2996 case X86::VPDPWSSDZ256rkz: 2997 case X86::VPDPWSSDZr: 2998 case X86::VPDPWSSDZrk: 2999 case X86::VPDPWSSDZrkz: 3000 case X86::VPDPWSSDSZ128r: 3001 case X86::VPDPWSSDSZ128rk: 3002 case X86::VPDPWSSDSZ128rkz: 3003 case X86::VPDPWSSDSZ256r: 3004 case X86::VPDPWSSDSZ256rk: 3005 case X86::VPDPWSSDSZ256rkz: 3006 case X86::VPDPWSSDSZr: 3007 case X86::VPDPWSSDSZrk: 3008 case X86::VPDPWSSDSZrkz: 3009 case X86::VPDPWUUDZ128r: 3010 case X86::VPDPWUUDZ128rk: 3011 case X86::VPDPWUUDZ128rkz: 3012 case X86::VPDPWUUDZ256r: 3013 case X86::VPDPWUUDZ256rk: 3014 case X86::VPDPWUUDZ256rkz: 3015 case X86::VPDPWUUDZr: 3016 case X86::VPDPWUUDZrk: 3017 case X86::VPDPWUUDZrkz: 3018 case X86::VPDPWUUDSZ128r: 3019 case X86::VPDPWUUDSZ128rk: 3020 case X86::VPDPWUUDSZ128rkz: 3021 case X86::VPDPWUUDSZ256r: 3022 case X86::VPDPWUUDSZ256rk: 3023 case X86::VPDPWUUDSZ256rkz: 3024 case X86::VPDPWUUDSZr: 3025 case X86::VPDPWUUDSZrk: 3026 case X86::VPDPWUUDSZrkz: 3027 case X86::VPMADD52HUQrr: 3028 case X86::VPMADD52HUQYrr: 3029 case X86::VPMADD52HUQZ128r: 3030 case X86::VPMADD52HUQZ128rk: 3031 case X86::VPMADD52HUQZ128rkz: 3032 case X86::VPMADD52HUQZ256r: 3033 case X86::VPMADD52HUQZ256rk: 3034 case X86::VPMADD52HUQZ256rkz: 3035 case X86::VPMADD52HUQZr: 3036 case X86::VPMADD52HUQZrk: 3037 case X86::VPMADD52HUQZrkz: 3038 case X86::VPMADD52LUQrr: 3039 case X86::VPMADD52LUQYrr: 3040 case X86::VPMADD52LUQZ128r: 3041 case X86::VPMADD52LUQZ128rk: 3042 case X86::VPMADD52LUQZ128rkz: 3043 case X86::VPMADD52LUQZ256r: 3044 case X86::VPMADD52LUQZ256rk: 3045 case X86::VPMADD52LUQZ256rkz: 3046 case X86::VPMADD52LUQZr: 3047 case X86::VPMADD52LUQZrk: 3048 case X86::VPMADD52LUQZrkz: 3049 case X86::VFMADDCPHZr: 3050 case X86::VFMADDCPHZrk: 3051 case X86::VFMADDCPHZrkz: 3052 case X86::VFMADDCPHZ128r: 3053 case X86::VFMADDCPHZ128rk: 3054 case X86::VFMADDCPHZ128rkz: 3055 case X86::VFMADDCPHZ256r: 3056 case X86::VFMADDCPHZ256rk: 3057 case X86::VFMADDCPHZ256rkz: 3058 case X86::VFMADDCSHZr: 3059 case X86::VFMADDCSHZrk: 3060 case X86::VFMADDCSHZrkz: { 3061 unsigned CommutableOpIdx1 = 2; 3062 unsigned CommutableOpIdx2 = 3; 3063 if (X86II::isKMasked(Desc.TSFlags)) { 3064 // Skip the mask register. 3065 ++CommutableOpIdx1; 3066 ++CommutableOpIdx2; 3067 } 3068 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, 3069 CommutableOpIdx2)) 3070 return false; 3071 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 3072 // No idea. 3073 return false; 3074 return true; 3075 } 3076 3077 default: 3078 const X86InstrFMA3Group *FMA3Group = 3079 getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags); 3080 if (FMA3Group) 3081 return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, 3082 FMA3Group->isIntrinsic()); 3083 3084 // Handled masked instructions since we need to skip over the mask input 3085 // and the preserved input. 3086 if (X86II::isKMasked(Desc.TSFlags)) { 3087 // First assume that the first input is the mask operand and skip past it. 3088 unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; 3089 unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; 3090 // Check if the first input is tied. If there isn't one then we only 3091 // need to skip the mask operand which we did above. 3092 if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), 3093 MCOI::TIED_TO) != -1)) { 3094 // If this is zero masking instruction with a tied operand, we need to 3095 // move the first index back to the first input since this must 3096 // be a 3 input instruction and we want the first two non-mask inputs. 3097 // Otherwise this is a 2 input instruction with a preserved input and 3098 // mask, so we need to move the indices to skip one more input. 3099 if (X86II::isKMergeMasked(Desc.TSFlags)) { 3100 ++CommutableOpIdx1; 3101 ++CommutableOpIdx2; 3102 } else { 3103 --CommutableOpIdx1; 3104 } 3105 } 3106 3107 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, 3108 CommutableOpIdx2)) 3109 return false; 3110 3111 if (!MI.getOperand(SrcOpIdx1).isReg() || 3112 !MI.getOperand(SrcOpIdx2).isReg()) 3113 // No idea. 3114 return false; 3115 return true; 3116 } 3117 3118 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); 3119 } 3120 return false; 3121 } 3122 3123 static bool isConvertibleLEA(MachineInstr *MI) { 3124 unsigned Opcode = MI->getOpcode(); 3125 if (Opcode != X86::LEA32r && Opcode != X86::LEA64r && 3126 Opcode != X86::LEA64_32r) 3127 return false; 3128 3129 const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt); 3130 const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp); 3131 const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg); 3132 3133 if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 || 3134 Scale.getImm() > 1) 3135 return false; 3136 3137 return true; 3138 } 3139 3140 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const { 3141 // Currently we're interested in following sequence only. 3142 // r3 = lea r1, r2 3143 // r5 = add r3, r4 3144 // Both r3 and r4 are killed in add, we hope the add instruction has the 3145 // operand order 3146 // r5 = add r4, r3 3147 // So later in X86FixupLEAs the lea instruction can be rewritten as add. 3148 unsigned Opcode = MI.getOpcode(); 3149 if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr) 3150 return false; 3151 3152 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3153 Register Reg1 = MI.getOperand(1).getReg(); 3154 Register Reg2 = MI.getOperand(2).getReg(); 3155 3156 // Check if Reg1 comes from LEA in the same MBB. 3157 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) { 3158 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 3159 Commute = true; 3160 return true; 3161 } 3162 } 3163 3164 // Check if Reg2 comes from LEA in the same MBB. 3165 if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) { 3166 if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { 3167 Commute = false; 3168 return true; 3169 } 3170 } 3171 3172 return false; 3173 } 3174 3175 int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) { 3176 unsigned Opcode = MCID.getOpcode(); 3177 if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isSETZUCC(Opcode) || 3178 X86::isCMOVCC(Opcode) || X86::isCFCMOVCC(Opcode) || 3179 X86::isCCMPCC(Opcode) || X86::isCTESTCC(Opcode))) 3180 return -1; 3181 // Assume that condition code is always the last use operand. 3182 unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs(); 3183 return NumUses - 1; 3184 } 3185 3186 X86::CondCode X86::getCondFromMI(const MachineInstr &MI) { 3187 const MCInstrDesc &MCID = MI.getDesc(); 3188 int CondNo = getCondSrcNoFromDesc(MCID); 3189 if (CondNo < 0) 3190 return X86::COND_INVALID; 3191 CondNo += MCID.getNumDefs(); 3192 return static_cast<X86::CondCode>(MI.getOperand(CondNo).getImm()); 3193 } 3194 3195 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { 3196 return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 3197 : X86::COND_INVALID; 3198 } 3199 3200 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { 3201 return X86::isSETCC(MI.getOpcode()) || X86::isSETZUCC(MI.getOpcode()) 3202 ? X86::getCondFromMI(MI) 3203 : X86::COND_INVALID; 3204 } 3205 3206 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { 3207 return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 3208 : X86::COND_INVALID; 3209 } 3210 3211 X86::CondCode X86::getCondFromCFCMov(const MachineInstr &MI) { 3212 return X86::isCFCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) 3213 : X86::COND_INVALID; 3214 } 3215 3216 X86::CondCode X86::getCondFromCCMP(const MachineInstr &MI) { 3217 return X86::isCCMPCC(MI.getOpcode()) || X86::isCTESTCC(MI.getOpcode()) 3218 ? X86::getCondFromMI(MI) 3219 : X86::COND_INVALID; 3220 } 3221 3222 int X86::getCCMPCondFlagsFromCondCode(X86::CondCode CC) { 3223 // CCMP/CTEST has two conditional operands: 3224 // - SCC: source conditonal code (same as CMOV) 3225 // - DCF: destination conditional flags, which has 4 valid bits 3226 // 3227 // +----+----+----+----+ 3228 // | OF | SF | ZF | CF | 3229 // +----+----+----+----+ 3230 // 3231 // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates 3232 // the conditional flags by as follows: 3233 // 3234 // OF = DCF.OF 3235 // SF = DCF.SF 3236 // ZF = DCF.ZF 3237 // CF = DCF.CF 3238 // PF = DCF.CF 3239 // AF = 0 (Auxiliary Carry Flag) 3240 // 3241 // Otherwise, the CMP or TEST is executed and it updates the 3242 // CSPAZO flags normally. 3243 // 3244 // NOTE: 3245 // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value. 3246 // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value. 3247 3248 enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF }; 3249 3250 switch (CC) { 3251 default: 3252 llvm_unreachable("Illegal condition code!"); 3253 case X86::COND_NO: 3254 case X86::COND_NE: 3255 case X86::COND_GE: 3256 case X86::COND_G: 3257 case X86::COND_AE: 3258 case X86::COND_A: 3259 case X86::COND_NS: 3260 case X86::COND_NP: 3261 return 0; 3262 case X86::COND_O: 3263 return OF; 3264 case X86::COND_B: 3265 case X86::COND_BE: 3266 return CF; 3267 break; 3268 case X86::COND_E: 3269 case X86::COND_LE: 3270 return ZF; 3271 case X86::COND_S: 3272 case X86::COND_L: 3273 return SF; 3274 case X86::COND_P: 3275 return PF; 3276 } 3277 } 3278 3279 #define GET_X86_NF_TRANSFORM_TABLE 3280 #define GET_X86_ND2NONND_TABLE 3281 #include "X86GenInstrMapping.inc" 3282 3283 static unsigned getNewOpcFromTable(ArrayRef<X86TableEntry> Table, 3284 unsigned Opc) { 3285 const auto I = llvm::lower_bound(Table, Opc); 3286 return (I == Table.end() || I->OldOpc != Opc) ? 0U : I->NewOpc; 3287 } 3288 unsigned X86::getNFVariant(unsigned Opc) { 3289 return getNewOpcFromTable(X86NFTransformTable, Opc); 3290 } 3291 3292 unsigned X86::getNonNDVariant(unsigned Opc) { 3293 return getNewOpcFromTable(X86ND2NonNDTable, Opc); 3294 } 3295 3296 /// Return the inverse of the specified condition, 3297 /// e.g. turning COND_E to COND_NE. 3298 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { 3299 switch (CC) { 3300 default: 3301 llvm_unreachable("Illegal condition code!"); 3302 case X86::COND_E: 3303 return X86::COND_NE; 3304 case X86::COND_NE: 3305 return X86::COND_E; 3306 case X86::COND_L: 3307 return X86::COND_GE; 3308 case X86::COND_LE: 3309 return X86::COND_G; 3310 case X86::COND_G: 3311 return X86::COND_LE; 3312 case X86::COND_GE: 3313 return X86::COND_L; 3314 case X86::COND_B: 3315 return X86::COND_AE; 3316 case X86::COND_BE: 3317 return X86::COND_A; 3318 case X86::COND_A: 3319 return X86::COND_BE; 3320 case X86::COND_AE: 3321 return X86::COND_B; 3322 case X86::COND_S: 3323 return X86::COND_NS; 3324 case X86::COND_NS: 3325 return X86::COND_S; 3326 case X86::COND_P: 3327 return X86::COND_NP; 3328 case X86::COND_NP: 3329 return X86::COND_P; 3330 case X86::COND_O: 3331 return X86::COND_NO; 3332 case X86::COND_NO: 3333 return X86::COND_O; 3334 case X86::COND_NE_OR_P: 3335 return X86::COND_E_AND_NP; 3336 case X86::COND_E_AND_NP: 3337 return X86::COND_NE_OR_P; 3338 } 3339 } 3340 3341 /// Assuming the flags are set by MI(a,b), return the condition code if we 3342 /// modify the instructions such that flags are set by MI(b,a). 3343 static X86::CondCode getSwappedCondition(X86::CondCode CC) { 3344 switch (CC) { 3345 default: 3346 return X86::COND_INVALID; 3347 case X86::COND_E: 3348 return X86::COND_E; 3349 case X86::COND_NE: 3350 return X86::COND_NE; 3351 case X86::COND_L: 3352 return X86::COND_G; 3353 case X86::COND_LE: 3354 return X86::COND_GE; 3355 case X86::COND_G: 3356 return X86::COND_L; 3357 case X86::COND_GE: 3358 return X86::COND_LE; 3359 case X86::COND_B: 3360 return X86::COND_A; 3361 case X86::COND_BE: 3362 return X86::COND_AE; 3363 case X86::COND_A: 3364 return X86::COND_B; 3365 case X86::COND_AE: 3366 return X86::COND_BE; 3367 } 3368 } 3369 3370 std::pair<X86::CondCode, bool> 3371 X86::getX86ConditionCode(CmpInst::Predicate Predicate) { 3372 X86::CondCode CC = X86::COND_INVALID; 3373 bool NeedSwap = false; 3374 switch (Predicate) { 3375 default: 3376 break; 3377 // Floating-point Predicates 3378 case CmpInst::FCMP_UEQ: 3379 CC = X86::COND_E; 3380 break; 3381 case CmpInst::FCMP_OLT: 3382 NeedSwap = true; 3383 [[fallthrough]]; 3384 case CmpInst::FCMP_OGT: 3385 CC = X86::COND_A; 3386 break; 3387 case CmpInst::FCMP_OLE: 3388 NeedSwap = true; 3389 [[fallthrough]]; 3390 case CmpInst::FCMP_OGE: 3391 CC = X86::COND_AE; 3392 break; 3393 case CmpInst::FCMP_UGT: 3394 NeedSwap = true; 3395 [[fallthrough]]; 3396 case CmpInst::FCMP_ULT: 3397 CC = X86::COND_B; 3398 break; 3399 case CmpInst::FCMP_UGE: 3400 NeedSwap = true; 3401 [[fallthrough]]; 3402 case CmpInst::FCMP_ULE: 3403 CC = X86::COND_BE; 3404 break; 3405 case CmpInst::FCMP_ONE: 3406 CC = X86::COND_NE; 3407 break; 3408 case CmpInst::FCMP_UNO: 3409 CC = X86::COND_P; 3410 break; 3411 case CmpInst::FCMP_ORD: 3412 CC = X86::COND_NP; 3413 break; 3414 case CmpInst::FCMP_OEQ: 3415 [[fallthrough]]; 3416 case CmpInst::FCMP_UNE: 3417 CC = X86::COND_INVALID; 3418 break; 3419 3420 // Integer Predicates 3421 case CmpInst::ICMP_EQ: 3422 CC = X86::COND_E; 3423 break; 3424 case CmpInst::ICMP_NE: 3425 CC = X86::COND_NE; 3426 break; 3427 case CmpInst::ICMP_UGT: 3428 CC = X86::COND_A; 3429 break; 3430 case CmpInst::ICMP_UGE: 3431 CC = X86::COND_AE; 3432 break; 3433 case CmpInst::ICMP_ULT: 3434 CC = X86::COND_B; 3435 break; 3436 case CmpInst::ICMP_ULE: 3437 CC = X86::COND_BE; 3438 break; 3439 case CmpInst::ICMP_SGT: 3440 CC = X86::COND_G; 3441 break; 3442 case CmpInst::ICMP_SGE: 3443 CC = X86::COND_GE; 3444 break; 3445 case CmpInst::ICMP_SLT: 3446 CC = X86::COND_L; 3447 break; 3448 case CmpInst::ICMP_SLE: 3449 CC = X86::COND_LE; 3450 break; 3451 } 3452 3453 return std::make_pair(CC, NeedSwap); 3454 } 3455 3456 /// Return a cmov opcode for the given register size in bytes, and operand type. 3457 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand, 3458 bool HasNDD) { 3459 switch (RegBytes) { 3460 default: 3461 llvm_unreachable("Illegal register size!"); 3462 #define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC) 3463 case 2: 3464 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm) 3465 : GET_ND_IF_ENABLED(X86::CMOV16rr); 3466 case 4: 3467 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm) 3468 : GET_ND_IF_ENABLED(X86::CMOV32rr); 3469 case 8: 3470 return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm) 3471 : GET_ND_IF_ENABLED(X86::CMOV64rr); 3472 } 3473 } 3474 3475 /// Get the VPCMP immediate for the given condition. 3476 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { 3477 switch (CC) { 3478 default: 3479 llvm_unreachable("Unexpected SETCC condition"); 3480 case ISD::SETNE: 3481 return 4; 3482 case ISD::SETEQ: 3483 return 0; 3484 case ISD::SETULT: 3485 case ISD::SETLT: 3486 return 1; 3487 case ISD::SETUGT: 3488 case ISD::SETGT: 3489 return 6; 3490 case ISD::SETUGE: 3491 case ISD::SETGE: 3492 return 5; 3493 case ISD::SETULE: 3494 case ISD::SETLE: 3495 return 2; 3496 } 3497 } 3498 3499 /// Get the VPCMP immediate if the operands are swapped. 3500 unsigned X86::getSwappedVPCMPImm(unsigned Imm) { 3501 switch (Imm) { 3502 default: 3503 llvm_unreachable("Unreachable!"); 3504 case 0x01: 3505 Imm = 0x06; 3506 break; // LT -> NLE 3507 case 0x02: 3508 Imm = 0x05; 3509 break; // LE -> NLT 3510 case 0x05: 3511 Imm = 0x02; 3512 break; // NLT -> LE 3513 case 0x06: 3514 Imm = 0x01; 3515 break; // NLE -> LT 3516 case 0x00: // EQ 3517 case 0x03: // FALSE 3518 case 0x04: // NE 3519 case 0x07: // TRUE 3520 break; 3521 } 3522 3523 return Imm; 3524 } 3525 3526 /// Get the VPCOM immediate if the operands are swapped. 3527 unsigned X86::getSwappedVPCOMImm(unsigned Imm) { 3528 switch (Imm) { 3529 default: 3530 llvm_unreachable("Unreachable!"); 3531 case 0x00: 3532 Imm = 0x02; 3533 break; // LT -> GT 3534 case 0x01: 3535 Imm = 0x03; 3536 break; // LE -> GE 3537 case 0x02: 3538 Imm = 0x00; 3539 break; // GT -> LT 3540 case 0x03: 3541 Imm = 0x01; 3542 break; // GE -> LE 3543 case 0x04: // EQ 3544 case 0x05: // NE 3545 case 0x06: // FALSE 3546 case 0x07: // TRUE 3547 break; 3548 } 3549 3550 return Imm; 3551 } 3552 3553 /// Get the VCMP immediate if the operands are swapped. 3554 unsigned X86::getSwappedVCMPImm(unsigned Imm) { 3555 // Only need the lower 2 bits to distinquish. 3556 switch (Imm & 0x3) { 3557 default: 3558 llvm_unreachable("Unreachable!"); 3559 case 0x00: 3560 case 0x03: 3561 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. 3562 break; 3563 case 0x01: 3564 case 0x02: 3565 // Need to toggle bits 3:0. Bit 4 stays the same. 3566 Imm ^= 0xf; 3567 break; 3568 } 3569 3570 return Imm; 3571 } 3572 3573 unsigned X86::getVectorRegisterWidth(const MCOperandInfo &Info) { 3574 if (Info.RegClass == X86::VR128RegClassID || 3575 Info.RegClass == X86::VR128XRegClassID) 3576 return 128; 3577 if (Info.RegClass == X86::VR256RegClassID || 3578 Info.RegClass == X86::VR256XRegClassID) 3579 return 256; 3580 if (Info.RegClass == X86::VR512RegClassID) 3581 return 512; 3582 llvm_unreachable("Unknown register class!"); 3583 } 3584 3585 /// Return true if the Reg is X87 register. 3586 static bool isX87Reg(unsigned Reg) { 3587 return (Reg == X86::FPCW || Reg == X86::FPSW || 3588 (Reg >= X86::ST0 && Reg <= X86::ST7)); 3589 } 3590 3591 /// check if the instruction is X87 instruction 3592 bool X86::isX87Instruction(MachineInstr &MI) { 3593 // Call and inlineasm defs X87 register, so we special case it here because 3594 // otherwise calls are incorrectly flagged as x87 instructions 3595 // as a result. 3596 if (MI.isCall() || MI.isInlineAsm()) 3597 return false; 3598 for (const MachineOperand &MO : MI.operands()) { 3599 if (!MO.isReg()) 3600 continue; 3601 if (isX87Reg(MO.getReg())) 3602 return true; 3603 } 3604 return false; 3605 } 3606 3607 int X86::getFirstAddrOperandIdx(const MachineInstr &MI) { 3608 auto IsMemOp = [](const MCOperandInfo &OpInfo) { 3609 return OpInfo.OperandType == MCOI::OPERAND_MEMORY; 3610 }; 3611 3612 const MCInstrDesc &Desc = MI.getDesc(); 3613 3614 // Directly invoke the MC-layer routine for real (i.e., non-pseudo) 3615 // instructions (fast case). 3616 if (!X86II::isPseudo(Desc.TSFlags)) { 3617 int MemRefIdx = X86II::getMemoryOperandNo(Desc.TSFlags); 3618 if (MemRefIdx >= 0) 3619 return MemRefIdx + X86II::getOperandBias(Desc); 3620 #ifdef EXPENSIVE_CHECKS 3621 assert(none_of(Desc.operands(), IsMemOp) && 3622 "Got false negative from X86II::getMemoryOperandNo()!"); 3623 #endif 3624 return -1; 3625 } 3626 3627 // Otherwise, handle pseudo instructions by examining the type of their 3628 // operands (slow case). An instruction cannot have a memory reference if it 3629 // has fewer than AddrNumOperands (= 5) explicit operands. 3630 unsigned NumOps = Desc.getNumOperands(); 3631 if (NumOps < X86::AddrNumOperands) { 3632 #ifdef EXPENSIVE_CHECKS 3633 assert(none_of(Desc.operands(), IsMemOp) && 3634 "Expected no operands to have OPERAND_MEMORY type!"); 3635 #endif 3636 return -1; 3637 } 3638 3639 // The first operand with type OPERAND_MEMORY indicates the start of a memory 3640 // reference. We expect the following AddrNumOperand-1 operands to also have 3641 // OPERAND_MEMORY type. 3642 for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) { 3643 if (IsMemOp(Desc.operands()[I])) { 3644 #ifdef EXPENSIVE_CHECKS 3645 assert(std::all_of(Desc.operands().begin() + I, 3646 Desc.operands().begin() + I + X86::AddrNumOperands, 3647 IsMemOp) && 3648 "Expected all five operands in the memory reference to have " 3649 "OPERAND_MEMORY type!"); 3650 #endif 3651 return I; 3652 } 3653 } 3654 3655 return -1; 3656 } 3657 3658 const Constant *X86::getConstantFromPool(const MachineInstr &MI, 3659 unsigned OpNo) { 3660 assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) && 3661 "Unexpected number of operands!"); 3662 3663 const MachineOperand &Index = MI.getOperand(OpNo + X86::AddrIndexReg); 3664 if (!Index.isReg() || Index.getReg() != X86::NoRegister) 3665 return nullptr; 3666 3667 const MachineOperand &Disp = MI.getOperand(OpNo + X86::AddrDisp); 3668 if (!Disp.isCPI() || Disp.getOffset() != 0) 3669 return nullptr; 3670 3671 ArrayRef<MachineConstantPoolEntry> Constants = 3672 MI.getParent()->getParent()->getConstantPool()->getConstants(); 3673 const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()]; 3674 3675 // Bail if this is a machine constant pool entry, we won't be able to dig out 3676 // anything useful. 3677 if (ConstantEntry.isMachineConstantPoolEntry()) 3678 return nullptr; 3679 3680 return ConstantEntry.Val.ConstVal; 3681 } 3682 3683 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { 3684 switch (MI.getOpcode()) { 3685 case X86::TCRETURNdi: 3686 case X86::TCRETURNri: 3687 case X86::TCRETURNmi: 3688 case X86::TCRETURNdi64: 3689 case X86::TCRETURNri64: 3690 case X86::TCRETURNmi64: 3691 return true; 3692 default: 3693 return false; 3694 } 3695 } 3696 3697 bool X86InstrInfo::canMakeTailCallConditional( 3698 SmallVectorImpl<MachineOperand> &BranchCond, 3699 const MachineInstr &TailCall) const { 3700 3701 const MachineFunction *MF = TailCall.getMF(); 3702 3703 if (MF->getTarget().getCodeModel() == CodeModel::Kernel) { 3704 // Kernel patches thunk calls in runtime, these should never be conditional. 3705 const MachineOperand &Target = TailCall.getOperand(0); 3706 if (Target.isSymbol()) { 3707 StringRef Symbol(Target.getSymbolName()); 3708 // this is currently only relevant to r11/kernel indirect thunk. 3709 if (Symbol == "__x86_indirect_thunk_r11") 3710 return false; 3711 } 3712 } 3713 3714 if (TailCall.getOpcode() != X86::TCRETURNdi && 3715 TailCall.getOpcode() != X86::TCRETURNdi64) { 3716 // Only direct calls can be done with a conditional branch. 3717 return false; 3718 } 3719 3720 if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { 3721 // Conditional tail calls confuse the Win64 unwinder. 3722 return false; 3723 } 3724 3725 assert(BranchCond.size() == 1); 3726 if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { 3727 // Can't make a conditional tail call with this condition. 3728 return false; 3729 } 3730 3731 const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 3732 if (X86FI->getTCReturnAddrDelta() != 0 || 3733 TailCall.getOperand(1).getImm() != 0) { 3734 // A conditional tail call cannot do any stack adjustment. 3735 return false; 3736 } 3737 3738 return true; 3739 } 3740 3741 void X86InstrInfo::replaceBranchWithTailCall( 3742 MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, 3743 const MachineInstr &TailCall) const { 3744 assert(canMakeTailCallConditional(BranchCond, TailCall)); 3745 3746 MachineBasicBlock::iterator I = MBB.end(); 3747 while (I != MBB.begin()) { 3748 --I; 3749 if (I->isDebugInstr()) 3750 continue; 3751 if (!I->isBranch()) 3752 assert(0 && "Can't find the branch to replace!"); 3753 3754 X86::CondCode CC = X86::getCondFromBranch(*I); 3755 assert(BranchCond.size() == 1); 3756 if (CC != BranchCond[0].getImm()) 3757 continue; 3758 3759 break; 3760 } 3761 3762 unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc 3763 : X86::TCRETURNdi64cc; 3764 3765 auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); 3766 MIB->addOperand(TailCall.getOperand(0)); // Destination. 3767 MIB.addImm(0); // Stack offset (not used). 3768 MIB->addOperand(BranchCond[0]); // Condition. 3769 MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. 3770 3771 // Add implicit uses and defs of all live regs potentially clobbered by the 3772 // call. This way they still appear live across the call. 3773 LivePhysRegs LiveRegs(getRegisterInfo()); 3774 LiveRegs.addLiveOuts(MBB); 3775 SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; 3776 LiveRegs.stepForward(*MIB, Clobbers); 3777 for (const auto &C : Clobbers) { 3778 MIB.addReg(C.first, RegState::Implicit); 3779 MIB.addReg(C.first, RegState::Implicit | RegState::Define); 3780 } 3781 3782 I->eraseFromParent(); 3783 } 3784 3785 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may 3786 // not be a fallthrough MBB now due to layout changes). Return nullptr if the 3787 // fallthrough MBB cannot be identified. 3788 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, 3789 MachineBasicBlock *TBB) { 3790 // Look for non-EHPad successors other than TBB. If we find exactly one, it 3791 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB 3792 // and fallthrough MBB. If we find more than one, we cannot identify the 3793 // fallthrough MBB and should return nullptr. 3794 MachineBasicBlock *FallthroughBB = nullptr; 3795 for (MachineBasicBlock *Succ : MBB->successors()) { 3796 if (Succ->isEHPad() || (Succ == TBB && FallthroughBB)) 3797 continue; 3798 // Return a nullptr if we found more than one fallthrough successor. 3799 if (FallthroughBB && FallthroughBB != TBB) 3800 return nullptr; 3801 FallthroughBB = Succ; 3802 } 3803 return FallthroughBB; 3804 } 3805 3806 bool X86InstrInfo::analyzeBranchImpl( 3807 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 3808 SmallVectorImpl<MachineOperand> &Cond, 3809 SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { 3810 3811 // Start from the bottom of the block and work up, examining the 3812 // terminator instructions. 3813 MachineBasicBlock::iterator I = MBB.end(); 3814 MachineBasicBlock::iterator UnCondBrIter = MBB.end(); 3815 while (I != MBB.begin()) { 3816 --I; 3817 if (I->isDebugInstr()) 3818 continue; 3819 3820 // Working from the bottom, when we see a non-terminator instruction, we're 3821 // done. 3822 if (!isUnpredicatedTerminator(*I)) 3823 break; 3824 3825 // A terminator that isn't a branch can't easily be handled by this 3826 // analysis. 3827 if (!I->isBranch()) 3828 return true; 3829 3830 // Handle unconditional branches. 3831 if (I->getOpcode() == X86::JMP_1) { 3832 UnCondBrIter = I; 3833 3834 if (!AllowModify) { 3835 TBB = I->getOperand(0).getMBB(); 3836 continue; 3837 } 3838 3839 // If the block has any instructions after a JMP, delete them. 3840 MBB.erase(std::next(I), MBB.end()); 3841 3842 Cond.clear(); 3843 FBB = nullptr; 3844 3845 // Delete the JMP if it's equivalent to a fall-through. 3846 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { 3847 TBB = nullptr; 3848 I->eraseFromParent(); 3849 I = MBB.end(); 3850 UnCondBrIter = MBB.end(); 3851 continue; 3852 } 3853 3854 // TBB is used to indicate the unconditional destination. 3855 TBB = I->getOperand(0).getMBB(); 3856 continue; 3857 } 3858 3859 // Handle conditional branches. 3860 X86::CondCode BranchCode = X86::getCondFromBranch(*I); 3861 if (BranchCode == X86::COND_INVALID) 3862 return true; // Can't handle indirect branch. 3863 3864 // In practice we should never have an undef eflags operand, if we do 3865 // abort here as we are not prepared to preserve the flag. 3866 if (I->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->isUndef()) 3867 return true; 3868 3869 // Working from the bottom, handle the first conditional branch. 3870 if (Cond.empty()) { 3871 FBB = TBB; 3872 TBB = I->getOperand(0).getMBB(); 3873 Cond.push_back(MachineOperand::CreateImm(BranchCode)); 3874 CondBranches.push_back(&*I); 3875 continue; 3876 } 3877 3878 // Handle subsequent conditional branches. Only handle the case where all 3879 // conditional branches branch to the same destination and their condition 3880 // opcodes fit one of the special multi-branch idioms. 3881 assert(Cond.size() == 1); 3882 assert(TBB); 3883 3884 // If the conditions are the same, we can leave them alone. 3885 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); 3886 auto NewTBB = I->getOperand(0).getMBB(); 3887 if (OldBranchCode == BranchCode && TBB == NewTBB) 3888 continue; 3889 3890 // If they differ, see if they fit one of the known patterns. Theoretically, 3891 // we could handle more patterns here, but we shouldn't expect to see them 3892 // if instruction selection has done a reasonable job. 3893 if (TBB == NewTBB && 3894 ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || 3895 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { 3896 BranchCode = X86::COND_NE_OR_P; 3897 } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || 3898 (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { 3899 if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) 3900 return true; 3901 3902 // X86::COND_E_AND_NP usually has two different branch destinations. 3903 // 3904 // JP B1 3905 // JE B2 3906 // JMP B1 3907 // B1: 3908 // B2: 3909 // 3910 // Here this condition branches to B2 only if NP && E. It has another 3911 // equivalent form: 3912 // 3913 // JNE B1 3914 // JNP B2 3915 // JMP B1 3916 // B1: 3917 // B2: 3918 // 3919 // Similarly it branches to B2 only if E && NP. That is why this condition 3920 // is named with COND_E_AND_NP. 3921 BranchCode = X86::COND_E_AND_NP; 3922 } else 3923 return true; 3924 3925 // Update the MachineOperand. 3926 Cond[0].setImm(BranchCode); 3927 CondBranches.push_back(&*I); 3928 } 3929 3930 return false; 3931 } 3932 3933 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, 3934 MachineBasicBlock *&TBB, 3935 MachineBasicBlock *&FBB, 3936 SmallVectorImpl<MachineOperand> &Cond, 3937 bool AllowModify) const { 3938 SmallVector<MachineInstr *, 4> CondBranches; 3939 return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); 3940 } 3941 3942 static int getJumpTableIndexFromAddr(const MachineInstr &MI) { 3943 const MCInstrDesc &Desc = MI.getDesc(); 3944 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 3945 assert(MemRefBegin >= 0 && "instr should have memory operand"); 3946 MemRefBegin += X86II::getOperandBias(Desc); 3947 3948 const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp); 3949 if (!MO.isJTI()) 3950 return -1; 3951 3952 return MO.getIndex(); 3953 } 3954 3955 static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, 3956 Register Reg) { 3957 if (!Reg.isVirtual()) 3958 return -1; 3959 MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 3960 if (MI == nullptr) 3961 return -1; 3962 unsigned Opcode = MI->getOpcode(); 3963 if (Opcode != X86::LEA64r && Opcode != X86::LEA32r) 3964 return -1; 3965 return getJumpTableIndexFromAddr(*MI); 3966 } 3967 3968 int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const { 3969 unsigned Opcode = MI.getOpcode(); 3970 // Switch-jump pattern for non-PIC code looks like: 3971 // JMP64m $noreg, 8, %X, %jump-table.X, $noreg 3972 if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) { 3973 return getJumpTableIndexFromAddr(MI); 3974 } 3975 // The pattern for PIC code looks like: 3976 // %0 = LEA64r $rip, 1, $noreg, %jump-table.X 3977 // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg 3978 // %2 = ADD64rr %1, %0 3979 // JMP64r %2 3980 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) { 3981 Register Reg = MI.getOperand(0).getReg(); 3982 if (!Reg.isVirtual()) 3983 return -1; 3984 const MachineFunction &MF = *MI.getParent()->getParent(); 3985 const MachineRegisterInfo &MRI = MF.getRegInfo(); 3986 MachineInstr *Add = MRI.getUniqueVRegDef(Reg); 3987 if (Add == nullptr) 3988 return -1; 3989 if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr) 3990 return -1; 3991 int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg()); 3992 if (JTI1 >= 0) 3993 return JTI1; 3994 int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg()); 3995 if (JTI2 >= 0) 3996 return JTI2; 3997 } 3998 return -1; 3999 } 4000 4001 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, 4002 MachineBranchPredicate &MBP, 4003 bool AllowModify) const { 4004 using namespace std::placeholders; 4005 4006 SmallVector<MachineOperand, 4> Cond; 4007 SmallVector<MachineInstr *, 4> CondBranches; 4008 if (analyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, 4009 AllowModify)) 4010 return true; 4011 4012 if (Cond.size() != 1) 4013 return true; 4014 4015 assert(MBP.TrueDest && "expected!"); 4016 4017 if (!MBP.FalseDest) 4018 MBP.FalseDest = MBB.getNextNode(); 4019 4020 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4021 4022 MachineInstr *ConditionDef = nullptr; 4023 bool SingleUseCondition = true; 4024 4025 for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) { 4026 if (MI.modifiesRegister(X86::EFLAGS, TRI)) { 4027 ConditionDef = &MI; 4028 break; 4029 } 4030 4031 if (MI.readsRegister(X86::EFLAGS, TRI)) 4032 SingleUseCondition = false; 4033 } 4034 4035 if (!ConditionDef) 4036 return true; 4037 4038 if (SingleUseCondition) { 4039 for (auto *Succ : MBB.successors()) 4040 if (Succ->isLiveIn(X86::EFLAGS)) 4041 SingleUseCondition = false; 4042 } 4043 4044 MBP.ConditionDef = ConditionDef; 4045 MBP.SingleUseCondition = SingleUseCondition; 4046 4047 // Currently we only recognize the simple pattern: 4048 // 4049 // test %reg, %reg 4050 // je %label 4051 // 4052 const unsigned TestOpcode = 4053 Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; 4054 4055 if (ConditionDef->getOpcode() == TestOpcode && 4056 ConditionDef->getNumOperands() == 3 && 4057 ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && 4058 (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { 4059 MBP.LHS = ConditionDef->getOperand(0); 4060 MBP.RHS = MachineOperand::CreateImm(0); 4061 MBP.Predicate = Cond[0].getImm() == X86::COND_NE 4062 ? MachineBranchPredicate::PRED_NE 4063 : MachineBranchPredicate::PRED_EQ; 4064 return false; 4065 } 4066 4067 return true; 4068 } 4069 4070 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, 4071 int *BytesRemoved) const { 4072 assert(!BytesRemoved && "code size not handled"); 4073 4074 MachineBasicBlock::iterator I = MBB.end(); 4075 unsigned Count = 0; 4076 4077 while (I != MBB.begin()) { 4078 --I; 4079 if (I->isDebugInstr()) 4080 continue; 4081 if (I->getOpcode() != X86::JMP_1 && 4082 X86::getCondFromBranch(*I) == X86::COND_INVALID) 4083 break; 4084 // Remove the branch. 4085 I->eraseFromParent(); 4086 I = MBB.end(); 4087 ++Count; 4088 } 4089 4090 return Count; 4091 } 4092 4093 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, 4094 MachineBasicBlock *TBB, 4095 MachineBasicBlock *FBB, 4096 ArrayRef<MachineOperand> Cond, 4097 const DebugLoc &DL, int *BytesAdded) const { 4098 // Shouldn't be a fall through. 4099 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 4100 assert((Cond.size() == 1 || Cond.size() == 0) && 4101 "X86 branch conditions have one component!"); 4102 assert(!BytesAdded && "code size not handled"); 4103 4104 if (Cond.empty()) { 4105 // Unconditional branch? 4106 assert(!FBB && "Unconditional branch with multiple successors!"); 4107 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); 4108 return 1; 4109 } 4110 4111 // If FBB is null, it is implied to be a fall-through block. 4112 bool FallThru = FBB == nullptr; 4113 4114 // Conditional branch. 4115 unsigned Count = 0; 4116 X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); 4117 switch (CC) { 4118 case X86::COND_NE_OR_P: 4119 // Synthesize NE_OR_P with two branches. 4120 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); 4121 ++Count; 4122 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); 4123 ++Count; 4124 break; 4125 case X86::COND_E_AND_NP: 4126 // Use the next block of MBB as FBB if it is null. 4127 if (FBB == nullptr) { 4128 FBB = getFallThroughMBB(&MBB, TBB); 4129 assert(FBB && "MBB cannot be the last block in function when the false " 4130 "body is a fall-through."); 4131 } 4132 // Synthesize COND_E_AND_NP with two branches. 4133 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); 4134 ++Count; 4135 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); 4136 ++Count; 4137 break; 4138 default: { 4139 BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); 4140 ++Count; 4141 } 4142 } 4143 if (!FallThru) { 4144 // Two-way Conditional branch. Insert the second branch. 4145 BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); 4146 ++Count; 4147 } 4148 return Count; 4149 } 4150 4151 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 4152 ArrayRef<MachineOperand> Cond, 4153 Register DstReg, Register TrueReg, 4154 Register FalseReg, int &CondCycles, 4155 int &TrueCycles, int &FalseCycles) const { 4156 // Not all subtargets have cmov instructions. 4157 if (!Subtarget.canUseCMOV()) 4158 return false; 4159 if (Cond.size() != 1) 4160 return false; 4161 // We cannot do the composite conditions, at least not in SSA form. 4162 if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) 4163 return false; 4164 4165 // Check register classes. 4166 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 4167 const TargetRegisterClass *RC = 4168 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 4169 if (!RC) 4170 return false; 4171 4172 // We have cmov instructions for 16, 32, and 64 bit general purpose registers. 4173 if (X86::GR16RegClass.hasSubClassEq(RC) || 4174 X86::GR32RegClass.hasSubClassEq(RC) || 4175 X86::GR64RegClass.hasSubClassEq(RC)) { 4176 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy 4177 // Bridge. Probably Ivy Bridge as well. 4178 CondCycles = 2; 4179 TrueCycles = 2; 4180 FalseCycles = 2; 4181 return true; 4182 } 4183 4184 // Can't do vectors. 4185 return false; 4186 } 4187 4188 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, 4189 MachineBasicBlock::iterator I, 4190 const DebugLoc &DL, Register DstReg, 4191 ArrayRef<MachineOperand> Cond, Register TrueReg, 4192 Register FalseReg) const { 4193 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 4194 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 4195 const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); 4196 assert(Cond.size() == 1 && "Invalid Cond array"); 4197 unsigned Opc = 4198 X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, 4199 false /*HasMemoryOperand*/, Subtarget.hasNDD()); 4200 BuildMI(MBB, I, DL, get(Opc), DstReg) 4201 .addReg(FalseReg) 4202 .addReg(TrueReg) 4203 .addImm(Cond[0].getImm()); 4204 } 4205 4206 /// Test if the given register is a physical h register. 4207 static bool isHReg(unsigned Reg) { 4208 return X86::GR8_ABCD_HRegClass.contains(Reg); 4209 } 4210 4211 // Try and copy between VR128/VR64 and GR64 registers. 4212 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, 4213 const X86Subtarget &Subtarget) { 4214 bool HasAVX = Subtarget.hasAVX(); 4215 bool HasAVX512 = Subtarget.hasAVX512(); 4216 bool HasEGPR = Subtarget.hasEGPR(); 4217 4218 // SrcReg(MaskReg) -> DestReg(GR64) 4219 // SrcReg(MaskReg) -> DestReg(GR32) 4220 4221 // All KMASK RegClasses hold the same k registers, can be tested against 4222 // anyone. 4223 if (X86::VK16RegClass.contains(SrcReg)) { 4224 if (X86::GR64RegClass.contains(DestReg)) { 4225 assert(Subtarget.hasBWI()); 4226 return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk; 4227 } 4228 if (X86::GR32RegClass.contains(DestReg)) 4229 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk) 4230 : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk); 4231 } 4232 4233 // SrcReg(GR64) -> DestReg(MaskReg) 4234 // SrcReg(GR32) -> DestReg(MaskReg) 4235 4236 // All KMASK RegClasses hold the same k registers, can be tested against 4237 // anyone. 4238 if (X86::VK16RegClass.contains(DestReg)) { 4239 if (X86::GR64RegClass.contains(SrcReg)) { 4240 assert(Subtarget.hasBWI()); 4241 return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr; 4242 } 4243 if (X86::GR32RegClass.contains(SrcReg)) 4244 return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr) 4245 : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr); 4246 } 4247 4248 // SrcReg(VR128) -> DestReg(GR64) 4249 // SrcReg(VR64) -> DestReg(GR64) 4250 // SrcReg(GR64) -> DestReg(VR128) 4251 // SrcReg(GR64) -> DestReg(VR64) 4252 4253 if (X86::GR64RegClass.contains(DestReg)) { 4254 if (X86::VR128XRegClass.contains(SrcReg)) 4255 // Copy from a VR128 register to a GR64 register. 4256 return HasAVX512 ? X86::VMOVPQIto64Zrr 4257 : HasAVX ? X86::VMOVPQIto64rr 4258 : X86::MOVPQIto64rr; 4259 if (X86::VR64RegClass.contains(SrcReg)) 4260 // Copy from a VR64 register to a GR64 register. 4261 return X86::MMX_MOVD64from64rr; 4262 } else if (X86::GR64RegClass.contains(SrcReg)) { 4263 // Copy from a GR64 register to a VR128 register. 4264 if (X86::VR128XRegClass.contains(DestReg)) 4265 return HasAVX512 ? X86::VMOV64toPQIZrr 4266 : HasAVX ? X86::VMOV64toPQIrr 4267 : X86::MOV64toPQIrr; 4268 // Copy from a GR64 register to a VR64 register. 4269 if (X86::VR64RegClass.contains(DestReg)) 4270 return X86::MMX_MOVD64to64rr; 4271 } 4272 4273 // SrcReg(VR128) -> DestReg(GR32) 4274 // SrcReg(GR32) -> DestReg(VR128) 4275 4276 if (X86::GR32RegClass.contains(DestReg) && 4277 X86::VR128XRegClass.contains(SrcReg)) 4278 // Copy from a VR128 register to a GR32 register. 4279 return HasAVX512 ? X86::VMOVPDI2DIZrr 4280 : HasAVX ? X86::VMOVPDI2DIrr 4281 : X86::MOVPDI2DIrr; 4282 4283 if (X86::VR128XRegClass.contains(DestReg) && 4284 X86::GR32RegClass.contains(SrcReg)) 4285 // Copy from a VR128 register to a VR128 register. 4286 return HasAVX512 ? X86::VMOVDI2PDIZrr 4287 : HasAVX ? X86::VMOVDI2PDIrr 4288 : X86::MOVDI2PDIrr; 4289 return 0; 4290 } 4291 4292 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, 4293 MachineBasicBlock::iterator MI, 4294 const DebugLoc &DL, MCRegister DestReg, 4295 MCRegister SrcReg, bool KillSrc, 4296 bool RenamableDest, bool RenamableSrc) const { 4297 // First deal with the normal symmetric copies. 4298 bool HasAVX = Subtarget.hasAVX(); 4299 bool HasVLX = Subtarget.hasVLX(); 4300 bool HasEGPR = Subtarget.hasEGPR(); 4301 unsigned Opc = 0; 4302 if (X86::GR64RegClass.contains(DestReg, SrcReg)) 4303 Opc = X86::MOV64rr; 4304 else if (X86::GR32RegClass.contains(DestReg, SrcReg)) 4305 Opc = X86::MOV32rr; 4306 else if (X86::GR16RegClass.contains(DestReg, SrcReg)) 4307 Opc = X86::MOV16rr; 4308 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { 4309 // Copying to or from a physical H register on x86-64 requires a NOREX 4310 // move. Otherwise use a normal move. 4311 if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) { 4312 Opc = X86::MOV8rr_NOREX; 4313 // Both operands must be encodable without an REX prefix. 4314 assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && 4315 "8-bit H register can not be copied outside GR8_NOREX"); 4316 } else 4317 Opc = X86::MOV8rr; 4318 } else if (X86::VR64RegClass.contains(DestReg, SrcReg)) 4319 Opc = X86::MMX_MOVQ64rr; 4320 else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { 4321 if (HasVLX) 4322 Opc = X86::VMOVAPSZ128rr; 4323 else if (X86::VR128RegClass.contains(DestReg, SrcReg)) 4324 Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; 4325 else { 4326 // If this an extended register and we don't have VLX we need to use a 4327 // 512-bit move. 4328 Opc = X86::VMOVAPSZrr; 4329 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4330 DestReg = 4331 TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass); 4332 SrcReg = 4333 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); 4334 } 4335 } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { 4336 if (HasVLX) 4337 Opc = X86::VMOVAPSZ256rr; 4338 else if (X86::VR256RegClass.contains(DestReg, SrcReg)) 4339 Opc = X86::VMOVAPSYrr; 4340 else { 4341 // If this an extended register and we don't have VLX we need to use a 4342 // 512-bit move. 4343 Opc = X86::VMOVAPSZrr; 4344 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4345 DestReg = 4346 TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass); 4347 SrcReg = 4348 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); 4349 } 4350 } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) 4351 Opc = X86::VMOVAPSZrr; 4352 // All KMASK RegClasses hold the same k registers, can be tested against 4353 // anyone. 4354 else if (X86::VK16RegClass.contains(DestReg, SrcReg)) 4355 Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk) 4356 : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk); 4357 if (!Opc) 4358 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); 4359 4360 if (Opc) { 4361 BuildMI(MBB, MI, DL, get(Opc), DestReg) 4362 .addReg(SrcReg, getKillRegState(KillSrc)); 4363 return; 4364 } 4365 4366 if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { 4367 // FIXME: We use a fatal error here because historically LLVM has tried 4368 // lower some of these physreg copies and we want to ensure we get 4369 // reasonable bug reports if someone encounters a case no other testing 4370 // found. This path should be removed after the LLVM 7 release. 4371 report_fatal_error("Unable to copy EFLAGS physical register!"); 4372 } 4373 4374 LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " 4375 << RI.getName(DestReg) << '\n'); 4376 report_fatal_error("Cannot emit physreg copy instruction"); 4377 } 4378 4379 std::optional<DestSourcePair> 4380 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 4381 if (MI.isMoveReg()) { 4382 // FIXME: Dirty hack for apparent invariant that doesn't hold when 4383 // subreg_to_reg is coalesced with ordinary copies, such that the bits that 4384 // were asserted as 0 are now undef. 4385 if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg()) 4386 return std::nullopt; 4387 4388 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 4389 } 4390 return std::nullopt; 4391 } 4392 4393 static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) { 4394 if (STI.hasFP16()) 4395 return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr; 4396 if (Load) 4397 return STI.hasAVX512() ? X86::VMOVSSZrm 4398 : STI.hasAVX() ? X86::VMOVSSrm 4399 : X86::MOVSSrm; 4400 else 4401 return STI.hasAVX512() ? X86::VMOVSSZmr 4402 : STI.hasAVX() ? X86::VMOVSSmr 4403 : X86::MOVSSmr; 4404 } 4405 4406 static unsigned getLoadStoreRegOpcode(Register Reg, 4407 const TargetRegisterClass *RC, 4408 bool IsStackAligned, 4409 const X86Subtarget &STI, bool Load) { 4410 bool HasAVX = STI.hasAVX(); 4411 bool HasAVX512 = STI.hasAVX512(); 4412 bool HasVLX = STI.hasVLX(); 4413 bool HasEGPR = STI.hasEGPR(); 4414 4415 assert(RC != nullptr && "Invalid target register class"); 4416 switch (STI.getRegisterInfo()->getSpillSize(*RC)) { 4417 default: 4418 llvm_unreachable("Unknown spill size"); 4419 case 1: 4420 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); 4421 if (STI.is64Bit()) 4422 // Copying to or from a physical H register on x86-64 requires a NOREX 4423 // move. Otherwise use a normal move. 4424 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) 4425 return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; 4426 return Load ? X86::MOV8rm : X86::MOV8mr; 4427 case 2: 4428 if (X86::VK16RegClass.hasSubClassEq(RC)) 4429 return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm) 4430 : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk); 4431 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); 4432 return Load ? X86::MOV16rm : X86::MOV16mr; 4433 case 4: 4434 if (X86::GR32RegClass.hasSubClassEq(RC)) 4435 return Load ? X86::MOV32rm : X86::MOV32mr; 4436 if (X86::FR32XRegClass.hasSubClassEq(RC)) 4437 return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt 4438 : HasAVX ? X86::VMOVSSrm_alt 4439 : X86::MOVSSrm_alt) 4440 : (HasAVX512 ? X86::VMOVSSZmr 4441 : HasAVX ? X86::VMOVSSmr 4442 : X86::MOVSSmr); 4443 if (X86::RFP32RegClass.hasSubClassEq(RC)) 4444 return Load ? X86::LD_Fp32m : X86::ST_Fp32m; 4445 if (X86::VK32RegClass.hasSubClassEq(RC)) { 4446 assert(STI.hasBWI() && "KMOVD requires BWI"); 4447 return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm) 4448 : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk); 4449 } 4450 // All of these mask pair classes have the same spill size, the same kind 4451 // of kmov instructions can be used with all of them. 4452 if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || 4453 X86::VK2PAIRRegClass.hasSubClassEq(RC) || 4454 X86::VK4PAIRRegClass.hasSubClassEq(RC) || 4455 X86::VK8PAIRRegClass.hasSubClassEq(RC) || 4456 X86::VK16PAIRRegClass.hasSubClassEq(RC)) 4457 return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; 4458 if (X86::FR16RegClass.hasSubClassEq(RC) || 4459 X86::FR16XRegClass.hasSubClassEq(RC)) 4460 return getLoadStoreOpcodeForFP16(Load, STI); 4461 llvm_unreachable("Unknown 4-byte regclass"); 4462 case 8: 4463 if (X86::GR64RegClass.hasSubClassEq(RC)) 4464 return Load ? X86::MOV64rm : X86::MOV64mr; 4465 if (X86::FR64XRegClass.hasSubClassEq(RC)) 4466 return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt 4467 : HasAVX ? X86::VMOVSDrm_alt 4468 : X86::MOVSDrm_alt) 4469 : (HasAVX512 ? X86::VMOVSDZmr 4470 : HasAVX ? X86::VMOVSDmr 4471 : X86::MOVSDmr); 4472 if (X86::VR64RegClass.hasSubClassEq(RC)) 4473 return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; 4474 if (X86::RFP64RegClass.hasSubClassEq(RC)) 4475 return Load ? X86::LD_Fp64m : X86::ST_Fp64m; 4476 if (X86::VK64RegClass.hasSubClassEq(RC)) { 4477 assert(STI.hasBWI() && "KMOVQ requires BWI"); 4478 return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm) 4479 : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk); 4480 } 4481 llvm_unreachable("Unknown 8-byte regclass"); 4482 case 10: 4483 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); 4484 return Load ? X86::LD_Fp80m : X86::ST_FpP80m; 4485 case 16: { 4486 if (X86::VR128XRegClass.hasSubClassEq(RC)) { 4487 // If stack is realigned we can use aligned stores. 4488 if (IsStackAligned) 4489 return Load ? (HasVLX ? X86::VMOVAPSZ128rm 4490 : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX 4491 : HasAVX ? X86::VMOVAPSrm 4492 : X86::MOVAPSrm) 4493 : (HasVLX ? X86::VMOVAPSZ128mr 4494 : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX 4495 : HasAVX ? X86::VMOVAPSmr 4496 : X86::MOVAPSmr); 4497 else 4498 return Load ? (HasVLX ? X86::VMOVUPSZ128rm 4499 : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX 4500 : HasAVX ? X86::VMOVUPSrm 4501 : X86::MOVUPSrm) 4502 : (HasVLX ? X86::VMOVUPSZ128mr 4503 : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX 4504 : HasAVX ? X86::VMOVUPSmr 4505 : X86::MOVUPSmr); 4506 } 4507 llvm_unreachable("Unknown 16-byte regclass"); 4508 } 4509 case 32: 4510 assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); 4511 // If stack is realigned we can use aligned stores. 4512 if (IsStackAligned) 4513 return Load ? (HasVLX ? X86::VMOVAPSZ256rm 4514 : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX 4515 : X86::VMOVAPSYrm) 4516 : (HasVLX ? X86::VMOVAPSZ256mr 4517 : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX 4518 : X86::VMOVAPSYmr); 4519 else 4520 return Load ? (HasVLX ? X86::VMOVUPSZ256rm 4521 : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX 4522 : X86::VMOVUPSYrm) 4523 : (HasVLX ? X86::VMOVUPSZ256mr 4524 : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX 4525 : X86::VMOVUPSYmr); 4526 case 64: 4527 assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); 4528 assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); 4529 if (IsStackAligned) 4530 return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; 4531 else 4532 return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; 4533 case 1024: 4534 assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass"); 4535 assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE"); 4536 #define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC) 4537 return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD) 4538 : GET_EGPR_IF_ENABLED(X86::TILESTORED); 4539 #undef GET_EGPR_IF_ENABLED 4540 case 2048: 4541 assert(X86::TILEPAIRRegClass.hasSubClassEq(RC) && 4542 "Unknown 2048-byte regclass"); 4543 assert(STI.hasAMXTILE() && "Using 2048-bit register requires AMX-TILE"); 4544 return Load ? X86::PTILEPAIRLOAD : X86::PTILEPAIRSTORE; 4545 } 4546 } 4547 4548 std::optional<ExtAddrMode> 4549 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, 4550 const TargetRegisterInfo *TRI) const { 4551 const MCInstrDesc &Desc = MemI.getDesc(); 4552 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 4553 if (MemRefBegin < 0) 4554 return std::nullopt; 4555 4556 MemRefBegin += X86II::getOperandBias(Desc); 4557 4558 auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg); 4559 if (!BaseOp.isReg()) // Can be an MO_FrameIndex 4560 return std::nullopt; 4561 4562 const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp); 4563 // Displacement can be symbolic 4564 if (!DispMO.isImm()) 4565 return std::nullopt; 4566 4567 ExtAddrMode AM; 4568 AM.BaseReg = BaseOp.getReg(); 4569 AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg(); 4570 AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm(); 4571 AM.Displacement = DispMO.getImm(); 4572 return AM; 4573 } 4574 4575 bool X86InstrInfo::verifyInstruction(const MachineInstr &MI, 4576 StringRef &ErrInfo) const { 4577 std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MI, nullptr); 4578 if (!AMOrNone) 4579 return true; 4580 4581 ExtAddrMode AM = *AMOrNone; 4582 assert(AM.Form == ExtAddrMode::Formula::Basic); 4583 if (AM.ScaledReg != X86::NoRegister) { 4584 switch (AM.Scale) { 4585 case 1: 4586 case 2: 4587 case 4: 4588 case 8: 4589 break; 4590 default: 4591 ErrInfo = "Scale factor in address must be 1, 2, 4 or 8"; 4592 return false; 4593 } 4594 } 4595 if (!isInt<32>(AM.Displacement)) { 4596 ErrInfo = "Displacement in address must fit into 32-bit signed " 4597 "integer"; 4598 return false; 4599 } 4600 4601 return true; 4602 } 4603 4604 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI, 4605 const Register Reg, 4606 int64_t &ImmVal) const { 4607 Register MovReg = Reg; 4608 const MachineInstr *MovMI = &MI; 4609 4610 // Follow use-def for SUBREG_TO_REG to find the real move immediate 4611 // instruction. It is quite common for x86-64. 4612 if (MI.isSubregToReg()) { 4613 // We use following pattern to setup 64b immediate. 4614 // %8:gr32 = MOV32r0 implicit-def dead $eflags 4615 // %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit 4616 if (!MI.getOperand(1).isImm()) 4617 return false; 4618 unsigned FillBits = MI.getOperand(1).getImm(); 4619 unsigned SubIdx = MI.getOperand(3).getImm(); 4620 MovReg = MI.getOperand(2).getReg(); 4621 if (SubIdx != X86::sub_32bit || FillBits != 0) 4622 return false; 4623 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4624 MovMI = MRI.getUniqueVRegDef(MovReg); 4625 if (!MovMI) 4626 return false; 4627 } 4628 4629 if (MovMI->getOpcode() == X86::MOV32r0 && 4630 MovMI->getOperand(0).getReg() == MovReg) { 4631 ImmVal = 0; 4632 return true; 4633 } 4634 4635 if (MovMI->getOpcode() != X86::MOV32ri && 4636 MovMI->getOpcode() != X86::MOV64ri && 4637 MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri) 4638 return false; 4639 // Mov Src can be a global address. 4640 if (!MovMI->getOperand(1).isImm() || MovMI->getOperand(0).getReg() != MovReg) 4641 return false; 4642 ImmVal = MovMI->getOperand(1).getImm(); 4643 return true; 4644 } 4645 4646 bool X86InstrInfo::preservesZeroValueInReg( 4647 const MachineInstr *MI, const Register NullValueReg, 4648 const TargetRegisterInfo *TRI) const { 4649 if (!MI->modifiesRegister(NullValueReg, TRI)) 4650 return true; 4651 switch (MI->getOpcode()) { 4652 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax 4653 // X. 4654 case X86::SHR64ri: 4655 case X86::SHR32ri: 4656 case X86::SHL64ri: 4657 case X86::SHL32ri: 4658 assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && 4659 "expected for shift opcode!"); 4660 return MI->getOperand(0).getReg() == NullValueReg && 4661 MI->getOperand(1).getReg() == NullValueReg; 4662 // Zero extend of a sub-reg of NullValueReg into itself does not change the 4663 // null value. 4664 case X86::MOV32rr: 4665 return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) { 4666 return TRI->isSubRegisterEq(NullValueReg, MO.getReg()); 4667 }); 4668 default: 4669 return false; 4670 } 4671 llvm_unreachable("Should be handled above!"); 4672 } 4673 4674 bool X86InstrInfo::getMemOperandsWithOffsetWidth( 4675 const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps, 4676 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, 4677 const TargetRegisterInfo *TRI) const { 4678 const MCInstrDesc &Desc = MemOp.getDesc(); 4679 int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); 4680 if (MemRefBegin < 0) 4681 return false; 4682 4683 MemRefBegin += X86II::getOperandBias(Desc); 4684 4685 const MachineOperand *BaseOp = 4686 &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); 4687 if (!BaseOp->isReg()) // Can be an MO_FrameIndex 4688 return false; 4689 4690 if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) 4691 return false; 4692 4693 if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != 4694 X86::NoRegister) 4695 return false; 4696 4697 const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); 4698 4699 // Displacement can be symbolic 4700 if (!DispMO.isImm()) 4701 return false; 4702 4703 Offset = DispMO.getImm(); 4704 4705 if (!BaseOp->isReg()) 4706 return false; 4707 4708 OffsetIsScalable = false; 4709 // FIXME: Relying on memoperands() may not be right thing to do here. Check 4710 // with X86 maintainers, and fix it accordingly. For now, it is ok, since 4711 // there is no use of `Width` for X86 back-end at the moment. 4712 Width = 4713 !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0; 4714 BaseOps.push_back(BaseOp); 4715 return true; 4716 } 4717 4718 static unsigned getStoreRegOpcode(Register SrcReg, 4719 const TargetRegisterClass *RC, 4720 bool IsStackAligned, 4721 const X86Subtarget &STI) { 4722 return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false); 4723 } 4724 4725 static unsigned getLoadRegOpcode(Register DestReg, 4726 const TargetRegisterClass *RC, 4727 bool IsStackAligned, const X86Subtarget &STI) { 4728 return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true); 4729 } 4730 4731 static bool isAMXOpcode(unsigned Opc) { 4732 switch (Opc) { 4733 default: 4734 return false; 4735 case X86::TILELOADD: 4736 case X86::TILESTORED: 4737 case X86::TILELOADD_EVEX: 4738 case X86::TILESTORED_EVEX: 4739 case X86::PTILEPAIRLOAD: 4740 case X86::PTILEPAIRSTORE: 4741 return true; 4742 } 4743 } 4744 4745 void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB, 4746 MachineBasicBlock::iterator MI, 4747 unsigned Opc, Register Reg, int FrameIdx, 4748 bool isKill) const { 4749 switch (Opc) { 4750 default: 4751 llvm_unreachable("Unexpected special opcode!"); 4752 case X86::TILESTORED: 4753 case X86::TILESTORED_EVEX: 4754 case X86::PTILEPAIRSTORE: { 4755 // tilestored %tmm, (%sp, %idx) 4756 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 4757 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 4758 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 4759 MachineInstr *NewMI = 4760 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 4761 .addReg(Reg, getKillRegState(isKill)); 4762 MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg); 4763 MO.setReg(VirtReg); 4764 MO.setIsKill(true); 4765 break; 4766 } 4767 case X86::TILELOADD: 4768 case X86::TILELOADD_EVEX: 4769 case X86::PTILEPAIRLOAD: { 4770 // tileloadd (%sp, %idx), %tmm 4771 MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); 4772 Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); 4773 BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); 4774 MachineInstr *NewMI = addFrameReference( 4775 BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx); 4776 MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg); 4777 MO.setReg(VirtReg); 4778 MO.setIsKill(true); 4779 break; 4780 } 4781 } 4782 } 4783 4784 void X86InstrInfo::storeRegToStackSlot( 4785 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, 4786 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 4787 const TargetRegisterInfo *TRI, Register VReg, 4788 MachineInstr::MIFlag Flags) const { 4789 const MachineFunction &MF = *MBB.getParent(); 4790 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4791 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 4792 "Stack slot too small for store"); 4793 4794 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 4795 bool isAligned = 4796 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 4797 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 4798 4799 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); 4800 if (isAMXOpcode(Opc)) 4801 loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill); 4802 else 4803 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) 4804 .addReg(SrcReg, getKillRegState(isKill)) 4805 .setMIFlag(Flags); 4806 } 4807 4808 void X86InstrInfo::loadRegFromStackSlot( 4809 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, 4810 int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, 4811 Register VReg, MachineInstr::MIFlag Flags) const { 4812 const MachineFunction &MF = *MBB.getParent(); 4813 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4814 assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && 4815 "Load size exceeds stack slot"); 4816 unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); 4817 bool isAligned = 4818 (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || 4819 (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); 4820 4821 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); 4822 if (isAMXOpcode(Opc)) 4823 loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx); 4824 else 4825 addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx) 4826 .setMIFlag(Flags); 4827 } 4828 4829 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 4830 Register &SrcReg2, int64_t &CmpMask, 4831 int64_t &CmpValue) const { 4832 switch (MI.getOpcode()) { 4833 default: 4834 break; 4835 case X86::CMP64ri32: 4836 case X86::CMP32ri: 4837 case X86::CMP16ri: 4838 case X86::CMP8ri: 4839 SrcReg = MI.getOperand(0).getReg(); 4840 SrcReg2 = 0; 4841 if (MI.getOperand(1).isImm()) { 4842 CmpMask = ~0; 4843 CmpValue = MI.getOperand(1).getImm(); 4844 } else { 4845 CmpMask = CmpValue = 0; 4846 } 4847 return true; 4848 // A SUB can be used to perform comparison. 4849 CASE_ND(SUB64rm) 4850 CASE_ND(SUB32rm) 4851 CASE_ND(SUB16rm) 4852 CASE_ND(SUB8rm) 4853 SrcReg = MI.getOperand(1).getReg(); 4854 SrcReg2 = 0; 4855 CmpMask = 0; 4856 CmpValue = 0; 4857 return true; 4858 CASE_ND(SUB64rr) 4859 CASE_ND(SUB32rr) 4860 CASE_ND(SUB16rr) 4861 CASE_ND(SUB8rr) 4862 SrcReg = MI.getOperand(1).getReg(); 4863 SrcReg2 = MI.getOperand(2).getReg(); 4864 CmpMask = 0; 4865 CmpValue = 0; 4866 return true; 4867 CASE_ND(SUB64ri32) 4868 CASE_ND(SUB32ri) 4869 CASE_ND(SUB16ri) 4870 CASE_ND(SUB8ri) 4871 SrcReg = MI.getOperand(1).getReg(); 4872 SrcReg2 = 0; 4873 if (MI.getOperand(2).isImm()) { 4874 CmpMask = ~0; 4875 CmpValue = MI.getOperand(2).getImm(); 4876 } else { 4877 CmpMask = CmpValue = 0; 4878 } 4879 return true; 4880 case X86::CMP64rr: 4881 case X86::CMP32rr: 4882 case X86::CMP16rr: 4883 case X86::CMP8rr: 4884 SrcReg = MI.getOperand(0).getReg(); 4885 SrcReg2 = MI.getOperand(1).getReg(); 4886 CmpMask = 0; 4887 CmpValue = 0; 4888 return true; 4889 case X86::TEST8rr: 4890 case X86::TEST16rr: 4891 case X86::TEST32rr: 4892 case X86::TEST64rr: 4893 SrcReg = MI.getOperand(0).getReg(); 4894 if (MI.getOperand(1).getReg() != SrcReg) 4895 return false; 4896 // Compare against zero. 4897 SrcReg2 = 0; 4898 CmpMask = ~0; 4899 CmpValue = 0; 4900 return true; 4901 } 4902 return false; 4903 } 4904 4905 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI, 4906 Register SrcReg, Register SrcReg2, 4907 int64_t ImmMask, int64_t ImmValue, 4908 const MachineInstr &OI, bool *IsSwapped, 4909 int64_t *ImmDelta) const { 4910 switch (OI.getOpcode()) { 4911 case X86::CMP64rr: 4912 case X86::CMP32rr: 4913 case X86::CMP16rr: 4914 case X86::CMP8rr: 4915 CASE_ND(SUB64rr) 4916 CASE_ND(SUB32rr) 4917 CASE_ND(SUB16rr) 4918 CASE_ND(SUB8rr) { 4919 Register OISrcReg; 4920 Register OISrcReg2; 4921 int64_t OIMask; 4922 int64_t OIValue; 4923 if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) || 4924 OIMask != ImmMask || OIValue != ImmValue) 4925 return false; 4926 if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) { 4927 *IsSwapped = false; 4928 return true; 4929 } 4930 if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) { 4931 *IsSwapped = true; 4932 return true; 4933 } 4934 return false; 4935 } 4936 case X86::CMP64ri32: 4937 case X86::CMP32ri: 4938 case X86::CMP16ri: 4939 case X86::CMP8ri: 4940 CASE_ND(SUB64ri32) 4941 CASE_ND(SUB32ri) 4942 CASE_ND(SUB16ri) 4943 CASE_ND(SUB8ri) 4944 case X86::TEST64rr: 4945 case X86::TEST32rr: 4946 case X86::TEST16rr: 4947 case X86::TEST8rr: { 4948 if (ImmMask != 0) { 4949 Register OISrcReg; 4950 Register OISrcReg2; 4951 int64_t OIMask; 4952 int64_t OIValue; 4953 if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) && 4954 SrcReg == OISrcReg && ImmMask == OIMask) { 4955 if (OIValue == ImmValue) { 4956 *ImmDelta = 0; 4957 return true; 4958 } else if (static_cast<uint64_t>(ImmValue) == 4959 static_cast<uint64_t>(OIValue) - 1) { 4960 *ImmDelta = -1; 4961 return true; 4962 } else if (static_cast<uint64_t>(ImmValue) == 4963 static_cast<uint64_t>(OIValue) + 1) { 4964 *ImmDelta = 1; 4965 return true; 4966 } else { 4967 return false; 4968 } 4969 } 4970 } 4971 return FlagI.isIdenticalTo(OI); 4972 } 4973 default: 4974 return false; 4975 } 4976 } 4977 4978 /// Check whether the definition can be converted 4979 /// to remove a comparison against zero. 4980 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, 4981 bool &ClearsOverflowFlag) { 4982 NoSignFlag = false; 4983 ClearsOverflowFlag = false; 4984 4985 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and 4986 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during 4987 // Initial Exec to Local Exec relaxation. In these cases, we must not depend 4988 // on the EFLAGS modification of ADD actually happening in the final binary. 4989 if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) { 4990 unsigned Flags = MI.getOperand(5).getTargetFlags(); 4991 if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF || 4992 Flags == X86II::MO_GOTNTPOFF) 4993 return false; 4994 } 4995 4996 switch (MI.getOpcode()) { 4997 default: 4998 return false; 4999 5000 // The shift instructions only modify ZF if their shift count is non-zero. 5001 // N.B.: The processor truncates the shift count depending on the encoding. 5002 CASE_ND(SAR8ri) 5003 CASE_ND(SAR16ri) 5004 CASE_ND(SAR32ri) 5005 CASE_ND(SAR64ri) 5006 CASE_ND(SHR8ri) 5007 CASE_ND(SHR16ri) 5008 CASE_ND(SHR32ri) 5009 CASE_ND(SHR64ri) 5010 return getTruncatedShiftCount(MI, 2) != 0; 5011 5012 // Some left shift instructions can be turned into LEA instructions but only 5013 // if their flags aren't used. Avoid transforming such instructions. 5014 CASE_ND(SHL8ri) 5015 CASE_ND(SHL16ri) 5016 CASE_ND(SHL32ri) 5017 CASE_ND(SHL64ri) { 5018 unsigned ShAmt = getTruncatedShiftCount(MI, 2); 5019 if (isTruncatedShiftCountForLEA(ShAmt)) 5020 return false; 5021 return ShAmt != 0; 5022 } 5023 5024 CASE_ND(SHRD16rri8) 5025 CASE_ND(SHRD32rri8) 5026 CASE_ND(SHRD64rri8) 5027 CASE_ND(SHLD16rri8) 5028 CASE_ND(SHLD32rri8) 5029 CASE_ND(SHLD64rri8) 5030 return getTruncatedShiftCount(MI, 3) != 0; 5031 5032 CASE_ND(SUB64ri32) 5033 CASE_ND(SUB32ri) 5034 CASE_ND(SUB16ri) 5035 CASE_ND(SUB8ri) 5036 CASE_ND(SUB64rr) 5037 CASE_ND(SUB32rr) 5038 CASE_ND(SUB16rr) 5039 CASE_ND(SUB8rr) 5040 CASE_ND(SUB64rm) 5041 CASE_ND(SUB32rm) 5042 CASE_ND(SUB16rm) 5043 CASE_ND(SUB8rm) 5044 CASE_ND(DEC64r) 5045 CASE_ND(DEC32r) 5046 CASE_ND(DEC16r) 5047 CASE_ND(DEC8r) 5048 CASE_ND(ADD64ri32) 5049 CASE_ND(ADD32ri) 5050 CASE_ND(ADD16ri) 5051 CASE_ND(ADD8ri) 5052 CASE_ND(ADD64rr) 5053 CASE_ND(ADD32rr) 5054 CASE_ND(ADD16rr) 5055 CASE_ND(ADD8rr) 5056 CASE_ND(ADD64rm) 5057 CASE_ND(ADD32rm) 5058 CASE_ND(ADD16rm) 5059 CASE_ND(ADD8rm) 5060 CASE_ND(INC64r) 5061 CASE_ND(INC32r) 5062 CASE_ND(INC16r) 5063 CASE_ND(INC8r) 5064 CASE_ND(ADC64ri32) 5065 CASE_ND(ADC32ri) 5066 CASE_ND(ADC16ri) 5067 CASE_ND(ADC8ri) 5068 CASE_ND(ADC64rr) 5069 CASE_ND(ADC32rr) 5070 CASE_ND(ADC16rr) 5071 CASE_ND(ADC8rr) 5072 CASE_ND(ADC64rm) 5073 CASE_ND(ADC32rm) 5074 CASE_ND(ADC16rm) 5075 CASE_ND(ADC8rm) 5076 CASE_ND(SBB64ri32) 5077 CASE_ND(SBB32ri) 5078 CASE_ND(SBB16ri) 5079 CASE_ND(SBB8ri) 5080 CASE_ND(SBB64rr) 5081 CASE_ND(SBB32rr) 5082 CASE_ND(SBB16rr) 5083 CASE_ND(SBB8rr) 5084 CASE_ND(SBB64rm) 5085 CASE_ND(SBB32rm) 5086 CASE_ND(SBB16rm) 5087 CASE_ND(SBB8rm) 5088 CASE_ND(NEG8r) 5089 CASE_ND(NEG16r) 5090 CASE_ND(NEG32r) 5091 CASE_ND(NEG64r) 5092 case X86::LZCNT16rr: 5093 case X86::LZCNT16rm: 5094 case X86::LZCNT32rr: 5095 case X86::LZCNT32rm: 5096 case X86::LZCNT64rr: 5097 case X86::LZCNT64rm: 5098 case X86::POPCNT16rr: 5099 case X86::POPCNT16rm: 5100 case X86::POPCNT32rr: 5101 case X86::POPCNT32rm: 5102 case X86::POPCNT64rr: 5103 case X86::POPCNT64rm: 5104 case X86::TZCNT16rr: 5105 case X86::TZCNT16rm: 5106 case X86::TZCNT32rr: 5107 case X86::TZCNT32rm: 5108 case X86::TZCNT64rr: 5109 case X86::TZCNT64rm: 5110 return true; 5111 CASE_ND(AND64ri32) 5112 CASE_ND(AND32ri) 5113 CASE_ND(AND16ri) 5114 CASE_ND(AND8ri) 5115 CASE_ND(AND64rr) 5116 CASE_ND(AND32rr) 5117 CASE_ND(AND16rr) 5118 CASE_ND(AND8rr) 5119 CASE_ND(AND64rm) 5120 CASE_ND(AND32rm) 5121 CASE_ND(AND16rm) 5122 CASE_ND(AND8rm) 5123 CASE_ND(XOR64ri32) 5124 CASE_ND(XOR32ri) 5125 CASE_ND(XOR16ri) 5126 CASE_ND(XOR8ri) 5127 CASE_ND(XOR64rr) 5128 CASE_ND(XOR32rr) 5129 CASE_ND(XOR16rr) 5130 CASE_ND(XOR8rr) 5131 CASE_ND(XOR64rm) 5132 CASE_ND(XOR32rm) 5133 CASE_ND(XOR16rm) 5134 CASE_ND(XOR8rm) 5135 CASE_ND(OR64ri32) 5136 CASE_ND(OR32ri) 5137 CASE_ND(OR16ri) 5138 CASE_ND(OR8ri) 5139 CASE_ND(OR64rr) 5140 CASE_ND(OR32rr) 5141 CASE_ND(OR16rr) 5142 CASE_ND(OR8rr) 5143 CASE_ND(OR64rm) 5144 CASE_ND(OR32rm) 5145 CASE_ND(OR16rm) 5146 CASE_ND(OR8rm) 5147 case X86::ANDN32rr: 5148 case X86::ANDN32rm: 5149 case X86::ANDN64rr: 5150 case X86::ANDN64rm: 5151 case X86::BLSI32rr: 5152 case X86::BLSI32rm: 5153 case X86::BLSI64rr: 5154 case X86::BLSI64rm: 5155 case X86::BLSMSK32rr: 5156 case X86::BLSMSK32rm: 5157 case X86::BLSMSK64rr: 5158 case X86::BLSMSK64rm: 5159 case X86::BLSR32rr: 5160 case X86::BLSR32rm: 5161 case X86::BLSR64rr: 5162 case X86::BLSR64rm: 5163 case X86::BLCFILL32rr: 5164 case X86::BLCFILL32rm: 5165 case X86::BLCFILL64rr: 5166 case X86::BLCFILL64rm: 5167 case X86::BLCI32rr: 5168 case X86::BLCI32rm: 5169 case X86::BLCI64rr: 5170 case X86::BLCI64rm: 5171 case X86::BLCIC32rr: 5172 case X86::BLCIC32rm: 5173 case X86::BLCIC64rr: 5174 case X86::BLCIC64rm: 5175 case X86::BLCMSK32rr: 5176 case X86::BLCMSK32rm: 5177 case X86::BLCMSK64rr: 5178 case X86::BLCMSK64rm: 5179 case X86::BLCS32rr: 5180 case X86::BLCS32rm: 5181 case X86::BLCS64rr: 5182 case X86::BLCS64rm: 5183 case X86::BLSFILL32rr: 5184 case X86::BLSFILL32rm: 5185 case X86::BLSFILL64rr: 5186 case X86::BLSFILL64rm: 5187 case X86::BLSIC32rr: 5188 case X86::BLSIC32rm: 5189 case X86::BLSIC64rr: 5190 case X86::BLSIC64rm: 5191 case X86::BZHI32rr: 5192 case X86::BZHI32rm: 5193 case X86::BZHI64rr: 5194 case X86::BZHI64rm: 5195 case X86::T1MSKC32rr: 5196 case X86::T1MSKC32rm: 5197 case X86::T1MSKC64rr: 5198 case X86::T1MSKC64rm: 5199 case X86::TZMSK32rr: 5200 case X86::TZMSK32rm: 5201 case X86::TZMSK64rr: 5202 case X86::TZMSK64rm: 5203 // These instructions clear the overflow flag just like TEST. 5204 // FIXME: These are not the only instructions in this switch that clear the 5205 // overflow flag. 5206 ClearsOverflowFlag = true; 5207 return true; 5208 case X86::BEXTR32rr: 5209 case X86::BEXTR64rr: 5210 case X86::BEXTR32rm: 5211 case X86::BEXTR64rm: 5212 case X86::BEXTRI32ri: 5213 case X86::BEXTRI32mi: 5214 case X86::BEXTRI64ri: 5215 case X86::BEXTRI64mi: 5216 // BEXTR doesn't update the sign flag so we can't use it. It does clear 5217 // the overflow flag, but that's not useful without the sign flag. 5218 NoSignFlag = true; 5219 return true; 5220 } 5221 } 5222 5223 /// Check whether the use can be converted to remove a comparison against zero. 5224 /// Returns the EFLAGS condition and the operand that we are comparing against zero. 5225 static std::pair<X86::CondCode, unsigned> isUseDefConvertible(const MachineInstr &MI) { 5226 switch (MI.getOpcode()) { 5227 default: 5228 return std::make_pair(X86::COND_INVALID, ~0U); 5229 CASE_ND(NEG8r) 5230 CASE_ND(NEG16r) 5231 CASE_ND(NEG32r) 5232 CASE_ND(NEG64r) 5233 return std::make_pair(X86::COND_AE, 1U); 5234 case X86::LZCNT16rr: 5235 case X86::LZCNT32rr: 5236 case X86::LZCNT64rr: 5237 return std::make_pair(X86::COND_B, 1U); 5238 case X86::POPCNT16rr: 5239 case X86::POPCNT32rr: 5240 case X86::POPCNT64rr: 5241 return std::make_pair(X86::COND_E, 1U); 5242 case X86::TZCNT16rr: 5243 case X86::TZCNT32rr: 5244 case X86::TZCNT64rr: 5245 return std::make_pair(X86::COND_B, 1U); 5246 case X86::BSF16rr: 5247 case X86::BSF32rr: 5248 case X86::BSF64rr: 5249 case X86::BSR16rr: 5250 case X86::BSR32rr: 5251 case X86::BSR64rr: 5252 return std::make_pair(X86::COND_E, 2U); 5253 case X86::BLSI32rr: 5254 case X86::BLSI64rr: 5255 return std::make_pair(X86::COND_AE, 1U); 5256 case X86::BLSR32rr: 5257 case X86::BLSR64rr: 5258 case X86::BLSMSK32rr: 5259 case X86::BLSMSK64rr: 5260 return std::make_pair(X86::COND_B, 1U); 5261 // TODO: TBM instructions. 5262 } 5263 } 5264 5265 /// Check if there exists an earlier instruction that 5266 /// operates on the same source operands and sets flags in the same way as 5267 /// Compare; remove Compare if possible. 5268 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 5269 Register SrcReg2, int64_t CmpMask, 5270 int64_t CmpValue, 5271 const MachineRegisterInfo *MRI) const { 5272 // Check whether we can replace SUB with CMP. 5273 switch (CmpInstr.getOpcode()) { 5274 default: 5275 break; 5276 CASE_ND(SUB64ri32) 5277 CASE_ND(SUB32ri) 5278 CASE_ND(SUB16ri) 5279 CASE_ND(SUB8ri) 5280 CASE_ND(SUB64rm) 5281 CASE_ND(SUB32rm) 5282 CASE_ND(SUB16rm) 5283 CASE_ND(SUB8rm) 5284 CASE_ND(SUB64rr) 5285 CASE_ND(SUB32rr) 5286 CASE_ND(SUB16rr) 5287 CASE_ND(SUB8rr) { 5288 if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) 5289 return false; 5290 // There is no use of the destination register, we can replace SUB with CMP. 5291 unsigned NewOpcode = 0; 5292 #define FROM_TO(A, B) \ 5293 CASE_ND(A) NewOpcode = X86::B; \ 5294 break; 5295 switch (CmpInstr.getOpcode()) { 5296 default: 5297 llvm_unreachable("Unreachable!"); 5298 FROM_TO(SUB64rm, CMP64rm) 5299 FROM_TO(SUB32rm, CMP32rm) 5300 FROM_TO(SUB16rm, CMP16rm) 5301 FROM_TO(SUB8rm, CMP8rm) 5302 FROM_TO(SUB64rr, CMP64rr) 5303 FROM_TO(SUB32rr, CMP32rr) 5304 FROM_TO(SUB16rr, CMP16rr) 5305 FROM_TO(SUB8rr, CMP8rr) 5306 FROM_TO(SUB64ri32, CMP64ri32) 5307 FROM_TO(SUB32ri, CMP32ri) 5308 FROM_TO(SUB16ri, CMP16ri) 5309 FROM_TO(SUB8ri, CMP8ri) 5310 } 5311 #undef FROM_TO 5312 CmpInstr.setDesc(get(NewOpcode)); 5313 CmpInstr.removeOperand(0); 5314 // Mutating this instruction invalidates any debug data associated with it. 5315 CmpInstr.dropDebugNumber(); 5316 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. 5317 if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || 5318 NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) 5319 return false; 5320 } 5321 } 5322 5323 // The following code tries to remove the comparison by re-using EFLAGS 5324 // from earlier instructions. 5325 5326 bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); 5327 5328 // Transformation currently requires SSA values. 5329 if (SrcReg2.isPhysical()) 5330 return false; 5331 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 5332 assert(SrcRegDef && "Must have a definition (SSA)"); 5333 5334 MachineInstr *MI = nullptr; 5335 MachineInstr *Sub = nullptr; 5336 MachineInstr *Movr0Inst = nullptr; 5337 bool NoSignFlag = false; 5338 bool ClearsOverflowFlag = false; 5339 bool ShouldUpdateCC = false; 5340 bool IsSwapped = false; 5341 unsigned OpNo = 0; 5342 X86::CondCode NewCC = X86::COND_INVALID; 5343 int64_t ImmDelta = 0; 5344 5345 // Search backward from CmpInstr for the next instruction defining EFLAGS. 5346 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5347 MachineBasicBlock &CmpMBB = *CmpInstr.getParent(); 5348 MachineBasicBlock::reverse_iterator From = 5349 std::next(MachineBasicBlock::reverse_iterator(CmpInstr)); 5350 for (MachineBasicBlock *MBB = &CmpMBB;;) { 5351 for (MachineInstr &Inst : make_range(From, MBB->rend())) { 5352 // Try to use EFLAGS from the instruction defining %SrcReg. Example: 5353 // %eax = addl ... 5354 // ... // EFLAGS not changed 5355 // testl %eax, %eax // <-- can be removed 5356 if (&Inst == SrcRegDef) { 5357 if (IsCmpZero && 5358 isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) { 5359 MI = &Inst; 5360 break; 5361 } 5362 5363 // Look back for the following pattern, in which case the 5364 // test16rr/test64rr instruction could be erased. 5365 // 5366 // Example for test16rr: 5367 // %reg = and32ri %in_reg, 5 5368 // ... // EFLAGS not changed. 5369 // %src_reg = copy %reg.sub_16bit:gr32 5370 // test16rr %src_reg, %src_reg, implicit-def $eflags 5371 // Example for test64rr: 5372 // %reg = and32ri %in_reg, 5 5373 // ... // EFLAGS not changed. 5374 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index 5375 // test64rr %src_reg, %src_reg, implicit-def $eflags 5376 MachineInstr *AndInstr = nullptr; 5377 if (IsCmpZero && 5378 findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI, 5379 NoSignFlag, ClearsOverflowFlag)) { 5380 assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode())); 5381 MI = AndInstr; 5382 break; 5383 } 5384 // Cannot find other candidates before definition of SrcReg. 5385 return false; 5386 } 5387 5388 if (Inst.modifiesRegister(X86::EFLAGS, TRI)) { 5389 // Try to use EFLAGS produced by an instruction reading %SrcReg. 5390 // Example: 5391 // %eax = ... 5392 // ... 5393 // popcntl %eax 5394 // ... // EFLAGS not changed 5395 // testl %eax, %eax // <-- can be removed 5396 if (IsCmpZero) { 5397 std::tie(NewCC, OpNo) = isUseDefConvertible(Inst); 5398 if (NewCC != X86::COND_INVALID && Inst.getOperand(OpNo).isReg() && 5399 Inst.getOperand(OpNo).getReg() == SrcReg) { 5400 ShouldUpdateCC = true; 5401 MI = &Inst; 5402 break; 5403 } 5404 } 5405 5406 // Try to use EFLAGS from an instruction with similar flag results. 5407 // Example: 5408 // sub x, y or cmp x, y 5409 // ... // EFLAGS not changed 5410 // cmp x, y // <-- can be removed 5411 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue, 5412 Inst, &IsSwapped, &ImmDelta)) { 5413 Sub = &Inst; 5414 break; 5415 } 5416 5417 // MOV32r0 is implemented with xor which clobbers condition code. It is 5418 // safe to move up, if the definition to EFLAGS is dead and earlier 5419 // instructions do not read or write EFLAGS. 5420 if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 && 5421 Inst.registerDefIsDead(X86::EFLAGS, TRI)) { 5422 Movr0Inst = &Inst; 5423 continue; 5424 } 5425 5426 // Cannot do anything for any other EFLAG changes. 5427 return false; 5428 } 5429 } 5430 5431 if (MI || Sub) 5432 break; 5433 5434 // Reached begin of basic block. Continue in predecessor if there is 5435 // exactly one. 5436 if (MBB->pred_size() != 1) 5437 return false; 5438 MBB = *MBB->pred_begin(); 5439 From = MBB->rbegin(); 5440 } 5441 5442 // Scan forward from the instruction after CmpInstr for uses of EFLAGS. 5443 // It is safe to remove CmpInstr if EFLAGS is redefined or killed. 5444 // If we are done with the basic block, we need to check whether EFLAGS is 5445 // live-out. 5446 bool FlagsMayLiveOut = true; 5447 SmallVector<std::pair<MachineInstr *, X86::CondCode>, 4> OpsToUpdate; 5448 MachineBasicBlock::iterator AfterCmpInstr = 5449 std::next(MachineBasicBlock::iterator(CmpInstr)); 5450 for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) { 5451 bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); 5452 bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); 5453 // We should check the usage if this instruction uses and updates EFLAGS. 5454 if (!UseEFLAGS && ModifyEFLAGS) { 5455 // It is safe to remove CmpInstr if EFLAGS is updated again. 5456 FlagsMayLiveOut = false; 5457 break; 5458 } 5459 if (!UseEFLAGS && !ModifyEFLAGS) 5460 continue; 5461 5462 // EFLAGS is used by this instruction. 5463 X86::CondCode OldCC = X86::getCondFromMI(Instr); 5464 if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID) 5465 return false; 5466 5467 X86::CondCode ReplacementCC = X86::COND_INVALID; 5468 if (MI) { 5469 switch (OldCC) { 5470 default: 5471 break; 5472 case X86::COND_A: 5473 case X86::COND_AE: 5474 case X86::COND_B: 5475 case X86::COND_BE: 5476 // CF is used, we can't perform this optimization. 5477 return false; 5478 case X86::COND_G: 5479 case X86::COND_GE: 5480 case X86::COND_L: 5481 case X86::COND_LE: 5482 // If SF is used, but the instruction doesn't update the SF, then we 5483 // can't do the optimization. 5484 if (NoSignFlag) 5485 return false; 5486 [[fallthrough]]; 5487 case X86::COND_O: 5488 case X86::COND_NO: 5489 // If OF is used, the instruction needs to clear it like CmpZero does. 5490 if (!ClearsOverflowFlag) 5491 return false; 5492 break; 5493 case X86::COND_S: 5494 case X86::COND_NS: 5495 // If SF is used, but the instruction doesn't update the SF, then we 5496 // can't do the optimization. 5497 if (NoSignFlag) 5498 return false; 5499 break; 5500 } 5501 5502 // If we're updating the condition code check if we have to reverse the 5503 // condition. 5504 if (ShouldUpdateCC) 5505 switch (OldCC) { 5506 default: 5507 return false; 5508 case X86::COND_E: 5509 ReplacementCC = NewCC; 5510 break; 5511 case X86::COND_NE: 5512 ReplacementCC = GetOppositeBranchCondition(NewCC); 5513 break; 5514 } 5515 } else if (IsSwapped) { 5516 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs 5517 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 5518 // We swap the condition code and synthesize the new opcode. 5519 ReplacementCC = getSwappedCondition(OldCC); 5520 if (ReplacementCC == X86::COND_INVALID) 5521 return false; 5522 ShouldUpdateCC = true; 5523 } else if (ImmDelta != 0) { 5524 unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg)); 5525 // Shift amount for min/max constants to adjust for 8/16/32 instruction 5526 // sizes. 5527 switch (OldCC) { 5528 case X86::COND_L: // x <s (C + 1) --> x <=s C 5529 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) 5530 return false; 5531 ReplacementCC = X86::COND_LE; 5532 break; 5533 case X86::COND_B: // x <u (C + 1) --> x <=u C 5534 if (ImmDelta != 1 || CmpValue == 0) 5535 return false; 5536 ReplacementCC = X86::COND_BE; 5537 break; 5538 case X86::COND_GE: // x >=s (C + 1) --> x >s C 5539 if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) 5540 return false; 5541 ReplacementCC = X86::COND_G; 5542 break; 5543 case X86::COND_AE: // x >=u (C + 1) --> x >u C 5544 if (ImmDelta != 1 || CmpValue == 0) 5545 return false; 5546 ReplacementCC = X86::COND_A; 5547 break; 5548 case X86::COND_G: // x >s (C - 1) --> x >=s C 5549 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) 5550 return false; 5551 ReplacementCC = X86::COND_GE; 5552 break; 5553 case X86::COND_A: // x >u (C - 1) --> x >=u C 5554 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) 5555 return false; 5556 ReplacementCC = X86::COND_AE; 5557 break; 5558 case X86::COND_LE: // x <=s (C - 1) --> x <s C 5559 if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) 5560 return false; 5561 ReplacementCC = X86::COND_L; 5562 break; 5563 case X86::COND_BE: // x <=u (C - 1) --> x <u C 5564 if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) 5565 return false; 5566 ReplacementCC = X86::COND_B; 5567 break; 5568 default: 5569 return false; 5570 } 5571 ShouldUpdateCC = true; 5572 } 5573 5574 if (ShouldUpdateCC && ReplacementCC != OldCC) { 5575 // Push the MachineInstr to OpsToUpdate. 5576 // If it is safe to remove CmpInstr, the condition code of these 5577 // instructions will be modified. 5578 OpsToUpdate.push_back(std::make_pair(&Instr, ReplacementCC)); 5579 } 5580 if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { 5581 // It is safe to remove CmpInstr if EFLAGS is updated again or killed. 5582 FlagsMayLiveOut = false; 5583 break; 5584 } 5585 } 5586 5587 // If we have to update users but EFLAGS is live-out abort, since we cannot 5588 // easily find all of the users. 5589 if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) { 5590 for (MachineBasicBlock *Successor : CmpMBB.successors()) 5591 if (Successor->isLiveIn(X86::EFLAGS)) 5592 return false; 5593 } 5594 5595 // The instruction to be updated is either Sub or MI. 5596 assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set"); 5597 Sub = MI != nullptr ? MI : Sub; 5598 MachineBasicBlock *SubBB = Sub->getParent(); 5599 // Move Movr0Inst to the appropriate place before Sub. 5600 if (Movr0Inst) { 5601 // Only move within the same block so we don't accidentally move to a 5602 // block with higher execution frequency. 5603 if (&CmpMBB != SubBB) 5604 return false; 5605 // Look backwards until we find a def that doesn't use the current EFLAGS. 5606 MachineBasicBlock::reverse_iterator InsertI = Sub, 5607 InsertE = Sub->getParent()->rend(); 5608 for (; InsertI != InsertE; ++InsertI) { 5609 MachineInstr *Instr = &*InsertI; 5610 if (!Instr->readsRegister(X86::EFLAGS, TRI) && 5611 Instr->modifiesRegister(X86::EFLAGS, TRI)) { 5612 Movr0Inst->getParent()->remove(Movr0Inst); 5613 Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), 5614 Movr0Inst); 5615 break; 5616 } 5617 } 5618 if (InsertI == InsertE) 5619 return false; 5620 } 5621 5622 // Make sure Sub instruction defines EFLAGS and mark the def live. 5623 MachineOperand *FlagDef = 5624 Sub->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); 5625 assert(FlagDef && "Unable to locate a def EFLAGS operand"); 5626 FlagDef->setIsDead(false); 5627 5628 CmpInstr.eraseFromParent(); 5629 5630 // Modify the condition code of instructions in OpsToUpdate. 5631 for (auto &Op : OpsToUpdate) { 5632 Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) 5633 .setImm(Op.second); 5634 } 5635 // Add EFLAGS to block live-ins between CmpBB and block of flags producer. 5636 for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB; 5637 MBB = *MBB->pred_begin()) { 5638 assert(MBB->pred_size() == 1 && "Expected exactly one predecessor"); 5639 if (!MBB->isLiveIn(X86::EFLAGS)) 5640 MBB->addLiveIn(X86::EFLAGS); 5641 } 5642 return true; 5643 } 5644 5645 /// Try to remove the load by folding it to a register 5646 /// operand at the use. We fold the load instructions if load defines a virtual 5647 /// register, the virtual register is used once in the same BB, and the 5648 /// instructions in-between do not load or store, and have no side effects. 5649 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, 5650 const MachineRegisterInfo *MRI, 5651 Register &FoldAsLoadDefReg, 5652 MachineInstr *&DefMI) const { 5653 // Check whether we can move DefMI here. 5654 DefMI = MRI->getVRegDef(FoldAsLoadDefReg); 5655 assert(DefMI); 5656 bool SawStore = false; 5657 if (!DefMI->isSafeToMove(SawStore)) 5658 return nullptr; 5659 5660 // Collect information about virtual register operands of MI. 5661 SmallVector<unsigned, 1> SrcOperandIds; 5662 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 5663 MachineOperand &MO = MI.getOperand(i); 5664 if (!MO.isReg()) 5665 continue; 5666 Register Reg = MO.getReg(); 5667 if (Reg != FoldAsLoadDefReg) 5668 continue; 5669 // Do not fold if we have a subreg use or a def. 5670 if (MO.getSubReg() || MO.isDef()) 5671 return nullptr; 5672 SrcOperandIds.push_back(i); 5673 } 5674 if (SrcOperandIds.empty()) 5675 return nullptr; 5676 5677 // Check whether we can fold the def into SrcOperandId. 5678 if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { 5679 FoldAsLoadDefReg = 0; 5680 return FoldMI; 5681 } 5682 5683 return nullptr; 5684 } 5685 5686 /// \returns true if the instruction can be changed to COPY when imm is 0. 5687 static bool canConvert2Copy(unsigned Opc) { 5688 switch (Opc) { 5689 default: 5690 return false; 5691 CASE_ND(ADD64ri32) 5692 CASE_ND(SUB64ri32) 5693 CASE_ND(OR64ri32) 5694 CASE_ND(XOR64ri32) 5695 CASE_ND(ADD32ri) 5696 CASE_ND(SUB32ri) 5697 CASE_ND(OR32ri) 5698 CASE_ND(XOR32ri) 5699 return true; 5700 } 5701 } 5702 5703 /// Convert an ALUrr opcode to corresponding ALUri opcode. Such as 5704 /// ADD32rr ==> ADD32ri 5705 static unsigned convertALUrr2ALUri(unsigned Opc) { 5706 switch (Opc) { 5707 default: 5708 return 0; 5709 #define FROM_TO(FROM, TO) \ 5710 case X86::FROM: \ 5711 return X86::TO; \ 5712 case X86::FROM##_ND: \ 5713 return X86::TO##_ND; 5714 FROM_TO(ADD64rr, ADD64ri32) 5715 FROM_TO(ADC64rr, ADC64ri32) 5716 FROM_TO(SUB64rr, SUB64ri32) 5717 FROM_TO(SBB64rr, SBB64ri32) 5718 FROM_TO(AND64rr, AND64ri32) 5719 FROM_TO(OR64rr, OR64ri32) 5720 FROM_TO(XOR64rr, XOR64ri32) 5721 FROM_TO(SHR64rCL, SHR64ri) 5722 FROM_TO(SHL64rCL, SHL64ri) 5723 FROM_TO(SAR64rCL, SAR64ri) 5724 FROM_TO(ROL64rCL, ROL64ri) 5725 FROM_TO(ROR64rCL, ROR64ri) 5726 FROM_TO(RCL64rCL, RCL64ri) 5727 FROM_TO(RCR64rCL, RCR64ri) 5728 FROM_TO(ADD32rr, ADD32ri) 5729 FROM_TO(ADC32rr, ADC32ri) 5730 FROM_TO(SUB32rr, SUB32ri) 5731 FROM_TO(SBB32rr, SBB32ri) 5732 FROM_TO(AND32rr, AND32ri) 5733 FROM_TO(OR32rr, OR32ri) 5734 FROM_TO(XOR32rr, XOR32ri) 5735 FROM_TO(SHR32rCL, SHR32ri) 5736 FROM_TO(SHL32rCL, SHL32ri) 5737 FROM_TO(SAR32rCL, SAR32ri) 5738 FROM_TO(ROL32rCL, ROL32ri) 5739 FROM_TO(ROR32rCL, ROR32ri) 5740 FROM_TO(RCL32rCL, RCL32ri) 5741 FROM_TO(RCR32rCL, RCR32ri) 5742 #undef FROM_TO 5743 #define FROM_TO(FROM, TO) \ 5744 case X86::FROM: \ 5745 return X86::TO; 5746 FROM_TO(TEST64rr, TEST64ri32) 5747 FROM_TO(CTEST64rr, CTEST64ri32) 5748 FROM_TO(CMP64rr, CMP64ri32) 5749 FROM_TO(CCMP64rr, CCMP64ri32) 5750 FROM_TO(TEST32rr, TEST32ri) 5751 FROM_TO(CTEST32rr, CTEST32ri) 5752 FROM_TO(CMP32rr, CMP32ri) 5753 FROM_TO(CCMP32rr, CCMP32ri) 5754 #undef FROM_TO 5755 } 5756 } 5757 5758 /// Reg is assigned ImmVal in DefMI, and is used in UseMI. 5759 /// If MakeChange is true, this function tries to replace Reg by ImmVal in 5760 /// UseMI. If MakeChange is false, just check if folding is possible. 5761 // 5762 /// \returns true if folding is successful or possible. 5763 bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI, 5764 Register Reg, int64_t ImmVal, 5765 MachineRegisterInfo *MRI, 5766 bool MakeChange) const { 5767 bool Modified = false; 5768 5769 // 64 bit operations accept sign extended 32 bit immediates. 5770 // 32 bit operations accept all 32 bit immediates, so we don't need to check 5771 // them. 5772 const TargetRegisterClass *RC = nullptr; 5773 if (Reg.isVirtual()) 5774 RC = MRI->getRegClass(Reg); 5775 if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) || 5776 (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) { 5777 if (!isInt<32>(ImmVal)) 5778 return false; 5779 } 5780 5781 if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg()) 5782 return false; 5783 // Immediate has larger code size than register. So avoid folding the 5784 // immediate if it has more than 1 use and we are optimizing for size. 5785 if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() && 5786 !MRI->hasOneNonDBGUse(Reg)) 5787 return false; 5788 5789 unsigned Opc = UseMI.getOpcode(); 5790 unsigned NewOpc; 5791 if (Opc == TargetOpcode::COPY) { 5792 Register ToReg = UseMI.getOperand(0).getReg(); 5793 const TargetRegisterClass *RC = nullptr; 5794 if (ToReg.isVirtual()) 5795 RC = MRI->getRegClass(ToReg); 5796 bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) || 5797 (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg)); 5798 bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) || 5799 (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg)); 5800 bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) || 5801 (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg)); 5802 5803 if (ImmVal == 0) { 5804 // We have MOV32r0 only. 5805 if (!GR32Reg) 5806 return false; 5807 } 5808 5809 if (GR64Reg) { 5810 if (isUInt<32>(ImmVal)) 5811 NewOpc = X86::MOV32ri64; 5812 else 5813 NewOpc = X86::MOV64ri; 5814 } else if (GR32Reg) { 5815 NewOpc = X86::MOV32ri; 5816 if (ImmVal == 0) { 5817 // MOV32r0 clobbers EFLAGS. 5818 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5819 if (UseMI.getParent()->computeRegisterLiveness( 5820 TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead) 5821 return false; 5822 5823 // MOV32r0 is different than other cases because it doesn't encode the 5824 // immediate in the instruction. So we directly modify it here. 5825 if (!MakeChange) 5826 return true; 5827 UseMI.setDesc(get(X86::MOV32r0)); 5828 UseMI.removeOperand( 5829 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); 5830 UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true, 5831 /*isImp=*/true, 5832 /*isKill=*/false, 5833 /*isDead=*/true)); 5834 Modified = true; 5835 } 5836 } else if (GR8Reg) 5837 NewOpc = X86::MOV8ri; 5838 else 5839 return false; 5840 } else 5841 NewOpc = convertALUrr2ALUri(Opc); 5842 5843 if (!NewOpc) 5844 return false; 5845 5846 // For SUB instructions the immediate can only be the second source operand. 5847 if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri || 5848 NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri || 5849 NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND || 5850 NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) && 5851 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2) 5852 return false; 5853 // For CMP instructions the immediate can only be at index 1. 5854 if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) || 5855 (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) && 5856 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1) 5857 return false; 5858 5859 using namespace X86; 5860 if (isSHL(Opc) || isSHR(Opc) || isSAR(Opc) || isROL(Opc) || isROR(Opc) || 5861 isRCL(Opc) || isRCR(Opc)) { 5862 unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr); 5863 if (RegIdx < 2) 5864 return false; 5865 if (!isInt<8>(ImmVal)) 5866 return false; 5867 assert(Reg == X86::CL); 5868 5869 if (!MakeChange) 5870 return true; 5871 UseMI.setDesc(get(NewOpc)); 5872 UseMI.removeOperand(RegIdx); 5873 UseMI.addOperand(MachineOperand::CreateImm(ImmVal)); 5874 // Reg is physical register $cl, so we don't know if DefMI is dead through 5875 // MRI. Let the caller handle it, or pass dead-mi-elimination can delete 5876 // the dead physical register define instruction. 5877 return true; 5878 } 5879 5880 if (!MakeChange) 5881 return true; 5882 5883 if (!Modified) { 5884 // Modify the instruction. 5885 if (ImmVal == 0 && canConvert2Copy(NewOpc) && 5886 UseMI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) { 5887 // %100 = add %101, 0 5888 // ==> 5889 // %100 = COPY %101 5890 UseMI.setDesc(get(TargetOpcode::COPY)); 5891 UseMI.removeOperand( 5892 UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); 5893 UseMI.removeOperand( 5894 UseMI.findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr)); 5895 UseMI.untieRegOperand(0); 5896 UseMI.clearFlag(MachineInstr::MIFlag::NoSWrap); 5897 UseMI.clearFlag(MachineInstr::MIFlag::NoUWrap); 5898 } else { 5899 unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; 5900 unsigned ImmOpNum = 2; 5901 if (!UseMI.getOperand(0).isDef()) { 5902 Op1 = 0; // TEST, CMP, CTEST, CCMP 5903 ImmOpNum = 1; 5904 } 5905 if (Opc == TargetOpcode::COPY) 5906 ImmOpNum = 1; 5907 if (findCommutedOpIndices(UseMI, Op1, Op2) && 5908 UseMI.getOperand(Op1).getReg() == Reg) 5909 commuteInstruction(UseMI); 5910 5911 assert(UseMI.getOperand(ImmOpNum).getReg() == Reg); 5912 UseMI.setDesc(get(NewOpc)); 5913 UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal); 5914 } 5915 } 5916 5917 if (Reg.isVirtual() && MRI->use_nodbg_empty(Reg)) 5918 DefMI->eraseFromBundle(); 5919 5920 return true; 5921 } 5922 5923 /// foldImmediate - 'Reg' is known to be defined by a move immediate 5924 /// instruction, try to fold the immediate into the use instruction. 5925 bool X86InstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 5926 Register Reg, MachineRegisterInfo *MRI) const { 5927 int64_t ImmVal; 5928 if (!getConstValDefinedInReg(DefMI, Reg, ImmVal)) 5929 return false; 5930 5931 return foldImmediateImpl(UseMI, &DefMI, Reg, ImmVal, MRI, true); 5932 } 5933 5934 /// Expand a single-def pseudo instruction to a two-addr 5935 /// instruction with two undef reads of the register being defined. 5936 /// This is used for mapping: 5937 /// %xmm4 = V_SET0 5938 /// to: 5939 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 5940 /// 5941 static bool Expand2AddrUndef(MachineInstrBuilder &MIB, 5942 const MCInstrDesc &Desc) { 5943 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 5944 Register Reg = MIB.getReg(0); 5945 MIB->setDesc(Desc); 5946 5947 // MachineInstr::addOperand() will insert explicit operands before any 5948 // implicit operands. 5949 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 5950 // But we don't trust that. 5951 assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand"); 5952 return true; 5953 } 5954 5955 /// Expand a single-def pseudo instruction to a two-addr 5956 /// instruction with two %k0 reads. 5957 /// This is used for mapping: 5958 /// %k4 = K_SET1 5959 /// to: 5960 /// %k4 = KXNORrr %k0, %k0 5961 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, 5962 Register Reg) { 5963 assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); 5964 MIB->setDesc(Desc); 5965 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); 5966 return true; 5967 } 5968 5969 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, 5970 bool MinusOne) { 5971 MachineBasicBlock &MBB = *MIB->getParent(); 5972 const DebugLoc &DL = MIB->getDebugLoc(); 5973 Register Reg = MIB.getReg(0); 5974 5975 // Insert the XOR. 5976 BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) 5977 .addReg(Reg, RegState::Undef) 5978 .addReg(Reg, RegState::Undef); 5979 5980 // Turn the pseudo into an INC or DEC. 5981 MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); 5982 MIB.addReg(Reg); 5983 5984 return true; 5985 } 5986 5987 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, 5988 const TargetInstrInfo &TII, 5989 const X86Subtarget &Subtarget) { 5990 MachineBasicBlock &MBB = *MIB->getParent(); 5991 const DebugLoc &DL = MIB->getDebugLoc(); 5992 int64_t Imm = MIB->getOperand(1).getImm(); 5993 assert(Imm != 0 && "Using push/pop for 0 is not efficient."); 5994 MachineBasicBlock::iterator I = MIB.getInstr(); 5995 5996 int StackAdjustment; 5997 5998 if (Subtarget.is64Bit()) { 5999 assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || 6000 MIB->getOpcode() == X86::MOV32ImmSExti8); 6001 6002 // Can't use push/pop lowering if the function might write to the red zone. 6003 X86MachineFunctionInfo *X86FI = 6004 MBB.getParent()->getInfo<X86MachineFunctionInfo>(); 6005 if (X86FI->getUsesRedZone()) { 6006 MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8 6007 ? X86::MOV32ri 6008 : X86::MOV64ri)); 6009 return true; 6010 } 6011 6012 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and 6013 // widen the register if necessary. 6014 StackAdjustment = 8; 6015 BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm); 6016 MIB->setDesc(TII.get(X86::POP64r)); 6017 MIB->getOperand(0).setReg(getX86SubSuperRegister(MIB.getReg(0), 64)); 6018 } else { 6019 assert(MIB->getOpcode() == X86::MOV32ImmSExti8); 6020 StackAdjustment = 4; 6021 BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm); 6022 MIB->setDesc(TII.get(X86::POP32r)); 6023 } 6024 MIB->removeOperand(1); 6025 MIB->addImplicitDefUseOperands(*MBB.getParent()); 6026 6027 // Build CFI if necessary. 6028 MachineFunction &MF = *MBB.getParent(); 6029 const X86FrameLowering *TFL = Subtarget.getFrameLowering(); 6030 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); 6031 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); 6032 bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; 6033 if (EmitCFI) { 6034 TFL->BuildCFI( 6035 MBB, I, DL, 6036 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); 6037 TFL->BuildCFI( 6038 MBB, std::next(I), DL, 6039 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); 6040 } 6041 6042 return true; 6043 } 6044 6045 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different 6046 // code sequence is needed for other targets. 6047 static void expandLoadStackGuard(MachineInstrBuilder &MIB, 6048 const TargetInstrInfo &TII) { 6049 MachineBasicBlock &MBB = *MIB->getParent(); 6050 const DebugLoc &DL = MIB->getDebugLoc(); 6051 Register Reg = MIB.getReg(0); 6052 const GlobalValue *GV = 6053 cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); 6054 auto Flags = MachineMemOperand::MOLoad | 6055 MachineMemOperand::MODereferenceable | 6056 MachineMemOperand::MOInvariant; 6057 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 6058 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8)); 6059 MachineBasicBlock::iterator I = MIB.getInstr(); 6060 6061 BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg) 6062 .addReg(X86::RIP) 6063 .addImm(1) 6064 .addReg(0) 6065 .addGlobalAddress(GV, 0, X86II::MO_GOTPCREL) 6066 .addReg(0) 6067 .addMemOperand(MMO); 6068 MIB->setDebugLoc(DL); 6069 MIB->setDesc(TII.get(X86::MOV64rm)); 6070 MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); 6071 } 6072 6073 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { 6074 MachineBasicBlock &MBB = *MIB->getParent(); 6075 MachineFunction &MF = *MBB.getParent(); 6076 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); 6077 const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); 6078 unsigned XorOp = 6079 MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; 6080 MIB->setDesc(TII.get(XorOp)); 6081 MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); 6082 return true; 6083 } 6084 6085 // This is used to handle spills for 128/256-bit registers when we have AVX512, 6086 // but not VLX. If it uses an extended register we need to use an instruction 6087 // that loads the lower 128/256-bit, but is available with only AVX512F. 6088 static bool expandNOVLXLoad(MachineInstrBuilder &MIB, 6089 const TargetRegisterInfo *TRI, 6090 const MCInstrDesc &LoadDesc, 6091 const MCInstrDesc &BroadcastDesc, unsigned SubIdx) { 6092 Register DestReg = MIB.getReg(0); 6093 // Check if DestReg is XMM16-31 or YMM16-31. 6094 if (TRI->getEncodingValue(DestReg) < 16) { 6095 // We can use a normal VEX encoded load. 6096 MIB->setDesc(LoadDesc); 6097 } else { 6098 // Use a 128/256-bit VBROADCAST instruction. 6099 MIB->setDesc(BroadcastDesc); 6100 // Change the destination to a 512-bit register. 6101 DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); 6102 MIB->getOperand(0).setReg(DestReg); 6103 } 6104 return true; 6105 } 6106 6107 // This is used to handle spills for 128/256-bit registers when we have AVX512, 6108 // but not VLX. If it uses an extended register we need to use an instruction 6109 // that stores the lower 128/256-bit, but is available with only AVX512F. 6110 static bool expandNOVLXStore(MachineInstrBuilder &MIB, 6111 const TargetRegisterInfo *TRI, 6112 const MCInstrDesc &StoreDesc, 6113 const MCInstrDesc &ExtractDesc, unsigned SubIdx) { 6114 Register SrcReg = MIB.getReg(X86::AddrNumOperands); 6115 // Check if DestReg is XMM16-31 or YMM16-31. 6116 if (TRI->getEncodingValue(SrcReg) < 16) { 6117 // We can use a normal VEX encoded store. 6118 MIB->setDesc(StoreDesc); 6119 } else { 6120 // Use a VEXTRACTF instruction. 6121 MIB->setDesc(ExtractDesc); 6122 // Change the destination to a 512-bit register. 6123 SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); 6124 MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); 6125 MIB.addImm(0x0); // Append immediate to extract from the lower bits. 6126 } 6127 6128 return true; 6129 } 6130 6131 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { 6132 MIB->setDesc(Desc); 6133 int64_t ShiftAmt = MIB->getOperand(2).getImm(); 6134 // Temporarily remove the immediate so we can add another source register. 6135 MIB->removeOperand(2); 6136 // Add the register. Don't copy the kill flag if there is one. 6137 MIB.addReg(MIB.getReg(1), getUndefRegState(MIB->getOperand(1).isUndef())); 6138 // Add back the immediate. 6139 MIB.addImm(ShiftAmt); 6140 return true; 6141 } 6142 6143 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 6144 bool HasAVX = Subtarget.hasAVX(); 6145 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 6146 switch (MI.getOpcode()) { 6147 case X86::MOV32r0: 6148 return Expand2AddrUndef(MIB, get(X86::XOR32rr)); 6149 case X86::MOV32r1: 6150 return expandMOV32r1(MIB, *this, /*MinusOne=*/false); 6151 case X86::MOV32r_1: 6152 return expandMOV32r1(MIB, *this, /*MinusOne=*/true); 6153 case X86::MOV32ImmSExti8: 6154 case X86::MOV64ImmSExti8: 6155 return ExpandMOVImmSExti8(MIB, *this, Subtarget); 6156 case X86::SETB_C32r: 6157 return Expand2AddrUndef(MIB, get(X86::SBB32rr)); 6158 case X86::SETB_C64r: 6159 return Expand2AddrUndef(MIB, get(X86::SBB64rr)); 6160 case X86::MMX_SET0: 6161 return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr)); 6162 case X86::V_SET0: 6163 case X86::FsFLD0SS: 6164 case X86::FsFLD0SD: 6165 case X86::FsFLD0SH: 6166 case X86::FsFLD0F128: 6167 return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); 6168 case X86::AVX_SET0: { 6169 assert(HasAVX && "AVX not supported"); 6170 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6171 Register SrcReg = MIB.getReg(0); 6172 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 6173 MIB->getOperand(0).setReg(XReg); 6174 Expand2AddrUndef(MIB, get(X86::VXORPSrr)); 6175 MIB.addReg(SrcReg, RegState::ImplicitDefine); 6176 return true; 6177 } 6178 case X86::AVX512_128_SET0: 6179 case X86::AVX512_FsFLD0SH: 6180 case X86::AVX512_FsFLD0SS: 6181 case X86::AVX512_FsFLD0SD: 6182 case X86::AVX512_FsFLD0F128: { 6183 bool HasVLX = Subtarget.hasVLX(); 6184 Register SrcReg = MIB.getReg(0); 6185 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6186 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) 6187 return Expand2AddrUndef(MIB, 6188 get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 6189 // Extended register without VLX. Use a larger XOR. 6190 SrcReg = 6191 TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); 6192 MIB->getOperand(0).setReg(SrcReg); 6193 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 6194 } 6195 case X86::AVX512_256_SET0: 6196 case X86::AVX512_512_SET0: { 6197 bool HasVLX = Subtarget.hasVLX(); 6198 Register SrcReg = MIB.getReg(0); 6199 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6200 if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { 6201 Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); 6202 MIB->getOperand(0).setReg(XReg); 6203 Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); 6204 MIB.addReg(SrcReg, RegState::ImplicitDefine); 6205 return true; 6206 } 6207 if (MI.getOpcode() == X86::AVX512_256_SET0) { 6208 // No VLX so we must reference a zmm. 6209 unsigned ZReg = 6210 TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); 6211 MIB->getOperand(0).setReg(ZReg); 6212 } 6213 return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); 6214 } 6215 case X86::V_SETALLONES: 6216 return Expand2AddrUndef(MIB, 6217 get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); 6218 case X86::AVX2_SETALLONES: 6219 return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); 6220 case X86::AVX1_SETALLONES: { 6221 Register Reg = MIB.getReg(0); 6222 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. 6223 MIB->setDesc(get(X86::VCMPPSYrri)); 6224 MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); 6225 return true; 6226 } 6227 case X86::AVX512_512_SETALLONES: { 6228 Register Reg = MIB.getReg(0); 6229 MIB->setDesc(get(X86::VPTERNLOGDZrri)); 6230 // VPTERNLOGD needs 3 register inputs and an immediate. 6231 // 0xff will return 1s for any input. 6232 MIB.addReg(Reg, RegState::Undef) 6233 .addReg(Reg, RegState::Undef) 6234 .addReg(Reg, RegState::Undef) 6235 .addImm(0xff); 6236 return true; 6237 } 6238 case X86::AVX512_512_SEXT_MASK_32: 6239 case X86::AVX512_512_SEXT_MASK_64: { 6240 Register Reg = MIB.getReg(0); 6241 Register MaskReg = MIB.getReg(1); 6242 unsigned MaskState = getRegState(MIB->getOperand(1)); 6243 unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) 6244 ? X86::VPTERNLOGQZrrikz 6245 : X86::VPTERNLOGDZrrikz; 6246 MI.removeOperand(1); 6247 MIB->setDesc(get(Opc)); 6248 // VPTERNLOG needs 3 register inputs and an immediate. 6249 // 0xff will return 1s for any input. 6250 MIB.addReg(Reg, RegState::Undef) 6251 .addReg(MaskReg, MaskState) 6252 .addReg(Reg, RegState::Undef) 6253 .addReg(Reg, RegState::Undef) 6254 .addImm(0xff); 6255 return true; 6256 } 6257 case X86::VMOVAPSZ128rm_NOVLX: 6258 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), 6259 get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm); 6260 case X86::VMOVUPSZ128rm_NOVLX: 6261 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), 6262 get(X86::VBROADCASTF32X4Zrm), X86::sub_xmm); 6263 case X86::VMOVAPSZ256rm_NOVLX: 6264 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), 6265 get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm); 6266 case X86::VMOVUPSZ256rm_NOVLX: 6267 return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), 6268 get(X86::VBROADCASTF64X4Zrm), X86::sub_ymm); 6269 case X86::VMOVAPSZ128mr_NOVLX: 6270 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), 6271 get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm); 6272 case X86::VMOVUPSZ128mr_NOVLX: 6273 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), 6274 get(X86::VEXTRACTF32X4Zmri), X86::sub_xmm); 6275 case X86::VMOVAPSZ256mr_NOVLX: 6276 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), 6277 get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm); 6278 case X86::VMOVUPSZ256mr_NOVLX: 6279 return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), 6280 get(X86::VEXTRACTF64X4Zmri), X86::sub_ymm); 6281 case X86::MOV32ri64: { 6282 Register Reg = MIB.getReg(0); 6283 Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit); 6284 MI.setDesc(get(X86::MOV32ri)); 6285 MIB->getOperand(0).setReg(Reg32); 6286 MIB.addReg(Reg, RegState::ImplicitDefine); 6287 return true; 6288 } 6289 6290 case X86::RDFLAGS32: 6291 case X86::RDFLAGS64: { 6292 unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64; 6293 MachineBasicBlock &MBB = *MIB->getParent(); 6294 6295 MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(), 6296 get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32)) 6297 .getInstr(); 6298 6299 // Permit reads of the EFLAGS and DF registers without them being defined. 6300 // This intrinsic exists to read external processor state in flags, such as 6301 // the trap flag, interrupt flag, and direction flag, none of which are 6302 // modeled by the backend. 6303 assert(NewMI->getOperand(2).getReg() == X86::EFLAGS && 6304 "Unexpected register in operand! Should be EFLAGS."); 6305 NewMI->getOperand(2).setIsUndef(); 6306 assert(NewMI->getOperand(3).getReg() == X86::DF && 6307 "Unexpected register in operand! Should be DF."); 6308 NewMI->getOperand(3).setIsUndef(); 6309 6310 MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r)); 6311 return true; 6312 } 6313 6314 case X86::WRFLAGS32: 6315 case X86::WRFLAGS64: { 6316 unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64; 6317 MachineBasicBlock &MBB = *MIB->getParent(); 6318 6319 BuildMI(MBB, MI, MIB->getDebugLoc(), 6320 get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 6321 .addReg(MI.getOperand(0).getReg()); 6322 BuildMI(MBB, MI, MIB->getDebugLoc(), 6323 get(Is64Bit ? X86::POPF64 : X86::POPF32)); 6324 MI.eraseFromParent(); 6325 return true; 6326 } 6327 6328 // KNL does not recognize dependency-breaking idioms for mask registers, 6329 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. 6330 // Using %k0 as the undef input register is a performance heuristic based 6331 // on the assumption that %k0 is used less frequently than the other mask 6332 // registers, since it is not usable as a write mask. 6333 // FIXME: A more advanced approach would be to choose the best input mask 6334 // register based on context. 6335 case X86::KSET0W: 6336 return Expand2AddrKreg(MIB, get(X86::KXORWkk), X86::K0); 6337 case X86::KSET0D: 6338 return Expand2AddrKreg(MIB, get(X86::KXORDkk), X86::K0); 6339 case X86::KSET0Q: 6340 return Expand2AddrKreg(MIB, get(X86::KXORQkk), X86::K0); 6341 case X86::KSET1W: 6342 return Expand2AddrKreg(MIB, get(X86::KXNORWkk), X86::K0); 6343 case X86::KSET1D: 6344 return Expand2AddrKreg(MIB, get(X86::KXNORDkk), X86::K0); 6345 case X86::KSET1Q: 6346 return Expand2AddrKreg(MIB, get(X86::KXNORQkk), X86::K0); 6347 case TargetOpcode::LOAD_STACK_GUARD: 6348 expandLoadStackGuard(MIB, *this); 6349 return true; 6350 case X86::XOR64_FP: 6351 case X86::XOR32_FP: 6352 return expandXorFP(MIB, *this); 6353 case X86::SHLDROT32ri: 6354 return expandSHXDROT(MIB, get(X86::SHLD32rri8)); 6355 case X86::SHLDROT64ri: 6356 return expandSHXDROT(MIB, get(X86::SHLD64rri8)); 6357 case X86::SHRDROT32ri: 6358 return expandSHXDROT(MIB, get(X86::SHRD32rri8)); 6359 case X86::SHRDROT64ri: 6360 return expandSHXDROT(MIB, get(X86::SHRD64rri8)); 6361 case X86::ADD8rr_DB: 6362 MIB->setDesc(get(X86::OR8rr)); 6363 break; 6364 case X86::ADD16rr_DB: 6365 MIB->setDesc(get(X86::OR16rr)); 6366 break; 6367 case X86::ADD32rr_DB: 6368 MIB->setDesc(get(X86::OR32rr)); 6369 break; 6370 case X86::ADD64rr_DB: 6371 MIB->setDesc(get(X86::OR64rr)); 6372 break; 6373 case X86::ADD8ri_DB: 6374 MIB->setDesc(get(X86::OR8ri)); 6375 break; 6376 case X86::ADD16ri_DB: 6377 MIB->setDesc(get(X86::OR16ri)); 6378 break; 6379 case X86::ADD32ri_DB: 6380 MIB->setDesc(get(X86::OR32ri)); 6381 break; 6382 case X86::ADD64ri32_DB: 6383 MIB->setDesc(get(X86::OR64ri32)); 6384 break; 6385 } 6386 return false; 6387 } 6388 6389 /// Return true for all instructions that only update 6390 /// the first 32 or 64-bits of the destination register and leave the rest 6391 /// unmodified. This can be used to avoid folding loads if the instructions 6392 /// only update part of the destination register, and the non-updated part is 6393 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these 6394 /// instructions breaks the partial register dependency and it can improve 6395 /// performance. e.g.: 6396 /// 6397 /// movss (%rdi), %xmm0 6398 /// cvtss2sd %xmm0, %xmm0 6399 /// 6400 /// Instead of 6401 /// cvtss2sd (%rdi), %xmm0 6402 /// 6403 /// FIXME: This should be turned into a TSFlags. 6404 /// 6405 static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget, 6406 bool ForLoadFold = false) { 6407 switch (Opcode) { 6408 case X86::CVTSI2SSrr: 6409 case X86::CVTSI2SSrm: 6410 case X86::CVTSI642SSrr: 6411 case X86::CVTSI642SSrm: 6412 case X86::CVTSI2SDrr: 6413 case X86::CVTSI2SDrm: 6414 case X86::CVTSI642SDrr: 6415 case X86::CVTSI642SDrm: 6416 // Load folding won't effect the undef register update since the input is 6417 // a GPR. 6418 return !ForLoadFold; 6419 case X86::CVTSD2SSrr: 6420 case X86::CVTSD2SSrm: 6421 case X86::CVTSS2SDrr: 6422 case X86::CVTSS2SDrm: 6423 case X86::MOVHPDrm: 6424 case X86::MOVHPSrm: 6425 case X86::MOVLPDrm: 6426 case X86::MOVLPSrm: 6427 case X86::RCPSSr: 6428 case X86::RCPSSm: 6429 case X86::RCPSSr_Int: 6430 case X86::RCPSSm_Int: 6431 case X86::ROUNDSDri: 6432 case X86::ROUNDSDmi: 6433 case X86::ROUNDSSri: 6434 case X86::ROUNDSSmi: 6435 case X86::RSQRTSSr: 6436 case X86::RSQRTSSm: 6437 case X86::RSQRTSSr_Int: 6438 case X86::RSQRTSSm_Int: 6439 case X86::SQRTSSr: 6440 case X86::SQRTSSm: 6441 case X86::SQRTSSr_Int: 6442 case X86::SQRTSSm_Int: 6443 case X86::SQRTSDr: 6444 case X86::SQRTSDm: 6445 case X86::SQRTSDr_Int: 6446 case X86::SQRTSDm_Int: 6447 return true; 6448 case X86::VFCMULCPHZ128rm: 6449 case X86::VFCMULCPHZ128rmb: 6450 case X86::VFCMULCPHZ128rmbkz: 6451 case X86::VFCMULCPHZ128rmkz: 6452 case X86::VFCMULCPHZ128rr: 6453 case X86::VFCMULCPHZ128rrkz: 6454 case X86::VFCMULCPHZ256rm: 6455 case X86::VFCMULCPHZ256rmb: 6456 case X86::VFCMULCPHZ256rmbkz: 6457 case X86::VFCMULCPHZ256rmkz: 6458 case X86::VFCMULCPHZ256rr: 6459 case X86::VFCMULCPHZ256rrkz: 6460 case X86::VFCMULCPHZrm: 6461 case X86::VFCMULCPHZrmb: 6462 case X86::VFCMULCPHZrmbkz: 6463 case X86::VFCMULCPHZrmkz: 6464 case X86::VFCMULCPHZrr: 6465 case X86::VFCMULCPHZrrb: 6466 case X86::VFCMULCPHZrrbkz: 6467 case X86::VFCMULCPHZrrkz: 6468 case X86::VFMULCPHZ128rm: 6469 case X86::VFMULCPHZ128rmb: 6470 case X86::VFMULCPHZ128rmbkz: 6471 case X86::VFMULCPHZ128rmkz: 6472 case X86::VFMULCPHZ128rr: 6473 case X86::VFMULCPHZ128rrkz: 6474 case X86::VFMULCPHZ256rm: 6475 case X86::VFMULCPHZ256rmb: 6476 case X86::VFMULCPHZ256rmbkz: 6477 case X86::VFMULCPHZ256rmkz: 6478 case X86::VFMULCPHZ256rr: 6479 case X86::VFMULCPHZ256rrkz: 6480 case X86::VFMULCPHZrm: 6481 case X86::VFMULCPHZrmb: 6482 case X86::VFMULCPHZrmbkz: 6483 case X86::VFMULCPHZrmkz: 6484 case X86::VFMULCPHZrr: 6485 case X86::VFMULCPHZrrb: 6486 case X86::VFMULCPHZrrbkz: 6487 case X86::VFMULCPHZrrkz: 6488 case X86::VFCMULCSHZrm: 6489 case X86::VFCMULCSHZrmkz: 6490 case X86::VFCMULCSHZrr: 6491 case X86::VFCMULCSHZrrb: 6492 case X86::VFCMULCSHZrrbkz: 6493 case X86::VFCMULCSHZrrkz: 6494 case X86::VFMULCSHZrm: 6495 case X86::VFMULCSHZrmkz: 6496 case X86::VFMULCSHZrr: 6497 case X86::VFMULCSHZrrb: 6498 case X86::VFMULCSHZrrbkz: 6499 case X86::VFMULCSHZrrkz: 6500 return Subtarget.hasMULCFalseDeps(); 6501 case X86::VPERMDYrm: 6502 case X86::VPERMDYrr: 6503 case X86::VPERMQYmi: 6504 case X86::VPERMQYri: 6505 case X86::VPERMPSYrm: 6506 case X86::VPERMPSYrr: 6507 case X86::VPERMPDYmi: 6508 case X86::VPERMPDYri: 6509 case X86::VPERMDZ256rm: 6510 case X86::VPERMDZ256rmb: 6511 case X86::VPERMDZ256rmbkz: 6512 case X86::VPERMDZ256rmkz: 6513 case X86::VPERMDZ256rr: 6514 case X86::VPERMDZ256rrkz: 6515 case X86::VPERMDZrm: 6516 case X86::VPERMDZrmb: 6517 case X86::VPERMDZrmbkz: 6518 case X86::VPERMDZrmkz: 6519 case X86::VPERMDZrr: 6520 case X86::VPERMDZrrkz: 6521 case X86::VPERMQZ256mbi: 6522 case X86::VPERMQZ256mbikz: 6523 case X86::VPERMQZ256mi: 6524 case X86::VPERMQZ256mikz: 6525 case X86::VPERMQZ256ri: 6526 case X86::VPERMQZ256rikz: 6527 case X86::VPERMQZ256rm: 6528 case X86::VPERMQZ256rmb: 6529 case X86::VPERMQZ256rmbkz: 6530 case X86::VPERMQZ256rmkz: 6531 case X86::VPERMQZ256rr: 6532 case X86::VPERMQZ256rrkz: 6533 case X86::VPERMQZmbi: 6534 case X86::VPERMQZmbikz: 6535 case X86::VPERMQZmi: 6536 case X86::VPERMQZmikz: 6537 case X86::VPERMQZri: 6538 case X86::VPERMQZrikz: 6539 case X86::VPERMQZrm: 6540 case X86::VPERMQZrmb: 6541 case X86::VPERMQZrmbkz: 6542 case X86::VPERMQZrmkz: 6543 case X86::VPERMQZrr: 6544 case X86::VPERMQZrrkz: 6545 case X86::VPERMPSZ256rm: 6546 case X86::VPERMPSZ256rmb: 6547 case X86::VPERMPSZ256rmbkz: 6548 case X86::VPERMPSZ256rmkz: 6549 case X86::VPERMPSZ256rr: 6550 case X86::VPERMPSZ256rrkz: 6551 case X86::VPERMPSZrm: 6552 case X86::VPERMPSZrmb: 6553 case X86::VPERMPSZrmbkz: 6554 case X86::VPERMPSZrmkz: 6555 case X86::VPERMPSZrr: 6556 case X86::VPERMPSZrrkz: 6557 case X86::VPERMPDZ256mbi: 6558 case X86::VPERMPDZ256mbikz: 6559 case X86::VPERMPDZ256mi: 6560 case X86::VPERMPDZ256mikz: 6561 case X86::VPERMPDZ256ri: 6562 case X86::VPERMPDZ256rikz: 6563 case X86::VPERMPDZ256rm: 6564 case X86::VPERMPDZ256rmb: 6565 case X86::VPERMPDZ256rmbkz: 6566 case X86::VPERMPDZ256rmkz: 6567 case X86::VPERMPDZ256rr: 6568 case X86::VPERMPDZ256rrkz: 6569 case X86::VPERMPDZmbi: 6570 case X86::VPERMPDZmbikz: 6571 case X86::VPERMPDZmi: 6572 case X86::VPERMPDZmikz: 6573 case X86::VPERMPDZri: 6574 case X86::VPERMPDZrikz: 6575 case X86::VPERMPDZrm: 6576 case X86::VPERMPDZrmb: 6577 case X86::VPERMPDZrmbkz: 6578 case X86::VPERMPDZrmkz: 6579 case X86::VPERMPDZrr: 6580 case X86::VPERMPDZrrkz: 6581 return Subtarget.hasPERMFalseDeps(); 6582 case X86::VRANGEPDZ128rmbi: 6583 case X86::VRANGEPDZ128rmbikz: 6584 case X86::VRANGEPDZ128rmi: 6585 case X86::VRANGEPDZ128rmikz: 6586 case X86::VRANGEPDZ128rri: 6587 case X86::VRANGEPDZ128rrikz: 6588 case X86::VRANGEPDZ256rmbi: 6589 case X86::VRANGEPDZ256rmbikz: 6590 case X86::VRANGEPDZ256rmi: 6591 case X86::VRANGEPDZ256rmikz: 6592 case X86::VRANGEPDZ256rri: 6593 case X86::VRANGEPDZ256rrikz: 6594 case X86::VRANGEPDZrmbi: 6595 case X86::VRANGEPDZrmbikz: 6596 case X86::VRANGEPDZrmi: 6597 case X86::VRANGEPDZrmikz: 6598 case X86::VRANGEPDZrri: 6599 case X86::VRANGEPDZrrib: 6600 case X86::VRANGEPDZrribkz: 6601 case X86::VRANGEPDZrrikz: 6602 case X86::VRANGEPSZ128rmbi: 6603 case X86::VRANGEPSZ128rmbikz: 6604 case X86::VRANGEPSZ128rmi: 6605 case X86::VRANGEPSZ128rmikz: 6606 case X86::VRANGEPSZ128rri: 6607 case X86::VRANGEPSZ128rrikz: 6608 case X86::VRANGEPSZ256rmbi: 6609 case X86::VRANGEPSZ256rmbikz: 6610 case X86::VRANGEPSZ256rmi: 6611 case X86::VRANGEPSZ256rmikz: 6612 case X86::VRANGEPSZ256rri: 6613 case X86::VRANGEPSZ256rrikz: 6614 case X86::VRANGEPSZrmbi: 6615 case X86::VRANGEPSZrmbikz: 6616 case X86::VRANGEPSZrmi: 6617 case X86::VRANGEPSZrmikz: 6618 case X86::VRANGEPSZrri: 6619 case X86::VRANGEPSZrrib: 6620 case X86::VRANGEPSZrribkz: 6621 case X86::VRANGEPSZrrikz: 6622 case X86::VRANGESDZrmi: 6623 case X86::VRANGESDZrmikz: 6624 case X86::VRANGESDZrri: 6625 case X86::VRANGESDZrrib: 6626 case X86::VRANGESDZrribkz: 6627 case X86::VRANGESDZrrikz: 6628 case X86::VRANGESSZrmi: 6629 case X86::VRANGESSZrmikz: 6630 case X86::VRANGESSZrri: 6631 case X86::VRANGESSZrrib: 6632 case X86::VRANGESSZrribkz: 6633 case X86::VRANGESSZrrikz: 6634 return Subtarget.hasRANGEFalseDeps(); 6635 case X86::VGETMANTSSZrmi: 6636 case X86::VGETMANTSSZrmikz: 6637 case X86::VGETMANTSSZrri: 6638 case X86::VGETMANTSSZrrib: 6639 case X86::VGETMANTSSZrribkz: 6640 case X86::VGETMANTSSZrrikz: 6641 case X86::VGETMANTSDZrmi: 6642 case X86::VGETMANTSDZrmikz: 6643 case X86::VGETMANTSDZrri: 6644 case X86::VGETMANTSDZrrib: 6645 case X86::VGETMANTSDZrribkz: 6646 case X86::VGETMANTSDZrrikz: 6647 case X86::VGETMANTSHZrmi: 6648 case X86::VGETMANTSHZrmikz: 6649 case X86::VGETMANTSHZrri: 6650 case X86::VGETMANTSHZrrib: 6651 case X86::VGETMANTSHZrribkz: 6652 case X86::VGETMANTSHZrrikz: 6653 case X86::VGETMANTPSZ128rmbi: 6654 case X86::VGETMANTPSZ128rmbikz: 6655 case X86::VGETMANTPSZ128rmi: 6656 case X86::VGETMANTPSZ128rmikz: 6657 case X86::VGETMANTPSZ256rmbi: 6658 case X86::VGETMANTPSZ256rmbikz: 6659 case X86::VGETMANTPSZ256rmi: 6660 case X86::VGETMANTPSZ256rmikz: 6661 case X86::VGETMANTPSZrmbi: 6662 case X86::VGETMANTPSZrmbikz: 6663 case X86::VGETMANTPSZrmi: 6664 case X86::VGETMANTPSZrmikz: 6665 case X86::VGETMANTPDZ128rmbi: 6666 case X86::VGETMANTPDZ128rmbikz: 6667 case X86::VGETMANTPDZ128rmi: 6668 case X86::VGETMANTPDZ128rmikz: 6669 case X86::VGETMANTPDZ256rmbi: 6670 case X86::VGETMANTPDZ256rmbikz: 6671 case X86::VGETMANTPDZ256rmi: 6672 case X86::VGETMANTPDZ256rmikz: 6673 case X86::VGETMANTPDZrmbi: 6674 case X86::VGETMANTPDZrmbikz: 6675 case X86::VGETMANTPDZrmi: 6676 case X86::VGETMANTPDZrmikz: 6677 return Subtarget.hasGETMANTFalseDeps(); 6678 case X86::VPMULLQZ128rm: 6679 case X86::VPMULLQZ128rmb: 6680 case X86::VPMULLQZ128rmbkz: 6681 case X86::VPMULLQZ128rmkz: 6682 case X86::VPMULLQZ128rr: 6683 case X86::VPMULLQZ128rrkz: 6684 case X86::VPMULLQZ256rm: 6685 case X86::VPMULLQZ256rmb: 6686 case X86::VPMULLQZ256rmbkz: 6687 case X86::VPMULLQZ256rmkz: 6688 case X86::VPMULLQZ256rr: 6689 case X86::VPMULLQZ256rrkz: 6690 case X86::VPMULLQZrm: 6691 case X86::VPMULLQZrmb: 6692 case X86::VPMULLQZrmbkz: 6693 case X86::VPMULLQZrmkz: 6694 case X86::VPMULLQZrr: 6695 case X86::VPMULLQZrrkz: 6696 return Subtarget.hasMULLQFalseDeps(); 6697 // GPR 6698 case X86::POPCNT32rm: 6699 case X86::POPCNT32rr: 6700 case X86::POPCNT64rm: 6701 case X86::POPCNT64rr: 6702 return Subtarget.hasPOPCNTFalseDeps(); 6703 case X86::LZCNT32rm: 6704 case X86::LZCNT32rr: 6705 case X86::LZCNT64rm: 6706 case X86::LZCNT64rr: 6707 case X86::TZCNT32rm: 6708 case X86::TZCNT32rr: 6709 case X86::TZCNT64rm: 6710 case X86::TZCNT64rr: 6711 return Subtarget.hasLZCNTFalseDeps(); 6712 } 6713 6714 return false; 6715 } 6716 6717 /// Inform the BreakFalseDeps pass how many idle 6718 /// instructions we would like before a partial register update. 6719 unsigned X86InstrInfo::getPartialRegUpdateClearance( 6720 const MachineInstr &MI, unsigned OpNum, 6721 const TargetRegisterInfo *TRI) const { 6722 if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) 6723 return 0; 6724 6725 // If MI is marked as reading Reg, the partial register update is wanted. 6726 const MachineOperand &MO = MI.getOperand(0); 6727 Register Reg = MO.getReg(); 6728 if (Reg.isVirtual()) { 6729 if (MO.readsReg() || MI.readsVirtualRegister(Reg)) 6730 return 0; 6731 } else { 6732 if (MI.readsRegister(Reg, TRI)) 6733 return 0; 6734 } 6735 6736 // If any instructions in the clearance range are reading Reg, insert a 6737 // dependency breaking instruction, which is inexpensive and is likely to 6738 // be hidden in other instruction's cycles. 6739 return PartialRegUpdateClearance; 6740 } 6741 6742 // Return true for any instruction the copies the high bits of the first source 6743 // operand into the unused high bits of the destination operand. 6744 // Also returns true for instructions that have two inputs where one may 6745 // be undef and we want it to use the same register as the other input. 6746 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, 6747 bool ForLoadFold = false) { 6748 // Set the OpNum parameter to the first source operand. 6749 switch (Opcode) { 6750 case X86::MMX_PUNPCKHBWrr: 6751 case X86::MMX_PUNPCKHWDrr: 6752 case X86::MMX_PUNPCKHDQrr: 6753 case X86::MMX_PUNPCKLBWrr: 6754 case X86::MMX_PUNPCKLWDrr: 6755 case X86::MMX_PUNPCKLDQrr: 6756 case X86::MOVHLPSrr: 6757 case X86::PACKSSWBrr: 6758 case X86::PACKUSWBrr: 6759 case X86::PACKSSDWrr: 6760 case X86::PACKUSDWrr: 6761 case X86::PUNPCKHBWrr: 6762 case X86::PUNPCKLBWrr: 6763 case X86::PUNPCKHWDrr: 6764 case X86::PUNPCKLWDrr: 6765 case X86::PUNPCKHDQrr: 6766 case X86::PUNPCKLDQrr: 6767 case X86::PUNPCKHQDQrr: 6768 case X86::PUNPCKLQDQrr: 6769 case X86::SHUFPDrri: 6770 case X86::SHUFPSrri: 6771 // These instructions are sometimes used with an undef first or second 6772 // source. Return true here so BreakFalseDeps will assign this source to the 6773 // same register as the first source to avoid a false dependency. 6774 // Operand 1 of these instructions is tied so they're separate from their 6775 // VEX counterparts. 6776 return OpNum == 2 && !ForLoadFold; 6777 6778 case X86::VMOVLHPSrr: 6779 case X86::VMOVLHPSZrr: 6780 case X86::VPACKSSWBrr: 6781 case X86::VPACKUSWBrr: 6782 case X86::VPACKSSDWrr: 6783 case X86::VPACKUSDWrr: 6784 case X86::VPACKSSWBZ128rr: 6785 case X86::VPACKUSWBZ128rr: 6786 case X86::VPACKSSDWZ128rr: 6787 case X86::VPACKUSDWZ128rr: 6788 case X86::VPERM2F128rri: 6789 case X86::VPERM2I128rri: 6790 case X86::VSHUFF32X4Z256rri: 6791 case X86::VSHUFF32X4Zrri: 6792 case X86::VSHUFF64X2Z256rri: 6793 case X86::VSHUFF64X2Zrri: 6794 case X86::VSHUFI32X4Z256rri: 6795 case X86::VSHUFI32X4Zrri: 6796 case X86::VSHUFI64X2Z256rri: 6797 case X86::VSHUFI64X2Zrri: 6798 case X86::VPUNPCKHBWrr: 6799 case X86::VPUNPCKLBWrr: 6800 case X86::VPUNPCKHBWYrr: 6801 case X86::VPUNPCKLBWYrr: 6802 case X86::VPUNPCKHBWZ128rr: 6803 case X86::VPUNPCKLBWZ128rr: 6804 case X86::VPUNPCKHBWZ256rr: 6805 case X86::VPUNPCKLBWZ256rr: 6806 case X86::VPUNPCKHBWZrr: 6807 case X86::VPUNPCKLBWZrr: 6808 case X86::VPUNPCKHWDrr: 6809 case X86::VPUNPCKLWDrr: 6810 case X86::VPUNPCKHWDYrr: 6811 case X86::VPUNPCKLWDYrr: 6812 case X86::VPUNPCKHWDZ128rr: 6813 case X86::VPUNPCKLWDZ128rr: 6814 case X86::VPUNPCKHWDZ256rr: 6815 case X86::VPUNPCKLWDZ256rr: 6816 case X86::VPUNPCKHWDZrr: 6817 case X86::VPUNPCKLWDZrr: 6818 case X86::VPUNPCKHDQrr: 6819 case X86::VPUNPCKLDQrr: 6820 case X86::VPUNPCKHDQYrr: 6821 case X86::VPUNPCKLDQYrr: 6822 case X86::VPUNPCKHDQZ128rr: 6823 case X86::VPUNPCKLDQZ128rr: 6824 case X86::VPUNPCKHDQZ256rr: 6825 case X86::VPUNPCKLDQZ256rr: 6826 case X86::VPUNPCKHDQZrr: 6827 case X86::VPUNPCKLDQZrr: 6828 case X86::VPUNPCKHQDQrr: 6829 case X86::VPUNPCKLQDQrr: 6830 case X86::VPUNPCKHQDQYrr: 6831 case X86::VPUNPCKLQDQYrr: 6832 case X86::VPUNPCKHQDQZ128rr: 6833 case X86::VPUNPCKLQDQZ128rr: 6834 case X86::VPUNPCKHQDQZ256rr: 6835 case X86::VPUNPCKLQDQZ256rr: 6836 case X86::VPUNPCKHQDQZrr: 6837 case X86::VPUNPCKLQDQZrr: 6838 // These instructions are sometimes used with an undef first or second 6839 // source. Return true here so BreakFalseDeps will assign this source to the 6840 // same register as the first source to avoid a false dependency. 6841 return (OpNum == 1 || OpNum == 2) && !ForLoadFold; 6842 6843 case X86::VCVTSI2SSrr: 6844 case X86::VCVTSI2SSrm: 6845 case X86::VCVTSI2SSrr_Int: 6846 case X86::VCVTSI2SSrm_Int: 6847 case X86::VCVTSI642SSrr: 6848 case X86::VCVTSI642SSrm: 6849 case X86::VCVTSI642SSrr_Int: 6850 case X86::VCVTSI642SSrm_Int: 6851 case X86::VCVTSI2SDrr: 6852 case X86::VCVTSI2SDrm: 6853 case X86::VCVTSI2SDrr_Int: 6854 case X86::VCVTSI2SDrm_Int: 6855 case X86::VCVTSI642SDrr: 6856 case X86::VCVTSI642SDrm: 6857 case X86::VCVTSI642SDrr_Int: 6858 case X86::VCVTSI642SDrm_Int: 6859 // AVX-512 6860 case X86::VCVTSI2SSZrr: 6861 case X86::VCVTSI2SSZrm: 6862 case X86::VCVTSI2SSZrr_Int: 6863 case X86::VCVTSI2SSZrrb_Int: 6864 case X86::VCVTSI2SSZrm_Int: 6865 case X86::VCVTSI642SSZrr: 6866 case X86::VCVTSI642SSZrm: 6867 case X86::VCVTSI642SSZrr_Int: 6868 case X86::VCVTSI642SSZrrb_Int: 6869 case X86::VCVTSI642SSZrm_Int: 6870 case X86::VCVTSI2SDZrr: 6871 case X86::VCVTSI2SDZrm: 6872 case X86::VCVTSI2SDZrr_Int: 6873 case X86::VCVTSI2SDZrm_Int: 6874 case X86::VCVTSI642SDZrr: 6875 case X86::VCVTSI642SDZrm: 6876 case X86::VCVTSI642SDZrr_Int: 6877 case X86::VCVTSI642SDZrrb_Int: 6878 case X86::VCVTSI642SDZrm_Int: 6879 case X86::VCVTUSI2SSZrr: 6880 case X86::VCVTUSI2SSZrm: 6881 case X86::VCVTUSI2SSZrr_Int: 6882 case X86::VCVTUSI2SSZrrb_Int: 6883 case X86::VCVTUSI2SSZrm_Int: 6884 case X86::VCVTUSI642SSZrr: 6885 case X86::VCVTUSI642SSZrm: 6886 case X86::VCVTUSI642SSZrr_Int: 6887 case X86::VCVTUSI642SSZrrb_Int: 6888 case X86::VCVTUSI642SSZrm_Int: 6889 case X86::VCVTUSI2SDZrr: 6890 case X86::VCVTUSI2SDZrm: 6891 case X86::VCVTUSI2SDZrr_Int: 6892 case X86::VCVTUSI2SDZrm_Int: 6893 case X86::VCVTUSI642SDZrr: 6894 case X86::VCVTUSI642SDZrm: 6895 case X86::VCVTUSI642SDZrr_Int: 6896 case X86::VCVTUSI642SDZrrb_Int: 6897 case X86::VCVTUSI642SDZrm_Int: 6898 case X86::VCVTSI2SHZrr: 6899 case X86::VCVTSI2SHZrm: 6900 case X86::VCVTSI2SHZrr_Int: 6901 case X86::VCVTSI2SHZrrb_Int: 6902 case X86::VCVTSI2SHZrm_Int: 6903 case X86::VCVTSI642SHZrr: 6904 case X86::VCVTSI642SHZrm: 6905 case X86::VCVTSI642SHZrr_Int: 6906 case X86::VCVTSI642SHZrrb_Int: 6907 case X86::VCVTSI642SHZrm_Int: 6908 case X86::VCVTUSI2SHZrr: 6909 case X86::VCVTUSI2SHZrm: 6910 case X86::VCVTUSI2SHZrr_Int: 6911 case X86::VCVTUSI2SHZrrb_Int: 6912 case X86::VCVTUSI2SHZrm_Int: 6913 case X86::VCVTUSI642SHZrr: 6914 case X86::VCVTUSI642SHZrm: 6915 case X86::VCVTUSI642SHZrr_Int: 6916 case X86::VCVTUSI642SHZrrb_Int: 6917 case X86::VCVTUSI642SHZrm_Int: 6918 // Load folding won't effect the undef register update since the input is 6919 // a GPR. 6920 return OpNum == 1 && !ForLoadFold; 6921 case X86::VCVTSD2SSrr: 6922 case X86::VCVTSD2SSrm: 6923 case X86::VCVTSD2SSrr_Int: 6924 case X86::VCVTSD2SSrm_Int: 6925 case X86::VCVTSS2SDrr: 6926 case X86::VCVTSS2SDrm: 6927 case X86::VCVTSS2SDrr_Int: 6928 case X86::VCVTSS2SDrm_Int: 6929 case X86::VRCPSSr: 6930 case X86::VRCPSSr_Int: 6931 case X86::VRCPSSm: 6932 case X86::VRCPSSm_Int: 6933 case X86::VROUNDSDri: 6934 case X86::VROUNDSDmi: 6935 case X86::VROUNDSDri_Int: 6936 case X86::VROUNDSDmi_Int: 6937 case X86::VROUNDSSri: 6938 case X86::VROUNDSSmi: 6939 case X86::VROUNDSSri_Int: 6940 case X86::VROUNDSSmi_Int: 6941 case X86::VRSQRTSSr: 6942 case X86::VRSQRTSSr_Int: 6943 case X86::VRSQRTSSm: 6944 case X86::VRSQRTSSm_Int: 6945 case X86::VSQRTSSr: 6946 case X86::VSQRTSSr_Int: 6947 case X86::VSQRTSSm: 6948 case X86::VSQRTSSm_Int: 6949 case X86::VSQRTSDr: 6950 case X86::VSQRTSDr_Int: 6951 case X86::VSQRTSDm: 6952 case X86::VSQRTSDm_Int: 6953 // AVX-512 6954 case X86::VCVTSD2SSZrr: 6955 case X86::VCVTSD2SSZrr_Int: 6956 case X86::VCVTSD2SSZrrb_Int: 6957 case X86::VCVTSD2SSZrm: 6958 case X86::VCVTSD2SSZrm_Int: 6959 case X86::VCVTSS2SDZrr: 6960 case X86::VCVTSS2SDZrr_Int: 6961 case X86::VCVTSS2SDZrrb_Int: 6962 case X86::VCVTSS2SDZrm: 6963 case X86::VCVTSS2SDZrm_Int: 6964 case X86::VGETEXPSDZr: 6965 case X86::VGETEXPSDZrb: 6966 case X86::VGETEXPSDZm: 6967 case X86::VGETEXPSSZr: 6968 case X86::VGETEXPSSZrb: 6969 case X86::VGETEXPSSZm: 6970 case X86::VGETMANTSDZrri: 6971 case X86::VGETMANTSDZrrib: 6972 case X86::VGETMANTSDZrmi: 6973 case X86::VGETMANTSSZrri: 6974 case X86::VGETMANTSSZrrib: 6975 case X86::VGETMANTSSZrmi: 6976 case X86::VRNDSCALESDZrri: 6977 case X86::VRNDSCALESDZrri_Int: 6978 case X86::VRNDSCALESDZrrib_Int: 6979 case X86::VRNDSCALESDZrmi: 6980 case X86::VRNDSCALESDZrmi_Int: 6981 case X86::VRNDSCALESSZrri: 6982 case X86::VRNDSCALESSZrri_Int: 6983 case X86::VRNDSCALESSZrrib_Int: 6984 case X86::VRNDSCALESSZrmi: 6985 case X86::VRNDSCALESSZrmi_Int: 6986 case X86::VRCP14SDZrr: 6987 case X86::VRCP14SDZrm: 6988 case X86::VRCP14SSZrr: 6989 case X86::VRCP14SSZrm: 6990 case X86::VRCPSHZrr: 6991 case X86::VRCPSHZrm: 6992 case X86::VRSQRTSHZrr: 6993 case X86::VRSQRTSHZrm: 6994 case X86::VREDUCESHZrmi: 6995 case X86::VREDUCESHZrri: 6996 case X86::VREDUCESHZrrib: 6997 case X86::VGETEXPSHZr: 6998 case X86::VGETEXPSHZrb: 6999 case X86::VGETEXPSHZm: 7000 case X86::VGETMANTSHZrri: 7001 case X86::VGETMANTSHZrrib: 7002 case X86::VGETMANTSHZrmi: 7003 case X86::VRNDSCALESHZrri: 7004 case X86::VRNDSCALESHZrri_Int: 7005 case X86::VRNDSCALESHZrrib_Int: 7006 case X86::VRNDSCALESHZrmi: 7007 case X86::VRNDSCALESHZrmi_Int: 7008 case X86::VSQRTSHZr: 7009 case X86::VSQRTSHZr_Int: 7010 case X86::VSQRTSHZrb_Int: 7011 case X86::VSQRTSHZm: 7012 case X86::VSQRTSHZm_Int: 7013 case X86::VRCP28SDZr: 7014 case X86::VRCP28SDZrb: 7015 case X86::VRCP28SDZm: 7016 case X86::VRCP28SSZr: 7017 case X86::VRCP28SSZrb: 7018 case X86::VRCP28SSZm: 7019 case X86::VREDUCESSZrmi: 7020 case X86::VREDUCESSZrri: 7021 case X86::VREDUCESSZrrib: 7022 case X86::VRSQRT14SDZrr: 7023 case X86::VRSQRT14SDZrm: 7024 case X86::VRSQRT14SSZrr: 7025 case X86::VRSQRT14SSZrm: 7026 case X86::VRSQRT28SDZr: 7027 case X86::VRSQRT28SDZrb: 7028 case X86::VRSQRT28SDZm: 7029 case X86::VRSQRT28SSZr: 7030 case X86::VRSQRT28SSZrb: 7031 case X86::VRSQRT28SSZm: 7032 case X86::VSQRTSSZr: 7033 case X86::VSQRTSSZr_Int: 7034 case X86::VSQRTSSZrb_Int: 7035 case X86::VSQRTSSZm: 7036 case X86::VSQRTSSZm_Int: 7037 case X86::VSQRTSDZr: 7038 case X86::VSQRTSDZr_Int: 7039 case X86::VSQRTSDZrb_Int: 7040 case X86::VSQRTSDZm: 7041 case X86::VSQRTSDZm_Int: 7042 case X86::VCVTSD2SHZrr: 7043 case X86::VCVTSD2SHZrr_Int: 7044 case X86::VCVTSD2SHZrrb_Int: 7045 case X86::VCVTSD2SHZrm: 7046 case X86::VCVTSD2SHZrm_Int: 7047 case X86::VCVTSS2SHZrr: 7048 case X86::VCVTSS2SHZrr_Int: 7049 case X86::VCVTSS2SHZrrb_Int: 7050 case X86::VCVTSS2SHZrm: 7051 case X86::VCVTSS2SHZrm_Int: 7052 case X86::VCVTSH2SDZrr: 7053 case X86::VCVTSH2SDZrr_Int: 7054 case X86::VCVTSH2SDZrrb_Int: 7055 case X86::VCVTSH2SDZrm: 7056 case X86::VCVTSH2SDZrm_Int: 7057 case X86::VCVTSH2SSZrr: 7058 case X86::VCVTSH2SSZrr_Int: 7059 case X86::VCVTSH2SSZrrb_Int: 7060 case X86::VCVTSH2SSZrm: 7061 case X86::VCVTSH2SSZrm_Int: 7062 return OpNum == 1; 7063 case X86::VMOVSSZrrk: 7064 case X86::VMOVSDZrrk: 7065 return OpNum == 3 && !ForLoadFold; 7066 case X86::VMOVSSZrrkz: 7067 case X86::VMOVSDZrrkz: 7068 return OpNum == 2 && !ForLoadFold; 7069 } 7070 7071 return false; 7072 } 7073 7074 /// Inform the BreakFalseDeps pass how many idle instructions we would like 7075 /// before certain undef register reads. 7076 /// 7077 /// This catches the VCVTSI2SD family of instructions: 7078 /// 7079 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 7080 /// 7081 /// We should to be careful *not* to catch VXOR idioms which are presumably 7082 /// handled specially in the pipeline: 7083 /// 7084 /// vxorps undef %xmm1, undef %xmm1, %xmm1 7085 /// 7086 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the 7087 /// high bits that are passed-through are not live. 7088 unsigned 7089 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, 7090 const TargetRegisterInfo *TRI) const { 7091 const MachineOperand &MO = MI.getOperand(OpNum); 7092 if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum)) 7093 return UndefRegClearance; 7094 7095 return 0; 7096 } 7097 7098 void X86InstrInfo::breakPartialRegDependency( 7099 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 7100 Register Reg = MI.getOperand(OpNum).getReg(); 7101 // If MI kills this register, the false dependence is already broken. 7102 if (MI.killsRegister(Reg, TRI)) 7103 return; 7104 7105 if (X86::VR128RegClass.contains(Reg)) { 7106 // These instructions are all floating point domain, so xorps is the best 7107 // choice. 7108 unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; 7109 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) 7110 .addReg(Reg, RegState::Undef) 7111 .addReg(Reg, RegState::Undef); 7112 MI.addRegisterKilled(Reg, TRI, true); 7113 } else if (X86::VR256RegClass.contains(Reg)) { 7114 // Use vxorps to clear the full ymm register. 7115 // It wants to read and write the xmm sub-register. 7116 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 7117 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) 7118 .addReg(XReg, RegState::Undef) 7119 .addReg(XReg, RegState::Undef) 7120 .addReg(Reg, RegState::ImplicitDefine); 7121 MI.addRegisterKilled(Reg, TRI, true); 7122 } else if (X86::VR128XRegClass.contains(Reg)) { 7123 // Only handle VLX targets. 7124 if (!Subtarget.hasVLX()) 7125 return; 7126 // Since vxorps requires AVX512DQ, vpxord should be the best choice. 7127 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg) 7128 .addReg(Reg, RegState::Undef) 7129 .addReg(Reg, RegState::Undef); 7130 MI.addRegisterKilled(Reg, TRI, true); 7131 } else if (X86::VR256XRegClass.contains(Reg) || 7132 X86::VR512RegClass.contains(Reg)) { 7133 // Only handle VLX targets. 7134 if (!Subtarget.hasVLX()) 7135 return; 7136 // Use vpxord to clear the full ymm/zmm register. 7137 // It wants to read and write the xmm sub-register. 7138 Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); 7139 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg) 7140 .addReg(XReg, RegState::Undef) 7141 .addReg(XReg, RegState::Undef) 7142 .addReg(Reg, RegState::ImplicitDefine); 7143 MI.addRegisterKilled(Reg, TRI, true); 7144 } else if (X86::GR64RegClass.contains(Reg)) { 7145 // Using XOR32rr because it has shorter encoding and zeros up the upper bits 7146 // as well. 7147 Register XReg = TRI->getSubReg(Reg, X86::sub_32bit); 7148 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) 7149 .addReg(XReg, RegState::Undef) 7150 .addReg(XReg, RegState::Undef) 7151 .addReg(Reg, RegState::ImplicitDefine); 7152 MI.addRegisterKilled(Reg, TRI, true); 7153 } else if (X86::GR32RegClass.contains(Reg)) { 7154 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) 7155 .addReg(Reg, RegState::Undef) 7156 .addReg(Reg, RegState::Undef); 7157 MI.addRegisterKilled(Reg, TRI, true); 7158 } 7159 } 7160 7161 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, 7162 int PtrOffset = 0) { 7163 unsigned NumAddrOps = MOs.size(); 7164 7165 if (NumAddrOps < 4) { 7166 // FrameIndex only - add an immediate offset (whether its zero or not). 7167 for (unsigned i = 0; i != NumAddrOps; ++i) 7168 MIB.add(MOs[i]); 7169 addOffset(MIB, PtrOffset); 7170 } else { 7171 // General Memory Addressing - we need to add any offset to an existing 7172 // offset. 7173 assert(MOs.size() == 5 && "Unexpected memory operand list length"); 7174 for (unsigned i = 0; i != NumAddrOps; ++i) { 7175 const MachineOperand &MO = MOs[i]; 7176 if (i == 3 && PtrOffset != 0) { 7177 MIB.addDisp(MO, PtrOffset); 7178 } else { 7179 MIB.add(MO); 7180 } 7181 } 7182 } 7183 } 7184 7185 static void updateOperandRegConstraints(MachineFunction &MF, 7186 MachineInstr &NewMI, 7187 const TargetInstrInfo &TII) { 7188 MachineRegisterInfo &MRI = MF.getRegInfo(); 7189 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 7190 7191 for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { 7192 MachineOperand &MO = NewMI.getOperand(Idx); 7193 // We only need to update constraints on virtual register operands. 7194 if (!MO.isReg()) 7195 continue; 7196 Register Reg = MO.getReg(); 7197 if (!Reg.isVirtual()) 7198 continue; 7199 7200 auto *NewRC = MRI.constrainRegClass( 7201 Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); 7202 if (!NewRC) { 7203 LLVM_DEBUG( 7204 dbgs() << "WARNING: Unable to update register constraint for operand " 7205 << Idx << " of instruction:\n"; 7206 NewMI.dump(); dbgs() << "\n"); 7207 } 7208 } 7209 } 7210 7211 static MachineInstr *fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, 7212 ArrayRef<MachineOperand> MOs, 7213 MachineBasicBlock::iterator InsertPt, 7214 MachineInstr &MI, 7215 const TargetInstrInfo &TII) { 7216 // Create the base instruction with the memory operand as the first part. 7217 // Omit the implicit operands, something BuildMI can't do. 7218 MachineInstr *NewMI = 7219 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 7220 MachineInstrBuilder MIB(MF, NewMI); 7221 addOperands(MIB, MOs); 7222 7223 // Loop over the rest of the ri operands, converting them over. 7224 unsigned NumOps = MI.getDesc().getNumOperands() - 2; 7225 for (unsigned i = 0; i != NumOps; ++i) { 7226 MachineOperand &MO = MI.getOperand(i + 2); 7227 MIB.add(MO); 7228 } 7229 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2)) 7230 MIB.add(MO); 7231 7232 updateOperandRegConstraints(MF, *NewMI, TII); 7233 7234 MachineBasicBlock *MBB = InsertPt->getParent(); 7235 MBB->insert(InsertPt, NewMI); 7236 7237 return MIB; 7238 } 7239 7240 static MachineInstr *fuseInst(MachineFunction &MF, unsigned Opcode, 7241 unsigned OpNo, ArrayRef<MachineOperand> MOs, 7242 MachineBasicBlock::iterator InsertPt, 7243 MachineInstr &MI, const TargetInstrInfo &TII, 7244 int PtrOffset = 0) { 7245 // Omit the implicit operands, something BuildMI can't do. 7246 MachineInstr *NewMI = 7247 MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); 7248 MachineInstrBuilder MIB(MF, NewMI); 7249 7250 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 7251 MachineOperand &MO = MI.getOperand(i); 7252 if (i == OpNo) { 7253 assert(MO.isReg() && "Expected to fold into reg operand!"); 7254 addOperands(MIB, MOs, PtrOffset); 7255 } else { 7256 MIB.add(MO); 7257 } 7258 } 7259 7260 updateOperandRegConstraints(MF, *NewMI, TII); 7261 7262 // Copy the NoFPExcept flag from the instruction we're fusing. 7263 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) 7264 NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); 7265 7266 MachineBasicBlock *MBB = InsertPt->getParent(); 7267 MBB->insert(InsertPt, NewMI); 7268 7269 return MIB; 7270 } 7271 7272 static MachineInstr *makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 7273 ArrayRef<MachineOperand> MOs, 7274 MachineBasicBlock::iterator InsertPt, 7275 MachineInstr &MI) { 7276 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 7277 MI.getDebugLoc(), TII.get(Opcode)); 7278 addOperands(MIB, MOs); 7279 return MIB.addImm(0); 7280 } 7281 7282 MachineInstr *X86InstrInfo::foldMemoryOperandCustom( 7283 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 7284 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 7285 unsigned Size, Align Alignment) const { 7286 switch (MI.getOpcode()) { 7287 case X86::INSERTPSrri: 7288 case X86::VINSERTPSrri: 7289 case X86::VINSERTPSZrri: 7290 // Attempt to convert the load of inserted vector into a fold load 7291 // of a single float. 7292 if (OpNum == 2) { 7293 unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); 7294 unsigned ZMask = Imm & 15; 7295 unsigned DstIdx = (Imm >> 4) & 3; 7296 unsigned SrcIdx = (Imm >> 6) & 3; 7297 7298 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7299 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 7300 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 7301 if ((Size == 0 || Size >= 16) && RCSize >= 16 && 7302 (MI.getOpcode() != X86::INSERTPSrri || Alignment >= Align(4))) { 7303 int PtrOffset = SrcIdx * 4; 7304 unsigned NewImm = (DstIdx << 4) | ZMask; 7305 unsigned NewOpCode = 7306 (MI.getOpcode() == X86::VINSERTPSZrri) ? X86::VINSERTPSZrmi 7307 : (MI.getOpcode() == X86::VINSERTPSrri) ? X86::VINSERTPSrmi 7308 : X86::INSERTPSrmi; 7309 MachineInstr *NewMI = 7310 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); 7311 NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); 7312 return NewMI; 7313 } 7314 } 7315 break; 7316 case X86::MOVHLPSrr: 7317 case X86::VMOVHLPSrr: 7318 case X86::VMOVHLPSZrr: 7319 // Move the upper 64-bits of the second operand to the lower 64-bits. 7320 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. 7321 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. 7322 if (OpNum == 2) { 7323 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7324 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 7325 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 7326 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { 7327 unsigned NewOpCode = 7328 (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm 7329 : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm 7330 : X86::MOVLPSrm; 7331 MachineInstr *NewMI = 7332 fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); 7333 return NewMI; 7334 } 7335 } 7336 break; 7337 case X86::UNPCKLPDrr: 7338 // If we won't be able to fold this to the memory form of UNPCKL, use 7339 // MOVHPD instead. Done as custom because we can't have this in the load 7340 // table twice. 7341 if (OpNum == 2) { 7342 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7343 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 7344 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 7345 if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { 7346 MachineInstr *NewMI = 7347 fuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); 7348 return NewMI; 7349 } 7350 } 7351 break; 7352 case X86::MOV32r0: 7353 if (auto *NewMI = 7354 makeM0Inst(*this, (Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs, 7355 InsertPt, MI)) 7356 return NewMI; 7357 break; 7358 } 7359 7360 return nullptr; 7361 } 7362 7363 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, 7364 MachineInstr &MI) { 7365 if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/ true) || 7366 !MI.getOperand(1).isReg()) 7367 return false; 7368 7369 // The are two cases we need to handle depending on where in the pipeline 7370 // the folding attempt is being made. 7371 // -Register has the undef flag set. 7372 // -Register is produced by the IMPLICIT_DEF instruction. 7373 7374 if (MI.getOperand(1).isUndef()) 7375 return true; 7376 7377 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7378 MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); 7379 return VRegDef && VRegDef->isImplicitDef(); 7380 } 7381 7382 unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI, 7383 unsigned Idx1) const { 7384 unsigned Idx2 = CommuteAnyOperandIndex; 7385 if (!findCommutedOpIndices(MI, Idx1, Idx2)) 7386 return Idx1; 7387 7388 bool HasDef = MI.getDesc().getNumDefs(); 7389 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 7390 Register Reg1 = MI.getOperand(Idx1).getReg(); 7391 Register Reg2 = MI.getOperand(Idx2).getReg(); 7392 bool Tied1 = 0 == MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO); 7393 bool Tied2 = 0 == MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO); 7394 7395 // If either of the commutable operands are tied to the destination 7396 // then we can not commute + fold. 7397 if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2)) 7398 return Idx1; 7399 7400 return commuteInstruction(MI, false, Idx1, Idx2) ? Idx2 : Idx1; 7401 } 7402 7403 static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) { 7404 if (PrintFailedFusing && !MI.isCopy()) 7405 dbgs() << "We failed to fuse operand " << Idx << " in " << MI; 7406 } 7407 7408 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 7409 MachineFunction &MF, MachineInstr &MI, unsigned OpNum, 7410 ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, 7411 unsigned Size, Align Alignment, bool AllowCommute) const { 7412 bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); 7413 unsigned Opc = MI.getOpcode(); 7414 7415 // For CPUs that favor the register form of a call or push, 7416 // do not fold loads into calls or pushes, unless optimizing for size 7417 // aggressively. 7418 if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && 7419 (Opc == X86::CALL32r || Opc == X86::CALL64r || Opc == X86::PUSH16r || 7420 Opc == X86::PUSH32r || Opc == X86::PUSH64r)) 7421 return nullptr; 7422 7423 // Avoid partial and undef register update stalls unless optimizing for size. 7424 if (!MF.getFunction().hasOptSize() && 7425 (hasPartialRegUpdate(Opc, Subtarget, /*ForLoadFold*/ true) || 7426 shouldPreventUndefRegUpdateMemFold(MF, MI))) 7427 return nullptr; 7428 7429 unsigned NumOps = MI.getDesc().getNumOperands(); 7430 bool IsTwoAddr = NumOps > 1 && OpNum < 2 && MI.getOperand(0).isReg() && 7431 MI.getOperand(1).isReg() && 7432 MI.getOperand(0).getReg() == MI.getOperand(1).getReg(); 7433 7434 // FIXME: AsmPrinter doesn't know how to handle 7435 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. 7436 if (Opc == X86::ADD32ri && 7437 MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) 7438 return nullptr; 7439 7440 // GOTTPOFF relocation loads can only be folded into add instructions. 7441 // FIXME: Need to exclude other relocations that only support specific 7442 // instructions. 7443 if (MOs.size() == X86::AddrNumOperands && 7444 MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && 7445 Opc != X86::ADD64rr) 7446 return nullptr; 7447 7448 // Don't fold loads into indirect calls that need a KCFI check as we'll 7449 // have to unfold these in X86TargetLowering::EmitKCFICheck anyway. 7450 if (MI.isCall() && MI.getCFIType()) 7451 return nullptr; 7452 7453 // Attempt to fold any custom cases we have. 7454 if (auto *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, 7455 Size, Alignment)) 7456 return CustomMI; 7457 7458 // Folding a memory location into the two-address part of a two-address 7459 // instruction is different than folding it other places. It requires 7460 // replacing the *two* registers with the memory location. 7461 // 7462 // Utilize the mapping NonNDD -> RMW for the NDD variant. 7463 unsigned NonNDOpc = Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U; 7464 const X86FoldTableEntry *I = 7465 IsTwoAddr ? lookupTwoAddrFoldTable(NonNDOpc ? NonNDOpc : Opc) 7466 : lookupFoldTable(Opc, OpNum); 7467 7468 MachineInstr *NewMI = nullptr; 7469 if (I) { 7470 unsigned Opcode = I->DstOp; 7471 if (Alignment < 7472 Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT))) 7473 return nullptr; 7474 bool NarrowToMOV32rm = false; 7475 if (Size) { 7476 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7477 const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); 7478 unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; 7479 // Check if it's safe to fold the load. If the size of the object is 7480 // narrower than the load width, then it's not. 7481 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. 7482 if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) { 7483 // If this is a 64-bit load, but the spill slot is 32, then we can do 7484 // a 32-bit load which is implicitly zero-extended. This likely is 7485 // due to live interval analysis remat'ing a load from stack slot. 7486 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) 7487 return nullptr; 7488 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) 7489 return nullptr; 7490 Opcode = X86::MOV32rm; 7491 NarrowToMOV32rm = true; 7492 } 7493 // For stores, make sure the size of the object is equal to the size of 7494 // the store. If the object is larger, the extra bits would be garbage. If 7495 // the object is smaller we might overwrite another object or fault. 7496 if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize) 7497 return nullptr; 7498 } 7499 7500 NewMI = IsTwoAddr ? fuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this) 7501 : fuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); 7502 7503 if (NarrowToMOV32rm) { 7504 // If this is the special case where we use a MOV32rm to load a 32-bit 7505 // value and zero-extend the top bits. Change the destination register 7506 // to a 32-bit one. 7507 Register DstReg = NewMI->getOperand(0).getReg(); 7508 if (DstReg.isPhysical()) 7509 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); 7510 else 7511 NewMI->getOperand(0).setSubReg(X86::sub_32bit); 7512 } 7513 return NewMI; 7514 } 7515 7516 if (AllowCommute) { 7517 // If the instruction and target operand are commutable, commute the 7518 // instruction and try again. 7519 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum); 7520 if (CommuteOpIdx2 == OpNum) { 7521 printFailMsgforFold(MI, OpNum); 7522 return nullptr; 7523 } 7524 // Attempt to fold with the commuted version of the instruction. 7525 NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, 7526 Alignment, /*AllowCommute=*/false); 7527 if (NewMI) 7528 return NewMI; 7529 // Folding failed again - undo the commute before returning. 7530 commuteInstruction(MI, false, OpNum, CommuteOpIdx2); 7531 } 7532 7533 printFailMsgforFold(MI, OpNum); 7534 return nullptr; 7535 } 7536 7537 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 7538 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 7539 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, 7540 VirtRegMap *VRM) const { 7541 // Check switch flag 7542 if (NoFusing) 7543 return nullptr; 7544 7545 // Avoid partial and undef register update stalls unless optimizing for size. 7546 if (!MF.getFunction().hasOptSize() && 7547 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || 7548 shouldPreventUndefRegUpdateMemFold(MF, MI))) 7549 return nullptr; 7550 7551 // Don't fold subreg spills, or reloads that use a high subreg. 7552 for (auto Op : Ops) { 7553 MachineOperand &MO = MI.getOperand(Op); 7554 auto SubReg = MO.getSubReg(); 7555 // MOV32r0 is special b/c it's used to clear a 64-bit register too. 7556 // (See patterns for MOV32r0 in TD files). 7557 if (MI.getOpcode() == X86::MOV32r0 && SubReg == X86::sub_32bit) 7558 continue; 7559 if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) 7560 return nullptr; 7561 } 7562 7563 const MachineFrameInfo &MFI = MF.getFrameInfo(); 7564 unsigned Size = MFI.getObjectSize(FrameIndex); 7565 Align Alignment = MFI.getObjectAlign(FrameIndex); 7566 // If the function stack isn't realigned we don't want to fold instructions 7567 // that need increased alignment. 7568 if (!RI.hasStackRealignment(MF)) 7569 Alignment = 7570 std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign()); 7571 7572 auto Impl = [&]() { 7573 return foldMemoryOperandImpl(MF, MI, Ops[0], 7574 MachineOperand::CreateFI(FrameIndex), InsertPt, 7575 Size, Alignment, /*AllowCommute=*/true); 7576 }; 7577 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 7578 unsigned NewOpc = 0; 7579 unsigned RCSize = 0; 7580 unsigned Opc = MI.getOpcode(); 7581 switch (Opc) { 7582 default: 7583 // NDD can be folded into RMW though its Op0 and Op1 are not tied. 7584 return (Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U) ? Impl() 7585 : nullptr; 7586 case X86::TEST8rr: 7587 NewOpc = X86::CMP8ri; 7588 RCSize = 1; 7589 break; 7590 case X86::TEST16rr: 7591 NewOpc = X86::CMP16ri; 7592 RCSize = 2; 7593 break; 7594 case X86::TEST32rr: 7595 NewOpc = X86::CMP32ri; 7596 RCSize = 4; 7597 break; 7598 case X86::TEST64rr: 7599 NewOpc = X86::CMP64ri32; 7600 RCSize = 8; 7601 break; 7602 } 7603 // Check if it's safe to fold the load. If the size of the object is 7604 // narrower than the load width, then it's not. 7605 if (Size < RCSize) 7606 return nullptr; 7607 // Change to CMPXXri r, 0 first. 7608 MI.setDesc(get(NewOpc)); 7609 MI.getOperand(1).ChangeToImmediate(0); 7610 } else if (Ops.size() != 1) 7611 return nullptr; 7612 7613 return Impl(); 7614 } 7615 7616 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI 7617 /// because the latter uses contents that wouldn't be defined in the folded 7618 /// version. For instance, this transformation isn't legal: 7619 /// movss (%rdi), %xmm0 7620 /// addps %xmm0, %xmm0 7621 /// -> 7622 /// addps (%rdi), %xmm0 7623 /// 7624 /// But this one is: 7625 /// movss (%rdi), %xmm0 7626 /// addss %xmm0, %xmm0 7627 /// -> 7628 /// addss (%rdi), %xmm0 7629 /// 7630 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, 7631 const MachineInstr &UserMI, 7632 const MachineFunction &MF) { 7633 unsigned Opc = LoadMI.getOpcode(); 7634 unsigned UserOpc = UserMI.getOpcode(); 7635 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7636 const TargetRegisterClass *RC = 7637 MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); 7638 unsigned RegSize = TRI.getRegSizeInBits(*RC); 7639 7640 if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || 7641 Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || 7642 Opc == X86::VMOVSSZrm_alt) && 7643 RegSize > 32) { 7644 // These instructions only load 32 bits, we can't fold them if the 7645 // destination register is wider than 32 bits (4 bytes), and its user 7646 // instruction isn't scalar (SS). 7647 switch (UserOpc) { 7648 case X86::CVTSS2SDrr_Int: 7649 case X86::VCVTSS2SDrr_Int: 7650 case X86::VCVTSS2SDZrr_Int: 7651 case X86::VCVTSS2SDZrrk_Int: 7652 case X86::VCVTSS2SDZrrkz_Int: 7653 case X86::CVTSS2SIrr_Int: 7654 case X86::CVTSS2SI64rr_Int: 7655 case X86::VCVTSS2SIrr_Int: 7656 case X86::VCVTSS2SI64rr_Int: 7657 case X86::VCVTSS2SIZrr_Int: 7658 case X86::VCVTSS2SI64Zrr_Int: 7659 case X86::CVTTSS2SIrr_Int: 7660 case X86::CVTTSS2SI64rr_Int: 7661 case X86::VCVTTSS2SIrr_Int: 7662 case X86::VCVTTSS2SI64rr_Int: 7663 case X86::VCVTTSS2SIZrr_Int: 7664 case X86::VCVTTSS2SI64Zrr_Int: 7665 case X86::VCVTSS2USIZrr_Int: 7666 case X86::VCVTSS2USI64Zrr_Int: 7667 case X86::VCVTTSS2USIZrr_Int: 7668 case X86::VCVTTSS2USI64Zrr_Int: 7669 case X86::RCPSSr_Int: 7670 case X86::VRCPSSr_Int: 7671 case X86::RSQRTSSr_Int: 7672 case X86::VRSQRTSSr_Int: 7673 case X86::ROUNDSSri_Int: 7674 case X86::VROUNDSSri_Int: 7675 case X86::COMISSrr_Int: 7676 case X86::VCOMISSrr_Int: 7677 case X86::VCOMISSZrr_Int: 7678 case X86::UCOMISSrr_Int: 7679 case X86::VUCOMISSrr_Int: 7680 case X86::VUCOMISSZrr_Int: 7681 case X86::ADDSSrr_Int: 7682 case X86::VADDSSrr_Int: 7683 case X86::VADDSSZrr_Int: 7684 case X86::CMPSSrri_Int: 7685 case X86::VCMPSSrri_Int: 7686 case X86::VCMPSSZrri_Int: 7687 case X86::DIVSSrr_Int: 7688 case X86::VDIVSSrr_Int: 7689 case X86::VDIVSSZrr_Int: 7690 case X86::MAXSSrr_Int: 7691 case X86::VMAXSSrr_Int: 7692 case X86::VMAXSSZrr_Int: 7693 case X86::MINSSrr_Int: 7694 case X86::VMINSSrr_Int: 7695 case X86::VMINSSZrr_Int: 7696 case X86::MULSSrr_Int: 7697 case X86::VMULSSrr_Int: 7698 case X86::VMULSSZrr_Int: 7699 case X86::SQRTSSr_Int: 7700 case X86::VSQRTSSr_Int: 7701 case X86::VSQRTSSZr_Int: 7702 case X86::SUBSSrr_Int: 7703 case X86::VSUBSSrr_Int: 7704 case X86::VSUBSSZrr_Int: 7705 case X86::VADDSSZrrk_Int: 7706 case X86::VADDSSZrrkz_Int: 7707 case X86::VCMPSSZrrik_Int: 7708 case X86::VDIVSSZrrk_Int: 7709 case X86::VDIVSSZrrkz_Int: 7710 case X86::VMAXSSZrrk_Int: 7711 case X86::VMAXSSZrrkz_Int: 7712 case X86::VMINSSZrrk_Int: 7713 case X86::VMINSSZrrkz_Int: 7714 case X86::VMULSSZrrk_Int: 7715 case X86::VMULSSZrrkz_Int: 7716 case X86::VSQRTSSZrk_Int: 7717 case X86::VSQRTSSZrkz_Int: 7718 case X86::VSUBSSZrrk_Int: 7719 case X86::VSUBSSZrrkz_Int: 7720 case X86::VFMADDSS4rr_Int: 7721 case X86::VFNMADDSS4rr_Int: 7722 case X86::VFMSUBSS4rr_Int: 7723 case X86::VFNMSUBSS4rr_Int: 7724 case X86::VFMADD132SSr_Int: 7725 case X86::VFNMADD132SSr_Int: 7726 case X86::VFMADD213SSr_Int: 7727 case X86::VFNMADD213SSr_Int: 7728 case X86::VFMADD231SSr_Int: 7729 case X86::VFNMADD231SSr_Int: 7730 case X86::VFMSUB132SSr_Int: 7731 case X86::VFNMSUB132SSr_Int: 7732 case X86::VFMSUB213SSr_Int: 7733 case X86::VFNMSUB213SSr_Int: 7734 case X86::VFMSUB231SSr_Int: 7735 case X86::VFNMSUB231SSr_Int: 7736 case X86::VFMADD132SSZr_Int: 7737 case X86::VFNMADD132SSZr_Int: 7738 case X86::VFMADD213SSZr_Int: 7739 case X86::VFNMADD213SSZr_Int: 7740 case X86::VFMADD231SSZr_Int: 7741 case X86::VFNMADD231SSZr_Int: 7742 case X86::VFMSUB132SSZr_Int: 7743 case X86::VFNMSUB132SSZr_Int: 7744 case X86::VFMSUB213SSZr_Int: 7745 case X86::VFNMSUB213SSZr_Int: 7746 case X86::VFMSUB231SSZr_Int: 7747 case X86::VFNMSUB231SSZr_Int: 7748 case X86::VFMADD132SSZrk_Int: 7749 case X86::VFNMADD132SSZrk_Int: 7750 case X86::VFMADD213SSZrk_Int: 7751 case X86::VFNMADD213SSZrk_Int: 7752 case X86::VFMADD231SSZrk_Int: 7753 case X86::VFNMADD231SSZrk_Int: 7754 case X86::VFMSUB132SSZrk_Int: 7755 case X86::VFNMSUB132SSZrk_Int: 7756 case X86::VFMSUB213SSZrk_Int: 7757 case X86::VFNMSUB213SSZrk_Int: 7758 case X86::VFMSUB231SSZrk_Int: 7759 case X86::VFNMSUB231SSZrk_Int: 7760 case X86::VFMADD132SSZrkz_Int: 7761 case X86::VFNMADD132SSZrkz_Int: 7762 case X86::VFMADD213SSZrkz_Int: 7763 case X86::VFNMADD213SSZrkz_Int: 7764 case X86::VFMADD231SSZrkz_Int: 7765 case X86::VFNMADD231SSZrkz_Int: 7766 case X86::VFMSUB132SSZrkz_Int: 7767 case X86::VFNMSUB132SSZrkz_Int: 7768 case X86::VFMSUB213SSZrkz_Int: 7769 case X86::VFNMSUB213SSZrkz_Int: 7770 case X86::VFMSUB231SSZrkz_Int: 7771 case X86::VFNMSUB231SSZrkz_Int: 7772 case X86::VFIXUPIMMSSZrri: 7773 case X86::VFIXUPIMMSSZrrik: 7774 case X86::VFIXUPIMMSSZrrikz: 7775 case X86::VFPCLASSSSZri: 7776 case X86::VFPCLASSSSZrik: 7777 case X86::VGETEXPSSZr: 7778 case X86::VGETEXPSSZrk: 7779 case X86::VGETEXPSSZrkz: 7780 case X86::VGETMANTSSZrri: 7781 case X86::VGETMANTSSZrrik: 7782 case X86::VGETMANTSSZrrikz: 7783 case X86::VRANGESSZrri: 7784 case X86::VRANGESSZrrik: 7785 case X86::VRANGESSZrrikz: 7786 case X86::VRCP14SSZrr: 7787 case X86::VRCP14SSZrrk: 7788 case X86::VRCP14SSZrrkz: 7789 case X86::VRCP28SSZr: 7790 case X86::VRCP28SSZrk: 7791 case X86::VRCP28SSZrkz: 7792 case X86::VREDUCESSZrri: 7793 case X86::VREDUCESSZrrik: 7794 case X86::VREDUCESSZrrikz: 7795 case X86::VRNDSCALESSZrri_Int: 7796 case X86::VRNDSCALESSZrrik_Int: 7797 case X86::VRNDSCALESSZrrikz_Int: 7798 case X86::VRSQRT14SSZrr: 7799 case X86::VRSQRT14SSZrrk: 7800 case X86::VRSQRT14SSZrrkz: 7801 case X86::VRSQRT28SSZr: 7802 case X86::VRSQRT28SSZrk: 7803 case X86::VRSQRT28SSZrkz: 7804 case X86::VSCALEFSSZrr: 7805 case X86::VSCALEFSSZrrk: 7806 case X86::VSCALEFSSZrrkz: 7807 return false; 7808 default: 7809 return true; 7810 } 7811 } 7812 7813 if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || 7814 Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || 7815 Opc == X86::VMOVSDZrm_alt) && 7816 RegSize > 64) { 7817 // These instructions only load 64 bits, we can't fold them if the 7818 // destination register is wider than 64 bits (8 bytes), and its user 7819 // instruction isn't scalar (SD). 7820 switch (UserOpc) { 7821 case X86::CVTSD2SSrr_Int: 7822 case X86::VCVTSD2SSrr_Int: 7823 case X86::VCVTSD2SSZrr_Int: 7824 case X86::VCVTSD2SSZrrk_Int: 7825 case X86::VCVTSD2SSZrrkz_Int: 7826 case X86::CVTSD2SIrr_Int: 7827 case X86::CVTSD2SI64rr_Int: 7828 case X86::VCVTSD2SIrr_Int: 7829 case X86::VCVTSD2SI64rr_Int: 7830 case X86::VCVTSD2SIZrr_Int: 7831 case X86::VCVTSD2SI64Zrr_Int: 7832 case X86::CVTTSD2SIrr_Int: 7833 case X86::CVTTSD2SI64rr_Int: 7834 case X86::VCVTTSD2SIrr_Int: 7835 case X86::VCVTTSD2SI64rr_Int: 7836 case X86::VCVTTSD2SIZrr_Int: 7837 case X86::VCVTTSD2SI64Zrr_Int: 7838 case X86::VCVTSD2USIZrr_Int: 7839 case X86::VCVTSD2USI64Zrr_Int: 7840 case X86::VCVTTSD2USIZrr_Int: 7841 case X86::VCVTTSD2USI64Zrr_Int: 7842 case X86::ROUNDSDri_Int: 7843 case X86::VROUNDSDri_Int: 7844 case X86::COMISDrr_Int: 7845 case X86::VCOMISDrr_Int: 7846 case X86::VCOMISDZrr_Int: 7847 case X86::UCOMISDrr_Int: 7848 case X86::VUCOMISDrr_Int: 7849 case X86::VUCOMISDZrr_Int: 7850 case X86::ADDSDrr_Int: 7851 case X86::VADDSDrr_Int: 7852 case X86::VADDSDZrr_Int: 7853 case X86::CMPSDrri_Int: 7854 case X86::VCMPSDrri_Int: 7855 case X86::VCMPSDZrri_Int: 7856 case X86::DIVSDrr_Int: 7857 case X86::VDIVSDrr_Int: 7858 case X86::VDIVSDZrr_Int: 7859 case X86::MAXSDrr_Int: 7860 case X86::VMAXSDrr_Int: 7861 case X86::VMAXSDZrr_Int: 7862 case X86::MINSDrr_Int: 7863 case X86::VMINSDrr_Int: 7864 case X86::VMINSDZrr_Int: 7865 case X86::MULSDrr_Int: 7866 case X86::VMULSDrr_Int: 7867 case X86::VMULSDZrr_Int: 7868 case X86::SQRTSDr_Int: 7869 case X86::VSQRTSDr_Int: 7870 case X86::VSQRTSDZr_Int: 7871 case X86::SUBSDrr_Int: 7872 case X86::VSUBSDrr_Int: 7873 case X86::VSUBSDZrr_Int: 7874 case X86::VADDSDZrrk_Int: 7875 case X86::VADDSDZrrkz_Int: 7876 case X86::VCMPSDZrrik_Int: 7877 case X86::VDIVSDZrrk_Int: 7878 case X86::VDIVSDZrrkz_Int: 7879 case X86::VMAXSDZrrk_Int: 7880 case X86::VMAXSDZrrkz_Int: 7881 case X86::VMINSDZrrk_Int: 7882 case X86::VMINSDZrrkz_Int: 7883 case X86::VMULSDZrrk_Int: 7884 case X86::VMULSDZrrkz_Int: 7885 case X86::VSQRTSDZrk_Int: 7886 case X86::VSQRTSDZrkz_Int: 7887 case X86::VSUBSDZrrk_Int: 7888 case X86::VSUBSDZrrkz_Int: 7889 case X86::VFMADDSD4rr_Int: 7890 case X86::VFNMADDSD4rr_Int: 7891 case X86::VFMSUBSD4rr_Int: 7892 case X86::VFNMSUBSD4rr_Int: 7893 case X86::VFMADD132SDr_Int: 7894 case X86::VFNMADD132SDr_Int: 7895 case X86::VFMADD213SDr_Int: 7896 case X86::VFNMADD213SDr_Int: 7897 case X86::VFMADD231SDr_Int: 7898 case X86::VFNMADD231SDr_Int: 7899 case X86::VFMSUB132SDr_Int: 7900 case X86::VFNMSUB132SDr_Int: 7901 case X86::VFMSUB213SDr_Int: 7902 case X86::VFNMSUB213SDr_Int: 7903 case X86::VFMSUB231SDr_Int: 7904 case X86::VFNMSUB231SDr_Int: 7905 case X86::VFMADD132SDZr_Int: 7906 case X86::VFNMADD132SDZr_Int: 7907 case X86::VFMADD213SDZr_Int: 7908 case X86::VFNMADD213SDZr_Int: 7909 case X86::VFMADD231SDZr_Int: 7910 case X86::VFNMADD231SDZr_Int: 7911 case X86::VFMSUB132SDZr_Int: 7912 case X86::VFNMSUB132SDZr_Int: 7913 case X86::VFMSUB213SDZr_Int: 7914 case X86::VFNMSUB213SDZr_Int: 7915 case X86::VFMSUB231SDZr_Int: 7916 case X86::VFNMSUB231SDZr_Int: 7917 case X86::VFMADD132SDZrk_Int: 7918 case X86::VFNMADD132SDZrk_Int: 7919 case X86::VFMADD213SDZrk_Int: 7920 case X86::VFNMADD213SDZrk_Int: 7921 case X86::VFMADD231SDZrk_Int: 7922 case X86::VFNMADD231SDZrk_Int: 7923 case X86::VFMSUB132SDZrk_Int: 7924 case X86::VFNMSUB132SDZrk_Int: 7925 case X86::VFMSUB213SDZrk_Int: 7926 case X86::VFNMSUB213SDZrk_Int: 7927 case X86::VFMSUB231SDZrk_Int: 7928 case X86::VFNMSUB231SDZrk_Int: 7929 case X86::VFMADD132SDZrkz_Int: 7930 case X86::VFNMADD132SDZrkz_Int: 7931 case X86::VFMADD213SDZrkz_Int: 7932 case X86::VFNMADD213SDZrkz_Int: 7933 case X86::VFMADD231SDZrkz_Int: 7934 case X86::VFNMADD231SDZrkz_Int: 7935 case X86::VFMSUB132SDZrkz_Int: 7936 case X86::VFNMSUB132SDZrkz_Int: 7937 case X86::VFMSUB213SDZrkz_Int: 7938 case X86::VFNMSUB213SDZrkz_Int: 7939 case X86::VFMSUB231SDZrkz_Int: 7940 case X86::VFNMSUB231SDZrkz_Int: 7941 case X86::VFIXUPIMMSDZrri: 7942 case X86::VFIXUPIMMSDZrrik: 7943 case X86::VFIXUPIMMSDZrrikz: 7944 case X86::VFPCLASSSDZri: 7945 case X86::VFPCLASSSDZrik: 7946 case X86::VGETEXPSDZr: 7947 case X86::VGETEXPSDZrk: 7948 case X86::VGETEXPSDZrkz: 7949 case X86::VGETMANTSDZrri: 7950 case X86::VGETMANTSDZrrik: 7951 case X86::VGETMANTSDZrrikz: 7952 case X86::VRANGESDZrri: 7953 case X86::VRANGESDZrrik: 7954 case X86::VRANGESDZrrikz: 7955 case X86::VRCP14SDZrr: 7956 case X86::VRCP14SDZrrk: 7957 case X86::VRCP14SDZrrkz: 7958 case X86::VRCP28SDZr: 7959 case X86::VRCP28SDZrk: 7960 case X86::VRCP28SDZrkz: 7961 case X86::VREDUCESDZrri: 7962 case X86::VREDUCESDZrrik: 7963 case X86::VREDUCESDZrrikz: 7964 case X86::VRNDSCALESDZrri_Int: 7965 case X86::VRNDSCALESDZrrik_Int: 7966 case X86::VRNDSCALESDZrrikz_Int: 7967 case X86::VRSQRT14SDZrr: 7968 case X86::VRSQRT14SDZrrk: 7969 case X86::VRSQRT14SDZrrkz: 7970 case X86::VRSQRT28SDZr: 7971 case X86::VRSQRT28SDZrk: 7972 case X86::VRSQRT28SDZrkz: 7973 case X86::VSCALEFSDZrr: 7974 case X86::VSCALEFSDZrrk: 7975 case X86::VSCALEFSDZrrkz: 7976 return false; 7977 default: 7978 return true; 7979 } 7980 } 7981 7982 if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) { 7983 // These instructions only load 16 bits, we can't fold them if the 7984 // destination register is wider than 16 bits (2 bytes), and its user 7985 // instruction isn't scalar (SH). 7986 switch (UserOpc) { 7987 case X86::VADDSHZrr_Int: 7988 case X86::VCMPSHZrri_Int: 7989 case X86::VDIVSHZrr_Int: 7990 case X86::VMAXSHZrr_Int: 7991 case X86::VMINSHZrr_Int: 7992 case X86::VMULSHZrr_Int: 7993 case X86::VSUBSHZrr_Int: 7994 case X86::VADDSHZrrk_Int: 7995 case X86::VADDSHZrrkz_Int: 7996 case X86::VCMPSHZrrik_Int: 7997 case X86::VDIVSHZrrk_Int: 7998 case X86::VDIVSHZrrkz_Int: 7999 case X86::VMAXSHZrrk_Int: 8000 case X86::VMAXSHZrrkz_Int: 8001 case X86::VMINSHZrrk_Int: 8002 case X86::VMINSHZrrkz_Int: 8003 case X86::VMULSHZrrk_Int: 8004 case X86::VMULSHZrrkz_Int: 8005 case X86::VSUBSHZrrk_Int: 8006 case X86::VSUBSHZrrkz_Int: 8007 case X86::VFMADD132SHZr_Int: 8008 case X86::VFNMADD132SHZr_Int: 8009 case X86::VFMADD213SHZr_Int: 8010 case X86::VFNMADD213SHZr_Int: 8011 case X86::VFMADD231SHZr_Int: 8012 case X86::VFNMADD231SHZr_Int: 8013 case X86::VFMSUB132SHZr_Int: 8014 case X86::VFNMSUB132SHZr_Int: 8015 case X86::VFMSUB213SHZr_Int: 8016 case X86::VFNMSUB213SHZr_Int: 8017 case X86::VFMSUB231SHZr_Int: 8018 case X86::VFNMSUB231SHZr_Int: 8019 case X86::VFMADD132SHZrk_Int: 8020 case X86::VFNMADD132SHZrk_Int: 8021 case X86::VFMADD213SHZrk_Int: 8022 case X86::VFNMADD213SHZrk_Int: 8023 case X86::VFMADD231SHZrk_Int: 8024 case X86::VFNMADD231SHZrk_Int: 8025 case X86::VFMSUB132SHZrk_Int: 8026 case X86::VFNMSUB132SHZrk_Int: 8027 case X86::VFMSUB213SHZrk_Int: 8028 case X86::VFNMSUB213SHZrk_Int: 8029 case X86::VFMSUB231SHZrk_Int: 8030 case X86::VFNMSUB231SHZrk_Int: 8031 case X86::VFMADD132SHZrkz_Int: 8032 case X86::VFNMADD132SHZrkz_Int: 8033 case X86::VFMADD213SHZrkz_Int: 8034 case X86::VFNMADD213SHZrkz_Int: 8035 case X86::VFMADD231SHZrkz_Int: 8036 case X86::VFNMADD231SHZrkz_Int: 8037 case X86::VFMSUB132SHZrkz_Int: 8038 case X86::VFNMSUB132SHZrkz_Int: 8039 case X86::VFMSUB213SHZrkz_Int: 8040 case X86::VFNMSUB213SHZrkz_Int: 8041 case X86::VFMSUB231SHZrkz_Int: 8042 case X86::VFNMSUB231SHZrkz_Int: 8043 return false; 8044 default: 8045 return true; 8046 } 8047 } 8048 8049 return false; 8050 } 8051 8052 MachineInstr *X86InstrInfo::foldMemoryOperandImpl( 8053 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 8054 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 8055 LiveIntervals *LIS) const { 8056 8057 // TODO: Support the case where LoadMI loads a wide register, but MI 8058 // only uses a subreg. 8059 for (auto Op : Ops) { 8060 if (MI.getOperand(Op).getSubReg()) 8061 return nullptr; 8062 } 8063 8064 // If loading from a FrameIndex, fold directly from the FrameIndex. 8065 unsigned NumOps = LoadMI.getDesc().getNumOperands(); 8066 int FrameIndex; 8067 if (isLoadFromStackSlot(LoadMI, FrameIndex)) { 8068 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 8069 return nullptr; 8070 return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); 8071 } 8072 8073 // Check switch flag 8074 if (NoFusing) 8075 return nullptr; 8076 8077 // Avoid partial and undef register update stalls unless optimizing for size. 8078 if (!MF.getFunction().hasOptSize() && 8079 (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || 8080 shouldPreventUndefRegUpdateMemFold(MF, MI))) 8081 return nullptr; 8082 8083 // Determine the alignment of the load. 8084 Align Alignment; 8085 unsigned LoadOpc = LoadMI.getOpcode(); 8086 if (LoadMI.hasOneMemOperand()) 8087 Alignment = (*LoadMI.memoperands_begin())->getAlign(); 8088 else 8089 switch (LoadOpc) { 8090 case X86::AVX512_512_SET0: 8091 case X86::AVX512_512_SETALLONES: 8092 Alignment = Align(64); 8093 break; 8094 case X86::AVX2_SETALLONES: 8095 case X86::AVX1_SETALLONES: 8096 case X86::AVX_SET0: 8097 case X86::AVX512_256_SET0: 8098 Alignment = Align(32); 8099 break; 8100 case X86::V_SET0: 8101 case X86::V_SETALLONES: 8102 case X86::AVX512_128_SET0: 8103 case X86::FsFLD0F128: 8104 case X86::AVX512_FsFLD0F128: 8105 Alignment = Align(16); 8106 break; 8107 case X86::MMX_SET0: 8108 case X86::FsFLD0SD: 8109 case X86::AVX512_FsFLD0SD: 8110 Alignment = Align(8); 8111 break; 8112 case X86::FsFLD0SS: 8113 case X86::AVX512_FsFLD0SS: 8114 Alignment = Align(4); 8115 break; 8116 case X86::FsFLD0SH: 8117 case X86::AVX512_FsFLD0SH: 8118 Alignment = Align(2); 8119 break; 8120 default: 8121 return nullptr; 8122 } 8123 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 8124 unsigned NewOpc = 0; 8125 switch (MI.getOpcode()) { 8126 default: 8127 return nullptr; 8128 case X86::TEST8rr: 8129 NewOpc = X86::CMP8ri; 8130 break; 8131 case X86::TEST16rr: 8132 NewOpc = X86::CMP16ri; 8133 break; 8134 case X86::TEST32rr: 8135 NewOpc = X86::CMP32ri; 8136 break; 8137 case X86::TEST64rr: 8138 NewOpc = X86::CMP64ri32; 8139 break; 8140 } 8141 // Change to CMPXXri r, 0 first. 8142 MI.setDesc(get(NewOpc)); 8143 MI.getOperand(1).ChangeToImmediate(0); 8144 } else if (Ops.size() != 1) 8145 return nullptr; 8146 8147 // Make sure the subregisters match. 8148 // Otherwise we risk changing the size of the load. 8149 if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) 8150 return nullptr; 8151 8152 SmallVector<MachineOperand, X86::AddrNumOperands> MOs; 8153 switch (LoadOpc) { 8154 case X86::MMX_SET0: 8155 case X86::V_SET0: 8156 case X86::V_SETALLONES: 8157 case X86::AVX2_SETALLONES: 8158 case X86::AVX1_SETALLONES: 8159 case X86::AVX_SET0: 8160 case X86::AVX512_128_SET0: 8161 case X86::AVX512_256_SET0: 8162 case X86::AVX512_512_SET0: 8163 case X86::AVX512_512_SETALLONES: 8164 case X86::FsFLD0SH: 8165 case X86::AVX512_FsFLD0SH: 8166 case X86::FsFLD0SD: 8167 case X86::AVX512_FsFLD0SD: 8168 case X86::FsFLD0SS: 8169 case X86::AVX512_FsFLD0SS: 8170 case X86::FsFLD0F128: 8171 case X86::AVX512_FsFLD0F128: { 8172 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. 8173 // Create a constant-pool entry and operands to load from it. 8174 8175 // Large code model can't fold loads this way. 8176 if (MF.getTarget().getCodeModel() == CodeModel::Large) 8177 return nullptr; 8178 8179 // x86-32 PIC requires a PIC base register for constant pools. 8180 unsigned PICBase = 0; 8181 // Since we're using Small or Kernel code model, we can always use 8182 // RIP-relative addressing for a smaller encoding. 8183 if (Subtarget.is64Bit()) { 8184 PICBase = X86::RIP; 8185 } else if (MF.getTarget().isPositionIndependent()) { 8186 // FIXME: PICBase = getGlobalBaseReg(&MF); 8187 // This doesn't work for several reasons. 8188 // 1. GlobalBaseReg may have been spilled. 8189 // 2. It may not be live at MI. 8190 return nullptr; 8191 } 8192 8193 // Create a constant-pool entry. 8194 MachineConstantPool &MCP = *MF.getConstantPool(); 8195 Type *Ty; 8196 bool IsAllOnes = false; 8197 switch (LoadOpc) { 8198 case X86::FsFLD0SS: 8199 case X86::AVX512_FsFLD0SS: 8200 Ty = Type::getFloatTy(MF.getFunction().getContext()); 8201 break; 8202 case X86::FsFLD0SD: 8203 case X86::AVX512_FsFLD0SD: 8204 Ty = Type::getDoubleTy(MF.getFunction().getContext()); 8205 break; 8206 case X86::FsFLD0F128: 8207 case X86::AVX512_FsFLD0F128: 8208 Ty = Type::getFP128Ty(MF.getFunction().getContext()); 8209 break; 8210 case X86::FsFLD0SH: 8211 case X86::AVX512_FsFLD0SH: 8212 Ty = Type::getHalfTy(MF.getFunction().getContext()); 8213 break; 8214 case X86::AVX512_512_SETALLONES: 8215 IsAllOnes = true; 8216 [[fallthrough]]; 8217 case X86::AVX512_512_SET0: 8218 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8219 16); 8220 break; 8221 case X86::AVX1_SETALLONES: 8222 case X86::AVX2_SETALLONES: 8223 IsAllOnes = true; 8224 [[fallthrough]]; 8225 case X86::AVX512_256_SET0: 8226 case X86::AVX_SET0: 8227 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8228 8); 8229 8230 break; 8231 case X86::MMX_SET0: 8232 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8233 2); 8234 break; 8235 case X86::V_SETALLONES: 8236 IsAllOnes = true; 8237 [[fallthrough]]; 8238 case X86::V_SET0: 8239 case X86::AVX512_128_SET0: 8240 Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8241 4); 8242 break; 8243 } 8244 8245 const Constant *C = 8246 IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); 8247 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); 8248 8249 // Create operands to load from the constant pool entry. 8250 MOs.push_back(MachineOperand::CreateReg(PICBase, false)); 8251 MOs.push_back(MachineOperand::CreateImm(1)); 8252 MOs.push_back(MachineOperand::CreateReg(0, false)); 8253 MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); 8254 MOs.push_back(MachineOperand::CreateReg(0, false)); 8255 break; 8256 } 8257 case X86::VPBROADCASTBZ128rm: 8258 case X86::VPBROADCASTBZ256rm: 8259 case X86::VPBROADCASTBZrm: 8260 case X86::VBROADCASTF32X2Z256rm: 8261 case X86::VBROADCASTF32X2Zrm: 8262 case X86::VBROADCASTI32X2Z128rm: 8263 case X86::VBROADCASTI32X2Z256rm: 8264 case X86::VBROADCASTI32X2Zrm: 8265 // No instructions currently fuse with 8bits or 32bits x 2. 8266 return nullptr; 8267 8268 #define FOLD_BROADCAST(SIZE) \ 8269 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \ 8270 LoadMI.operands_begin() + NumOps); \ 8271 return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE, \ 8272 /*AllowCommute=*/true); 8273 case X86::VPBROADCASTWZ128rm: 8274 case X86::VPBROADCASTWZ256rm: 8275 case X86::VPBROADCASTWZrm: 8276 FOLD_BROADCAST(16); 8277 case X86::VPBROADCASTDZ128rm: 8278 case X86::VPBROADCASTDZ256rm: 8279 case X86::VPBROADCASTDZrm: 8280 case X86::VBROADCASTSSZ128rm: 8281 case X86::VBROADCASTSSZ256rm: 8282 case X86::VBROADCASTSSZrm: 8283 FOLD_BROADCAST(32); 8284 case X86::VPBROADCASTQZ128rm: 8285 case X86::VPBROADCASTQZ256rm: 8286 case X86::VPBROADCASTQZrm: 8287 case X86::VBROADCASTSDZ256rm: 8288 case X86::VBROADCASTSDZrm: 8289 FOLD_BROADCAST(64); 8290 default: { 8291 if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) 8292 return nullptr; 8293 8294 // Folding a normal load. Just copy the load's address operands. 8295 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, 8296 LoadMI.operands_begin() + NumOps); 8297 break; 8298 } 8299 } 8300 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, 8301 /*Size=*/0, Alignment, /*AllowCommute=*/true); 8302 } 8303 8304 MachineInstr * 8305 X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI, 8306 unsigned OpNum, ArrayRef<MachineOperand> MOs, 8307 MachineBasicBlock::iterator InsertPt, 8308 unsigned BitsSize, bool AllowCommute) const { 8309 8310 if (auto *I = lookupBroadcastFoldTable(MI.getOpcode(), OpNum)) 8311 return matchBroadcastSize(*I, BitsSize) 8312 ? fuseInst(MF, I->DstOp, OpNum, MOs, InsertPt, MI, *this) 8313 : nullptr; 8314 8315 if (AllowCommute) { 8316 // If the instruction and target operand are commutable, commute the 8317 // instruction and try again. 8318 unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum); 8319 if (CommuteOpIdx2 == OpNum) { 8320 printFailMsgforFold(MI, OpNum); 8321 return nullptr; 8322 } 8323 MachineInstr *NewMI = 8324 foldMemoryBroadcast(MF, MI, CommuteOpIdx2, MOs, InsertPt, BitsSize, 8325 /*AllowCommute=*/false); 8326 if (NewMI) 8327 return NewMI; 8328 // Folding failed again - undo the commute before returning. 8329 commuteInstruction(MI, false, OpNum, CommuteOpIdx2); 8330 } 8331 8332 printFailMsgforFold(MI, OpNum); 8333 return nullptr; 8334 } 8335 8336 static SmallVector<MachineMemOperand *, 2> 8337 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 8338 SmallVector<MachineMemOperand *, 2> LoadMMOs; 8339 8340 for (MachineMemOperand *MMO : MMOs) { 8341 if (!MMO->isLoad()) 8342 continue; 8343 8344 if (!MMO->isStore()) { 8345 // Reuse the MMO. 8346 LoadMMOs.push_back(MMO); 8347 } else { 8348 // Clone the MMO and unset the store flag. 8349 LoadMMOs.push_back(MF.getMachineMemOperand( 8350 MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); 8351 } 8352 } 8353 8354 return LoadMMOs; 8355 } 8356 8357 static SmallVector<MachineMemOperand *, 2> 8358 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { 8359 SmallVector<MachineMemOperand *, 2> StoreMMOs; 8360 8361 for (MachineMemOperand *MMO : MMOs) { 8362 if (!MMO->isStore()) 8363 continue; 8364 8365 if (!MMO->isLoad()) { 8366 // Reuse the MMO. 8367 StoreMMOs.push_back(MMO); 8368 } else { 8369 // Clone the MMO and unset the load flag. 8370 StoreMMOs.push_back(MF.getMachineMemOperand( 8371 MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); 8372 } 8373 } 8374 8375 return StoreMMOs; 8376 } 8377 8378 static unsigned getBroadcastOpcode(const X86FoldTableEntry *I, 8379 const TargetRegisterClass *RC, 8380 const X86Subtarget &STI) { 8381 assert(STI.hasAVX512() && "Expected at least AVX512!"); 8382 unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC); 8383 assert((SpillSize == 64 || STI.hasVLX()) && 8384 "Can't broadcast less than 64 bytes without AVX512VL!"); 8385 8386 #define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \ 8387 case TYPE: \ 8388 switch (SpillSize) { \ 8389 default: \ 8390 llvm_unreachable("Unknown spill size"); \ 8391 case 16: \ 8392 return X86::OP16; \ 8393 case 32: \ 8394 return X86::OP32; \ 8395 case 64: \ 8396 return X86::OP64; \ 8397 } \ 8398 break; 8399 8400 switch (I->Flags & TB_BCAST_MASK) { 8401 default: 8402 llvm_unreachable("Unexpected broadcast type!"); 8403 CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, 8404 VPBROADCASTWZrm) 8405 CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm, 8406 VPBROADCASTDZrm) 8407 CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm, 8408 VPBROADCASTQZrm) 8409 CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, 8410 VPBROADCASTWZrm) 8411 CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm, 8412 VBROADCASTSSZrm) 8413 CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm, 8414 VBROADCASTSDZrm) 8415 } 8416 } 8417 8418 bool X86InstrInfo::unfoldMemoryOperand( 8419 MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, 8420 bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { 8421 const X86FoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); 8422 if (I == nullptr) 8423 return false; 8424 unsigned Opc = I->DstOp; 8425 unsigned Index = I->Flags & TB_INDEX_MASK; 8426 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 8427 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 8428 if (UnfoldLoad && !FoldedLoad) 8429 return false; 8430 UnfoldLoad &= FoldedLoad; 8431 if (UnfoldStore && !FoldedStore) 8432 return false; 8433 UnfoldStore &= FoldedStore; 8434 8435 const MCInstrDesc &MCID = get(Opc); 8436 8437 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 8438 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8439 // TODO: Check if 32-byte or greater accesses are slow too? 8440 if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && 8441 Subtarget.isUnalignedMem16Slow()) 8442 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will 8443 // conservatively assume the address is unaligned. That's bad for 8444 // performance. 8445 return false; 8446 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; 8447 SmallVector<MachineOperand, 2> BeforeOps; 8448 SmallVector<MachineOperand, 2> AfterOps; 8449 SmallVector<MachineOperand, 4> ImpOps; 8450 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 8451 MachineOperand &Op = MI.getOperand(i); 8452 if (i >= Index && i < Index + X86::AddrNumOperands) 8453 AddrOps.push_back(Op); 8454 else if (Op.isReg() && Op.isImplicit()) 8455 ImpOps.push_back(Op); 8456 else if (i < Index) 8457 BeforeOps.push_back(Op); 8458 else if (i > Index) 8459 AfterOps.push_back(Op); 8460 } 8461 8462 // Emit the load or broadcast instruction. 8463 if (UnfoldLoad) { 8464 auto MMOs = extractLoadMMOs(MI.memoperands(), MF); 8465 8466 unsigned Opc; 8467 if (I->Flags & TB_BCAST_MASK) { 8468 Opc = getBroadcastOpcode(I, RC, Subtarget); 8469 } else { 8470 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 8471 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 8472 Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget); 8473 } 8474 8475 DebugLoc DL; 8476 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg); 8477 for (const MachineOperand &AddrOp : AddrOps) 8478 MIB.add(AddrOp); 8479 MIB.setMemRefs(MMOs); 8480 NewMIs.push_back(MIB); 8481 8482 if (UnfoldStore) { 8483 // Address operands cannot be marked isKill. 8484 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { 8485 MachineOperand &MO = NewMIs[0]->getOperand(i); 8486 if (MO.isReg()) 8487 MO.setIsKill(false); 8488 } 8489 } 8490 } 8491 8492 // Emit the data processing instruction. 8493 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); 8494 MachineInstrBuilder MIB(MF, DataMI); 8495 8496 if (FoldedStore) 8497 MIB.addReg(Reg, RegState::Define); 8498 for (MachineOperand &BeforeOp : BeforeOps) 8499 MIB.add(BeforeOp); 8500 if (FoldedLoad) 8501 MIB.addReg(Reg); 8502 for (MachineOperand &AfterOp : AfterOps) 8503 MIB.add(AfterOp); 8504 for (MachineOperand &ImpOp : ImpOps) { 8505 MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) | 8506 RegState::Implicit | 8507 getKillRegState(ImpOp.isKill()) | 8508 getDeadRegState(ImpOp.isDead()) | 8509 getUndefRegState(ImpOp.isUndef())); 8510 } 8511 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 8512 switch (DataMI->getOpcode()) { 8513 default: 8514 break; 8515 case X86::CMP64ri32: 8516 case X86::CMP32ri: 8517 case X86::CMP16ri: 8518 case X86::CMP8ri: { 8519 MachineOperand &MO0 = DataMI->getOperand(0); 8520 MachineOperand &MO1 = DataMI->getOperand(1); 8521 if (MO1.isImm() && MO1.getImm() == 0) { 8522 unsigned NewOpc; 8523 switch (DataMI->getOpcode()) { 8524 default: 8525 llvm_unreachable("Unreachable!"); 8526 case X86::CMP64ri32: 8527 NewOpc = X86::TEST64rr; 8528 break; 8529 case X86::CMP32ri: 8530 NewOpc = X86::TEST32rr; 8531 break; 8532 case X86::CMP16ri: 8533 NewOpc = X86::TEST16rr; 8534 break; 8535 case X86::CMP8ri: 8536 NewOpc = X86::TEST8rr; 8537 break; 8538 } 8539 DataMI->setDesc(get(NewOpc)); 8540 MO1.ChangeToRegister(MO0.getReg(), false); 8541 } 8542 } 8543 } 8544 NewMIs.push_back(DataMI); 8545 8546 // Emit the store instruction. 8547 if (UnfoldStore) { 8548 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); 8549 auto MMOs = extractStoreMMOs(MI.memoperands(), MF); 8550 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16); 8551 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 8552 unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget); 8553 DebugLoc DL; 8554 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); 8555 for (const MachineOperand &AddrOp : AddrOps) 8556 MIB.add(AddrOp); 8557 MIB.addReg(Reg, RegState::Kill); 8558 MIB.setMemRefs(MMOs); 8559 NewMIs.push_back(MIB); 8560 } 8561 8562 return true; 8563 } 8564 8565 bool X86InstrInfo::unfoldMemoryOperand( 8566 SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const { 8567 if (!N->isMachineOpcode()) 8568 return false; 8569 8570 const X86FoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); 8571 if (I == nullptr) 8572 return false; 8573 unsigned Opc = I->DstOp; 8574 unsigned Index = I->Flags & TB_INDEX_MASK; 8575 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 8576 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 8577 const MCInstrDesc &MCID = get(Opc); 8578 MachineFunction &MF = DAG.getMachineFunction(); 8579 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8580 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); 8581 unsigned NumDefs = MCID.NumDefs; 8582 std::vector<SDValue> AddrOps; 8583 std::vector<SDValue> BeforeOps; 8584 std::vector<SDValue> AfterOps; 8585 SDLoc dl(N); 8586 unsigned NumOps = N->getNumOperands(); 8587 for (unsigned i = 0; i != NumOps - 1; ++i) { 8588 SDValue Op = N->getOperand(i); 8589 if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands) 8590 AddrOps.push_back(Op); 8591 else if (i < Index - NumDefs) 8592 BeforeOps.push_back(Op); 8593 else if (i > Index - NumDefs) 8594 AfterOps.push_back(Op); 8595 } 8596 SDValue Chain = N->getOperand(NumOps - 1); 8597 AddrOps.push_back(Chain); 8598 8599 // Emit the load instruction. 8600 SDNode *Load = nullptr; 8601 if (FoldedLoad) { 8602 EVT VT = *TRI.legalclasstypes_begin(*RC); 8603 auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 8604 if (MMOs.empty() && RC == &X86::VR128RegClass && 8605 Subtarget.isUnalignedMem16Slow()) 8606 // Do not introduce a slow unaligned load. 8607 return false; 8608 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 8609 // memory access is slow above. 8610 8611 unsigned Opc; 8612 if (I->Flags & TB_BCAST_MASK) { 8613 Opc = getBroadcastOpcode(I, RC, Subtarget); 8614 } else { 8615 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 8616 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 8617 Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget); 8618 } 8619 8620 Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps); 8621 NewNodes.push_back(Load); 8622 8623 // Preserve memory reference information. 8624 DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs); 8625 } 8626 8627 // Emit the data processing instruction. 8628 std::vector<EVT> VTs; 8629 const TargetRegisterClass *DstRC = nullptr; 8630 if (MCID.getNumDefs() > 0) { 8631 DstRC = getRegClass(MCID, 0, &RI, MF); 8632 VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); 8633 } 8634 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 8635 EVT VT = N->getValueType(i); 8636 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) 8637 VTs.push_back(VT); 8638 } 8639 if (Load) 8640 BeforeOps.push_back(SDValue(Load, 0)); 8641 llvm::append_range(BeforeOps, AfterOps); 8642 // Change CMP32ri r, 0 back to TEST32rr r, r, etc. 8643 switch (Opc) { 8644 default: 8645 break; 8646 case X86::CMP64ri32: 8647 case X86::CMP32ri: 8648 case X86::CMP16ri: 8649 case X86::CMP8ri: 8650 if (isNullConstant(BeforeOps[1])) { 8651 switch (Opc) { 8652 default: 8653 llvm_unreachable("Unreachable!"); 8654 case X86::CMP64ri32: 8655 Opc = X86::TEST64rr; 8656 break; 8657 case X86::CMP32ri: 8658 Opc = X86::TEST32rr; 8659 break; 8660 case X86::CMP16ri: 8661 Opc = X86::TEST16rr; 8662 break; 8663 case X86::CMP8ri: 8664 Opc = X86::TEST8rr; 8665 break; 8666 } 8667 BeforeOps[1] = BeforeOps[0]; 8668 } 8669 } 8670 SDNode *NewNode = DAG.getMachineNode(Opc, dl, VTs, BeforeOps); 8671 NewNodes.push_back(NewNode); 8672 8673 // Emit the store instruction. 8674 if (FoldedStore) { 8675 AddrOps.pop_back(); 8676 AddrOps.push_back(SDValue(NewNode, 0)); 8677 AddrOps.push_back(Chain); 8678 auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF); 8679 if (MMOs.empty() && RC == &X86::VR128RegClass && 8680 Subtarget.isUnalignedMem16Slow()) 8681 // Do not introduce a slow unaligned store. 8682 return false; 8683 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte 8684 // memory access is slow above. 8685 unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); 8686 bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; 8687 SDNode *Store = 8688 DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), 8689 dl, MVT::Other, AddrOps); 8690 NewNodes.push_back(Store); 8691 8692 // Preserve memory reference information. 8693 DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs); 8694 } 8695 8696 return true; 8697 } 8698 8699 unsigned 8700 X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, 8701 bool UnfoldStore, 8702 unsigned *LoadRegIndex) const { 8703 const X86FoldTableEntry *I = lookupUnfoldTable(Opc); 8704 if (I == nullptr) 8705 return 0; 8706 bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; 8707 bool FoldedStore = I->Flags & TB_FOLDED_STORE; 8708 if (UnfoldLoad && !FoldedLoad) 8709 return 0; 8710 if (UnfoldStore && !FoldedStore) 8711 return 0; 8712 if (LoadRegIndex) 8713 *LoadRegIndex = I->Flags & TB_INDEX_MASK; 8714 return I->DstOp; 8715 } 8716 8717 bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 8718 int64_t &Offset1, 8719 int64_t &Offset2) const { 8720 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 8721 return false; 8722 8723 auto IsLoadOpcode = [&](unsigned Opcode) { 8724 switch (Opcode) { 8725 default: 8726 return false; 8727 case X86::MOV8rm: 8728 case X86::MOV16rm: 8729 case X86::MOV32rm: 8730 case X86::MOV64rm: 8731 case X86::LD_Fp32m: 8732 case X86::LD_Fp64m: 8733 case X86::LD_Fp80m: 8734 case X86::MOVSSrm: 8735 case X86::MOVSSrm_alt: 8736 case X86::MOVSDrm: 8737 case X86::MOVSDrm_alt: 8738 case X86::MMX_MOVD64rm: 8739 case X86::MMX_MOVQ64rm: 8740 case X86::MOVAPSrm: 8741 case X86::MOVUPSrm: 8742 case X86::MOVAPDrm: 8743 case X86::MOVUPDrm: 8744 case X86::MOVDQArm: 8745 case X86::MOVDQUrm: 8746 // AVX load instructions 8747 case X86::VMOVSSrm: 8748 case X86::VMOVSSrm_alt: 8749 case X86::VMOVSDrm: 8750 case X86::VMOVSDrm_alt: 8751 case X86::VMOVAPSrm: 8752 case X86::VMOVUPSrm: 8753 case X86::VMOVAPDrm: 8754 case X86::VMOVUPDrm: 8755 case X86::VMOVDQArm: 8756 case X86::VMOVDQUrm: 8757 case X86::VMOVAPSYrm: 8758 case X86::VMOVUPSYrm: 8759 case X86::VMOVAPDYrm: 8760 case X86::VMOVUPDYrm: 8761 case X86::VMOVDQAYrm: 8762 case X86::VMOVDQUYrm: 8763 // AVX512 load instructions 8764 case X86::VMOVSSZrm: 8765 case X86::VMOVSSZrm_alt: 8766 case X86::VMOVSDZrm: 8767 case X86::VMOVSDZrm_alt: 8768 case X86::VMOVAPSZ128rm: 8769 case X86::VMOVUPSZ128rm: 8770 case X86::VMOVAPSZ128rm_NOVLX: 8771 case X86::VMOVUPSZ128rm_NOVLX: 8772 case X86::VMOVAPDZ128rm: 8773 case X86::VMOVUPDZ128rm: 8774 case X86::VMOVDQU8Z128rm: 8775 case X86::VMOVDQU16Z128rm: 8776 case X86::VMOVDQA32Z128rm: 8777 case X86::VMOVDQU32Z128rm: 8778 case X86::VMOVDQA64Z128rm: 8779 case X86::VMOVDQU64Z128rm: 8780 case X86::VMOVAPSZ256rm: 8781 case X86::VMOVUPSZ256rm: 8782 case X86::VMOVAPSZ256rm_NOVLX: 8783 case X86::VMOVUPSZ256rm_NOVLX: 8784 case X86::VMOVAPDZ256rm: 8785 case X86::VMOVUPDZ256rm: 8786 case X86::VMOVDQU8Z256rm: 8787 case X86::VMOVDQU16Z256rm: 8788 case X86::VMOVDQA32Z256rm: 8789 case X86::VMOVDQU32Z256rm: 8790 case X86::VMOVDQA64Z256rm: 8791 case X86::VMOVDQU64Z256rm: 8792 case X86::VMOVAPSZrm: 8793 case X86::VMOVUPSZrm: 8794 case X86::VMOVAPDZrm: 8795 case X86::VMOVUPDZrm: 8796 case X86::VMOVDQU8Zrm: 8797 case X86::VMOVDQU16Zrm: 8798 case X86::VMOVDQA32Zrm: 8799 case X86::VMOVDQU32Zrm: 8800 case X86::VMOVDQA64Zrm: 8801 case X86::VMOVDQU64Zrm: 8802 case X86::KMOVBkm: 8803 case X86::KMOVBkm_EVEX: 8804 case X86::KMOVWkm: 8805 case X86::KMOVWkm_EVEX: 8806 case X86::KMOVDkm: 8807 case X86::KMOVDkm_EVEX: 8808 case X86::KMOVQkm: 8809 case X86::KMOVQkm_EVEX: 8810 return true; 8811 } 8812 }; 8813 8814 if (!IsLoadOpcode(Load1->getMachineOpcode()) || 8815 !IsLoadOpcode(Load2->getMachineOpcode())) 8816 return false; 8817 8818 // Lambda to check if both the loads have the same value for an operand index. 8819 auto HasSameOp = [&](int I) { 8820 return Load1->getOperand(I) == Load2->getOperand(I); 8821 }; 8822 8823 // All operands except the displacement should match. 8824 if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || 8825 !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) 8826 return false; 8827 8828 // Chain Operand must be the same. 8829 if (!HasSameOp(5)) 8830 return false; 8831 8832 // Now let's examine if the displacements are constants. 8833 auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); 8834 auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); 8835 if (!Disp1 || !Disp2) 8836 return false; 8837 8838 Offset1 = Disp1->getSExtValue(); 8839 Offset2 = Disp2->getSExtValue(); 8840 return true; 8841 } 8842 8843 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 8844 int64_t Offset1, int64_t Offset2, 8845 unsigned NumLoads) const { 8846 assert(Offset2 > Offset1); 8847 if ((Offset2 - Offset1) / 8 > 64) 8848 return false; 8849 8850 unsigned Opc1 = Load1->getMachineOpcode(); 8851 unsigned Opc2 = Load2->getMachineOpcode(); 8852 if (Opc1 != Opc2) 8853 return false; // FIXME: overly conservative? 8854 8855 switch (Opc1) { 8856 default: 8857 break; 8858 case X86::LD_Fp32m: 8859 case X86::LD_Fp64m: 8860 case X86::LD_Fp80m: 8861 case X86::MMX_MOVD64rm: 8862 case X86::MMX_MOVQ64rm: 8863 return false; 8864 } 8865 8866 EVT VT = Load1->getValueType(0); 8867 switch (VT.getSimpleVT().SimpleTy) { 8868 default: 8869 // XMM registers. In 64-bit mode we can be a bit more aggressive since we 8870 // have 16 of them to play with. 8871 if (Subtarget.is64Bit()) { 8872 if (NumLoads >= 3) 8873 return false; 8874 } else if (NumLoads) { 8875 return false; 8876 } 8877 break; 8878 case MVT::i8: 8879 case MVT::i16: 8880 case MVT::i32: 8881 case MVT::i64: 8882 case MVT::f32: 8883 case MVT::f64: 8884 if (NumLoads) 8885 return false; 8886 break; 8887 } 8888 8889 return true; 8890 } 8891 8892 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI, 8893 const MachineBasicBlock *MBB, 8894 const MachineFunction &MF) const { 8895 8896 // ENDBR instructions should not be scheduled around. 8897 unsigned Opcode = MI.getOpcode(); 8898 if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 || 8899 Opcode == X86::PLDTILECFGV) 8900 return true; 8901 8902 // Frame setup and destory can't be scheduled around. 8903 if (MI.getFlag(MachineInstr::FrameSetup) || 8904 MI.getFlag(MachineInstr::FrameDestroy)) 8905 return true; 8906 8907 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); 8908 } 8909 8910 bool X86InstrInfo::reverseBranchCondition( 8911 SmallVectorImpl<MachineOperand> &Cond) const { 8912 assert(Cond.size() == 1 && "Invalid X86 branch condition!"); 8913 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); 8914 Cond[0].setImm(GetOppositeBranchCondition(CC)); 8915 return false; 8916 } 8917 8918 bool X86InstrInfo::isSafeToMoveRegClassDefs( 8919 const TargetRegisterClass *RC) const { 8920 // FIXME: Return false for x87 stack register classes for now. We can't 8921 // allow any loads of these registers before FpGet_ST0_80. 8922 return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || 8923 RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || 8924 RC == &X86::RFP80RegClass); 8925 } 8926 8927 /// Return a virtual register initialized with the 8928 /// the global base register value. Output instructions required to 8929 /// initialize the register in the function entry block, if necessary. 8930 /// 8931 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. 8932 /// 8933 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { 8934 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); 8935 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 8936 if (GlobalBaseReg != 0) 8937 return GlobalBaseReg; 8938 8939 // Create the register. The code to initialize it is inserted 8940 // later, by the CGBR pass (below). 8941 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 8942 GlobalBaseReg = RegInfo.createVirtualRegister( 8943 Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); 8944 X86FI->setGlobalBaseReg(GlobalBaseReg); 8945 return GlobalBaseReg; 8946 } 8947 8948 // FIXME: Some shuffle and unpack instructions have equivalents in different 8949 // domains, but they require a bit more work than just switching opcodes. 8950 8951 static const uint16_t *lookup(unsigned opcode, unsigned domain, 8952 ArrayRef<uint16_t[3]> Table) { 8953 for (const uint16_t(&Row)[3] : Table) 8954 if (Row[domain - 1] == opcode) 8955 return Row; 8956 return nullptr; 8957 } 8958 8959 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, 8960 ArrayRef<uint16_t[4]> Table) { 8961 // If this is the integer domain make sure to check both integer columns. 8962 for (const uint16_t(&Row)[4] : Table) 8963 if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode)) 8964 return Row; 8965 return nullptr; 8966 } 8967 8968 // Helper to attempt to widen/narrow blend masks. 8969 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, 8970 unsigned NewWidth, unsigned *pNewMask = nullptr) { 8971 assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && 8972 "Illegal blend mask scale"); 8973 unsigned NewMask = 0; 8974 8975 if ((OldWidth % NewWidth) == 0) { 8976 unsigned Scale = OldWidth / NewWidth; 8977 unsigned SubMask = (1u << Scale) - 1; 8978 for (unsigned i = 0; i != NewWidth; ++i) { 8979 unsigned Sub = (OldMask >> (i * Scale)) & SubMask; 8980 if (Sub == SubMask) 8981 NewMask |= (1u << i); 8982 else if (Sub != 0x0) 8983 return false; 8984 } 8985 } else { 8986 unsigned Scale = NewWidth / OldWidth; 8987 unsigned SubMask = (1u << Scale) - 1; 8988 for (unsigned i = 0; i != OldWidth; ++i) { 8989 if (OldMask & (1 << i)) { 8990 NewMask |= (SubMask << (i * Scale)); 8991 } 8992 } 8993 } 8994 8995 if (pNewMask) 8996 *pNewMask = NewMask; 8997 return true; 8998 } 8999 9000 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { 9001 unsigned Opcode = MI.getOpcode(); 9002 unsigned NumOperands = MI.getDesc().getNumOperands(); 9003 9004 auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { 9005 uint16_t validDomains = 0; 9006 if (MI.getOperand(NumOperands - 1).isImm()) { 9007 unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); 9008 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) 9009 validDomains |= 0x2; // PackedSingle 9010 if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) 9011 validDomains |= 0x4; // PackedDouble 9012 if (!Is256 || Subtarget.hasAVX2()) 9013 validDomains |= 0x8; // PackedInt 9014 } 9015 return validDomains; 9016 }; 9017 9018 switch (Opcode) { 9019 case X86::BLENDPDrmi: 9020 case X86::BLENDPDrri: 9021 case X86::VBLENDPDrmi: 9022 case X86::VBLENDPDrri: 9023 return GetBlendDomains(2, false); 9024 case X86::VBLENDPDYrmi: 9025 case X86::VBLENDPDYrri: 9026 return GetBlendDomains(4, true); 9027 case X86::BLENDPSrmi: 9028 case X86::BLENDPSrri: 9029 case X86::VBLENDPSrmi: 9030 case X86::VBLENDPSrri: 9031 case X86::VPBLENDDrmi: 9032 case X86::VPBLENDDrri: 9033 return GetBlendDomains(4, false); 9034 case X86::VBLENDPSYrmi: 9035 case X86::VBLENDPSYrri: 9036 case X86::VPBLENDDYrmi: 9037 case X86::VPBLENDDYrri: 9038 return GetBlendDomains(8, true); 9039 case X86::PBLENDWrmi: 9040 case X86::PBLENDWrri: 9041 case X86::VPBLENDWrmi: 9042 case X86::VPBLENDWrri: 9043 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. 9044 case X86::VPBLENDWYrmi: 9045 case X86::VPBLENDWYrri: 9046 return GetBlendDomains(8, false); 9047 case X86::VPANDDZ128rr: 9048 case X86::VPANDDZ128rm: 9049 case X86::VPANDDZ256rr: 9050 case X86::VPANDDZ256rm: 9051 case X86::VPANDQZ128rr: 9052 case X86::VPANDQZ128rm: 9053 case X86::VPANDQZ256rr: 9054 case X86::VPANDQZ256rm: 9055 case X86::VPANDNDZ128rr: 9056 case X86::VPANDNDZ128rm: 9057 case X86::VPANDNDZ256rr: 9058 case X86::VPANDNDZ256rm: 9059 case X86::VPANDNQZ128rr: 9060 case X86::VPANDNQZ128rm: 9061 case X86::VPANDNQZ256rr: 9062 case X86::VPANDNQZ256rm: 9063 case X86::VPORDZ128rr: 9064 case X86::VPORDZ128rm: 9065 case X86::VPORDZ256rr: 9066 case X86::VPORDZ256rm: 9067 case X86::VPORQZ128rr: 9068 case X86::VPORQZ128rm: 9069 case X86::VPORQZ256rr: 9070 case X86::VPORQZ256rm: 9071 case X86::VPXORDZ128rr: 9072 case X86::VPXORDZ128rm: 9073 case X86::VPXORDZ256rr: 9074 case X86::VPXORDZ256rm: 9075 case X86::VPXORQZ128rr: 9076 case X86::VPXORQZ128rm: 9077 case X86::VPXORQZ256rr: 9078 case X86::VPXORQZ256rm: 9079 // If we don't have DQI see if we can still switch from an EVEX integer 9080 // instruction to a VEX floating point instruction. 9081 if (Subtarget.hasDQI()) 9082 return 0; 9083 9084 if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) 9085 return 0; 9086 if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) 9087 return 0; 9088 // Register forms will have 3 operands. Memory form will have more. 9089 if (NumOperands == 3 && 9090 RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) 9091 return 0; 9092 9093 // All domains are valid. 9094 return 0xe; 9095 case X86::MOVHLPSrr: 9096 // We can swap domains when both inputs are the same register. 9097 // FIXME: This doesn't catch all the cases we would like. If the input 9098 // register isn't KILLed by the instruction, the two address instruction 9099 // pass puts a COPY on one input. The other input uses the original 9100 // register. This prevents the same physical register from being used by 9101 // both inputs. 9102 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 9103 MI.getOperand(0).getSubReg() == 0 && 9104 MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0) 9105 return 0x6; 9106 return 0; 9107 case X86::SHUFPDrri: 9108 return 0x6; 9109 } 9110 return 0; 9111 } 9112 9113 #include "X86ReplaceableInstrs.def" 9114 9115 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, 9116 unsigned Domain) const { 9117 assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); 9118 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 9119 assert(dom && "Not an SSE instruction"); 9120 9121 unsigned Opcode = MI.getOpcode(); 9122 unsigned NumOperands = MI.getDesc().getNumOperands(); 9123 9124 auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { 9125 if (MI.getOperand(NumOperands - 1).isImm()) { 9126 unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; 9127 Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); 9128 unsigned NewImm = Imm; 9129 9130 const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); 9131 if (!table) 9132 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 9133 9134 if (Domain == 1) { // PackedSingle 9135 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 9136 } else if (Domain == 2) { // PackedDouble 9137 AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); 9138 } else if (Domain == 3) { // PackedInt 9139 if (Subtarget.hasAVX2()) { 9140 // If we are already VPBLENDW use that, else use VPBLENDD. 9141 if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { 9142 table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); 9143 AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); 9144 } 9145 } else { 9146 assert(!Is256 && "128-bit vector expected"); 9147 AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); 9148 } 9149 } 9150 9151 assert(table && table[Domain - 1] && "Unknown domain op"); 9152 MI.setDesc(get(table[Domain - 1])); 9153 MI.getOperand(NumOperands - 1).setImm(NewImm & 255); 9154 } 9155 return true; 9156 }; 9157 9158 switch (Opcode) { 9159 case X86::BLENDPDrmi: 9160 case X86::BLENDPDrri: 9161 case X86::VBLENDPDrmi: 9162 case X86::VBLENDPDrri: 9163 return SetBlendDomain(2, false); 9164 case X86::VBLENDPDYrmi: 9165 case X86::VBLENDPDYrri: 9166 return SetBlendDomain(4, true); 9167 case X86::BLENDPSrmi: 9168 case X86::BLENDPSrri: 9169 case X86::VBLENDPSrmi: 9170 case X86::VBLENDPSrri: 9171 case X86::VPBLENDDrmi: 9172 case X86::VPBLENDDrri: 9173 return SetBlendDomain(4, false); 9174 case X86::VBLENDPSYrmi: 9175 case X86::VBLENDPSYrri: 9176 case X86::VPBLENDDYrmi: 9177 case X86::VPBLENDDYrri: 9178 return SetBlendDomain(8, true); 9179 case X86::PBLENDWrmi: 9180 case X86::PBLENDWrri: 9181 case X86::VPBLENDWrmi: 9182 case X86::VPBLENDWrri: 9183 return SetBlendDomain(8, false); 9184 case X86::VPBLENDWYrmi: 9185 case X86::VPBLENDWYrri: 9186 return SetBlendDomain(16, true); 9187 case X86::VPANDDZ128rr: 9188 case X86::VPANDDZ128rm: 9189 case X86::VPANDDZ256rr: 9190 case X86::VPANDDZ256rm: 9191 case X86::VPANDQZ128rr: 9192 case X86::VPANDQZ128rm: 9193 case X86::VPANDQZ256rr: 9194 case X86::VPANDQZ256rm: 9195 case X86::VPANDNDZ128rr: 9196 case X86::VPANDNDZ128rm: 9197 case X86::VPANDNDZ256rr: 9198 case X86::VPANDNDZ256rm: 9199 case X86::VPANDNQZ128rr: 9200 case X86::VPANDNQZ128rm: 9201 case X86::VPANDNQZ256rr: 9202 case X86::VPANDNQZ256rm: 9203 case X86::VPORDZ128rr: 9204 case X86::VPORDZ128rm: 9205 case X86::VPORDZ256rr: 9206 case X86::VPORDZ256rm: 9207 case X86::VPORQZ128rr: 9208 case X86::VPORQZ128rm: 9209 case X86::VPORQZ256rr: 9210 case X86::VPORQZ256rm: 9211 case X86::VPXORDZ128rr: 9212 case X86::VPXORDZ128rm: 9213 case X86::VPXORDZ256rr: 9214 case X86::VPXORDZ256rm: 9215 case X86::VPXORQZ128rr: 9216 case X86::VPXORQZ128rm: 9217 case X86::VPXORQZ256rr: 9218 case X86::VPXORQZ256rm: { 9219 // Without DQI, convert EVEX instructions to VEX instructions. 9220 if (Subtarget.hasDQI()) 9221 return false; 9222 9223 const uint16_t *table = 9224 lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs); 9225 assert(table && "Instruction not found in table?"); 9226 // Don't change integer Q instructions to D instructions and 9227 // use D intructions if we started with a PS instruction. 9228 if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 9229 Domain = 4; 9230 MI.setDesc(get(table[Domain - 1])); 9231 return true; 9232 } 9233 case X86::UNPCKHPDrr: 9234 case X86::MOVHLPSrr: 9235 // We just need to commute the instruction which will switch the domains. 9236 if (Domain != dom && Domain != 3 && 9237 MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && 9238 MI.getOperand(0).getSubReg() == 0 && 9239 MI.getOperand(1).getSubReg() == 0 && 9240 MI.getOperand(2).getSubReg() == 0) { 9241 commuteInstruction(MI, false); 9242 return true; 9243 } 9244 // We must always return true for MOVHLPSrr. 9245 if (Opcode == X86::MOVHLPSrr) 9246 return true; 9247 break; 9248 case X86::SHUFPDrri: { 9249 if (Domain == 1) { 9250 unsigned Imm = MI.getOperand(3).getImm(); 9251 unsigned NewImm = 0x44; 9252 if (Imm & 1) 9253 NewImm |= 0x0a; 9254 if (Imm & 2) 9255 NewImm |= 0xa0; 9256 MI.getOperand(3).setImm(NewImm); 9257 MI.setDesc(get(X86::SHUFPSrri)); 9258 } 9259 return true; 9260 } 9261 } 9262 return false; 9263 } 9264 9265 std::pair<uint16_t, uint16_t> 9266 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { 9267 uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 9268 unsigned opcode = MI.getOpcode(); 9269 uint16_t validDomains = 0; 9270 if (domain) { 9271 // Attempt to match for custom instructions. 9272 validDomains = getExecutionDomainCustom(MI); 9273 if (validDomains) 9274 return std::make_pair(domain, validDomains); 9275 9276 if (lookup(opcode, domain, ReplaceableInstrs)) { 9277 validDomains = 0xe; 9278 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { 9279 validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; 9280 } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { 9281 validDomains = 0x6; 9282 } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { 9283 // Insert/extract instructions should only effect domain if AVX2 9284 // is enabled. 9285 if (!Subtarget.hasAVX2()) 9286 return std::make_pair(0, 0); 9287 validDomains = 0xe; 9288 } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { 9289 validDomains = 0xe; 9290 } else if (Subtarget.hasDQI() && 9291 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) { 9292 validDomains = 0xe; 9293 } else if (Subtarget.hasDQI()) { 9294 if (const uint16_t *table = 9295 lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) { 9296 if (domain == 1 || (domain == 3 && table[3] == opcode)) 9297 validDomains = 0xa; 9298 else 9299 validDomains = 0xc; 9300 } 9301 } 9302 } 9303 return std::make_pair(domain, validDomains); 9304 } 9305 9306 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { 9307 assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); 9308 uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; 9309 assert(dom && "Not an SSE instruction"); 9310 9311 // Attempt to match for custom instructions. 9312 if (setExecutionDomainCustom(MI, Domain)) 9313 return; 9314 9315 const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); 9316 if (!table) { // try the other table 9317 assert((Subtarget.hasAVX2() || Domain < 3) && 9318 "256-bit vector operations only available in AVX2"); 9319 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); 9320 } 9321 if (!table) { // try the FP table 9322 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); 9323 assert((!table || Domain < 3) && 9324 "Can only select PackedSingle or PackedDouble"); 9325 } 9326 if (!table) { // try the other table 9327 assert(Subtarget.hasAVX2() && 9328 "256-bit insert/extract only available in AVX2"); 9329 table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); 9330 } 9331 if (!table) { // try the AVX512 table 9332 assert(Subtarget.hasAVX512() && "Requires AVX-512"); 9333 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); 9334 // Don't change integer Q instructions to D instructions. 9335 if (table && Domain == 3 && table[3] == MI.getOpcode()) 9336 Domain = 4; 9337 } 9338 if (!table) { // try the AVX512DQ table 9339 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 9340 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); 9341 // Don't change integer Q instructions to D instructions and 9342 // use D instructions if we started with a PS instruction. 9343 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 9344 Domain = 4; 9345 } 9346 if (!table) { // try the AVX512DQMasked table 9347 assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); 9348 table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); 9349 if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) 9350 Domain = 4; 9351 } 9352 assert(table && "Cannot change domain"); 9353 MI.setDesc(get(table[Domain - 1])); 9354 } 9355 9356 void X86InstrInfo::insertNoop(MachineBasicBlock &MBB, 9357 MachineBasicBlock::iterator MI) const { 9358 DebugLoc DL; 9359 BuildMI(MBB, MI, DL, get(X86::NOOP)); 9360 } 9361 9362 /// Return the noop instruction to use for a noop. 9363 MCInst X86InstrInfo::getNop() const { 9364 MCInst Nop; 9365 Nop.setOpcode(X86::NOOP); 9366 return Nop; 9367 } 9368 9369 bool X86InstrInfo::isHighLatencyDef(int opc) const { 9370 switch (opc) { 9371 default: 9372 return false; 9373 case X86::DIVPDrm: 9374 case X86::DIVPDrr: 9375 case X86::DIVPSrm: 9376 case X86::DIVPSrr: 9377 case X86::DIVSDrm: 9378 case X86::DIVSDrm_Int: 9379 case X86::DIVSDrr: 9380 case X86::DIVSDrr_Int: 9381 case X86::DIVSSrm: 9382 case X86::DIVSSrm_Int: 9383 case X86::DIVSSrr: 9384 case X86::DIVSSrr_Int: 9385 case X86::SQRTPDm: 9386 case X86::SQRTPDr: 9387 case X86::SQRTPSm: 9388 case X86::SQRTPSr: 9389 case X86::SQRTSDm: 9390 case X86::SQRTSDm_Int: 9391 case X86::SQRTSDr: 9392 case X86::SQRTSDr_Int: 9393 case X86::SQRTSSm: 9394 case X86::SQRTSSm_Int: 9395 case X86::SQRTSSr: 9396 case X86::SQRTSSr_Int: 9397 // AVX instructions with high latency 9398 case X86::VDIVPDrm: 9399 case X86::VDIVPDrr: 9400 case X86::VDIVPDYrm: 9401 case X86::VDIVPDYrr: 9402 case X86::VDIVPSrm: 9403 case X86::VDIVPSrr: 9404 case X86::VDIVPSYrm: 9405 case X86::VDIVPSYrr: 9406 case X86::VDIVSDrm: 9407 case X86::VDIVSDrm_Int: 9408 case X86::VDIVSDrr: 9409 case X86::VDIVSDrr_Int: 9410 case X86::VDIVSSrm: 9411 case X86::VDIVSSrm_Int: 9412 case X86::VDIVSSrr: 9413 case X86::VDIVSSrr_Int: 9414 case X86::VSQRTPDm: 9415 case X86::VSQRTPDr: 9416 case X86::VSQRTPDYm: 9417 case X86::VSQRTPDYr: 9418 case X86::VSQRTPSm: 9419 case X86::VSQRTPSr: 9420 case X86::VSQRTPSYm: 9421 case X86::VSQRTPSYr: 9422 case X86::VSQRTSDm: 9423 case X86::VSQRTSDm_Int: 9424 case X86::VSQRTSDr: 9425 case X86::VSQRTSDr_Int: 9426 case X86::VSQRTSSm: 9427 case X86::VSQRTSSm_Int: 9428 case X86::VSQRTSSr: 9429 case X86::VSQRTSSr_Int: 9430 // AVX512 instructions with high latency 9431 case X86::VDIVPDZ128rm: 9432 case X86::VDIVPDZ128rmb: 9433 case X86::VDIVPDZ128rmbk: 9434 case X86::VDIVPDZ128rmbkz: 9435 case X86::VDIVPDZ128rmk: 9436 case X86::VDIVPDZ128rmkz: 9437 case X86::VDIVPDZ128rr: 9438 case X86::VDIVPDZ128rrk: 9439 case X86::VDIVPDZ128rrkz: 9440 case X86::VDIVPDZ256rm: 9441 case X86::VDIVPDZ256rmb: 9442 case X86::VDIVPDZ256rmbk: 9443 case X86::VDIVPDZ256rmbkz: 9444 case X86::VDIVPDZ256rmk: 9445 case X86::VDIVPDZ256rmkz: 9446 case X86::VDIVPDZ256rr: 9447 case X86::VDIVPDZ256rrk: 9448 case X86::VDIVPDZ256rrkz: 9449 case X86::VDIVPDZrrb: 9450 case X86::VDIVPDZrrbk: 9451 case X86::VDIVPDZrrbkz: 9452 case X86::VDIVPDZrm: 9453 case X86::VDIVPDZrmb: 9454 case X86::VDIVPDZrmbk: 9455 case X86::VDIVPDZrmbkz: 9456 case X86::VDIVPDZrmk: 9457 case X86::VDIVPDZrmkz: 9458 case X86::VDIVPDZrr: 9459 case X86::VDIVPDZrrk: 9460 case X86::VDIVPDZrrkz: 9461 case X86::VDIVPSZ128rm: 9462 case X86::VDIVPSZ128rmb: 9463 case X86::VDIVPSZ128rmbk: 9464 case X86::VDIVPSZ128rmbkz: 9465 case X86::VDIVPSZ128rmk: 9466 case X86::VDIVPSZ128rmkz: 9467 case X86::VDIVPSZ128rr: 9468 case X86::VDIVPSZ128rrk: 9469 case X86::VDIVPSZ128rrkz: 9470 case X86::VDIVPSZ256rm: 9471 case X86::VDIVPSZ256rmb: 9472 case X86::VDIVPSZ256rmbk: 9473 case X86::VDIVPSZ256rmbkz: 9474 case X86::VDIVPSZ256rmk: 9475 case X86::VDIVPSZ256rmkz: 9476 case X86::VDIVPSZ256rr: 9477 case X86::VDIVPSZ256rrk: 9478 case X86::VDIVPSZ256rrkz: 9479 case X86::VDIVPSZrrb: 9480 case X86::VDIVPSZrrbk: 9481 case X86::VDIVPSZrrbkz: 9482 case X86::VDIVPSZrm: 9483 case X86::VDIVPSZrmb: 9484 case X86::VDIVPSZrmbk: 9485 case X86::VDIVPSZrmbkz: 9486 case X86::VDIVPSZrmk: 9487 case X86::VDIVPSZrmkz: 9488 case X86::VDIVPSZrr: 9489 case X86::VDIVPSZrrk: 9490 case X86::VDIVPSZrrkz: 9491 case X86::VDIVSDZrm: 9492 case X86::VDIVSDZrr: 9493 case X86::VDIVSDZrm_Int: 9494 case X86::VDIVSDZrmk_Int: 9495 case X86::VDIVSDZrmkz_Int: 9496 case X86::VDIVSDZrr_Int: 9497 case X86::VDIVSDZrrk_Int: 9498 case X86::VDIVSDZrrkz_Int: 9499 case X86::VDIVSDZrrb_Int: 9500 case X86::VDIVSDZrrbk_Int: 9501 case X86::VDIVSDZrrbkz_Int: 9502 case X86::VDIVSSZrm: 9503 case X86::VDIVSSZrr: 9504 case X86::VDIVSSZrm_Int: 9505 case X86::VDIVSSZrmk_Int: 9506 case X86::VDIVSSZrmkz_Int: 9507 case X86::VDIVSSZrr_Int: 9508 case X86::VDIVSSZrrk_Int: 9509 case X86::VDIVSSZrrkz_Int: 9510 case X86::VDIVSSZrrb_Int: 9511 case X86::VDIVSSZrrbk_Int: 9512 case X86::VDIVSSZrrbkz_Int: 9513 case X86::VSQRTPDZ128m: 9514 case X86::VSQRTPDZ128mb: 9515 case X86::VSQRTPDZ128mbk: 9516 case X86::VSQRTPDZ128mbkz: 9517 case X86::VSQRTPDZ128mk: 9518 case X86::VSQRTPDZ128mkz: 9519 case X86::VSQRTPDZ128r: 9520 case X86::VSQRTPDZ128rk: 9521 case X86::VSQRTPDZ128rkz: 9522 case X86::VSQRTPDZ256m: 9523 case X86::VSQRTPDZ256mb: 9524 case X86::VSQRTPDZ256mbk: 9525 case X86::VSQRTPDZ256mbkz: 9526 case X86::VSQRTPDZ256mk: 9527 case X86::VSQRTPDZ256mkz: 9528 case X86::VSQRTPDZ256r: 9529 case X86::VSQRTPDZ256rk: 9530 case X86::VSQRTPDZ256rkz: 9531 case X86::VSQRTPDZm: 9532 case X86::VSQRTPDZmb: 9533 case X86::VSQRTPDZmbk: 9534 case X86::VSQRTPDZmbkz: 9535 case X86::VSQRTPDZmk: 9536 case X86::VSQRTPDZmkz: 9537 case X86::VSQRTPDZr: 9538 case X86::VSQRTPDZrb: 9539 case X86::VSQRTPDZrbk: 9540 case X86::VSQRTPDZrbkz: 9541 case X86::VSQRTPDZrk: 9542 case X86::VSQRTPDZrkz: 9543 case X86::VSQRTPSZ128m: 9544 case X86::VSQRTPSZ128mb: 9545 case X86::VSQRTPSZ128mbk: 9546 case X86::VSQRTPSZ128mbkz: 9547 case X86::VSQRTPSZ128mk: 9548 case X86::VSQRTPSZ128mkz: 9549 case X86::VSQRTPSZ128r: 9550 case X86::VSQRTPSZ128rk: 9551 case X86::VSQRTPSZ128rkz: 9552 case X86::VSQRTPSZ256m: 9553 case X86::VSQRTPSZ256mb: 9554 case X86::VSQRTPSZ256mbk: 9555 case X86::VSQRTPSZ256mbkz: 9556 case X86::VSQRTPSZ256mk: 9557 case X86::VSQRTPSZ256mkz: 9558 case X86::VSQRTPSZ256r: 9559 case X86::VSQRTPSZ256rk: 9560 case X86::VSQRTPSZ256rkz: 9561 case X86::VSQRTPSZm: 9562 case X86::VSQRTPSZmb: 9563 case X86::VSQRTPSZmbk: 9564 case X86::VSQRTPSZmbkz: 9565 case X86::VSQRTPSZmk: 9566 case X86::VSQRTPSZmkz: 9567 case X86::VSQRTPSZr: 9568 case X86::VSQRTPSZrb: 9569 case X86::VSQRTPSZrbk: 9570 case X86::VSQRTPSZrbkz: 9571 case X86::VSQRTPSZrk: 9572 case X86::VSQRTPSZrkz: 9573 case X86::VSQRTSDZm: 9574 case X86::VSQRTSDZm_Int: 9575 case X86::VSQRTSDZmk_Int: 9576 case X86::VSQRTSDZmkz_Int: 9577 case X86::VSQRTSDZr: 9578 case X86::VSQRTSDZr_Int: 9579 case X86::VSQRTSDZrk_Int: 9580 case X86::VSQRTSDZrkz_Int: 9581 case X86::VSQRTSDZrb_Int: 9582 case X86::VSQRTSDZrbk_Int: 9583 case X86::VSQRTSDZrbkz_Int: 9584 case X86::VSQRTSSZm: 9585 case X86::VSQRTSSZm_Int: 9586 case X86::VSQRTSSZmk_Int: 9587 case X86::VSQRTSSZmkz_Int: 9588 case X86::VSQRTSSZr: 9589 case X86::VSQRTSSZr_Int: 9590 case X86::VSQRTSSZrk_Int: 9591 case X86::VSQRTSSZrkz_Int: 9592 case X86::VSQRTSSZrb_Int: 9593 case X86::VSQRTSSZrbk_Int: 9594 case X86::VSQRTSSZrbkz_Int: 9595 9596 case X86::VGATHERDPDYrm: 9597 case X86::VGATHERDPDZ128rm: 9598 case X86::VGATHERDPDZ256rm: 9599 case X86::VGATHERDPDZrm: 9600 case X86::VGATHERDPDrm: 9601 case X86::VGATHERDPSYrm: 9602 case X86::VGATHERDPSZ128rm: 9603 case X86::VGATHERDPSZ256rm: 9604 case X86::VGATHERDPSZrm: 9605 case X86::VGATHERDPSrm: 9606 case X86::VGATHERPF0DPDm: 9607 case X86::VGATHERPF0DPSm: 9608 case X86::VGATHERPF0QPDm: 9609 case X86::VGATHERPF0QPSm: 9610 case X86::VGATHERPF1DPDm: 9611 case X86::VGATHERPF1DPSm: 9612 case X86::VGATHERPF1QPDm: 9613 case X86::VGATHERPF1QPSm: 9614 case X86::VGATHERQPDYrm: 9615 case X86::VGATHERQPDZ128rm: 9616 case X86::VGATHERQPDZ256rm: 9617 case X86::VGATHERQPDZrm: 9618 case X86::VGATHERQPDrm: 9619 case X86::VGATHERQPSYrm: 9620 case X86::VGATHERQPSZ128rm: 9621 case X86::VGATHERQPSZ256rm: 9622 case X86::VGATHERQPSZrm: 9623 case X86::VGATHERQPSrm: 9624 case X86::VPGATHERDDYrm: 9625 case X86::VPGATHERDDZ128rm: 9626 case X86::VPGATHERDDZ256rm: 9627 case X86::VPGATHERDDZrm: 9628 case X86::VPGATHERDDrm: 9629 case X86::VPGATHERDQYrm: 9630 case X86::VPGATHERDQZ128rm: 9631 case X86::VPGATHERDQZ256rm: 9632 case X86::VPGATHERDQZrm: 9633 case X86::VPGATHERDQrm: 9634 case X86::VPGATHERQDYrm: 9635 case X86::VPGATHERQDZ128rm: 9636 case X86::VPGATHERQDZ256rm: 9637 case X86::VPGATHERQDZrm: 9638 case X86::VPGATHERQDrm: 9639 case X86::VPGATHERQQYrm: 9640 case X86::VPGATHERQQZ128rm: 9641 case X86::VPGATHERQQZ256rm: 9642 case X86::VPGATHERQQZrm: 9643 case X86::VPGATHERQQrm: 9644 case X86::VSCATTERDPDZ128mr: 9645 case X86::VSCATTERDPDZ256mr: 9646 case X86::VSCATTERDPDZmr: 9647 case X86::VSCATTERDPSZ128mr: 9648 case X86::VSCATTERDPSZ256mr: 9649 case X86::VSCATTERDPSZmr: 9650 case X86::VSCATTERPF0DPDm: 9651 case X86::VSCATTERPF0DPSm: 9652 case X86::VSCATTERPF0QPDm: 9653 case X86::VSCATTERPF0QPSm: 9654 case X86::VSCATTERPF1DPDm: 9655 case X86::VSCATTERPF1DPSm: 9656 case X86::VSCATTERPF1QPDm: 9657 case X86::VSCATTERPF1QPSm: 9658 case X86::VSCATTERQPDZ128mr: 9659 case X86::VSCATTERQPDZ256mr: 9660 case X86::VSCATTERQPDZmr: 9661 case X86::VSCATTERQPSZ128mr: 9662 case X86::VSCATTERQPSZ256mr: 9663 case X86::VSCATTERQPSZmr: 9664 case X86::VPSCATTERDDZ128mr: 9665 case X86::VPSCATTERDDZ256mr: 9666 case X86::VPSCATTERDDZmr: 9667 case X86::VPSCATTERDQZ128mr: 9668 case X86::VPSCATTERDQZ256mr: 9669 case X86::VPSCATTERDQZmr: 9670 case X86::VPSCATTERQDZ128mr: 9671 case X86::VPSCATTERQDZ256mr: 9672 case X86::VPSCATTERQDZmr: 9673 case X86::VPSCATTERQQZ128mr: 9674 case X86::VPSCATTERQQZ256mr: 9675 case X86::VPSCATTERQQZmr: 9676 return true; 9677 } 9678 } 9679 9680 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 9681 const MachineRegisterInfo *MRI, 9682 const MachineInstr &DefMI, 9683 unsigned DefIdx, 9684 const MachineInstr &UseMI, 9685 unsigned UseIdx) const { 9686 return isHighLatencyDef(DefMI.getOpcode()); 9687 } 9688 9689 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, 9690 const MachineBasicBlock *MBB) const { 9691 assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && 9692 Inst.getNumDefs() <= 2 && "Reassociation needs binary operators"); 9693 9694 // Integer binary math/logic instructions have a third source operand: 9695 // the EFLAGS register. That operand must be both defined here and never 9696 // used; ie, it must be dead. If the EFLAGS operand is live, then we can 9697 // not change anything because rearranging the operands could affect other 9698 // instructions that depend on the exact status flags (zero, sign, etc.) 9699 // that are set by using these particular operands with this operation. 9700 const MachineOperand *FlagDef = 9701 Inst.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); 9702 assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?"); 9703 if (FlagDef && !FlagDef->isDead()) 9704 return false; 9705 9706 return TargetInstrInfo::hasReassociableOperands(Inst, MBB); 9707 } 9708 9709 // TODO: There are many more machine instruction opcodes to match: 9710 // 1. Other data types (integer, vectors) 9711 // 2. Other math / logic operations (xor, or) 9712 // 3. Other forms of the same operation (intrinsics and other variants) 9713 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, 9714 bool Invert) const { 9715 if (Invert) 9716 return false; 9717 switch (Inst.getOpcode()) { 9718 CASE_ND(ADD8rr) 9719 CASE_ND(ADD16rr) 9720 CASE_ND(ADD32rr) 9721 CASE_ND(ADD64rr) 9722 CASE_ND(AND8rr) 9723 CASE_ND(AND16rr) 9724 CASE_ND(AND32rr) 9725 CASE_ND(AND64rr) 9726 CASE_ND(OR8rr) 9727 CASE_ND(OR16rr) 9728 CASE_ND(OR32rr) 9729 CASE_ND(OR64rr) 9730 CASE_ND(XOR8rr) 9731 CASE_ND(XOR16rr) 9732 CASE_ND(XOR32rr) 9733 CASE_ND(XOR64rr) 9734 CASE_ND(IMUL16rr) 9735 CASE_ND(IMUL32rr) 9736 CASE_ND(IMUL64rr) 9737 case X86::PANDrr: 9738 case X86::PORrr: 9739 case X86::PXORrr: 9740 case X86::ANDPDrr: 9741 case X86::ANDPSrr: 9742 case X86::ORPDrr: 9743 case X86::ORPSrr: 9744 case X86::XORPDrr: 9745 case X86::XORPSrr: 9746 case X86::PADDBrr: 9747 case X86::PADDWrr: 9748 case X86::PADDDrr: 9749 case X86::PADDQrr: 9750 case X86::PMULLWrr: 9751 case X86::PMULLDrr: 9752 case X86::PMAXSBrr: 9753 case X86::PMAXSDrr: 9754 case X86::PMAXSWrr: 9755 case X86::PMAXUBrr: 9756 case X86::PMAXUDrr: 9757 case X86::PMAXUWrr: 9758 case X86::PMINSBrr: 9759 case X86::PMINSDrr: 9760 case X86::PMINSWrr: 9761 case X86::PMINUBrr: 9762 case X86::PMINUDrr: 9763 case X86::PMINUWrr: 9764 case X86::VPANDrr: 9765 case X86::VPANDYrr: 9766 case X86::VPANDDZ128rr: 9767 case X86::VPANDDZ256rr: 9768 case X86::VPANDDZrr: 9769 case X86::VPANDQZ128rr: 9770 case X86::VPANDQZ256rr: 9771 case X86::VPANDQZrr: 9772 case X86::VPORrr: 9773 case X86::VPORYrr: 9774 case X86::VPORDZ128rr: 9775 case X86::VPORDZ256rr: 9776 case X86::VPORDZrr: 9777 case X86::VPORQZ128rr: 9778 case X86::VPORQZ256rr: 9779 case X86::VPORQZrr: 9780 case X86::VPXORrr: 9781 case X86::VPXORYrr: 9782 case X86::VPXORDZ128rr: 9783 case X86::VPXORDZ256rr: 9784 case X86::VPXORDZrr: 9785 case X86::VPXORQZ128rr: 9786 case X86::VPXORQZ256rr: 9787 case X86::VPXORQZrr: 9788 case X86::VANDPDrr: 9789 case X86::VANDPSrr: 9790 case X86::VANDPDYrr: 9791 case X86::VANDPSYrr: 9792 case X86::VANDPDZ128rr: 9793 case X86::VANDPSZ128rr: 9794 case X86::VANDPDZ256rr: 9795 case X86::VANDPSZ256rr: 9796 case X86::VANDPDZrr: 9797 case X86::VANDPSZrr: 9798 case X86::VORPDrr: 9799 case X86::VORPSrr: 9800 case X86::VORPDYrr: 9801 case X86::VORPSYrr: 9802 case X86::VORPDZ128rr: 9803 case X86::VORPSZ128rr: 9804 case X86::VORPDZ256rr: 9805 case X86::VORPSZ256rr: 9806 case X86::VORPDZrr: 9807 case X86::VORPSZrr: 9808 case X86::VXORPDrr: 9809 case X86::VXORPSrr: 9810 case X86::VXORPDYrr: 9811 case X86::VXORPSYrr: 9812 case X86::VXORPDZ128rr: 9813 case X86::VXORPSZ128rr: 9814 case X86::VXORPDZ256rr: 9815 case X86::VXORPSZ256rr: 9816 case X86::VXORPDZrr: 9817 case X86::VXORPSZrr: 9818 case X86::KADDBkk: 9819 case X86::KADDWkk: 9820 case X86::KADDDkk: 9821 case X86::KADDQkk: 9822 case X86::KANDBkk: 9823 case X86::KANDWkk: 9824 case X86::KANDDkk: 9825 case X86::KANDQkk: 9826 case X86::KORBkk: 9827 case X86::KORWkk: 9828 case X86::KORDkk: 9829 case X86::KORQkk: 9830 case X86::KXORBkk: 9831 case X86::KXORWkk: 9832 case X86::KXORDkk: 9833 case X86::KXORQkk: 9834 case X86::VPADDBrr: 9835 case X86::VPADDWrr: 9836 case X86::VPADDDrr: 9837 case X86::VPADDQrr: 9838 case X86::VPADDBYrr: 9839 case X86::VPADDWYrr: 9840 case X86::VPADDDYrr: 9841 case X86::VPADDQYrr: 9842 case X86::VPADDBZ128rr: 9843 case X86::VPADDWZ128rr: 9844 case X86::VPADDDZ128rr: 9845 case X86::VPADDQZ128rr: 9846 case X86::VPADDBZ256rr: 9847 case X86::VPADDWZ256rr: 9848 case X86::VPADDDZ256rr: 9849 case X86::VPADDQZ256rr: 9850 case X86::VPADDBZrr: 9851 case X86::VPADDWZrr: 9852 case X86::VPADDDZrr: 9853 case X86::VPADDQZrr: 9854 case X86::VPMULLWrr: 9855 case X86::VPMULLWYrr: 9856 case X86::VPMULLWZ128rr: 9857 case X86::VPMULLWZ256rr: 9858 case X86::VPMULLWZrr: 9859 case X86::VPMULLDrr: 9860 case X86::VPMULLDYrr: 9861 case X86::VPMULLDZ128rr: 9862 case X86::VPMULLDZ256rr: 9863 case X86::VPMULLDZrr: 9864 case X86::VPMULLQZ128rr: 9865 case X86::VPMULLQZ256rr: 9866 case X86::VPMULLQZrr: 9867 case X86::VPMAXSBrr: 9868 case X86::VPMAXSBYrr: 9869 case X86::VPMAXSBZ128rr: 9870 case X86::VPMAXSBZ256rr: 9871 case X86::VPMAXSBZrr: 9872 case X86::VPMAXSDrr: 9873 case X86::VPMAXSDYrr: 9874 case X86::VPMAXSDZ128rr: 9875 case X86::VPMAXSDZ256rr: 9876 case X86::VPMAXSDZrr: 9877 case X86::VPMAXSQZ128rr: 9878 case X86::VPMAXSQZ256rr: 9879 case X86::VPMAXSQZrr: 9880 case X86::VPMAXSWrr: 9881 case X86::VPMAXSWYrr: 9882 case X86::VPMAXSWZ128rr: 9883 case X86::VPMAXSWZ256rr: 9884 case X86::VPMAXSWZrr: 9885 case X86::VPMAXUBrr: 9886 case X86::VPMAXUBYrr: 9887 case X86::VPMAXUBZ128rr: 9888 case X86::VPMAXUBZ256rr: 9889 case X86::VPMAXUBZrr: 9890 case X86::VPMAXUDrr: 9891 case X86::VPMAXUDYrr: 9892 case X86::VPMAXUDZ128rr: 9893 case X86::VPMAXUDZ256rr: 9894 case X86::VPMAXUDZrr: 9895 case X86::VPMAXUQZ128rr: 9896 case X86::VPMAXUQZ256rr: 9897 case X86::VPMAXUQZrr: 9898 case X86::VPMAXUWrr: 9899 case X86::VPMAXUWYrr: 9900 case X86::VPMAXUWZ128rr: 9901 case X86::VPMAXUWZ256rr: 9902 case X86::VPMAXUWZrr: 9903 case X86::VPMINSBrr: 9904 case X86::VPMINSBYrr: 9905 case X86::VPMINSBZ128rr: 9906 case X86::VPMINSBZ256rr: 9907 case X86::VPMINSBZrr: 9908 case X86::VPMINSDrr: 9909 case X86::VPMINSDYrr: 9910 case X86::VPMINSDZ128rr: 9911 case X86::VPMINSDZ256rr: 9912 case X86::VPMINSDZrr: 9913 case X86::VPMINSQZ128rr: 9914 case X86::VPMINSQZ256rr: 9915 case X86::VPMINSQZrr: 9916 case X86::VPMINSWrr: 9917 case X86::VPMINSWYrr: 9918 case X86::VPMINSWZ128rr: 9919 case X86::VPMINSWZ256rr: 9920 case X86::VPMINSWZrr: 9921 case X86::VPMINUBrr: 9922 case X86::VPMINUBYrr: 9923 case X86::VPMINUBZ128rr: 9924 case X86::VPMINUBZ256rr: 9925 case X86::VPMINUBZrr: 9926 case X86::VPMINUDrr: 9927 case X86::VPMINUDYrr: 9928 case X86::VPMINUDZ128rr: 9929 case X86::VPMINUDZ256rr: 9930 case X86::VPMINUDZrr: 9931 case X86::VPMINUQZ128rr: 9932 case X86::VPMINUQZ256rr: 9933 case X86::VPMINUQZrr: 9934 case X86::VPMINUWrr: 9935 case X86::VPMINUWYrr: 9936 case X86::VPMINUWZ128rr: 9937 case X86::VPMINUWZ256rr: 9938 case X86::VPMINUWZrr: 9939 // Normal min/max instructions are not commutative because of NaN and signed 9940 // zero semantics, but these are. Thus, there's no need to check for global 9941 // relaxed math; the instructions themselves have the properties we need. 9942 case X86::MAXCPDrr: 9943 case X86::MAXCPSrr: 9944 case X86::MAXCSDrr: 9945 case X86::MAXCSSrr: 9946 case X86::MINCPDrr: 9947 case X86::MINCPSrr: 9948 case X86::MINCSDrr: 9949 case X86::MINCSSrr: 9950 case X86::VMAXCPDrr: 9951 case X86::VMAXCPSrr: 9952 case X86::VMAXCPDYrr: 9953 case X86::VMAXCPSYrr: 9954 case X86::VMAXCPDZ128rr: 9955 case X86::VMAXCPSZ128rr: 9956 case X86::VMAXCPDZ256rr: 9957 case X86::VMAXCPSZ256rr: 9958 case X86::VMAXCPDZrr: 9959 case X86::VMAXCPSZrr: 9960 case X86::VMAXCSDrr: 9961 case X86::VMAXCSSrr: 9962 case X86::VMAXCSDZrr: 9963 case X86::VMAXCSSZrr: 9964 case X86::VMINCPDrr: 9965 case X86::VMINCPSrr: 9966 case X86::VMINCPDYrr: 9967 case X86::VMINCPSYrr: 9968 case X86::VMINCPDZ128rr: 9969 case X86::VMINCPSZ128rr: 9970 case X86::VMINCPDZ256rr: 9971 case X86::VMINCPSZ256rr: 9972 case X86::VMINCPDZrr: 9973 case X86::VMINCPSZrr: 9974 case X86::VMINCSDrr: 9975 case X86::VMINCSSrr: 9976 case X86::VMINCSDZrr: 9977 case X86::VMINCSSZrr: 9978 case X86::VMAXCPHZ128rr: 9979 case X86::VMAXCPHZ256rr: 9980 case X86::VMAXCPHZrr: 9981 case X86::VMAXCSHZrr: 9982 case X86::VMINCPHZ128rr: 9983 case X86::VMINCPHZ256rr: 9984 case X86::VMINCPHZrr: 9985 case X86::VMINCSHZrr: 9986 return true; 9987 case X86::ADDPDrr: 9988 case X86::ADDPSrr: 9989 case X86::ADDSDrr: 9990 case X86::ADDSSrr: 9991 case X86::MULPDrr: 9992 case X86::MULPSrr: 9993 case X86::MULSDrr: 9994 case X86::MULSSrr: 9995 case X86::VADDPDrr: 9996 case X86::VADDPSrr: 9997 case X86::VADDPDYrr: 9998 case X86::VADDPSYrr: 9999 case X86::VADDPDZ128rr: 10000 case X86::VADDPSZ128rr: 10001 case X86::VADDPDZ256rr: 10002 case X86::VADDPSZ256rr: 10003 case X86::VADDPDZrr: 10004 case X86::VADDPSZrr: 10005 case X86::VADDSDrr: 10006 case X86::VADDSSrr: 10007 case X86::VADDSDZrr: 10008 case X86::VADDSSZrr: 10009 case X86::VMULPDrr: 10010 case X86::VMULPSrr: 10011 case X86::VMULPDYrr: 10012 case X86::VMULPSYrr: 10013 case X86::VMULPDZ128rr: 10014 case X86::VMULPSZ128rr: 10015 case X86::VMULPDZ256rr: 10016 case X86::VMULPSZ256rr: 10017 case X86::VMULPDZrr: 10018 case X86::VMULPSZrr: 10019 case X86::VMULSDrr: 10020 case X86::VMULSSrr: 10021 case X86::VMULSDZrr: 10022 case X86::VMULSSZrr: 10023 case X86::VADDPHZ128rr: 10024 case X86::VADDPHZ256rr: 10025 case X86::VADDPHZrr: 10026 case X86::VADDSHZrr: 10027 case X86::VMULPHZ128rr: 10028 case X86::VMULPHZ256rr: 10029 case X86::VMULPHZrr: 10030 case X86::VMULSHZrr: 10031 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && 10032 Inst.getFlag(MachineInstr::MIFlag::FmNsz); 10033 default: 10034 return false; 10035 } 10036 } 10037 10038 /// If \p DescribedReg overlaps with the MOVrr instruction's destination 10039 /// register then, if possible, describe the value in terms of the source 10040 /// register. 10041 static std::optional<ParamLoadedValue> 10042 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, 10043 const TargetRegisterInfo *TRI) { 10044 Register DestReg = MI.getOperand(0).getReg(); 10045 Register SrcReg = MI.getOperand(1).getReg(); 10046 10047 auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 10048 10049 // If the described register is the destination, just return the source. 10050 if (DestReg == DescribedReg) 10051 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 10052 10053 // If the described register is a sub-register of the destination register, 10054 // then pick out the source register's corresponding sub-register. 10055 if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) { 10056 Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx); 10057 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); 10058 } 10059 10060 // The remaining case to consider is when the described register is a 10061 // super-register of the destination register. MOV8rr and MOV16rr does not 10062 // write to any of the other bytes in the register, meaning that we'd have to 10063 // describe the value using a combination of the source register and the 10064 // non-overlapping bits in the described register, which is not currently 10065 // possible. 10066 if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || 10067 !TRI->isSuperRegister(DestReg, DescribedReg)) 10068 return std::nullopt; 10069 10070 assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case"); 10071 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 10072 } 10073 10074 std::optional<ParamLoadedValue> 10075 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { 10076 const MachineOperand *Op = nullptr; 10077 DIExpression *Expr = nullptr; 10078 10079 const TargetRegisterInfo *TRI = &getRegisterInfo(); 10080 10081 switch (MI.getOpcode()) { 10082 case X86::LEA32r: 10083 case X86::LEA64r: 10084 case X86::LEA64_32r: { 10085 // We may need to describe a 64-bit parameter with a 32-bit LEA. 10086 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 10087 return std::nullopt; 10088 10089 // Operand 4 could be global address. For now we do not support 10090 // such situation. 10091 if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm()) 10092 return std::nullopt; 10093 10094 const MachineOperand &Op1 = MI.getOperand(1); 10095 const MachineOperand &Op2 = MI.getOperand(3); 10096 assert(Op2.isReg() && 10097 (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical())); 10098 10099 // Omit situations like: 10100 // %rsi = lea %rsi, 4, ... 10101 if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) || 10102 Op2.getReg() == MI.getOperand(0).getReg()) 10103 return std::nullopt; 10104 else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && 10105 TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) || 10106 (Op2.getReg() != X86::NoRegister && 10107 TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg()))) 10108 return std::nullopt; 10109 10110 int64_t Coef = MI.getOperand(2).getImm(); 10111 int64_t Offset = MI.getOperand(4).getImm(); 10112 SmallVector<uint64_t, 8> Ops; 10113 10114 if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { 10115 Op = &Op1; 10116 } else if (Op1.isFI()) 10117 Op = &Op1; 10118 10119 if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { 10120 Ops.push_back(dwarf::DW_OP_constu); 10121 Ops.push_back(Coef + 1); 10122 Ops.push_back(dwarf::DW_OP_mul); 10123 } else { 10124 if (Op && Op2.getReg() != X86::NoRegister) { 10125 int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false); 10126 if (dwarfReg < 0) 10127 return std::nullopt; 10128 else if (dwarfReg < 32) { 10129 Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg); 10130 Ops.push_back(0); 10131 } else { 10132 Ops.push_back(dwarf::DW_OP_bregx); 10133 Ops.push_back(dwarfReg); 10134 Ops.push_back(0); 10135 } 10136 } else if (!Op) { 10137 assert(Op2.getReg() != X86::NoRegister); 10138 Op = &Op2; 10139 } 10140 10141 if (Coef > 1) { 10142 assert(Op2.getReg() != X86::NoRegister); 10143 Ops.push_back(dwarf::DW_OP_constu); 10144 Ops.push_back(Coef); 10145 Ops.push_back(dwarf::DW_OP_mul); 10146 } 10147 10148 if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && 10149 Op2.getReg() != X86::NoRegister) { 10150 Ops.push_back(dwarf::DW_OP_plus); 10151 } 10152 } 10153 10154 DIExpression::appendOffset(Ops, Offset); 10155 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops); 10156 10157 return ParamLoadedValue(*Op, Expr); 10158 } 10159 case X86::MOV8ri: 10160 case X86::MOV16ri: 10161 // TODO: Handle MOV8ri and MOV16ri. 10162 return std::nullopt; 10163 case X86::MOV32ri: 10164 case X86::MOV64ri: 10165 case X86::MOV64ri32: 10166 // MOV32ri may be used for producing zero-extended 32-bit immediates in 10167 // 64-bit parameters, so we need to consider super-registers. 10168 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 10169 return std::nullopt; 10170 return ParamLoadedValue(MI.getOperand(1), Expr); 10171 case X86::MOV8rr: 10172 case X86::MOV16rr: 10173 case X86::MOV32rr: 10174 case X86::MOV64rr: 10175 return describeMOVrrLoadedValue(MI, Reg, TRI); 10176 case X86::XOR32rr: { 10177 // 64-bit parameters are zero-materialized using XOR32rr, so also consider 10178 // super-registers. 10179 if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) 10180 return std::nullopt; 10181 if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) 10182 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr); 10183 return std::nullopt; 10184 } 10185 case X86::MOVSX64rr32: { 10186 // We may need to describe the lower 32 bits of the MOVSX; for example, in 10187 // cases like this: 10188 // 10189 // $ebx = [...] 10190 // $rdi = MOVSX64rr32 $ebx 10191 // $esi = MOV32rr $edi 10192 if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg)) 10193 return std::nullopt; 10194 10195 Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); 10196 10197 // If the described register is the destination register we need to 10198 // sign-extend the source register from 32 bits. The other case we handle 10199 // is when the described register is the 32-bit sub-register of the 10200 // destination register, in case we just need to return the source 10201 // register. 10202 if (Reg == MI.getOperand(0).getReg()) 10203 Expr = DIExpression::appendExt(Expr, 32, 64, true); 10204 else 10205 assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && 10206 "Unhandled sub-register case for MOVSX64rr32"); 10207 10208 return ParamLoadedValue(MI.getOperand(1), Expr); 10209 } 10210 default: 10211 assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction"); 10212 return TargetInstrInfo::describeLoadedValue(MI, Reg); 10213 } 10214 } 10215 10216 /// This is an architecture-specific helper function of reassociateOps. 10217 /// Set special operand attributes for new instructions after reassociation. 10218 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, 10219 MachineInstr &OldMI2, 10220 MachineInstr &NewMI1, 10221 MachineInstr &NewMI2) const { 10222 // Integer instructions may define an implicit EFLAGS dest register operand. 10223 MachineOperand *OldFlagDef1 = 10224 OldMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); 10225 MachineOperand *OldFlagDef2 = 10226 OldMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); 10227 10228 assert(!OldFlagDef1 == !OldFlagDef2 && 10229 "Unexpected instruction type for reassociation"); 10230 10231 if (!OldFlagDef1 || !OldFlagDef2) 10232 return; 10233 10234 assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && 10235 "Must have dead EFLAGS operand in reassociable instruction"); 10236 10237 MachineOperand *NewFlagDef1 = 10238 NewMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); 10239 MachineOperand *NewFlagDef2 = 10240 NewMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); 10241 10242 assert(NewFlagDef1 && NewFlagDef2 && 10243 "Unexpected operand in reassociable instruction"); 10244 10245 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations 10246 // of this pass or other passes. The EFLAGS operands must be dead in these new 10247 // instructions because the EFLAGS operands in the original instructions must 10248 // be dead in order for reassociation to occur. 10249 NewFlagDef1->setIsDead(); 10250 NewFlagDef2->setIsDead(); 10251 } 10252 10253 std::pair<unsigned, unsigned> 10254 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 10255 return std::make_pair(TF, 0u); 10256 } 10257 10258 ArrayRef<std::pair<unsigned, const char *>> 10259 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 10260 using namespace X86II; 10261 static const std::pair<unsigned, const char *> TargetFlags[] = { 10262 {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, 10263 {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, 10264 {MO_GOT, "x86-got"}, 10265 {MO_GOTOFF, "x86-gotoff"}, 10266 {MO_GOTPCREL, "x86-gotpcrel"}, 10267 {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"}, 10268 {MO_PLT, "x86-plt"}, 10269 {MO_TLSGD, "x86-tlsgd"}, 10270 {MO_TLSLD, "x86-tlsld"}, 10271 {MO_TLSLDM, "x86-tlsldm"}, 10272 {MO_GOTTPOFF, "x86-gottpoff"}, 10273 {MO_INDNTPOFF, "x86-indntpoff"}, 10274 {MO_TPOFF, "x86-tpoff"}, 10275 {MO_DTPOFF, "x86-dtpoff"}, 10276 {MO_NTPOFF, "x86-ntpoff"}, 10277 {MO_GOTNTPOFF, "x86-gotntpoff"}, 10278 {MO_DLLIMPORT, "x86-dllimport"}, 10279 {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, 10280 {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, 10281 {MO_TLVP, "x86-tlvp"}, 10282 {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, 10283 {MO_SECREL, "x86-secrel"}, 10284 {MO_COFFSTUB, "x86-coffstub"}}; 10285 return ArrayRef(TargetFlags); 10286 } 10287 10288 namespace { 10289 /// Create Global Base Reg pass. This initializes the PIC 10290 /// global base register for x86-32. 10291 struct CGBR : public MachineFunctionPass { 10292 static char ID; 10293 CGBR() : MachineFunctionPass(ID) {} 10294 10295 bool runOnMachineFunction(MachineFunction &MF) override { 10296 const X86TargetMachine *TM = 10297 static_cast<const X86TargetMachine *>(&MF.getTarget()); 10298 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 10299 10300 // Only emit a global base reg in PIC mode. 10301 if (!TM->isPositionIndependent()) 10302 return false; 10303 10304 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 10305 Register GlobalBaseReg = X86FI->getGlobalBaseReg(); 10306 10307 // If we didn't need a GlobalBaseReg, don't insert code. 10308 if (GlobalBaseReg == 0) 10309 return false; 10310 10311 // Insert the set of GlobalBaseReg into the first MBB of the function 10312 MachineBasicBlock &FirstMBB = MF.front(); 10313 MachineBasicBlock::iterator MBBI = FirstMBB.begin(); 10314 DebugLoc DL = FirstMBB.findDebugLoc(MBBI); 10315 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 10316 const X86InstrInfo *TII = STI.getInstrInfo(); 10317 10318 Register PC; 10319 if (STI.isPICStyleGOT()) 10320 PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); 10321 else 10322 PC = GlobalBaseReg; 10323 10324 if (STI.is64Bit()) { 10325 if (TM->getCodeModel() == CodeModel::Large) { 10326 // In the large code model, we are aiming for this code, though the 10327 // register allocation may vary: 10328 // leaq .LN$pb(%rip), %rax 10329 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx 10330 // addq %rcx, %rax 10331 // RAX now holds address of _GLOBAL_OFFSET_TABLE_. 10332 Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 10333 Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); 10334 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) 10335 .addReg(X86::RIP) 10336 .addImm(0) 10337 .addReg(0) 10338 .addSym(MF.getPICBaseSymbol()) 10339 .addReg(0); 10340 std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); 10341 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) 10342 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 10343 X86II::MO_PIC_BASE_OFFSET); 10344 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) 10345 .addReg(PBReg, RegState::Kill) 10346 .addReg(GOTReg, RegState::Kill); 10347 } else { 10348 // In other code models, use a RIP-relative LEA to materialize the 10349 // GOT. 10350 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) 10351 .addReg(X86::RIP) 10352 .addImm(0) 10353 .addReg(0) 10354 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") 10355 .addReg(0); 10356 } 10357 } else { 10358 // Operand of MovePCtoStack is completely ignored by asm printer. It's 10359 // only used in JIT code emission as displacement to pc. 10360 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); 10361 10362 // If we're using vanilla 'GOT' PIC style, we should use relative 10363 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. 10364 if (STI.isPICStyleGOT()) { 10365 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], 10366 // %some_register 10367 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) 10368 .addReg(PC) 10369 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", 10370 X86II::MO_GOT_ABSOLUTE_ADDRESS); 10371 } 10372 } 10373 10374 return true; 10375 } 10376 10377 StringRef getPassName() const override { 10378 return "X86 PIC Global Base Reg Initialization"; 10379 } 10380 10381 void getAnalysisUsage(AnalysisUsage &AU) const override { 10382 AU.setPreservesCFG(); 10383 MachineFunctionPass::getAnalysisUsage(AU); 10384 } 10385 }; 10386 } // namespace 10387 10388 char CGBR::ID = 0; 10389 FunctionPass *llvm::createX86GlobalBaseRegPass() { return new CGBR(); } 10390 10391 namespace { 10392 struct LDTLSCleanup : public MachineFunctionPass { 10393 static char ID; 10394 LDTLSCleanup() : MachineFunctionPass(ID) {} 10395 10396 bool runOnMachineFunction(MachineFunction &MF) override { 10397 if (skipFunction(MF.getFunction())) 10398 return false; 10399 10400 X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); 10401 if (MFI->getNumLocalDynamicTLSAccesses() < 2) { 10402 // No point folding accesses if there isn't at least two. 10403 return false; 10404 } 10405 10406 MachineDominatorTree *DT = 10407 &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 10408 return VisitNode(DT->getRootNode(), 0); 10409 } 10410 10411 // Visit the dominator subtree rooted at Node in pre-order. 10412 // If TLSBaseAddrReg is non-null, then use that to replace any 10413 // TLS_base_addr instructions. Otherwise, create the register 10414 // when the first such instruction is seen, and then use it 10415 // as we encounter more instructions. 10416 bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { 10417 MachineBasicBlock *BB = Node->getBlock(); 10418 bool Changed = false; 10419 10420 // Traverse the current block. 10421 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 10422 ++I) { 10423 switch (I->getOpcode()) { 10424 case X86::TLS_base_addr32: 10425 case X86::TLS_base_addr64: 10426 if (TLSBaseAddrReg) 10427 I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); 10428 else 10429 I = SetRegister(*I, &TLSBaseAddrReg); 10430 Changed = true; 10431 break; 10432 default: 10433 break; 10434 } 10435 } 10436 10437 // Visit the children of this block in the dominator tree. 10438 for (auto &I : *Node) { 10439 Changed |= VisitNode(I, TLSBaseAddrReg); 10440 } 10441 10442 return Changed; 10443 } 10444 10445 // Replace the TLS_base_addr instruction I with a copy from 10446 // TLSBaseAddrReg, returning the new instruction. 10447 MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, 10448 unsigned TLSBaseAddrReg) { 10449 MachineFunction *MF = I.getParent()->getParent(); 10450 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 10451 const bool is64Bit = STI.is64Bit(); 10452 const X86InstrInfo *TII = STI.getInstrInfo(); 10453 10454 // Insert a Copy from TLSBaseAddrReg to RAX/EAX. 10455 MachineInstr *Copy = 10456 BuildMI(*I.getParent(), I, I.getDebugLoc(), 10457 TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) 10458 .addReg(TLSBaseAddrReg); 10459 10460 // Erase the TLS_base_addr instruction. 10461 I.eraseFromParent(); 10462 10463 return Copy; 10464 } 10465 10466 // Create a virtual register in *TLSBaseAddrReg, and populate it by 10467 // inserting a copy instruction after I. Returns the new instruction. 10468 MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { 10469 MachineFunction *MF = I.getParent()->getParent(); 10470 const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); 10471 const bool is64Bit = STI.is64Bit(); 10472 const X86InstrInfo *TII = STI.getInstrInfo(); 10473 10474 // Create a virtual register for the TLS base address. 10475 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 10476 *TLSBaseAddrReg = RegInfo.createVirtualRegister( 10477 is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass); 10478 10479 // Insert a copy from RAX/EAX to TLSBaseAddrReg. 10480 MachineInstr *Next = I.getNextNode(); 10481 MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(), 10482 TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) 10483 .addReg(is64Bit ? X86::RAX : X86::EAX); 10484 10485 return Copy; 10486 } 10487 10488 StringRef getPassName() const override { 10489 return "Local Dynamic TLS Access Clean-up"; 10490 } 10491 10492 void getAnalysisUsage(AnalysisUsage &AU) const override { 10493 AU.setPreservesCFG(); 10494 AU.addRequired<MachineDominatorTreeWrapperPass>(); 10495 MachineFunctionPass::getAnalysisUsage(AU); 10496 } 10497 }; 10498 } // namespace 10499 10500 char LDTLSCleanup::ID = 0; 10501 FunctionPass *llvm::createCleanupLocalDynamicTLSPass() { 10502 return new LDTLSCleanup(); 10503 } 10504 10505 /// Constants defining how certain sequences should be outlined. 10506 /// 10507 /// \p MachineOutlinerDefault implies that the function is called with a call 10508 /// instruction, and a return must be emitted for the outlined function frame. 10509 /// 10510 /// That is, 10511 /// 10512 /// I1 OUTLINED_FUNCTION: 10513 /// I2 --> call OUTLINED_FUNCTION I1 10514 /// I3 I2 10515 /// I3 10516 /// ret 10517 /// 10518 /// * Call construction overhead: 1 (call instruction) 10519 /// * Frame construction overhead: 1 (return instruction) 10520 /// 10521 /// \p MachineOutlinerTailCall implies that the function is being tail called. 10522 /// A jump is emitted instead of a call, and the return is already present in 10523 /// the outlined sequence. That is, 10524 /// 10525 /// I1 OUTLINED_FUNCTION: 10526 /// I2 --> jmp OUTLINED_FUNCTION I1 10527 /// ret I2 10528 /// ret 10529 /// 10530 /// * Call construction overhead: 1 (jump instruction) 10531 /// * Frame construction overhead: 0 (don't need to return) 10532 /// 10533 enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall }; 10534 10535 std::optional<std::unique_ptr<outliner::OutlinedFunction>> 10536 X86InstrInfo::getOutliningCandidateInfo( 10537 const MachineModuleInfo &MMI, 10538 std::vector<outliner::Candidate> &RepeatedSequenceLocs, 10539 unsigned MinRepeats) const { 10540 unsigned SequenceSize = 0; 10541 for (auto &MI : RepeatedSequenceLocs[0]) { 10542 // FIXME: x86 doesn't implement getInstSizeInBytes, so 10543 // we can't tell the cost. Just assume each instruction 10544 // is one byte. 10545 if (MI.isDebugInstr() || MI.isKill()) 10546 continue; 10547 SequenceSize += 1; 10548 } 10549 10550 // We check to see if CFI Instructions are present, and if they are 10551 // we find the number of CFI Instructions in the candidates. 10552 unsigned CFICount = 0; 10553 for (auto &I : RepeatedSequenceLocs[0]) { 10554 if (I.isCFIInstruction()) 10555 CFICount++; 10556 } 10557 10558 // We compare the number of found CFI Instructions to the number of CFI 10559 // instructions in the parent function for each candidate. We must check this 10560 // since if we outline one of the CFI instructions in a function, we have to 10561 // outline them all for correctness. If we do not, the address offsets will be 10562 // incorrect between the two sections of the program. 10563 for (outliner::Candidate &C : RepeatedSequenceLocs) { 10564 std::vector<MCCFIInstruction> CFIInstructions = 10565 C.getMF()->getFrameInstructions(); 10566 10567 if (CFICount > 0 && CFICount != CFIInstructions.size()) 10568 return std::nullopt; 10569 } 10570 10571 // FIXME: Use real size in bytes for call and ret instructions. 10572 if (RepeatedSequenceLocs[0].back().isTerminator()) { 10573 for (outliner::Candidate &C : RepeatedSequenceLocs) 10574 C.setCallInfo(MachineOutlinerTailCall, 1); 10575 10576 return std::make_unique<outliner::OutlinedFunction>( 10577 RepeatedSequenceLocs, SequenceSize, 10578 0, // Number of bytes to emit frame. 10579 MachineOutlinerTailCall // Type of frame. 10580 ); 10581 } 10582 10583 if (CFICount > 0) 10584 return std::nullopt; 10585 10586 for (outliner::Candidate &C : RepeatedSequenceLocs) 10587 C.setCallInfo(MachineOutlinerDefault, 1); 10588 10589 return std::make_unique<outliner::OutlinedFunction>( 10590 RepeatedSequenceLocs, SequenceSize, 1, MachineOutlinerDefault); 10591 } 10592 10593 bool X86InstrInfo::isFunctionSafeToOutlineFrom( 10594 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 10595 const Function &F = MF.getFunction(); 10596 10597 // Does the function use a red zone? If it does, then we can't risk messing 10598 // with the stack. 10599 if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { 10600 // It could have a red zone. If it does, then we don't want to touch it. 10601 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 10602 if (!X86FI || X86FI->getUsesRedZone()) 10603 return false; 10604 } 10605 10606 // If we *don't* want to outline from things that could potentially be deduped 10607 // then return false. 10608 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 10609 return false; 10610 10611 // This function is viable for outlining, so return true. 10612 return true; 10613 } 10614 10615 outliner::InstrType 10616 X86InstrInfo::getOutliningTypeImpl(const MachineModuleInfo &MMI, 10617 MachineBasicBlock::iterator &MIT, 10618 unsigned Flags) const { 10619 MachineInstr &MI = *MIT; 10620 10621 // Is this a terminator for a basic block? 10622 if (MI.isTerminator()) 10623 // TargetInstrInfo::getOutliningType has already filtered out anything 10624 // that would break this, so we can allow it here. 10625 return outliner::InstrType::Legal; 10626 10627 // Don't outline anything that modifies or reads from the stack pointer. 10628 // 10629 // FIXME: There are instructions which are being manually built without 10630 // explicit uses/defs so we also have to check the MCInstrDesc. We should be 10631 // able to remove the extra checks once those are fixed up. For example, 10632 // sometimes we might get something like %rax = POP64r 1. This won't be 10633 // caught by modifiesRegister or readsRegister even though the instruction 10634 // really ought to be formed so that modifiesRegister/readsRegister would 10635 // catch it. 10636 if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || 10637 MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || 10638 MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) 10639 return outliner::InstrType::Illegal; 10640 10641 // Outlined calls change the instruction pointer, so don't read from it. 10642 if (MI.readsRegister(X86::RIP, &RI) || 10643 MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || 10644 MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) 10645 return outliner::InstrType::Illegal; 10646 10647 // Don't outline CFI instructions. 10648 if (MI.isCFIInstruction()) 10649 return outliner::InstrType::Illegal; 10650 10651 return outliner::InstrType::Legal; 10652 } 10653 10654 void X86InstrInfo::buildOutlinedFrame( 10655 MachineBasicBlock &MBB, MachineFunction &MF, 10656 const outliner::OutlinedFunction &OF) const { 10657 // If we're a tail call, we already have a return, so don't do anything. 10658 if (OF.FrameConstructionID == MachineOutlinerTailCall) 10659 return; 10660 10661 // We're a normal call, so our sequence doesn't have a return instruction. 10662 // Add it in. 10663 MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64)); 10664 MBB.insert(MBB.end(), retq); 10665 } 10666 10667 MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall( 10668 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 10669 MachineFunction &MF, outliner::Candidate &C) const { 10670 // Is it a tail call? 10671 if (C.CallConstructionID == MachineOutlinerTailCall) { 10672 // Yes, just insert a JMP. 10673 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) 10674 .addGlobalAddress(M.getNamedValue(MF.getName()))); 10675 } else { 10676 // No, insert a call. 10677 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) 10678 .addGlobalAddress(M.getNamedValue(MF.getName()))); 10679 } 10680 10681 return It; 10682 } 10683 10684 void X86InstrInfo::buildClearRegister(Register Reg, MachineBasicBlock &MBB, 10685 MachineBasicBlock::iterator Iter, 10686 DebugLoc &DL, 10687 bool AllowSideEffects) const { 10688 const MachineFunction &MF = *MBB.getParent(); 10689 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 10690 const TargetRegisterInfo &TRI = getRegisterInfo(); 10691 10692 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) 10693 // FIXME: Should we ignore MMX registers? 10694 return; 10695 10696 if (TRI.isGeneralPurposeRegister(MF, Reg)) { 10697 // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the 10698 // upper bits of a 64-bit register automagically. 10699 Reg = getX86SubSuperRegister(Reg, 32); 10700 10701 if (!AllowSideEffects) 10702 // XOR affects flags, so use a MOV instead. 10703 BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0); 10704 else 10705 BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg) 10706 .addReg(Reg, RegState::Undef) 10707 .addReg(Reg, RegState::Undef); 10708 } else if (X86::VR128RegClass.contains(Reg)) { 10709 // XMM# 10710 if (!ST.hasSSE1()) 10711 return; 10712 10713 // PXOR is safe to use because it doesn't affect flags. 10714 BuildMI(MBB, Iter, DL, get(X86::PXORrr), Reg) 10715 .addReg(Reg, RegState::Undef) 10716 .addReg(Reg, RegState::Undef); 10717 } else if (X86::VR256RegClass.contains(Reg)) { 10718 // YMM# 10719 if (!ST.hasAVX()) 10720 return; 10721 10722 // VPXOR is safe to use because it doesn't affect flags. 10723 BuildMI(MBB, Iter, DL, get(X86::VPXORrr), Reg) 10724 .addReg(Reg, RegState::Undef) 10725 .addReg(Reg, RegState::Undef); 10726 } else if (X86::VR512RegClass.contains(Reg)) { 10727 // ZMM# 10728 if (!ST.hasAVX512()) 10729 return; 10730 10731 // VPXORY is safe to use because it doesn't affect flags. 10732 BuildMI(MBB, Iter, DL, get(X86::VPXORYrr), Reg) 10733 .addReg(Reg, RegState::Undef) 10734 .addReg(Reg, RegState::Undef); 10735 } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) || 10736 X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) || 10737 X86::VK16RegClass.contains(Reg)) { 10738 if (!ST.hasVLX()) 10739 return; 10740 10741 // KXOR is safe to use because it doesn't affect flags. 10742 unsigned Op = ST.hasBWI() ? X86::KXORQkk : X86::KXORWkk; 10743 BuildMI(MBB, Iter, DL, get(Op), Reg) 10744 .addReg(Reg, RegState::Undef) 10745 .addReg(Reg, RegState::Undef); 10746 } 10747 } 10748 10749 bool X86InstrInfo::getMachineCombinerPatterns( 10750 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns, 10751 bool DoRegPressureReduce) const { 10752 unsigned Opc = Root.getOpcode(); 10753 switch (Opc) { 10754 case X86::VPDPWSSDrr: 10755 case X86::VPDPWSSDrm: 10756 case X86::VPDPWSSDYrr: 10757 case X86::VPDPWSSDYrm: { 10758 if (!Subtarget.hasFastDPWSSD()) { 10759 Patterns.push_back(X86MachineCombinerPattern::DPWSSD); 10760 return true; 10761 } 10762 break; 10763 } 10764 case X86::VPDPWSSDZ128r: 10765 case X86::VPDPWSSDZ128m: 10766 case X86::VPDPWSSDZ256r: 10767 case X86::VPDPWSSDZ256m: 10768 case X86::VPDPWSSDZr: 10769 case X86::VPDPWSSDZm: { 10770 if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) { 10771 Patterns.push_back(X86MachineCombinerPattern::DPWSSD); 10772 return true; 10773 } 10774 break; 10775 } 10776 } 10777 return TargetInstrInfo::getMachineCombinerPatterns(Root, 10778 Patterns, DoRegPressureReduce); 10779 } 10780 10781 static void 10782 genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, 10783 SmallVectorImpl<MachineInstr *> &InsInstrs, 10784 SmallVectorImpl<MachineInstr *> &DelInstrs, 10785 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) { 10786 MachineFunction *MF = Root.getMF(); 10787 MachineRegisterInfo &RegInfo = MF->getRegInfo(); 10788 10789 unsigned Opc = Root.getOpcode(); 10790 unsigned AddOpc = 0; 10791 unsigned MaddOpc = 0; 10792 switch (Opc) { 10793 default: 10794 assert(false && "It should not reach here"); 10795 break; 10796 // vpdpwssd xmm2,xmm3,xmm1 10797 // --> 10798 // vpmaddwd xmm3,xmm3,xmm1 10799 // vpaddd xmm2,xmm2,xmm3 10800 case X86::VPDPWSSDrr: 10801 MaddOpc = X86::VPMADDWDrr; 10802 AddOpc = X86::VPADDDrr; 10803 break; 10804 case X86::VPDPWSSDrm: 10805 MaddOpc = X86::VPMADDWDrm; 10806 AddOpc = X86::VPADDDrr; 10807 break; 10808 case X86::VPDPWSSDZ128r: 10809 MaddOpc = X86::VPMADDWDZ128rr; 10810 AddOpc = X86::VPADDDZ128rr; 10811 break; 10812 case X86::VPDPWSSDZ128m: 10813 MaddOpc = X86::VPMADDWDZ128rm; 10814 AddOpc = X86::VPADDDZ128rr; 10815 break; 10816 // vpdpwssd ymm2,ymm3,ymm1 10817 // --> 10818 // vpmaddwd ymm3,ymm3,ymm1 10819 // vpaddd ymm2,ymm2,ymm3 10820 case X86::VPDPWSSDYrr: 10821 MaddOpc = X86::VPMADDWDYrr; 10822 AddOpc = X86::VPADDDYrr; 10823 break; 10824 case X86::VPDPWSSDYrm: 10825 MaddOpc = X86::VPMADDWDYrm; 10826 AddOpc = X86::VPADDDYrr; 10827 break; 10828 case X86::VPDPWSSDZ256r: 10829 MaddOpc = X86::VPMADDWDZ256rr; 10830 AddOpc = X86::VPADDDZ256rr; 10831 break; 10832 case X86::VPDPWSSDZ256m: 10833 MaddOpc = X86::VPMADDWDZ256rm; 10834 AddOpc = X86::VPADDDZ256rr; 10835 break; 10836 // vpdpwssd zmm2,zmm3,zmm1 10837 // --> 10838 // vpmaddwd zmm3,zmm3,zmm1 10839 // vpaddd zmm2,zmm2,zmm3 10840 case X86::VPDPWSSDZr: 10841 MaddOpc = X86::VPMADDWDZrr; 10842 AddOpc = X86::VPADDDZrr; 10843 break; 10844 case X86::VPDPWSSDZm: 10845 MaddOpc = X86::VPMADDWDZrm; 10846 AddOpc = X86::VPADDDZrr; 10847 break; 10848 } 10849 // Create vpmaddwd. 10850 const TargetRegisterClass *RC = 10851 RegInfo.getRegClass(Root.getOperand(0).getReg()); 10852 Register NewReg = RegInfo.createVirtualRegister(RC); 10853 MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root); 10854 Madd->setDesc(TII.get(MaddOpc)); 10855 Madd->untieRegOperand(1); 10856 Madd->removeOperand(1); 10857 Madd->getOperand(0).setReg(NewReg); 10858 InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0)); 10859 // Create vpaddd. 10860 Register DstReg = Root.getOperand(0).getReg(); 10861 bool IsKill = Root.getOperand(1).isKill(); 10862 MachineInstr *Add = 10863 BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg) 10864 .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill)) 10865 .addReg(Madd->getOperand(0).getReg(), getKillRegState(true)); 10866 InsInstrs.push_back(Madd); 10867 InsInstrs.push_back(Add); 10868 DelInstrs.push_back(&Root); 10869 } 10870 10871 void X86InstrInfo::genAlternativeCodeSequence( 10872 MachineInstr &Root, unsigned Pattern, 10873 SmallVectorImpl<MachineInstr *> &InsInstrs, 10874 SmallVectorImpl<MachineInstr *> &DelInstrs, 10875 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 10876 switch (Pattern) { 10877 default: 10878 // Reassociate instructions. 10879 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, 10880 DelInstrs, InstrIdxForVirtReg); 10881 return; 10882 case X86MachineCombinerPattern::DPWSSD: 10883 genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs, 10884 InstrIdxForVirtReg); 10885 return; 10886 } 10887 } 10888 10889 // See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand(). 10890 void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops, 10891 int FI) const { 10892 X86AddressMode M; 10893 M.BaseType = X86AddressMode::FrameIndexBase; 10894 M.Base.FrameIndex = FI; 10895 M.getFullAddress(Ops); 10896 } 10897 10898 #define GET_INSTRINFO_HELPERS 10899 #include "X86GenInstrInfo.inc" 10900